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A Multimodal Dataset Addressing 
Motor Function in Autism
João Ruivo Paulo   1 ✉, Teresa Sousa2,3,4, João Perdiz1, Lara Pereira5, Mariette Vasen6,7, 
Susana Mouga2, Gabriel Pires1,8 & Miguel Castelo-Branco   2,3,4

Autism has primarily been characterized at a social-cognitive level, with evidence suggesting 
impairments in action-perception and motor function. However, there is a lack of publicly available 
datasets that specifically address the neural and behavioral mechanisms linking these functions in 
autism. The Move4AS dataset aims to fill this gap, having been designed to facilitate the study of the 
underlying mechanisms of motor function in the autism spectrum. It combines multiple data modalities, 
including electroencephalography (EEG) and 3D motion data, collected during motor imitation tasks - 
dancing and walking - designed to recruit motor function in emotional and social contexts. It comprises 
a control group of 20 participants and a clinical group of 14 participants. EEG was recorded through a 
16-channel wireless EEG cap, and 3D motion was captured using marker-based motion capture suits 
tracked by a 10-camera setup. Additionally, the dataset includes neuropsychological characterization of 
the participants (IQ and autism score).

Background & Summary
Although autism is primarily recognized as a condition characterized by social and emotional difficulties, 
substantial research highlights significant difficulties in action perception and motor abilities in individuals 
throughout the autism spectrum (AS), affecting both children and adults. Autistic individuals frequently display 
difficulties with motor coordination, posture, repetitive behaviors, and learning by imitation. These difficulties 
often appear as early as infancy1, prompting the hypothesis that they could lead to unconventional perceptions 
of movement and reduced social engagement, potentially influencing the onset of the core symptoms of autism2. 
Hence, studying complex motor function in autism is vital to uncover the pathophysiology of autism and to 
support practical efforts such as early diagnosis and therapy.

There is considerable behavioral evidence indicating that autistic individuals struggle with imitation, though 
experts debate whether these difficulties are specific to imitation or part of a larger problem. Certain researchers 
suggest that these imitation challenges in AS do not stem from flawed action observation or mirror neuron 
circuitry, but rather from trouble executing precise gestures or developmental dyspraxia3. Nevertheless, it is 
uncertain whether these issues arise from delayed development, impaired perception of social actions, or a 
deeper problem in complex neural moor dynamics3.

Accordingly, there is growing enthusiasm for integrating diverse data modalities to enhance the evaluation 
and understanding of motor function in autism, with the goal of identifying neuronal markers of these differ-
ences4. Yet, there remains a shortage of datasets that combine behavioral and neurophysiological observations 
for analyzing motor function in AS5. Many studies rely on functional MRI to explore brain activity, but this 
approach is incompatible with the recording of naturalistic motor tasks since participants cannot move freely. 
Beyond MRI, common sensor modalities include EEG, eye tracking, and facial tracking systems, as reviewed 
in6. Due to these constraints in data collection, discovering clear neuronal markers of motor function in autism 
continues to be an open research question4.
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In this paper, we introduce the Move4AS dataset, which combines wireless electroencephalography (EEG) 
and 3D motion capture modalities, as shown in Fig. 1. Data were collected during two distinct imitation tasks, 
designed to elicit motion recognition and execution under different emotional and social contexts.

This dataset was created to primarily enable the characterization of motor function in autism through objec-
tive analyses, aiming to understand underlying neural mechanisms. Additionally, it supports the development of 
potential innovative screening approaches for early diagnosis and intervention. The dataset uniquely combines 
sensor modalities (EEG and 3D motion), while also offering the flexibility to be used on a single modality basis, 
either EEG or 3D motion. The Move4AS dataset potentially represents a significant contribution to neuroscience 
research, providing a valuable resource for understanding motor function in autism. It also facilitates interdisci-
plinary research in fields such as biomedical applications, engineering and machine learning, serving neuronal 
marker discovery and the benchmarking of classification models in screening applications.

