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 A B S T R A C T

Monolithic active pixel sensors with depleted substrates present a promising option for pixel detectors in high-
radiation environments. High-resistivity silicon substrates and high bias voltage capabilities in commercial 
CMOS technologies facilitate depletion of the charge sensitive volume. TJ-Monopix2 and LF-Monopix2 are the 
most recent large-scale chips in their respective development line, aiming for the ATLAS Inner Tracker outer 
layer requirements. Those include a tolerance to ionizing radiation of up to 100Mrad. It was evaluated by 
irradiating both devices with X-rays to the corresponding ionization dose, showing no significant degradation 
of the performance at 100Mrad and continuous operability throughout the irradiation campaign.
1. Introduction

The fabrication of monolithic pixel detectors for high-energy physics 
experiments in commercial CMOS processes has been successfully 
demonstrated in many projects and chips in recent years. With the 
original design specifications to meet the ATLAS Inner Tracker outer 
pixel layer requirements, the development of LF- and TJ-Monopix was 
heavily influenced by the expected hit rate and radiation levels in terms 
of ionizing and non-ionizing radiation.

2. The Monopix2 chips

Both monolithic pixel detector prototypes, LF- and TJ-Monopix2, 
utilize commercial CMOS imaging technologies with 150 nm and 180 nm
feature size, respectively. They are fabricated in highly resistive silicon 
and employ technologies with high-voltage capabilities to enhance 
depletion of the charge-sensitive sensor substrate. The pixels are read 
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out using a column-drain mechanism derived from the FE-I3 AT-
LAS readout chip [1]. Both chips feature time over threshold charge 
measurements and in-pixel threshold tuning circuitry.

2.1. LF-Monopix2

The LF-Monopix2 chip features 150 × 50 μm large pixels arranged 
in a matrix of 56×340 pixels. Its large n-well collection electrode houses 
the analog and digital pixel electronics inside. This design approach of-
fers short drift distances, high and homogeneous electrical fields for fast 
charge collection, and high NIEL (non-ionizing energy loss) radiation 
tolerance [2]. It exhibits a detector capacitance in the order of 250 fF
which results in a power consumption of about 28 μW∕pixel [3]. Fig. 
1 shows the schematic cross-section of the pixel design. An elabo-
rated guard ring designs allows for bias voltages above 450V before 
irradiation [3]. 
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Fig. 1. Schematic cross-section of a pixel in the large collection electrode design of LF-Monopix2.
Fig. 2. Schematic cross-section of a pixel in the small collection electrode design of TJ-Monopix2.
2.2. TJ-Monopix2

TJ-Monopix2 is a large-scale chip with a 17mm×17mm large matrix 
composed of square pixels with 33 μm pitch. The pixel electronics are 
implemented in p-wells that are spatially separated from the small 
(2 μm diameter) n-type charge collection electrode. This design facil-
itates a small detector capacitance in the order of 2 fF enabling an 
analog power consumption of as low as 1 μW∕pixel [4]. Due to the 
longer drift distances and inhomogeneous electrical field compared 
to the large collection electrode design, further enhancements are 
necessary to achieve tolerance against NIEL radiation. A low-dose n-
type layer close to the top side of the sensor leads to a depletion 
boundary parallel to the pixel and a more homogeneous depletion 
of the highly-resistive epitaxial silicon [5]. The cross-section of this 
geometry is depicted in Fig.  2. The gaps of this n-type implantation 
at the pixel edges improve the field shape below the p-wells in which 
the electronics are located [6,7].

3. X-ray irradiation setup and dosimetry

The irradiation campaigns were performed at an X-ray irradiation 
system with a Tungsten anode at the University of Bonn [8]. Fig.  3 
depicts the dose rate profile measured with a silicon diode from which 
the dose rate during the irradiation is extracted. The chips are placed 
in the central part to maximize the dose rate on the respective device 
under test. During the irradiation, the devices under test are powered 
up and cooled to 0 °Celsius by mounting them on a cold plate.

