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ABSTRACT

A recent increase in targeted attacks using chemical warfare agents by dictators and authoritarian regimes against politicians,

journalists, and other civilians is a major concern. To aid the civil investigators in identifying poisonous substances in such cases,

we developed an algorithm and a lightweight and simple-to-use software, ToxicMassSceptic, with a database of 400 electron

ionization mass spectra entries, which include many poisonous and explosive agents. The identification relies on a window-based

reduction of the experimental spectra and four statistical metrics that are combined into a single metametric. The software also

features automatic spectral background removal. Furthermore, we provide the workflow for increasing the size of this database

by performing theoretical calculations of mass spectra with a molecular dynamics-based approach. The accuracy of both the

theoretical prediction workflow and ToxicMassSceptic is validated on the experimental spectra. Our results demonstrate that

the proposed software package can aid in the preliminary identification of traces of poisonous and explosive substances.

1 | Introduction

The Chemical Weapons Convention [1], which entered into
force in 1997, marked a breakthrough in a long-standing ef-
fort to end the production, storage, and eventual deployment
of poisoning agents in a military setting. Despite its nearly
universal adoption, multiple large-scale assaults involving

chemical weapons have occurred in the decades after the
adoption, most notably in Syria (before [2] and after [3] its
accession to the convention) and Iraq [4]. In a concerning
development, nerve combat agents, originally designed for in-
discriminate large-area use, have been employed in attempts
on the lives of individuals in urban environments. The most
well-known case is the Tokyo subway sarin attack, performed
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This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2025 The Author(s). Journal of Computational Chemistry published by Wiley Periodicals LLC.

Journal of Computational Chemistry, 2025; 46:¢70148
https://doi.org/10.1002/jcc.70148

10of 15


https://doi.org/10.1002/jcc.70148
https://doi.org/10.1002/jcc.70148
mailto:
https://orcid.org/0000-0003-3167-3104
https://orcid.org/0000-0002-0056-4813
https://orcid.org/0000-0002-7390-1075
https://orcid.org/0000-0002-3874-4545
https://orcid.org/0000-0001-9394-3566
https://orcid.org/0000-0002-2935-1694
https://orcid.org/0009-0003-4497-5731
mailto:
https://orcid.org/0000-0001-5136-6035
mailto:
https://orcid.org/0000-0002-0130-954X
mailto:denis.tikhonov@desy.de
mailto:vladimir.rybkin@quantumsimulations.de
mailto:denis.artiukhin@fu-berlin.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjcc.70148&domain=pdf&date_stamp=2025-06-25

in 1995 by the Aum Shinrikyo cult, that killed 13 and injured
more than 6000 people [5, 6]. In recent years, authoritarian
regimes in Russia and North Korea [7, 8] have made targeted
attempts at using various poisons to assassinate dissidents
and critics [9, 10]. Thus, Russian democratic opposition leader
Alexei Navalny [11, 12] and former Russian spy and double
agent for British intelligence Sergei Skripal [13] were noto-
riously poisoned with the Novichok nerve agent, Ukrainian
president Viktor Yushchenko was poisoned during his presi-
dential campaign of 2004 by the TCDD agent [14], and an ex-
iled relative of North Korea's supreme leader Kim Jong Un,
Kim Jong-nam [15], was killed using the VX nerve agent.
Months after the attempt on Skripal, an unrelated British cou-
ple was poisoned with Novichok [16], apparently as collateral
from a Russian attack.

Although in the aforementioned high-profile cases the specific
nerve agents were reliably identified, investigations into other
apparent poisonings did not produce conclusive results on the
nature of the chemical agents used. In cases of Russian regime
critics Pyotr Verzilov [17], Dmitry Bykov [18], Vladimir Kara-
Murza [19], the latter being poisoned on two separate occasions,
or in a recent chain of poisonings of dissident Russian jour-
nalists and activists after the outbreak of Russian aggression
against Ukraine [20], the used substances were not definitively
established, which might be due to delays in samples collection
and their analysis.

A range of methods exists to identify the presence of chemical
warfare agents in the laboratory or the field. The most sensitive
and informative of these are non-portable techniques: Mass
spectrometry (MS), nuclear magnetic resonance (NMR), and
chromatographic methods, such as gas chromatography (GC)
or high-pressure liquid chromatography (HPLC), coupled to MS
[21-25]. In their review on the detection and destruction of chem-
ical warfare agents, Kim et al. [26] provide numerous examples
of MS techniques being used to identify organophosphorus nerve
agents and other toxins at very low concentrations, in some cases
in vivo. In most MS techniques, the molecules present in the sam-
ple undergo fragmentation upon ionization, which makes inter-
pretation of mass spectra a cumbersome task even when dealing
with a clean individual substance, increasing the likelihood of
failure to identify a compound in the probe. In real-world forensic
samples, often heavily contaminated and containing only traces
of compounds, reliable identification becomes an exceedingly dif-
ficult task. Thus, a method to automatically identify poisons or
other dangerous chemical compounds in mass spectra of impure
samples is of great interest to a broad community of forensic ex-
perts, medical professionals, as well as independent sleuths. Since
investigations are often conducted by individuals and teams with
no technical education and at their own risk, we also note that a
software piece to implement this method must be easy to install
and operate without MS specialist knowledge.

Focusing on MS as the prime method to identify various species
in experimental mixtures, we find ourselves with a wide selec-
tion of program tools for analyzing mass spectra. First of all,
many producers of MS equipment provide accompanying soft-
ware to be used with it. The MassHunter code by Agilent [27] is
one such example. Secondly, the analysis software developed by
the National Institute of Standards and Technology (NIST), such

as the AMDIS (Automated Mass Spectrometry Deconvolution
and Identification System) and MSSearch [28-32] are com-
monly used. The drawback of these programs is that they are
proprietary. As an alternative, there are also open-source soft-
ware, such as the ProteoWizard [33], matchms [34, 35],
OpenMS/pyOpenMsS [36, 37|, and FastEI [38]. However, most
of these packages require both advanced user experience and
proficiency in MS. Therefore, these software packages can be
hard to use for non-experts.

