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ABSTRACT

Prediction of biological activities of chemical compounds by the machine learning techniques in general and the neural networks
(NNs) in particular, is usually based on the analysis of their binding to the target of interest. If such affinity data is not available,
the ligand-based approaches can be used where the NN models are trained to assess similarity of compounds to those with known
biological activity. Obviously, this approach only works well if the similarity between the training set and the evaluated molecules
is sufficiently high. In the case of large and conformationally flexible organic compounds, the activity becomes dependent not only
on chemical identity but also on the dynamics of molecular motions, which imposes significant challenges to existing approaches
based on static structural 2D and 3D molecular descriptors. A prominent example of compounds, which are especially challenging
for existing NN activity prediction techniques, are photoswitchable macrocyclic peptides containing a diarylethene “photoswitch”
(DAE). These molecules exist in two isomeric forms with remarkably different biological activities, which are interconvertible by
light of different wavelengths. Activity prediction models have to distinguish in this case not only between the different peptides
but also between the photoisomers of the same peptide. In this work, we demonstrate that the features extracted from classical
molecular dynamics (MD) trajectories are superior to conventional 2D or 3D descriptor-based features when used in activity
prediction NN models of DAE-containing photoswitchable peptides. Using MD-derived features, we successfully created two
NN models that predict activities of photoswitchable peptidomimetics, analogs of the natural peptidic antibiotic gramicidin
S. The first model precisely predicts the cytotoxic activity of similar peptide analogs. The second model reliably predicts the
differences in the biological activities of DAE photoisomers of the same peptide, even if the type of its activity differs from
one in the training dataset. Our results demonstrate that accounting for MD-derived dynamic features allows generalizing
the ligand-based activity prediction NN models to the cases of large and conformationally flexible molecules, which were previ-
ously considered intractable by this class of models.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.
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1 | Introduction

The last decade has witnessed unprecedented growth of machine
learning (ML) and artificial intelligence (AI) systems for drug
discovery [1-5]. In particular, neural network (NN) models
become increasingly popular for predicting the properties of
drugs and therapeutically relevant compounds [6, 7]. Most of
these models are trained using the data describing the interaction
of compounds with their biological targets.

The biological activity of chemical compounds is tied to specific
biological targets, but it can also be predicted in a target-
independent manner using the ligand-based techniques, such
as the NN models. These models, based on quantitative struc-
ture-activity relationships (QSAR), rely on the principle that
structurally similar molecules are likely to exhibit similar biolog-
ical effects [8]. This approach simplifies the task of comparing
novel compounds with those in existing libraries that have
well-documented biological properties. The effectiveness of these
predictions largely depends on the molecular descriptors used to
measure similarity [9]. An established approach in cheminfor-
matics is analysis of neighborhood behavior (NB)—a relationship
between the structural dissimilarity metric of the calculated molec-
ular descriptor space and the activity dissimilarity metric [10, 11].

Most descriptors used to train and optimize NN models for simi-
larity searches are derived from atomic connectivity, making
them 2D by nature [12]. Popular examples include substructure-
based fingerprints and topological and circular fingerprints as
well as pharmacophore fingerprints [13]. These 2D descriptors
have proven highly effective for predicting biological activity,
especially for small molecules, and are a cornerstone of modern
Al-driven drug discovery [14].

2D fingerprints often fall short when dealing with large, structur-
ally complex compounds. This challenge has led researchers to

(a)

focus on 3D descriptors, which are particularly effective for cap-
turing the intricate features of complex biomolecules [15]. For
such cases, a promising approach is to further enhance NN mod-
els by incorporating molecular features that reflect not only 3D
structural information but also molecular dynamics (MD) and
flexibility. The energy associated with the flexibility and confor-
mational dynamics of ligand molecules plays a crucial role in
their binding interactions with targets, significantly influencing
their biological activity [16, 17-18].

In this study, we present our findings on developing NN models
for predicting the biological activity of macrocyclic peptides using
both structural and dynamic data derived from MD simulation
trajectories. We hypothesized that MD trajectories of unbound
compounds provide sufficient structural and dynamic informa-
tion for NN models to accurately predict the activity of relatively
large and flexible molecules, such as peptides. It is worth noting
that MD simulations are widely used to refine predictions from
sequence-based NN models for peptides [19]; however, the use of
models trained exclusively on MD simulation data remains rela-
tively uncommon [20] (see, however [21, 22]).

Our motivation in developing QSAR models for bioactive pepti-
des is driven by our prior research on the design and synthesis of
compounds whose biological activity can be modulated by light.
The design begins with a natural or synthetic biologically active
peptide (template), which is modified by incorporating a photo-
isomerizable fragment or “molecular photoswitch.” For this pur-
pose, we used a diarylethene (DAE) photoswitch [23], capable of
interconverting between two photoisomeric states—“closed” and
“open”—when exposed to light of different wavelengths, as
depicted in Figure 1a.