Methods
Setup and Data Collection.  The setup for data acquisition incorporates a marker-based motion capture 
system, a wireless EEG system, and a processing and display system. The equipment used for EEG data collection 
was the g.Nautilus7 wearable EEG headset (gTec, Austria) with 16 g.LADYbird active gel-based EEG electrodes 
(sampling rate of 250 Hz). For 3D motion capture, it was used the OptiTrack Flex 3 in a 10 camera configuration 
setup, overlooking a 5 × 5 meter area (data acquisition at 120 Hz). 37 body markers were used for automatic skel-
eton reconstruction. The screen used for presenting visual stimuli to the participants, was a 49'' LCD TV screen 
with 60 Hz refresh rate and a pixel resolution of 1920 × 1080. A wide-angle view of the scene and setup can be 
observed in Fig. 2.

The EEG and 3D motion information were collected using a processing station, consisting of a desktop 
computer, using home-made Mathworks’ Matlab® scripts using the Data Acquisition Toolbox and Simulink 
gTec models for EEG data recording, and OptiTrack’s Motive software for motion capture recording. Alignment 
between data streams was ensured through event triggers embedded in the data streams. The screen was used to 
provide instructions and timing cues to participants, as detailed in Fig. 3.

Participants.  The Move4AS dataset includes data from two groups: one with non-autistic adults and another 
with autistic adults. The non-autistic group comprises 20 neurotypical individuals, 13 males and 7 females, with 
an average and standard deviation age of 25.9 ± 3.8 years. The autistic group includes 14 autistic individuals, 12 
males and 2 females, with an average and standard deviation age of 27 ± 6.8 years. The diagnosis of autism was 
previously confirmed by qualified professionals in the field. Gold standard instruments were also performed, 
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Fig. 1  Overview of the experimental protocol. The visual paradigm (upper block) is divided into distinct time 
periods: fixation cross, visual instruction, and execution. During the visual instruction period, a moving point-
light figure was displayed, which participants were instructed to imitate. These movements represented different 
social and emotional contexts, like pair dancing and sad walking. The data modalities, EEG and 3D motion 
capture, were collected simultaneously. Time event triggers were integrated into the data, to mark the distinct 
periods of the trial, including baseline, instruction and execution phases.
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when possible, such as parental or caregiver interview with the Autism Diagnostic Interview-Revised, ADI-R8, 
direct structured subject assessment with the Autism Diagnostic Observation Schedule, ADOS9, and the current 
diagnostic criteria for AS according to the Diagnostic and Statistical Manual of Mental Disorders 5, DSM-510.  
Moreover, both groups underwent a neuropsychological evaluation that included the assessment of the intel-
ligence quotient (IQ) with a short version of the Wechsler Adult Intelligence Scale (WAIS-III)11 and the meas-
urement of autistic symptomology through the Autism-Spectrum Quotient (AQ)12. These parameters are 
summarized in Table 1, being the individual participant characterization provided in the dataset’s repository.

Data collection and studies were approved by the Ethical Committee of The Faculty of Medicine of the 
University of Coimbra (Ref. CE-084/2022), and fully respect the safety guidelines for human research and the 
content of Regulation (EU) 2016/679: General Data Protection Regulation. All participants signed an informed 
consent form in accordance with the Declaration of Helsinki prior to participation, which also includes the 
consent to share the dataset. The dataset does not contain any personal information from the participants, per-
taining to their identity or residency. All participants’ data are organized using alphanumerical identifiers. The 
control group ranges from S1 to S20 and the clinical group from P1 to P14.

Imitation Paradigms.  The tasks performed by the participants involved the imitation of specific move-
ment patterns designed to target different emotional and social contexts: (i) walking (confident vs. sad), and 

Fig. 2  Views of the experimental setup and the participant’s position. left: motion capture system. Right: the 
walking range showing the participant facing the screen where task instructions were displayed.