Finding the reference spectra in the existing literature might
also present a challenging problem. In the publicly accessible
databases, such as those by The NIST Chemistry WebBook [39]
or National Institute of Advanced Industrial Science and
Technology (AIST) [40], experimental data for many substances
are not present, for instance for the compounds described in the
book by Mirzayanov [41]. There are some attempts to combine
personallibrariesof spectra, forexample, FederEI [42],afederated
library matching framework for EI-MS. Another possible solu-
tion to this problem is to predict spectra from theory. Nowadays,
various methods for such prediction exist. Among those are the
machine-learning-based prediction algorithms, such as com-
petitive fragmentation modeling (CFM) [43-45], rapid approx-
imate subset-based spectra prediction (RASSP) [46], and neural
electron-ionization mass spectrometry (NEIMS) [47]. In recent
years, an algorithm to compute mass spectra by means of molec-
ular dynamics (MD) simulations was proposed by Grimme [48].
This algorithm was used to predict the MS spectra, among oth-
ers, of Tabun [49] and Novichok [50], experimental work there-
with being greatly hindered by the inherent danger.

To address the outlined difficulties, we present a simple-to-use
software package, ToxicMassSceptic, for the analysis of mass
spectra, together with a database compiled from both MS exper-
iments and theoretical computations, as well as the workflow for
producing the theoretical mass spectra. We do not aim to out-
perform existing identification methods and libraries but rather
to provide a simple and robust tool for preliminary substance
identification that can aid low-budget analytical laboratories
and civil investigators. The article has the following structure.
First, in Section 2, we introduce the methodology: The structure
and sources of the database, the digital formats of the data, and
algorithms and workflows to compute and assign mass spectra,
including the spectral similarity metrics. Secondly, we discuss
the theoretical computation of mass spectra and demonstrate
applications of the methodology in Section 3. Finally, conclu-
sions are outlined in Section 4.

2 | Methods
2.1 | Mass-Spectroscopic Database
2.1.1 | Database Structure and File Formats

Our database has to be easy to extend even by inexperienced
users. Therefore, we store it as a set of nested directories with the
structure shown in Figure 1. The top-level directory (“database”)
contains the subdirectories that name the class of substances
(“class #1”, “class #2”, etc.). Each of the subdirectories (“sub-

stance #1”, “substance #2”, etc.) contains folders with data on the
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FIGURE1 | Schematic structure of the database with reference MS.
The symbol “...” denotes similarly repeated structure.

specific substance. The recommended naming of these folders
is “[Brutto chemical formula in the Hill nota-
tion] [common name of the substance].” For every
substance, the “ref.ms” file is required, which contains the ref-
erence mass spectrum of the given compound. It is optional but
strongly suggested to supplement an entry with a file “INFO.txt”
that contains information about the substance, for example, com-
mon names, molar mass, links to substance Wikipedia and/or
PubChem webpage, etc.

The classes of substances in the presented database and the
number of entries in each are shown in Table 1. While the classi-
fication of substances is almost always self-explanatory, assum-
ing their separation into different chemical weapon agent types
(blister agents, blood agents, chocking agents, lachrymators,
and nerve agents) [51], environmental pollutants (such as poly-
cyclic aromatic hydrocarbons (PAHs) [52, 53], per- and polyflu-
oroalkyl substances (PFAS), polychlorinated biphenyls (PCBs),
and dioxines [54, 55]), a separate category (miscellaneous) had
to be made to store different substances that did not fit into this
arguably rigid framework.

The reference spectra of the molecules in the database (files
“ref.ms”) are formatted as two-column text files with pairs of
numbers (x,y) in rows, where x is the integer mass-over-charge
(m/z) position of the ion and y is the normalized intensity of the
given ionic fragment in the MS; this format is usually denoted
with an .xy file extension. The spectra in the “ref.ms” files have
different normalization and are to be treated as not normalized,
while normalization happens during runtime. For a molecule
with a spectrum of N fragment ions {(x;,¥;), (63, ¥,), -, x> Ya) b
the intensities are normalized such that

TABLE 1 | Classes of substances present in the database and the
number of substances in each category (Nyy)-

Class of substances N,

sub
AcidContaminants 9
Bisphenols 3
BlisterAgents 15
Blood Agents 6
Chlorophenols 7
ChokingAgents 9
Dioxines 15
Explosives 59
Herbicides 7
Lachrymators 5
Miscellaneous 169
NerveAgents 43
PAHSs 16
PCBs 2
Pesticydes 31
PFASs 2
Phthalates 2

Note: In total, the database contains 400 entries, a few of which represent the
same substances but different spectra.

N
> ¥ =100% 1)
i=1

2.1.2 | Sources of Experimental Mass Spectra

Our database of molecular species borrowed mainly from the
following sources: The NIST Chemistry WebBook [39], Spectral
Database for Organic Compounds SDBS [40] organized by
the AIST, Japan, and University of Rhode Island Explosives
Database [56]. Since the Chemistry WebBook removed the op-
tion to download numerical MS data, most of the information
from this database was extracted by manually digitizing the
graphs (for details of this procedure, see ESI). The spectra for
the two Novichok species, A-230 and A-232, were digitized from
[57] using WebPlotDigitizer software [58].

2.1.3 | Sources of Theoretical Mass Spectra

Theoretical mass spectra were computed using the workflow
shown in Figure 2. All quantum chemical calculations, includ-
ing conformational search and the MS calculation, were done
with the GFN2-xTB method [59] as implemented in the XTB soft-
ware [60], version 6.6.1. First, the initial molecular structure, ob-
tained either from the NIST Chemistry WebBook, PubChem, or
drawn in Jmol [61], was optimized with the XTB software. Then,
conformational search was performed for this structure using
CREST (version 2.12) [62, 63], except for conformationally-rigid
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Step 1: ‘

initial optimization with xTB

v

Step 2:

conformational search with CREST

o .