In our approach, one or more amino acid residues in the template
peptide are replaced with the DAE fragment. This design can
ensure that the resulting analog retains the biological activity
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FIGURE1 | (a) A diarylethene photoswitch, its photoisomerization and isomer nomenclature; (b) modification of a peptide backbone by a diary-
lethene fragment; (c) side-chain “stapling” of the peptide by a diarylethene fragment.
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of the original peptide in one photoisomeric form, while photo-
conversion to the other form leads to a loss of activity (Figure 1b).
Alternatively, the photoisomerizable fragment can be integrated
into a side chain of the template peptide or used to cross-link
(“staple”) two side chain residues, as illustrated in Figure Ic.
This versatility in design allows for fine-tuning the photorespon-
sive behavior of the peptide analogs.

Similar approaches have been developed for other types of
known photoisomerizable fragments, for example, “azologiza-
tion” for azobenzene derivatives [24, 25], or “stapling” for spiro-
pyran photoswitches [26]. In general, there are many possible
ways to modify the template with photoswitches, and it is not
obvious a priori which modification will lead to the best-perform-
ing photoswitchable analog. As the synthesis of photoswitchable
analogs is usually resource-consuming, theoretical models that
can predict the effect of the modification are highly desirable.

2 | Methods

2.1 | General Strategy for Constructing the NN
Models

Encouraged by the work of Prakash et al. [27] on building a NN
model for the rational design of antimicrobial peptides, we
adopted a similar approach. Prakash and coworkers utilized sim-
ple parameters derived from short MD simulations of synthetic
cationic peptides known as CAMEL-s [28] to develop their model
and demonstrate its utility. Among the parameters they used, the
average volume of the peptide molecules and their solvent acces-
sible surface area were shown to significantly influence antimi-
crobial activity, while an average number of hydrogen bonds,
ellipticity, and moment of inertia were found less critical.
Building on these insights, we incorporated 3D descriptors cal-
culated from the MD snapshots into our models. We believe that
incorporating both 3D structure- and dynamics-based parame-
ters allows for the construction of mechanism-independent mod-
els of general applicability. Our strategy for constructing the NN
models is outlined in Figure 2.

2.2 | Compound Set

The peptide set and experimental data used to build our models
and perform analyses were synthesized and tested for cytotoxic
activity earlier by our group during a search for the most efficient
photoswitching diarylethene-containing analogs of the natural
cytotoxic peptide gramicidin S [29]. Previous studies have
demonstrated that the activity of the DAE-derived gramicidin S
analogs and similar cyclic peptides depends not only on their
structure but also on the dynamics of the molecules [30].
Therefore, the use of MD simulation data for predictive models
is particularly justified for this class of compounds. For this study,
we selected 26 photoswitchable gramicidin S analogs described in
[29], featuring the photoswitch in both open and closed photo-
forms. The cytotoxic activity of all these peptides was also
reported in the same study, with minimal growth inhibitory con-
centrations (MIC) values against Escherichia coli and Bacillus
subtilis, 50% toxicity concentrations (ICsy) against HeLa cell line,

MD simulation of the template
peptide and its derivatives

Extracting 3D molecular descriptors
and dynamics parameters from the
MD snapshots

Training NN models for bioactivity
prediction or discrimination of
photoisomers

FIGURE 2 | Strategy for NN construction used in this work.

and 50% hemolysis (HCso) concentrations for human erythro-
cytes determined. We used the ICs, values for training and
validating our models. Figure 3 displays the structural formulas
of gramicidin S and some of its photoswitchable analogs; for
the complete set of formulas (gramicidin S (PSO1), PSO2-26
(“O” means “open photoform”, the number will be used as com-
pound ID in the following text),' PSC2—26 (“C” means “closed
photoform”, compound ID in the following text)” and corre-
sponding ICs, values, see the Supporting Information.

2.3 | NN Models

For each compound, including gramicidin S and all its analogs in
both photoisomeric forms, we conducted MD simulations as
described in the Supporting Information. Although Prakash
et al. reported enhanced performance of their model when sim-
ulation data in octanol were used [27], we performed all our cal-
culations in water. This decision was made because the exact
mechanisms of action for all compounds were not known,
and we aimed for a generalized approach. Our objective was
to differentiate between the MD trajectories of gramicidin S
and those of the derivatives containing either a closed or open
photoswitch. To this end, two models were constructed, each
addressing different aspects of this issue.

The first model, termed the “Cytotoxicity Prediction Model,” was
designed to predict the cytotoxicity of peptides (specifically, the
values of ICsy in pM) by analyzing each frame of the MD trajec-
tory. The primary concept of this model is to predict the “activi-
ties” for the conformations at each frame (regression value ICs)
and then compute the mean value of these proto-ICs, values over
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FIGURE 3 | The peptide-prototype, natural cytotoxic antibiotic gramicidin S and some of its diarylethene-containing photoswitchable analogs used

to build the predictive NN models in this work (photoisomerizable diarylethene fragment is shown in red). For the complete set of compounds, see
Supporting Information.

all MD frames for each compound to get the final ICs, assess- clustering on 10 000 clusters and picking one representative con-
ment. We focused in this model on 10000 frames. We took an  formation from each cluster. The agglomeration algorithm from
equilibrated part of a trajectory and selected 10000 frames by  the Scikit-Learn Python library was used [31].
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By using this approach, we can compare different pairs of trajec-
tories for their similarity—for instance, the open and closed forms,
or any pair of the peptides, including the original template peptide.
By conducting three sets of comparisons—open-closed, open-
template, and closed-template—we can assess the effectiveness
of inserting the diarylethene fragment into the peptide and its pho-
toswitching capabilities. The ideal scenario occurs when the open
and closed forms exhibit distinct activity values, whereby the form
generated by visible light (open) is close in activity to the template.
In such cases, the activity can be “switched on” in biological sys-
tems, even in living tissues of higher organisms, because visible
light penetrates tissues better than UV light [32].