Execution of
movement

Trigger
times

Visual cues

Execution of
movement

Text and moving
Skeleton (2)

Fixation cross
(1)

Audio cues

Return to the center

Return to corner of recording
area (3)

(1)

(2)

(3)

Beep #1
(higher tone)

Beep #2
(lower tone)

Motion capture data

EEG data

0.0s 3.0s 6.0s 6.5s 10.5s 11.0s 17.0s

s1

sn

sn

0.0s 1.0s 4.0s 4.5s 8.5s 9.0s 12.0sDance
Walking

Text and moving
SkeletonFixation cross

Fig. 3  Visual representation of the paradigms. Top: the paradigm’s chronological flow, showing the dancing 
(green) and walking (red) tasks. Middle: the instructions provided to participants for each task. Bottom: EEG 
and 3D motion data recorded at their respective frame rates, and the introduction of the event triggers to allow 
data alignment at specific moments, for both tasks. Right: the point-light animations displayed on the screen to 
relay instructions to participants.

Group Age FSIQ AQ ADOS Total

Control 25.9 ± 3.8 118 ± 12.4 19 ± 7.54 NA

Clinical 27 ± 6.8 88.5 ± 19.7 NA 9 ± 2.06

Table 1.  Average and standard deviation of demographic and neuropsychological data for the participants 
included in each group.

https://doi.org/10.1038/s41597-025-05313-0


4Scientific Data |          (2025) 12:959  | https://doi.org/10.1038/s41597-025-05313-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

(ii) dancing (solo vs. duo). The paradigms aimed to encourage participants’ engagement thereby triggering the 
recruitment of the mirror neuron system. The walking and dancing tasks were chosen given their social relevance. 
Walking allows to study motion-related patterns in a daily activity, which may reflect different emotional states. 
The dancing task, a more complex motion task, allows for the assessment of implicit social-related motion pat-
terns. Participants were instructed to follow the action instructions displayed on the screen, which were based 
on point-light animations inspired by biological motion stimuli13. A representation of a single frame from the 
confident walk video is shown in Fig. 3.

The experimental protocols followed for both motion tasks are illustrated in Fig. 3 and are detailed below. 
EEG and 3D motion data were captured at the respective sampling rate. Event triggers were introduced simul-
taneously in each data stream providing data alignment. The paradigms were programmed in MathWorks’ 
Matlab® taking advantage of the Psychtoolbox-314. Each recording session for each participant was structured 
into recording blocks and breaks for rest. Participants performed the tasks in four recording blocks for the con-
trol group, and three recording blocks for the autistic group. Each block consisted of ten trials for each condition 
performed in random order (e.g., confident, sad, natural/control; solo, pair, and body shake/control), totaling 
30 trials per block.

Walking Task.  For the walking task, participants started from an initial position marked on the ground with 
blue tape. This location allowed a walking range of approximately 7 meters, which ensured the maximum dis-
tance possible while maintaining motion tracking and EEG recording coverage. Each trial started with a central 
fixation cross (visual angle of 1.8∘) baseline period of 3 seconds. Then, the instruction based on a video of a walk-
ing actor labeled as confident or sad was presented for 3 seconds. There was also a neutral instruction, which 
served as a control condition, which was presented purely as text (no image is shown). This condition elicited 
the participants’ natural walking pattern. As soon as the instruction disappeared, a beeping sound indicated that 
the participants should start the motion task. The participants had a period of 4 seconds to walk straight ahead 
following the patterns given in the instruction video. During this period, there was only a black background on 
screen. A second beep marked the end of the motion period, and the participants had 6 seconds to return to the 
initial position.

Dancing Task.  For the dancing task, participants received instructions while positioned at 2 meters from 
the screen. This point, also marked with blue tape, was located at the center of the tracking area, to maximize 
participants’ freedom of movement. Each trial started with a baseline period of 1 second during which a cen-
tral fixation cross (visual angle of 3.6∘) was displayed. Then a 3-second instruction period presented a video 
of a dancing actor labeled as solo or duo. Additionally, a neutral instruction, similar to the walking paradigm, 
was presented as text only, labeled “body shake”. As soon as the instruction disappeared, a beeping sound 
indicated that the participant should start the motion task. The participants had 4 seconds to perform the 
instructed dance within a circle of 1-meter radius, following the patterns shown in the instruction video. A 
second beep marked the end of the motion period, and the participants had 3 seconds to return to the initial 
position.