Step 3.1:
MS calculation with QCxMS

Step 3.2:
MS calculation with DissMD

Step 4:
combining theoretical MS

FIGURE 2 | A general workflow scheme applied for the theoretical
MS prediction for a given molecule.

molecules. Subsequently, two augmented Born-Oppenheimer
molecular dynamics (aBOMD) program packages were applied to
calculate the theoretical mass spectrum of the lowest energy con-
former: QCxMS (version 5.2.1) [48, 64, 65], an original approach
by S. Grimme, and DissMD, a software [66-68] based on the same
idea. A detailed comparison of those approaches can be found in
Section 3. Finally, the spectra obtained by the two theoretical ap-
proaches described above were combined as arithmetic means.

In QCxMS, the default settings were applied. The molecules were
ionized by electron ionization (EI) with kinetic energy of elec-
trons equal to 70 eV. The spectra were then collected by PlotMS
(version 6.1.0). Since DissMD only simulates laser ionization, the
ionization of molecules was modeled with an extreme ultraviolet
(XUV) photon of 70 eV energy. In both QCxMS and DissMD cal-
culations, the GFN2-xTB method was used to provide the poten-
tial energy surfaces for the aBOMD simulations, as this method
was shown to be sufficiently accurate and computationally feasi-
ble for the mass spectra prediction [64, 69].

2.2 | Mass-Spectra Assigning Algorithm
2.21 | Window-Function Based Assignment

The assignment was based on the assumption that there might
be more than one species in the MS, which can be the case if the
mixtures were not properly separated by chromatography or an
alternative technique applied before the MS analysis. Therefore,
the procedure involves finding only the relevant peaks in the
tested spectrum to be compared with the reference database. For
this, the window-based metrics were employed as described in
more detail in the following.

Let us assume that we are interested in the possibility of
species A with known reference spectrum of N(A) peaks
{Ges 1), (5 32)s -5 (Xnay Yniay)} to be present in the mixture.
Intensities y; can be represented as an N(A)-dimensional vector
¥(A) = (1, Y2, ---» Yn(a))- Note that we require all intensities to be
positive (y; > Ofori =1, ..., N(A)) and normalized to 100% as seen
from Equation (1). To make the comparison, we need to reduce
the experimental dataset to an analogous N(A)-dimensional vec-
tor of experimental intensities §(B|A) = (J;,¥,, ..., Jn(a))» Where
¥,; is the spectral intensity around x; = m;/z; in experimentally-
measured MS I(x) of unknown species or mixture B. To that
end, we integrate the raw experimental MS I(x) with a window

function w(x|x;) for a given position x; = m;/z; and obtain non-
normalized intensities (Y, Y, ..., Yy(4)) as

+0o0

Y, = / I(x) - w(x|x;)dx ®)

0

where w(x|x;) is nonzero only in the vicinity of x;. This math-
ematical operation essentially sums up the spectral intensity
near an expected position x; into a single value. Applying this
transformation to every peak i in the reference spectrum I(x)
and subsequently normalizing resulting values Y; such that

Y,
7, =100% X ————
i Ejl\;(f) Y, 3

we obtain experimental intensities y; at the discretized positions
x; = m; /z; of the reference dataset.

Alternatively, if the experimental MS is presented in the form
of discrete peaks, the integration procedure is replaced by the
summation, namely

M
Yo=Y I - wxx)dx )
k=1

where index k runs over all M peaks with intensities I(x;) = I,
identified in the experimental MS by the spectrometer's software.

In our program code, we implemented two types of window
functions w(x|x;): A rectangular window,

|x—x|<o/2

1,
w(x|x;) = { )
0, |x—x;|>0/2

and Gaussian window
X —x;)?
w(x|x;) = exp< - #) ©
20
where ¢ is the width of the given window in m/z units. By de-
fault, the Gaussian window with ¢ = 1/2 is employed.

2.2.2 | Assignment Metric

After defining the window-based reduction scheme of experimen-
tal data, we can discuss the route to identifying chemical species in
our spectrum. To that end, we rely on a metametric, which is com-
posed of several deterministic metrics. Thus, the simplest metric
N(BJ|A) that can be defined for a given reference spectrum A is the
number of lines present in both A and B. It reads

N(4)

N(BIA) = Y 60 -0) (7)

where ¢ > 0 is a small threshold (in our case, ¢ = 10~ %) for nu-
merical comparison of real numbers and 6(x) is the Heaviside
step function of the form
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1, x>0

0(x) = { ®
0, x<0

The expression in Equation (7) can be normalized by the total

number of lines in the reference spectrum N(A) to produce the

relative number of lines, that is,

N(B|A)
N(A)

P(BlA) = ©

More sophisticated metrics should also account for the distribu-
tion of fragment intensities. For this purpose, two sets of nor-
malized values y(A) and §(BJA) can be treated as probability
distributions. Thus, standard statistical distances for probability
distributions can be employed. We chose four such measures:
Kullback-Leibler divergence (Dy;) [70], Bhattacharyya distance
(Dg) [71], Hellinger distance (Dy) [72], and cosine distance (D).
In our case of two spectra, A and B, these four measures are given
as [73, 74|

N(A) )7
D (BlA)= i 1n<—f> (10)
Dy(BJA) = —In(BC(B|A)) 11
Dy(BJA) = /1 - BC(B|A) (12)
NA) ., ~
De(BIA) = 1 Xy Wi 1
\/ ( Z{\i(lfo 5,;) ) (Z{\i(lfm y;> 13)

respectively. In Equations (11) and (12), BC is the so-called
Bhattacharyya dimensionless coefficient [71, 75] given by

N(A)

1 .
BC(BIA) = {50 PRV 14
¢ i=1

Here, the division by 100% is motivated by the fact that BC is
defined for probability distributions normalized to 1. The three
chosen measures of similarities for probability distributions
from Equations (9-12) require that components of the vector
¥(B|A) are non-negative. Note that Equations (10-12) are unde-
fined for N(B|A) = 0, which corresponds to the case of the spe-
cies not being present in the spectrum.