From a practical standpoint, it is crucial for a particular photo-
switching derivative to determine whether the isomerization
of the photoswitch would affect the biological activity. Only those
derivatives that demonstrate efficient photocontrol of biolog-
ical activity are promising for use as drugs or research tools.
Consequently, we developed the second model, called the
“Isoform Similarity Model.” Unlike the Cytotoxicity Prediction
Model, the main objective of Isoform Similarity Model is to gen-
eralize the process of identifying differences between the open
and closed forms across various DAE-modified peptides, includ-
ing those with biological activities not limited to anti-HeLa
cytotoxic action. To achieve this, a binary classification model
was developed to estimate similarity of a peptide open-closed
isomeric pair, in essence, compute their NB-compliance with
respect to their in vitro activity values. This model enables assess-
ment of similarity in this sense between the closed and open
forms, expressed as a binary value: Class 1 if there is a significant
difference in ICs, values and Class 0 if there is no such difference.
Statistically, it was determined that the threshold for the ratio
between the ICs, activities of the closed and open forms is five,
for them to demonstrate good NB. Pairs (open-closed forms) with
ratios less than five were considered to exhibit no significant dif-
ference in ICs, activities. Since we were analyzing pairs of open-
closed forms in this model, each training sample was considered
a concatenated feature vector for each open and closed MD tra-
jectory frame.

We have 260 000 samples (26 pairs of closed-open forms, each
with 10000 frames) represented by a vector of 8192 features
(two E3FP vectors, each with 4096 features).

As in the Cytotoxicity Prediction Model, when splitting the data
into cross-validation and test sets, we ensured that all frames of
one pair of trajectories went into the same data set. Additionally,
we needed to maintain class balance. Table S5, Supporting
Information, provides information on the molecules which were
included in the training and validation (test) sets. Table S6
(Supporting Information) contains information about each split,
including the number of samples and the percentage of the total
data it represents.

2.4 | Experimental Data

Each MD trajectory for all 26 diarylethene-containing compound
pairs was represented by 10 000 frames, which were interpreted
as a single input sample for the model. Therefore, our dataset
comprised 520000 samples, with a strict association with the

open or closed form to a particular peptide when forming
train-test splits for both models. Each specific dataset, whether
a validation or a test set, included both closed and open forms
for each gramicidin S analogue.

3 | Results and Discussion
3.1 | Cytotoxicity Prediction Model

For the regression value we aimed to predict by this model, we
used the natural logarithm of the HeLa cytotoxic half-activity val-
ues expressed in micromoles/L (In(ICsy)), obtained experimen-
tally [29]. Details for the labels and compound set split used
for the Cytotoxicity Prediction Model are provided in Tables
S1-S3 (Supporting Information).

We performed several experiments to find the best possible fea-
tures and model. We tested and compared in these experiments
two main model families: the default Random Forest regressor
from Scikit-Learn with a max_depth parameter equal to 10 to
avoid overfitting and standard Multi-Layer Perceptron (MLP)
with the following architecture: one hidden layer with two times
more hidden units than used for the input, batch normalization
layers and dropout layer with 0.1 dropout probability, ReLU acti-
vation function, Adam optimizer with 0.001 learning rate and
0.0005 weight decay and 256 batch size. We also compared
the final predictions obtained with the use of 2D descriptors with
the results obtained with 3D descriptors. For this comparison, we
choose the most popular 2D fingerprints from RDKit (Morgan
with a radius 2 and 1024 bits; Avalon, Atom and Topological with
1024 bits; RDK and Layered with a max path 3 and 1024 bits;
MACCS keys). As for the 3D descriptors, we tested Mordred
3D descriptors and E3FP features with 4096 bits. Also, we tried
to fetch MD features for every trajectory frame including the
RMSD (root mean square deviation), inertia tensor, radius of
gyration of the peptides calculated by the mdtraj Python library
[33], and polar surface area (PSA) calculated by RDKit [34].
Table 1 summarizes all the features used for the Cytotoxicity
Prediction Model in different experiments. As the metric for
evaluation and experiment comparison, we chose R-squared.
Some experiments included an extra step, the feature selection.
We selected the most valuable features for the model using a

TABLE 1 | Overview of the features used for the Cytotoxicity
Prediction Model.

Feature Number of features
Morgan fingerprints 1024

Avalon fingerprints 1024

Atom fingerprints 1024
Topological fingerprints 1024

RDK fingerprints 1024
Layered fingerprints 1024
MACCS keys 167
Mordred 3D descriptors 51

MD features 9
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variance threshold from Scikit-Learn with a threshold value of
0.075. For the 2D fingerprints experiment (2D Fingerprints +
MLP + Feature Selection), the following features were selected:
44 Morgan, 413 Avalon, 333 Atom, 44 RDK, 56 Topological,
28 Layered fingerprints, and 16 MACCS keys. For the best exper-
iment (Mordred Features + MD Features + E3FP Fingerprints +
MLP + Feature Selection), the following features were selected:
7 MD features (6 for inertia tensor and 1 for PSA), 38 Mordred
3D features, and 483 E3FP fingerprints. Table 2 shows the results
of all the experiments for both cross-validation (CV) and test set.