4. Measurement results of LF-Monopix2

Two front-end variants of LF-Monopix2 were studied that have a 
similar amplifier design, but different gain. Fig.  4 depicts the gain of 
the tested front-ends with their respective feedback capacitance against 
the deposited dose. No significant change can be observed over the full 
dose range which is in agreement with earlier measurements on this 
amplifier design [9]. The same study finds that the feedback current in 
this amplifier design is also unaffected.
2 
Monitoring the different power domains of LF-Monopix2 (for the 
analog and digital pixel electronics, and the end-of-column logic) en-
ables to investigate the X-ray dose influence on the different circuitry 
within the chip. The corresponding graphs are presented in Fig.  5. 
While the current consumption of the end-of-column logic is unaffected, 
the current consumption of the analog circuits decreases from 1Mrad on 
to about 50% of its initial value. The digital circuitry exhibits a decrease 
between 100 krad and 1Mrad and increases to almost twice of its initial 
value between 1Mrad and 10Mrad It follows the behavior of the analog 
power domain at higher dose levels. This increase has been observed 
for NMOS transistors of a comparable feature size in multiple studies. 
The stated underlying reasons are two-fold [10,11]:

Hole accumulation Radiation-induced positive charges get trapped in 
the silicon oxide and introduce a threshold voltage shift that is 
proportional to the amount of trapped charges and depends on 
the distance thereof to the Si-SiO2 interface.

Interface traps For NMOS transistors, negative charges are trapped 
in so-called interface traps and counteract the aforementioned 
threshold voltage shift.

Since the analog part uses well-shielded NMOS transistors, only the 
effect of interface traps can be observed for higher doses. The threshold 
shift of the NMOS transistors in the digital circuitry increases their 
leakage current and, consequently, the current consumption.

An influence on the operation can be observed in the threshold 
dispersion that shows an increase of about a factor of four at 100Mrad
compared to the non-irradiated state. This dispersion limits the opera-
tional threshold since pixels at the lower end of the distribution exhibit 
thresholds below the noise level. The in-pixel threshold tuning in LF-
Monopix2 enables compensation of the threshold variations across 
the matrix and limits the threshold dispersion to an increase of up 
to 25% over the measured dose range, resulting in the same operational 
threshold of 1980 e− at 100Mrad compared to 2050 e− at 0Mrad.
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Fig. 3. Dose rate map of the irradiation setup, measured with a silicon diode. The positions of the TJ- and LF-Monopix2 devices under test are depicted by the black and red 
rectangles, respectively.
Fig. 4. Evolution of the gain of LF-Monopix2 versus total ionization dose for two front-
ends that differ in their feedback capacitance. For both, the gain does not degrade over 
the whole dose range.

5. Measurement results of TJ-Monopix2

The power consumption of TJ-Monopix2 versus the total irradiation 
dose, depicted in Fig.  6 exhibits a similar behavior as in LF-Monopix2, 
originating from the same effects. Since the voltage amplifier input 
transistor is implemented as an NMOS device, a significant degradation 
3 
Fig. 5. Normalized current consumption (at 1.8V) of the different power domains of 
LF-Monopix2 versus the ionization dose.

of the gain has been observed in the expected dose range between 
1Mrad and 10Mrad. This conclusion is supported by measuring the 
baseline after the amplifier stage that shows the same decrease in 
the aforementioned dose range. As in LF-Monopix2, the threshold 
dispersion increases, but can be counter-acted by utilizing the in-pixel 
threshold tuning capabilities. This facilitates an operational threshold 
of 245 e− after 100Mrad which is an increase of only 15 e− of the 
threshold in the non-irradiated chip.
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Fig. 6. Normalized current consumption (at 1.8V) of the different power domains of 
TJ-Monopix2 versus the ionization dose.

Fig. 7. In-pixel efficiency map of TJ-Monopix2 after X-ray irradiation to 100Mrad.

Table 1
Summary table of achieved performance of LF-Monopix2 and TJ-Monopix2 at 0Mrad
and 100Mrad irradiation dose.
 LF-Monopix2 TJ-Monopix2

 0Mrad 100Mrad 0Mrad 100Mrad

 Thr./e− 2055 1983 230 254  
 Thr. disp./e− 91 108 5 5  
 ENC/e− 92 112 6 13  

5.1. Beam tests

Furthermore, the irradiated sensor has been measured in a beam test 
campaign at the DESY II test beam facility [12]. The device has been 
cooled to 0 °Celsius as during the irradiation and presented measure-
ments. The hit detection efficiency has been evaluated to 99.94(5) %
which is consistent with the efficiency of 99.96% before irradia-
tion [13]. Fig.  7 shows the homogeneous in-pixel efficiency map after 
a total dose of 100Mrad with individual values for different pixel 
regions. In addition, the time resolution of about 1 ns before irradiation 
is matched [14].
4 
6. Conclusion

Both DMAPS were successfully X-ray irradiated to 100Mrad and 
remained fully functional at the highest dose level. The power con-
sumption follows the characteristic and, therefore, expected course for 
NMOS transistors of the respective feature size. By utilizing the in-pixel 
threshold tuning capabilities and adjusting the front-end settings, the 
overall performance shows no significant degradation. The threshold, 
threshold dispersion, and equivalent noise charge (ENC) before and 
after irradiation are summarized in Table  1.
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