The combined metametric is then constructed from
Equations (9-13) such that

1
Dmeta(BlA) = NA)
P(B|A) x Z YJ
=
Dy (B|A) Dy(B|A) Dy(B|A) D-(BIA
><< KL(|)+ B(|)+ H(|)+ c(|)>
SKL SB Su Sc

15)

where Y; is the non-normalized experimental intensity given by
Equations (2) or (4) and gy is the standard deviation of the given
metric X = KL, B, H, and C, computed over the whole available

dataset as
Sx =1/ (D;2(> —(Dx)?

2
1 1
=\ N ZA ',fo(BIA)—<]7d AE Df((BIA)>

(16)

where index A runs over all spectra in the database and Ny
is the number of such spectra. The value of D, ., (B|A) from
Equation (15) tends to zero if the two spectra A and B are similar
and increases with the growing dissimilarity of the experimen-
tal spectrum from the reference. Although Bhattacharyya and
Hellinger distances provide the same relative ranking of sub-
stances, it can be advantageous to use both in the metametric,
as they might have different sensitivity at different values of the
Bhattacharyya dimensionless coefficient BC.

2.2.3 | Background Removal Algorithm

Experimentally measured spectra can contain signals from
the background. This may result in empty areas of a spectrum
producing negative intensities when using Equations (2) and
(4). To avoid that, basic filtering of the experimental MS signal
I(x) can be performed. The simplest and most robust approach
is probably a visual determination of the noise threshold level
I, and setting all the values I(x) < I, to zero. However, a
crude automatic routine can also be designed (e.g., see [76])
assuming that non-zero peaks occupy only a minor part of
the spectrum in all available m/z ranges and that the base-
line signal is I = 0. To that end, we represent a spectrum in
a discretized form with lines I, I,, ..., I);. Then, the following
procedure can be employed.

1. Calculate the standard deviation of I(x) from baseline

(I=0)asSD, = /= X I2.

2. Consider only values I, <q-SD, with g>1 being
an arbitrary selectivity coefficient, forming a new set
Iil) ,I;D, ...,I(ll), where the upper index “(1)” indicates the
iteration number and M, < M is the number of elements in

the new set.

3. Calculate the new standard deviation as

1 M, 1
SD, = /51 Tty 42

4. Repeat steps 2 and 3 until the number of elements in the set
remains constant or a maximum number of iterations p is
reached.

5. Set values of the original mass spectrum below the final
threshold g - SD,, to zero.

This automatic background removal procedure is implemented
in our program code, with the default number of steps p = 3and
selectivity coefficient g = 1. 5.
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2.3 | Software

The program code called ToxicMassSceptic is written in
Python version 3.8 for the Linux, MacOS, and MS Windows
operational systems, distributed under an open source
Apache License version 2.0 [77], and is managed using the
version control system GIT [78] by the provider GitLab [79].
The source code is available in the Gitlab repository [80].
The list of program requirements includes Python packages
such as NUMPY [81] and MATPLOTLIB [82]. The code has a
clear version number and is accompanied by two types of
documentation: (i) a README file in the Markdown format
outlining external dependencies, package structure as well
as the installation procedure and (ii) an automatically gen-
erated Doxygen [83] code documentation describing all con-
stituting objects and functions. The package-management
system PIP3 [84] governs the installation procedure. The
code is aimed to be fully unit-tested. To that end, the package
UNITTEST [85] is employed. The current code design enables
the use of our program as an external Python library as well as
through a command-line interface.

The flowchart of the ToxicMassSceptic work and usage is
given in Figure 3. First, the user needs to provide a spectrum,
which can then be passed, by request, through the background
removal procedure described in Section 2.2.3. Then, the data-
base is loaded, and the comparison of the unknown spectrum
with the database entry begins. During this step, the four
metrics described in Section 2.2.2 are computed for each sub-
stance. After all the metrics are known, the metametric from
Equation (15) for each database substance is computed, as it
requires a spread of each metric throughout every database
entry as seen from Equation (16). Finally, the database entries
are sorted by the metametric value, and the best matching
substance is given.

Input MS
(provided by user)

v

‘ Background removal ’

.

Comparison of MS with DB entries

’ ‘ Substance database (DB) }

(optional)

(various metric calculations)

v

Metametric calculation

v

Ranking of DB entries

v

Best match compound

FIGURE 3 | Flowchart of the ToxicMassSceptic software work-
flow. Details are given in the text.

2.4 | Statistical Analysis of Results

Let us assume that the user is interested in testing N,,;,; humber
of different mixtures B. Each such ith mixture B; contains a com-
pound Airue, which is also present in the database. Furthermore,
we assume that for each sample B,, the top-K matching candi-
dates A’ = {Al, AL, ..., Al } are suggested by our algorithm based
on the metrics introduced above in Section 2.2.2. Here, each
set Al is sorted in descending order such that its first element is
the most probable match. Therefore, index j denotes the rank of
compound A, that is, j = R(A}), with lower ranks being prefer-
able. Then, the following scores can be introduced to assess the
performance of our algorithm.