The following conclusions can be done after analyzing the results
of the experiments:

« 3D descriptors are much more effective than 2D descriptors
for our purpose;
« MLP is a better choice rather than classic ML models;

» The best experiment uses a combination of 3D descriptors
plus feature selection. Therefore, for tuning, we used
MLPs with the 528 input features described above.

Hyperparameters for the tuning included:

« Number of layers: from 1 to 4;

« Optional batch normalization: one of [True, False] (the same
value for all layers);

« Weight decay: one of [5*1e-5, 5*1e-4, 5*1e-3];
« Batch size: one of [16, 32, 64, 128, 256].

The parameters that remained fixed included the ReLU activa-
tion function on each layer and the Adam [35] optimizer.

The tuning was done using the Python library Optuna [36], using
a Bayesian approach for hyperparameter optimization. The
R-squared was selected as the evaluation metric for optimization.
The tuning process aimed to maximize this metric when choos-
ing the best architecture. A total of 100 trials were conducted;
early stopping was applied, set to 20 trials (if Optuna did not find
an improvement in the evaluation metric within 20 trials, the
tuning would conclude without reaching the 100 initially desig-
nated trials). The tuning process resulted in 83 trials, with the
best score found in the 63rd trial.

The optimal architecture consisted of 1 layer with 120 hidden
features, batch normalization, a dropout rate of 0.194, a 0.001
learning rate, a 0.0005 weight decay, and a 256 batch size.
Table 3 provides the architecture of the final optimised
Cytotoxicity Prediction Model.

TABLE 3 | The best MLP architecture for the Cytotoxicity
Prediction Model.

Layer Output shape Parameters
« Dropout rate: from 0.1 to 0.5 (the same value for all layers);
BatchNorm1D [1, 528] 1056
. f hi e : f [264, 528, 1056, 1584 .
Number of hidden features: one of [264, 528, 1056, 1584] Linear [1, 1056] 558 624
(on each layer).
BatchNorm1D [1, 1056] 2112
The following parameters were also considered as hyperpara- ReLU [1, 1056] —
meters (for an optimizer and batch size): Dropout [1, 1056] o
« Learning rate: one of [le-4, le-3, le-2]; Linear (1, 1] 1057
TABLE 2 | Overview of the experiments performed in search for the best Cytotoxicity Prediction Model.
Number of R-Squared R-Squared
Experiment features (cv) (Test)
Morgan fingerprints + Random Forest 1024 0.394 0.346
E3FP fingerprints + Random Forest 4096 0.349 0.319
Mordred features + MD features + Random Forest 60 0.424 0.402
Morgan fingerprints + MLP 1024 0.528 0.112
2D Fingerprints + MLP 6311 0.621 0.119
2D Fingerprints + MLP + Feature Selection 934 0.653 0.132
E3FP fingerprints + MLP 4096 0.467 0.343
Mordred features + MD Features + MLP 60 0.669 0.574
Mordred Features + MD Features + E3FP Fingerprints + MLP 4156 0.552 0.855
2D Fingerprints + Mordred Features + MD Features + E3FP Fingerprints + 10467 0.655 0.146
MLP
Mordred Features + MD Features + E3FP Fingerprints + MLP + Feature 528 0.672 0.753
Selection
2D Fingerprints + Mordred Features + MD Features + E3FP Fingerprints + 1462 0.664 0.154

MLP + Feature Selection
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As a result of this approach, the model can reliably predict the
ICs against HeLa cell line for gramicidin S and its DAE-modified
analogs in any form (open, closed). Consequently, by analyzing
different pairs of peptides (open-closed, closed-original, and
open-original), it is possible to predict the difference between
the closed and open forms and draw conclusions regarding
the impact of the photoswitching on peptide activity.

Table 4 provides metrics for per-frame results (“per-frame”
means that each trajectory frame was considered as an individual
input sample for the model, the activity for this metric was pre-
dicted for each frame as an intermediate value).

We were interested in the overall activity in the outcome, over the
whole trajectory, which we determined as the averaged result
across all MD frames for each compound. For this purpose, we
used the aggregation scheme described previously as multi-
instance ML approach [37]. The correlation of the averaged values
with the experimental activity values for the test set is depicted in
Figure 4. This figure highlights the closed and open forms of the
same derivative trajectory with matching colours (closed forms are
circles and open forms are diamonds). As can be seen, this version
of the model can accurately predict the difference in anti-HeLa
ICs, between closed and open forms of the backbone-modified
diarylethene-derived gramicidin S analogues. Even if the model
fails to precisely predict biological activity (as in the case of com-
pound PSO19), it still correctly captures the actual difference
between the closed and open photoisomers.

We estimated that the best descriptors which make the largest
impact for the predictive value of this model are 3D Mordred

TABLE4 | Metrics for the Cytotoxicity Prediction Model (per frame).

Metric cv Test
MSE 0.498 0.257
MAE 0.521 0.420
MAPE 0.212 0.123
R-squared 0.693 0.781

Predicted InIC_

1.5 2 2.5 3 3.5 4
Actual InIC,

descriptors, MD features, and E3FP fingerprints. For this estima-
tion, we used SHAP values, calculating them by basic explainer
from the SHAP Python library for samples from the test set. This
analysis is similar to the NB approach, which is based on plots in
coordinates activity difference-descriptor dissimilarity values in a
chemical space [10].> Figure 5 shows a beeswarm plot that sum-
marizes the entire distribution of SHAP values for top 15 features.
Features are sorted by the sum of the SHAP value magnitudes
across all samples. Figure 6 shows a bar plot with mean absolute
SHAP value for each feature over all the instances in the test set.
It is interesting to note that Mordred 3D descriptors and some
molecular dynamic features (values of inertia tensor) have the
most significant impact on the final predictions while individual
E3FP fingerprints do not have such an impact. E3FP are binary
descriptors while other 3D descriptors are continuous. 3D
Modred/MD descriptors having a greater number of distinct val-
ues are more sensitive to perturbations than E3FP. Since SHAP
approach is based on descriptor perturbations, 3D descriptors
will receive greater contributions. But combinations of different
bits give useful information for the model as adding them boosts
the model’s performance. This can also be confirmed with some
numerical values for E3FP fingerprints: the sum of mean abso-
lute SHAP values of all E3FP fingerprints is equal to 0.77, which
is comparable with other descriptors in Figure 5, but the individ-
ual E3FP fingerprint has the average impact (mean absolute
SHAP value) of 0.0016, which is quite small.

3.2 | Isoform Similarity Model

First, it is important to note that in this approach, we consider
pairs of closed and open forms as the primary entries, rather than
analyzing each trajectory individually as was in the Cytotoxicity
Prediction Model. Second, to obtain labels for Isoform Similarity
Model, it was necessary to determine a potential cutoff for the
activity values ratio between closed and open anti HeLa ICsg val-
ues (for the training set) that would mark the difference between
the two classes.

Figure 7 illustrates the relationship between the cutoff and the
ratio of two label values (classes 0 and 1). At a cutoff value of

Compound ID, form
® 3, Closed
@ 3, Open
® 10, Closed
@ 10, Open
® 14, Closed
@ 14, Open
® 18, Closed
@ 18, Open
19, Closed
19, Open
27, Closed
27, Open
— Actual = Predicted

4.5 5 5.5 6

FIGURE 4 | Relationship between actual and predicted ICs, values (WM against HeLa cell line) of trajectories for the test set for the Cytotoxicity

Prediction Model.

7 of 15

95UB017 SUOLUWIOD aA 111D 3[cel|dde 8Ly Aq peusenol a1e sajolie YO ‘9SN J0 Sa|nJ 10} AIq1T 8UIUO /8|1 LD (SUORIPUOD-pUE-SWLBIAL0O" A IM ATeIq1jeul U0//SdNY) SUORIPUOD pue SWie 1 84} 88S *[520z/2T/2T] uo Akiqiauliuo A8]iA 91Bojouyae | in- Iisu| Jeynssie s A TO00L JUIL/Z00T OT/I0p/uod™A8|im Afe.d1jBuluoy/sdiy Woly papeojumod *Z 'Sz0z ‘TS.T898T



High
PSA e
WPSA1 .
GeomPetitjeanindex

PPSA3
DPSA2
GeomShapelndex .
PNSA3
PPSA2 -
WNSA1
PNSA2 .

3

MOMI-X

WNSA2
PNSA1
inertia_5

inertia_0

Feature value

Low

~100 -7.5 -50 -25 0.0

25 50 75

SHAP value (impact on model output)

FIGURE 5 | Beeswarm plot for the distribution of SHAP values for top 15 features for the Cytotoxicity Prediction Model.

5 units, a balance is maintained between the classes of closed-
open form pairs. This prompted us to use this value to construct
the model labels. Table S4 (Supporting Information) provides the
labels for the Isoform Similarity Model.

To find the optimal Isoform Similarity Model, we performed
the same set of experiments as we did for the Cytotoxicity
Prediction Model. We tested the use of Morgan, Avalon,
Atom, Topological, RDK and Layered fingerprints, MAACS
keys, E3FP fingerprints, 3D Mordred descriptors, and MD fea-
tures. As two main model families, we trained Random Forest
classifier from Scikit-Learn with a max_depth parameter equal
to 10 to avoid overfitting and standard MLP with the following
architecture: one hidden layer with two times more hidden
units than the input feature amount, batch normalization layers
and dropout layer with 0.1 dropout probability, ReLU activation
function, Adam optimizer with 0.001 learning rate and 0.0005
weight decay and 256 batch size. We also performed feature
selection for some experiments. We selected the most valuable
features for the model using a variance threshold from Scikit-
Learn with a threshold value of 0.075. For the 2D fingerprints
experiment (2D Fingerprints + MLP + Feature Selection), the
following features were selected: 126 Morgan, 916 Avalon,
568 Atom, 102 RDK, 134 Topological, 36 Layered fingerprints,
and 28 MACCS keys. For the experiment with 3D descriptors
(Mordred Features + MD Features + E3FP Fingerprints +
MLP + Feature Selection), the following features were selected:
14 MD features (6 for inertia tensor and 1 for PSA for both
closed and opened forms), 66 Mordred 3D features, and 1304

E3FP fingerprints. Table 5 shows the results of all experiments
for both CV and test sets.