1. Top-K accuracy (also known as Hit rate at rank K), which
is equal to the number of trials with the correctly identified
compound being present in top-best K candidates N, op.
divided by the total number of trials N, and multiplied
by 100%, that s,

N in top-K

top—K accuracy = X100 % 17)

trials

2. Mean reciprocal rank (MRR), defined as

1 N, trials 1

Ntrials i=1 R(Ai )

true

MRR = x100% (18)

where R(A! ) is the rank of the correctly identified com-

““true
;omeen L
pound Ay . in trial i.

3. Mean rank (MR), defined as

N, trials
1

MR = Al ) 19)

trials j=1

The top-K score from Equation (17) shows how often the cor-
rectly identified compound was present in the K most probable
candidates predicted by the program code, whereas MRR from
Equation (18) evaluates the ability of the code to assign low
ranks to relevant chemical compounds. In the case of an ideal
assignment, when correct compounds always occupy the very
top of the suggestion list, both scores are equal to 100%. The MR
score from Equation (19) is closely related to MRR, but is equal
to or greater than 1.0 and tends toward 1.0 for better-performing
recommendation systems.

3 | Results and Discussion
3.1 | Mass-Spectra Prediction Workflow

Predicted mass spectra presented in this work were computed
using either QCxMS or DissMD. The latter is a part of the
PyRAMD package [66, 86, 87]. Both algorithms employ Born-
Oppenheimer molecular dynamics (BOMD), as proposed by
S. Grimme in his seminal paper [48]. Before discussing our re-
sults, we first compare the two approaches.

6 of 15

Journal of Computational Chemistry, 2025

85UB01 T SUOLULLOD dA1I1D) 3[Rl dde 8y Ag peusenob ae sajolie YO ‘8sn JO Sa|nl o} Akeiqi8UlJUQ AB]IM UO (SUONPUOD-PUe-SLUIB)/W0 A8 | 1M Ale.q U [Uo//Sdiiy) SUORIPUOD pue sWwis 1 8y} 89S *[520z/2T/2T] uo AkeiqiTauliuo As]im 91Bojouyos L Ind isul eynsiey Ad 8yT02 90/Z00T 0T/10p/wioo 48] im Aleldijpul|uoy/sdny Wwolj pepeojumod ‘LT ‘SZ0Z 'X286960T



1.Generate 2. Pick multiple 3.Run
initial structures aBOMD
ensemble and simulations
ionize + excite
them

4. Collect all
charged fragments
to produce the mass-spectrum

V2 Sine

Energy, eV

&

100

60 -

40 -

Relative fragment counts

20 -

Q H
— . . L . \
0 50 100 150 200 250

J

simulation time, fs

300 350 400 0 5 10 15 20 25 30 35

FIGURE4 | Graphical representation of a mass spectra simulation using aBOMD approach.

A graphical representation of an aBOMD-based theoret-
ical workflow for an MS spectrum prediction is depicted in
Figure 4. First, multiple molecular geometries are generated,
representing the gaseous ensemble of molecules in the spec-
trometer. Those structures are then used as initial points to
start BOMD dynamics for ions. To include electronic excitation
effects, the BOMD dynamics are perturbed (or augmented) by
the kinetic energy influx from an external energy reservoir,
producing an BOMD trajectory. This energy, referred to as the
internal excess energy (IEE), and the ion charge are ascribed
according to the ionization procedure. If, upon the aBOMD
trajectory propagation, a dissociation of the molecule is de-
tected, the parent ion trajectory is stopped, and new aBOMD
trajectories for the products are initiated by sharing the charge
and IEE of the parent ion between fragments. Then, these tra-
jectories of the daughter ions are propagated further. Finally,
the mass spectra are computed from the ensemble of MD tra-
jectories by counting the final products.

Despite this scheme's general simplicity, a few crucial com-
ponents in the algorithm define the simulation behavior. The
QCxMS and DissMD use two completely different approaches
to generate initial conditions. In the QCxMS, the thermo-
stated MD of the neutral molecule is performed to sample
the initial structures and their velocities. In the DissMD, the
simplified Wigner sampling [87, 88] approach from a user-
provided geometry is used, which, in principle, can include
some of the nuclear quantum effects [89] for the lighter nuclei
such as hydrogens. Furthermore, these two approaches also
differ greatly in the ionization procedure and the assignment
of the IEE. In QCxMS, an arbitrary Poisson-like distribution
is employed [64, 90]

exp(c-IEE-(1+1In(b/(c-IEE)) —b)
a-IEE+1

P(IEE) = (20)

where P(IEE) is the probability of the ion to have the value
of IEE upon ionization, whereas a=0.2¢eV, b=1¢eV, and
¢ =1/N,, are pre-defined parameters with N, being the num-
ber of valence electrons in the system. In the DissMD, how-
ever, an approach based on the electronic density of the states
is used. Upon applying the maximum entropy principle and
energy conservation to molecular ionization, one arrives at
the following distribution [67]:

P(IEE) = DoS(IEE) - (E; — IP - IEE) B (21)

where DoS(IEE) is the electronic density of states of the ion, E; is
the total energy of the ionization event, IP is the sum of ionization
potentials to reach a given ionization state, and N; is the number
of degrees of freedom for the leaving particles. For the photoion-
ization, which is the only available case in DissMD, E; = mhv and
N; =3 Ng. In these expressions, m is the number of absorbed
photons, h = 6.626x1073* J - s is the Planck constant, v is the
photons' frequency, and N, is the number of electrons removed
upon ionization (N; = 3 for single ionization, N; = 6 for double ion-
ization, etc.). Note, however, that Equation (21) can still be applied
for the electron impact ionization. In this case, E; is the kinetic en-
ergy of the electrons and N is set to 3 - (IV,, + 1) to account for the
leaving ionizing particle's degree of freedom. Unlike in the first
version of the software, in which the explicitly computed excited
states were used to obtain the electronic density of states [86], the
current version of the DissMD uses a simplified heuristic model
based on the Van-der-Waals volume and surface to approximate
DoS(IEE) « IEE" as a power function with a single parameter n. In
this case, Equation (21) reduces to a beta-distribution [67].