The following conclusions can be drawn from the results of these
experiments:

« 3D descriptors are much more effective than 2D descriptors;
« MLP is a better choice rather than classic ML models;

« The best experiment uses an approach with E3FP
fingerprints.

In this approach, since we used a much larger number of fea-
tures, we decided to expand the hyperparameter search space
compared to the previous model. We added tuning for activation
functions, increased the range for the number of layers, learning
rate, weight decay, and batch size, and introduced optional drop-
out and batch normalization for each layer instead of a single
global parameter as in the previous model. As a result, we
had to increase the number of trials for tuning to find the best
architecture.

We selected the following hyperparameters for tuning:

« Number of layers: from 1 to 5;

« Activation function: one of [ReLU, LeakyReLU [38], ELU
[39], GELU [40]] for each layer;

« For each layer:
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FIGURE 6 | Bar plot with mean absolute SHAP value of each feature over all the instances in the test set for the Cytotoxicity Prediction Model.
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FIGURE 7 | Relationship between the potential cutoff for the ratio between closed and open activities and the class ratio.

o Number of hidden features: one of [8192, 4096, 2048, « Optional dropout (one of [True, False]);

1024]; . . .
1 « If the previous parameter is True, the dropout rate is a real

« Optional batch normalization (one of [True, False]); number from the range [0.1; 0.5].
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TABLE 5 | Overview of the experiments for the open-closed Isoform Similarity Model.
Number of F1-score F1-score
Experiment features (cv) (test)
Morgan fingerprints + Random Forest 2048 0.398 0.571
E3FP fingerprints + Random Forest 8192 0.533 0.572
Mordred features + MD features + Random Forest 120 0.485 0.607
Morgan fingerprints + MLP 2048 0.498 0.403
2D Fingerprints + MLP 12622 0.508 0.409
2D Fingerprints + MLP + Feature Selection 1910 0.522 0.433
E3FP fingerprints + MLP 8192 0.653 0.701
Mordred features + MD features + MLP 120 0.586 0.693
Mordred features + MD features + E3FP fingerprints + MLP 8312 0.648 0.704
2D Fingerprints + Mordred Features + MD Features + E3FP Fingerprints + MLP 20934 0.629 0.672
Mordred features + MD features + E3FP fingerprints + MLP + feature selection 1384 0.657 0.694
2D Fingerprints + Mordred Features + MD Features + E3FP Fingerprints + 3294 0.633 0.685

MLP + Feature Selection

Hyperparameters for the optimizer and batch size:

« Learning rate: a real number from the range [0.00001; 0.1];
« Weight decay: a real number from the range [0.00005; 0.005];

« Batch size: one of [32, 64, 128, 256, 512, 1024, 2048, 4096,
8192, 16 384].

The optimizer used was Adam [35], and the tuning process was
carried out using the Python Optuna [36] library, applying a
Bayesian approach to hyperparameter optimization. F1-score was
chosen as the evaluation metric, and the algorithm aimed to maxi-
mize this metric when selecting the best model architecture. The
number of trials for the tuning process was set to 500; early stopping
was applied, terminating the tuning if no improvement in the eval-
uation metric was observed for 50 trials. The tuning process exe-
cuted 357 trials, with the best architecture identified at trial 307.

The best architecture consisted of three layers with 4096, 1024,
and 8192 hidden features, LeakyReLU [38] activation function,
batch normalization on the second and third layers, dropout
on the first layer with a dropout rate of 0.121, a 0.06287 learning
rate, a 0.0000584 weight decay, and 8192 batch size. Table 6 pro-
vides details of the final model architecture.

There is no need to estimate the descriptors impact for this
model, because the best approach uses only E3FP fingerprints
and bits contribution is not informative for future analysis.

The result of this approach is a model capable of predicting
whether the open and closed isoforms of the same peptide will
have different cytotoxicity or not. Knowing this binary value
allows us to conclude the impact of the backbone-incorporated
DAE photoswitch on the peptide structure and dynamics, and
consequently, on its biological activity.

The performance of the optimised Isoform Similarity Model,
expressed in metrics for all frames (each trajectory frame was

TABLE 6 | The best MLP architecture for the Isoform Similarity
Model.

Layer Output shape Parameters
BatchNorm1D [1, 8192] 16 384
Linear [1, 4096] 33558 528
LeakyReLU [1, 4096] —
Dropout [1, 4096] —
Linear [1, 1024] 4195328
BatchNorm1d [1, 1024] 2048
LeakyReLU [1, 1024] —
Linear [1, 8192] 8396 800
BatchNormild [1, 8192] 16 384
LeakyReLU [1, 8192] —
Linear [1, 1] 8193
Sigmoid [1, 1] —

considered as an individual input sample for the model) is pro-
vided in Table 7.

Table 8 provides averaged metrics per frame for each molecule in
the test set. In this context, the model predicts either 0 (no differ-
ence) or 1 (difference) for each frame in the trajectory (concatena-
tion of the open and closed forms). Subsequently, for each
trajectory, the prediction accuracy is calculated and is listed in
Table 8 under “Model’s accuracy per frame”. Final predicted labels
are an average over all frames for a particular molecule passed
through the sigmoid to achieve the specific class label. (“Model’s
accuracy per frame” means the fraction of correctly predicted labels
over frames for a particular molecule. For example, if the corrected
label for the molecule is 1 (or 0), and for 9 000 out of 10 000 frames,
our model predicts 1 (or 0) as well, then the model accuracy per
frame for this molecule will be equal to 0.9 or 90%. This can be used
to assess how well our model works for a particular molecule.) The
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TABLE 7 | Metrics for the optimized Isoform Similarity Model
(per frame).