The third crucial component of the simulation is the rate of in-
ternal conversion (IC), showing how fast the IEE decays into nu-
clear motions. For this purpose, the QCxMS uses the energy-gap
law in the form [64]

M

k
k! = Z N—h exp (a(e; —£j)) (22)
j>i “Yve

where k;, =2 psand @ = 0.5 €V~ ! are constrants, ¢, is the energy
of an i-th orbital, and M is the total number of orbitals. Contrary
to that, in the DissMD, a classical model of hot electrons with ki-
netic energy of IEE colliding with motionless nuclei is employed.
In the DissMD prototype, a similar algorithm, based on an idea
of electron-nuclear collision-induced IC, was used to compute
the IC rates using the atomic electronic densities through the
plasma frequency estimated from atomic charges [67]. However,
in the newer code, it was replaced with a simplified model for
the rate of such collisions is given as [68]

\/m IEE

kic = k——— N,
¢ mamu(LO + Lmol) !

N,

e

(23)
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where N, and N, are the total number of electrons and nuclei in
the ion, respectively, m, is the electron mass, m,, is the atomic
mass unit (dalton), L, is the molecular length (atomic-charge-
product-weighted sum of all chemical bonds, determined from
the covalent radii of atoms), L, = 5 A is the regularizing param-
eter, and k = 1. 28 is the fitted parameter based on the available
experimental data [68].

When the dissociation is detected, the QCxMS and DissMD
again proceed in a different fashion. The DissMD follows a
direct route: Upon the detection of dissociation of ion M?*
into fragments A and B, it calculates the energies of several
channels

M2t - A9t 4 BIs+ (24)

that satisfy the charge conservation g, + gz = q. Upon disso-
ciation, the channels with non-negative kinetic energy release
(KER) are assigned a probability proportional to this KER value.
Subsequently, one of these channels is randomly chosen accord-
ing to those probabilities. This leads to a speedup in the calcu-
lation, as the neutral fragments are not propagated. However,
this approach requires a larger number of trajectories to be com-
puted. In the QCxMS, a concept of statistical charge, or statis-
tical weighing, is used. In this approach, the MD is carried out
for all fragments, but their associated intensities depend on the
weight, which is determined as [64]

exp( ] )
C=———L 25)
J
Ze( - 7)
with indices i and j running over the number of fragments,
IP; being the ionization potential of a given fragment, k being
Boltzmann constant, and T = KE/(3kzN,) being the instant
temperature of nuclei, as computed from their kinetic energy
(KE). With these fragment weights, it is also possible to di-
rectly apply the isotopic distribution in the post-analysis,
while the DissMD requires running simulations with differ-
ent isotopes.

To demonstrate the predictive capabilities of the aBOMD-based ap-
proach for computing the mass spectra, we took four molecules, for
which we had the available spectra: Methanol (CH,OH), novichok
A-230 (C,H;4,FN,OP), o-chlorophenoxyacetic acid (CgH,ClO,),
and vinclozolin (C,,HyCl,NO,). Structures of the most stable con-
formers of these molecules, according to CREST, can be found
in Figure 5. As a metric to judge the similarity between spec-
tra, we chose the number of peaks from the reference spectrum
from Equation (7), the Kullback-Leibler divergence given in
Equation (10), and the Bhattacharyya distance from Equation (11).

The results of our comparison are demonstrated in Figures 6
and 7, and in Table 2. It is clear that the QCxMS, as the soft-
ware specifically designed for EIMS predictions, outperforms
DissMD. Nevertheless, in three out of four cases, DissMD pro-
vided extra fragments that were missing in the QCxMS predic-
tions. In all cases, the combination of both methods allowed
us to cover more than 80% of lines from experimental spectra.
However, the relative intensities of the peaks are not always

Methanol Novichok A-230
(CH30H) (C4sH,6FN,OP)
#J

J

o-Chlorophenoxyacetic acid Vinclozolin
(CgH,CIO3) (C12HoCINO3)
J

FIGURE 5 | The most stable conformers of four test molecules used
in the theoretical mass-spectra prediction.

perfect, which can be a result of wrong ionization conditions in
the simulations. Nevertheless, we can confirm the conclusions
from previous studies in [49, 50], stating that it is possible to use
theoretically predicted mass spectra for the assignment of spe-
cies with absent experimental reference spectra.

However, we would also claim that new software is probably due
to development that would take the best algorithmic solutions
from the QCxMS and DissMD. For the ionization stage, it makes
more sense to assign the IEE from a physically sound model
from Equation (21). For computing the IC rate, one might use
a better model of the electron-phonon coupling. One such pos-
sibility is demonstrated in [91, 92], where the rate is calculated
based on the Fermi-Dirac distribution and orbital overlaps for
the two consecutive MD steps. For the treatment of dissociation,
the QCxMS approach appears more suitable. However, instead
of using the heuristically defined weights from Equation (25), it
would make more sense to use a modified version of the model
introduced in [93], as it takes into account not only the ioniza-
tion energies of fragments, but also the electron affinities, and
the dissociation energies.

3.2 | Performance Tests With Simulated Data

The ToxicMassSceptic features are subject to unit tests, en-
suring the code works as expected. One of the production test
trials the performance of the code in the presence of noise and
additional substances. Here, we perform the testing based on
the undecayed substances in our database, simulating mixtures
taken directly from the environment, rather than from biologi-
cal samples. This is due to the fact that the analysis of biological
substances usually requires the use of liquid chromatography
and searching for metabolites, which can be known only from
in vitro studies (see, e.g., [24]). The biochemical degradation
pathways of such compounds are highly unlikely to be found
in publicly available literature in sufficient amounts to train
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empirical models. The theoretical prediction of those products
from first principles is doubtful due to the sheer complexity of
the problem. Therefore, without a proper database, we do not an-
ticipate using ToxicMassScepticdirectly for biological samples.

We model the species’ spectra with Gaussian-shaped peaks
with randomly chosen standard deviation, that is, in the range
between 0.05 and 0.1 m/z. We take the mass spectrum of a
randomly chosen species from the database and generate a spec-
trum in the m/z range from 0 to 500 with 2000 points. Then, we
add a background that consists of two components. First, the
signal of the substance is mixed with a spectrum composed of
signals from benzene (C¢Hy), oxygen (O,), nitrogen (N,), carbon
dioxide (CO,), and farnesene (C,5H,,), one of sesquiterpenes.
The relative amounts of the background species are randomly

TABLE 2 | Comparison of theoretically predicted mass spectra
with their experimental reference counterparts from the database. The
number of lines Ny, is calculated via Equation (7), while N, is the
total number of peaks in the reference spectrum. The metrics Dy, and
Dy, are those given in Equations (10) and (11).

Spectrum Niines/ Nyes P, % Dy, % Dy
Methanol (CH;OH)

QCxMS 9/16 56.2 109.90 0.47
DissMD 10/16 62.5 29.02 0.06
Combined 13/16 81.2 36.98 0.10
Novichok A-230 (C,H,,FN,OP)

QCxMS 46/52 88.5 90.34 0.24
DissMD 17/52 32.7 180.01 0.60
Combined 46/52 88.5 117.12 0.32

o-Chlorophenoxyacetic acid (CgH,ClO,)

QCxMS 118/129 91.5 104.03 0.28
DissMD 30/129 23.3 137.05 0.56
Combined 120/129 93.0 98.48 0.30
Vinclozolin (C,,HyC1,NO,)

QCxMS 84/105 80.0 122.95 0.42
DissMD 19/105 18.1 235.75 0.85
Combined 86/105 81.9 166.31 0.50

chosen between 0.1 and 0.2. Then, a random uniformly distrib-
uted noise is added on top of that with a signal-to-noise (S/N)
level randomly chosen from the interval between S/N=100 and
S/N =1000. Then, this generated spectrum is passed through
our assignment algorithm, including the background removal
and the rating of the actual compound, which is stored. The
mean rating of the spectra upon multiple trials should not exceed
an MR (Equation 19) threshold, which, in our case, is set to five.
The current version of the software routinely passes this test.

To further demonstrate the performance of our code and com-
pare different metrics, we carried out assignments of 500 ran-
domly generated spectra. To that end, we modified the settings
described above by lowering the allowed signal-to-noise level
to 5 <S/N <100, and additionally allowing peak intensities to
vary by + 50 % and their positions to be shifted by + 0. 2 m/z. The
assignment was repeated 48 times, leading to 24,000 trials in
total and allowing us to compute the mean values and standard
deviations for statistical parameters from Equations (17-19). The
results of this analysis are shown in Table 3. As can be seen,
the worst top-1 result is obtained using the cosine distance Dy,
reaching an accuracy level of only about 30%. The performance
of other metrics is much higher and varies from about 55% to
91%. Similar trends are observed for the MRR and MR scores.
The use of the proposed metametric D,,., was found to produce
results of the highest quality in all cases.

3.3 | Performance Test With Experimental Noisy
Dataset

As an example of the mass spectra with noisy background, we took
the strong-field-induced mass spectra of a tree-ring PAH fluorene
(C,5H,), which are openly available from [94]. Since fluorene is in
the database, and the laser-induced fragmentation patterns look
similar to those obtained with EI, we simply tested the identifica-
tion of the species with the mass spectra obtained using different
laser peak powers (from 1. 5x 103 to 6. 8 x 10'3> W/cm?). In all of
the cases, the automatic background removal was applied.

The background removal results are shown in Figure 8. As one
can see, the background is indeed removed quite efficiently,
leaving only the signals from the ion fragments. The cleaning
in the range of higher masses is somewhat less effective, which
is due to the overall background level increase, as clearly seen
in a logarithmic plot. Nevertheless, such background removal
was sufficient to identify fluorene in the case of all experimental

TABLE 3 | Performance of ToxicMassSceptic for simulated data. Results for the top-K from Equation (17) and MRR from Equation (18) scores

are given in %. The MR is given according to Equation (19).

Top-1 Top-3 Top-5 Top-10 MRR MR
Dpeta 91+1 98.6+0.6 98.8+0.4 99.0+0.3 94.9+0.8 1.8+£0.4
Dy, 55+2 87+2 94+1 96.9+0.9 72+2 3.3+£0.7
Dy 61+2 92+1 97.0+0.9 98.7+0.7 77+1 2.1+0.3
Dy 61+2 92+1 97.0+0.9 98.7+0.6 77+1 2.1+0.3
D¢ 302 69 +2 84+2 95+1 53+2 4.1+0.5
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spectra considered in this work. The results for the highest peak
power spectrum are shown in Figure 9.

3.4 | Performance Tests With an Experimental
Dataset of Cleaned Spectra

The mass spectra of 64 substances were recorded using GC
(HP6890, Agilent Technologies) coupled to a single quadrupo-
lar MS (HP5972A or HP5973, Agilent Technologies) or with
GC (Trace 1310) coupled to MS (TSQ Duo Triple Quadrupole,
Thermo Scientific). Helium was used as a carrier gas, and the
spectra were measured in the range of 50-500 m/z. The EI was

4.5x10'3 W/cm? 1.5x10"3 W/cm?

3.5x10'3 W/cm?
2.4x10'3 w/cm?