Metric cv Test
ROC-AUC 0.653 0.697
Accuracy 0.628 0.690
Recall 0.789 0.765
Precision 0.616 0.666
F1 0.669 0.712

last three columns are observed ICs, values (uM) in the cytotoxicity
experiment against HeLa and their ratio.

From these results, it can be concluded that the model effectively
discerns the absence of differences between the closed and open
forms when the ratio between activities is significantly below
5 units (cutoff). This is supported by an accuracy of 0.961 for
molecule PS20. However, as the ratio approaches 5 units, the
accuracy decreases, and the model makes errors in predicting
(as for the pair PSO21/PSC21, which has a ratio of 4 units).
As the ratio increases, the model becomes increasingly confident
in predicting the differences between the closed and open forms, as
illustrated in Figure 8. In summary, the model effectively predicts
those molecules where differences or similarities between the

activities of the closed and open form are substantial, especially
when the ICs, ratio is significantly above or well below 5 units.
Nevertheless, if the ratio is close to 5 units, the model may exhibit
errors or a lack of confidence in its predictions, as demonstrated by
the pair PSO5/PSC5, which has an accuracy of 0.598.

Regarding potential model improvements, expanding the train-
ing dataset could potentially enhance the performance of the
model, which might be applicable to other peptides. Incorporating
additional peptides into the training data would likely yield a
model for predicting the activity difference between closed and
open diarylethene photoforms with greater accuracy, tailored to
different peptide sets.

Yet another issue should be considered for further improvement of
both, Cytotoxicity Prediction Model and Isoform Similarity Model.
As we mentioned above, all the open forms of the photoswitchable
peptides were arbitrary postulated to have R-configuration at both
the asymmetric carbon centers in the DAE fragments. Strictly
speaking, it is an oversimplification—in reality, S, S-diastereomers
could also be formed. As there is no easy way to determine which
stereoisomers are formed upon the DAE photoisomerization in
each case, choosing the R, R-diastereomers for the MD of the open
forms in this work was a forced decision. The fact that the models
work well despite this oversimplification could be explained: either

TABLE 8 | Model’s accuracy per frame, labelling and experimental cytotoxicities for the test set for the Isoform Similarity Model.
Model’s accuracy Closed form IC5, Open form ICs, Ratio IC5,
Compound True label Predicted label per frame (pM) (uM) (closed/open)
PS20 0 0 0.961 11 9 1.2
PS4 0 0.845 82 41 2.0
PS21 0 1 0.041 100 25 4.0
PS5 1 1 0.598 28 5 5.6
PS9 1 1 0.838 24 3 8.0
PS24 1 1 0.859 300 25 12.0
1 Compound ID
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FIGURE 8 | Relationship between the ratio (ICsq (closed) to ICs, (open)) and accuracy of the Isoform Similarity Model per frame for the test set.
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the R, R-diastereomers are indeed formed in reality or the DAE 3.3 | Generality of the Isoform Similarity Model
fragment does not contribute significantly to the interaction with

the target(s), due to its relatively small size compared to the size of A key question at the outset of this study was whether models
the peptide molecules. The work on this issue is in progress in our based on MD trajectories could be generalized to predict the bio-
laboratory. logical activity or activity differences of photoisomeric pairs of
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FIGURE 9 | Diarylethene-based photoswitchable inhibitors of serine protease Bos taurus trypsin 1 (T1) described in [41]. The DAE fragment is
shown in red.
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photoswitchable compounds with entirely different mechanisms
of action. We questioned whether any model, trained on the activ-
ity of a specific set of peptides—macrocyclic diarylethene-derived
membrane-active gramicidin S analogs—could accurately predict
the activity of compounds with different mechanisms of action.
By contrast, the Isoform Similarity Model, which utilized con-
catenated feature vectors from pairs of trajectory frames in the
training set, might be effective in predicting activity differences
between isoforms. We hypothesized that this prediction could
be plausible for the endpoints, even unrelated to the cytotoxicities,
on which the model was trained, provided that structural and
dynamic similarity represented by the descriptors we choose cor-
relates with biological activity. To test this hypothesis, we used
data from our previous studies [41, 42].

The bicyclic peptides described in [41] are photoswitchable
inhibitors of serine protease Bos taurus trypsin 1 (T1). They
include a diarylethene fragment within one of their rings, as
shown in Figure 9. The “stapled” peptides described in [42]
(Figure 10)* also contain a diarylethene fragment. They were
designed as photoisomerizable modulators of p53/MDM2 inter-
action. The Ki values for interaction of both the open and closed
photoisomeric forms with MDM2 were experimentally deter-
mined for these compounds. The data in [42] show that the
peptide-MDM2 interaction is significantly governed by entropic
term, so the molecular motion of the target and ligands before
and after the interaction play significant role in the interaction.
This justifies the use of the Isoform Similarity Model to assess the
open-closed peptide similarity.