6.8x10"3 W/cm?
6.0x10'3 W/cm?
5.4x10'3 w/cm?
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FIGURE 8 | Experimental mass spectra of fluorene (C,3H,,) ob-
tained by strong-field ionization with ultrashort laser pulses of varied
peak intensity. The top figure shows raw experimental spectra, while
the bottom one is after background removal. Note that the logarithmic
scale on the absolute intensity is used for the y-axis, and the curve disap-
pearance in the bottom figure means that the signal is zero.

used to ionize species with an electron KE of 70eV. More details
on the measurement parameters are available in ESI.

The experimental dataset consists of several classes of substances:
Acid contaminants, chlorophenols, dioxins, PAHs, pesticides,
and herbicides. For each of the compounds from this dataset,
the reference spectrum was added to the database, and then
ToxicMassSceptic was tested to provide the assignment results.
We ranked the performance in each dataset using six scores:
Top-1, top-3, top-5, and top-10 accuracies from Equation (17),
MRR from Equation (18), and MR from Equation (19). The results
of the test are given in Table 4. As one can see, most of the species
were correctly identified in the top-3 best-matched substances, and
the correct compound was the best-matched one 60% of the time,
on average. With that, we conclude that the current performance
allows the identification of species in unknown samples.

3.5 | Testing Theoretical Reference Against
Cleaned Experimental Data

In the dataset used in Section 3.4, there were three dioxines:
1,2-Dichlorodibenzo-p-dioxin, 1,3-Dichlorodibenzo-p-dioxin,
and 1,4-Dichlorodibenzo-p-dioxin. These compounds are suit-
able for testing the assignment of experimental spectra against
theoretically predicted mass spectra. For that reason, we com-
puted the theoretical mass spectra of these three structural
isomers using the workflow shown in Figure 2. In addition to
that, in Section 3.1, we calculated theoretical mass spectra for
o-chlorophenoxyacetic acid and vinclozolin, which were also
present in the same database.

Thus, we took these five substances to test their identification
with the ToxicMassSceptic software. The resulting ranking of
these theoretical spectra (R) against their experimental counter-
parts is given in Table 5 in columns Threshold = 0%. As one can
see, the results are acceptable. However, upon examination of
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Comparison of the experimental and reference spectrum of fluorene for the highest (6. 8 x 10'* W/cm?) peak power mass spectra.
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TABLE 4 | Performance of the ToxicMassSceptic assignment algorithm on the experimental datasets of various classes of substances.

Substance class Noubst Top-1 Top-3 Top-5 Top-10 MRR MR
Acid contaminants 9 44.4 55.6 55.6 66.7 52.8 17.0
Dioxins 4 75.0 100.0 100.0 100.0 87.5 1.2
PAHs 16 43.8 100.0 100.0 100.0 68.8 1.8
Pesticides 29 82.8 100.0 100.0 100.0 90.8 1.2
Herbicides 6 50.0 83.3 83.3 83.3 66.8 19.2

TABLE 5 | Ranking (R) of and the number of lines (INVy;,,,) in the theoretically predicted mass spectra of five substances against the experimental
data. Different threshold values denote the removal of the weak intensity peaks from the reference dataset. 1,2-DpD, 1,3-DpD, 1,4-DpD, and o-CA
denote 1,2-Dichlorodibenzo-p-dioxin, 1,3-Dichlorodibenzo-p-dioxin, 1,4-Dichlorodibenzo-p-dioxin, and o-chlorophenoxyacetic, respectively. The
last row is the MR [see Equation (19)] values for the dataset of these five molecules at a given threshold.

Threshold = 0%

Threshold = 1% Threshold = 5%

Substance R Niines R Niines R Niines
1,2-DpD 21 154 13 64 11 15
1,3-DpD 37 135 20 64 31 15
1,4-DpD 10 152 3 69 11 17
0-CA 5 140 3 45 3 19
Vinclozolin 2 201 14 26 36 7
MR 15.0 10.6 18.4

the theoretical spectra, one can see that the number of reference
lines (Ny,,e¢) is much larger than usually available for experimen-
tal spectra taken from various databases (which is typically of
the order of a few tens of data points). Therefore, we have tried
to remove some of the fragments with lower intensities from the
theoretical spectra to see the effect on the identification of sub-
stances. In particular, we removed every lower-intensity peak
by setting a relative threshold with respect to the most intensive
one. We tried two settings: Thresholds of 1% and 5%, which dras-
tically reduced the number of lines and had an effect on the pre-
diction performance (see Table 5). With a 1% threshold, the MR
value for this set of five spectra was slightly lower than at the 0%
and 5% settings, which indicates that there is an optimal number
of lines to represent a species in the database, as too many or too
few may lead to misidentification of the species. Therefore, we
recommend removing the weak intensity fragments when using
ToxicMassSceptic for predicting theoretical mass spectra, as
this improves the identification probability P(B|A) (Equation 9).
The importance of the latter can be seen from the definition of
the metametric from Equation (15).

4 | Conclusions

In this article, we have presented an algorithm and a computer
program for identifying toxic and combat compounds using
mass spectrometry, ToxicMassSceptic, that is easy to oper-
ate for nonprofessionals. An essential part of it is the data-
base of substances, assembled from multiple different sources,

most prominently from databases like the NIST Chemistry
WebBook and the SDBS of AIST, as well as from quantum
chemical modeling. The use of theoretically predicted mass
spectra allowed us to obtain reference data for poisonous sub-
stances for which no publicly accessible data exist. According
to our tests against simulated and experimental datasets,
ToxicMassSceptic with the database can facilitate prelimi-
nary identification of possible traces of poisonous and explo-
sive substances. However, the current approach implies that
the best matching result is always given. This is due to the
open problem of finding thresholds for the current definition
of the metametric. Therefore, the identification results are al-
ways biased toward the available database. The preliminary
analysis results should always invoke a manual inspection
for a few of the best-matching substances, to check that the
identified peaks are indeed present in the spectra. The final
conclusions regarding substance identification should always
be based on expert opinion and validated with other experi-
mental methods, such as NMR or rotational spectroscopy [95].
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