Importantly, the biological activity mechanisms of T1 inhibitors
and the p53/MDM2 modulators differ from each other and are
entirely different from that of the gramicidin S analogs used to

train our NN models.

The results of the Isoform Similarity Model evaluation to predict
the differences in Ki values between the photoisomeric forms of the
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0 o}

4, R=H, n=1; 5, R=Me, n=1; 6, R=H, n=2; 7, R=Me, n=2

FIGURE 10 | Photoisomerizable modulators of p53/MDM?2 interac-
tion described in [42]. The DAE fragment is red-colored.

TABLE 9 | Performance of the Isoform Similarity Model for
photoswitchable T1 inhibitors.

Ratio of K; True Predicted
Compound (closed/open) label label
S5i 1.8 0 1
S5n 2.4 0 1
Sé6i 17.5 1 1
Sén 8.3 1 1
S7i 27.5 1 1
S7n 34.7 1 1
S8n 24 1 1
S9n 6.6 1 1
S10n 10.3 1 1
S10i 8.8 1 1
S11i 31 0 1

TABLE 10 | Performance of the Isoform Similarity Model for
photoswitchable p53 inhibitors.

Ratio of K; True Predicted
Compound (closed/open) label label
4 8.3 1 1
5 2.5 0 1
6 5.5 1 1
7 3.8 0 1

peptides described in [41, 42] are summarised in Tables 9 and 10.
Although performance in this case is worse than for the test set
(Table 8), the Isoform Similarity Model reliably predicted signifi-
cant (more than fivefold) differences in Ki values for all tested com-
pounds. The model made errors only in five cases, where the
activity ratio was below 5 (compounds S5i, S5n, S11i, 5, and 7).

We attribute the strong performance of the Isoform Similarity
Model to accounting of both structural and dynamic similarities
by the NN. The dynamic similarity may not be immediately
apparent to humans, who typically rely on a purely structural
and “visual” perspective. Our findings suggest that the NN model
effectively captures and computes these “dynamically aware”
similarity patterns, which are not easily explained in terms of
traditional chemical intuition. Consequently, the calculated sim-
ilarity level enables the model to predict that for a pair of mol-
ecules assessed as similar, their biological activity profiles will
also align, regardless of the specific type of activity.

To evaluate whether our multi-conformer (dynamic, 4D)
approach outperforms a comparable method that relies solely
on structural (static, 3D) descriptors, we conducted a straightfor-
ward experiment. We developed the Isoform Similarity Model
using only 3D descriptors calculated from the peptide conforma-
tions taken from the first frame of the MD simulation after
minimization and equilibration, using E3FP descriptors. The
results revealed a test F1 score of 0.67 and an accuracy of 0.5.
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In comparison, the performance of the 4D model, with an F1
score of 0.712 and an accuracy of 0.69, was noticeably superior,
indicating that incorporating dynamic elements significantly
enhances the model’s predictive capability.

Another potential reason for the strong performance of the
Isoform Similarity Model could be a systematic error within
the data, leading to an artificial enhancement in model results.
However, our investigation did not identify any plausible source
of such an error.

It is also possible that the endpoints predicted by the Isoform
Similarity Model are interrelated, or that the reported activities
of the compounds lack specificity. This hypothesis, however,
seems unlikely given existing literature, which suggests that
the cytotoxic activity, T1 inhibition, and p53/MDM2-modulating
activity are entirely distinct. Cytotoxic activity primarily involves
the disruption of cell membranes in an unspecific manner,
whereas T1 inhibition and p53/MDM2 modulation are highly
selective and specific.

4 | Conclusions

The Cytotoxicity Prediction NN Model developed in this study has
been optimized to reliably predict ICs, values for complex com-
pounds, macrocyclic peptidomimetics. This model was trained
using aqueous MD simulation data derived from diarylethene-
based photoswitchable peptides and their cytotoxic activity
against a single cell line. Despite the relatively small size of the
training dataset, the structural and dynamic information encoded
within the MD traces proved sufficient for accurately predicting
the cytotoxic activity of related peptides, such as mutants and
photoisomers.

In addition, we developed the Isoform Similarity Model, which
utilizes MD simulation data from photoisomeric pairs within a
membranolytic peptide training set. This model exhibits remark-
able efficiency in predicting the activity ratios of photoisomers,
particularly distinguishing ratios exceeding 5, even when the bio-
logical activity mechanisms of the photoisomers differ signifi-
cantly from those in the training set.

The Isoform Similarity Model presents significant potential for
the rational design of new biologically active photoswitchable
peptides or peptidomimetics. For example, it can be used to guide
the development of highly efficient photoisomerizable peptides
tailored for applications in photopharmacology, thus advancing
the design of such compounds.
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Endnotes
! Compound IDs correspond to the compound numbering in [29].

*R,R-configuration of the DAE fragment in the closed forms of the pep-
tides was set for the MD calculations. This choice was made arbitrary; it
may happen that S,S-forms are actually formed, and they may have dif-
ferent activity. See the discussion of this problem in Section 3.2.

*The authors acknowledge the referee who noted the parallels between
NB analysis and our approach during the refereeing process.

*Compound IDs in Figures 9 and 10 correspond to the compound num-
bering in [41, 42].
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