Visual Stimuli.  All the visual stimuli were generated using Psychtoolbox-3. The screen used for presentation 
had a resolution of 1920 × 1080 pixels and a diagonal dimension of 49 inches. The stimuli were displayed as 
white elements on a black background. The fixation cross was displayed in the center of the screen with a size 
of 80 × 80 pixels. The text displayed on the screen, either accompanying the point-light animations or on its 
own, had a font size of 48 pixels. All text is presented in Portuguese, horizontally centered and vertically placed 
180 pixels above the screen’s center (66.7% of the screen’s height). The instructional point-light animations were 
displayed at a 30 Hz frame rate, with moving points of 28 pixels in size. These animations were generated using 
3D motion captures from public databases. The extracted 3D joint coordinates were used to create 2D frames, 
centered horizontally and vertically using the hip point as reference. The 3D motion captures were selected as 
follows:

•	 Confident walk: From the CMU database15 video with reference 82_09, frames used 750-1292, no scaling, 
speed 4x, no rotation and 17 points used.

•	 Sad walk: From the CMU database15 video with reference 91_13, frames used 500-1300, no scaling, speed 
4x, rotation 

2
π−  on the vertical axis y and 17 points used.

•	 Solo dancing: From the University of Cyprus database16 video with reference Vasso_Salsa_Shines-01, 
frames used 1700-2500, scaling factor of 5, speed 3x, no rotation and 21 points used.

•	 Pair dancing: From the HDM5 mocap database17 video with reference HDM_dg_03-01_02_120, frames 
used 1700-3500, scaling factor of 4.5, speed 3x, no rotation and 21 points used.

3D Motion Data Acquisition.  The motion capture system recorded 3D motion from the reflective markers 
placed on the motion capture suit worn by the participants. The data were recorded through a polling process, 
where Matlab scripts requested data to the Motive software. The sampling rate varied depending on the polling 
cycle, resulting in a variable sampling time between samples. Across the collected 3D motion data, the average 
sampling rate was 50 Hz. Every sample has a time stamp.

The motion data are divided into two sets, 3D markers and rigid body joints, as illustrated in Fig. 4. The 37 
markers placed on the suit are provided in Cartesian coordinates (x,y,z). Each rigid body joint is represented by 
a 7-dimensional vector containing Cartesian coordinates and a quaternion: (x, y, z, a, b, c, d), where (x, y, z) cor-
respond to the joint’s position in space and (a, b, c, d) represent its orientation. The coordinate reference system 
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is relative to the ground plane. The labels and placement of the markers and rigid body joints are provided in a 
separate file in the dataset.

EEG Data Acquisition.  EEG data were recorded with g.Tec g.Nautilus at a sampling rate of 250 Hz, with a notch 
filter at 50 Hz applied to remove powerline interference. The reference channel was placed at the right ear lobe. Data 
were collected from a maximum of 16 EEG channels at the following positions: Fp1, Fp2, F3, Fz, F4, T7, C3, Cz, C4, 
T8, P3, Pz, P4, PO3, PO4 and Oz, distributed across the scalp as seen in Fig. 5. In some cases, data from channel Oz 
(participants S1 to S20) could not be recorded. In other cases data from both channel Oz and channel PO3 were una-
vailable (participants P1 to P7). A list of participants with the corresponding recorded channels is provided below:

•	 Participants S1 - S20 (15 channels available): FP1, FP2, F3, FZ, F4, T7, C3, CZ, C4’, T8, P3, PZ, P4, PO3 and 
PO4

•	 Participants P1 - P7 (14 channels available): FP1, FP2, F3, FZ, F4, T7, C3, CZ, C4, T8, P3, PZ, P4 and PO4
•	 Participants P8 - P14 (16 channels available): FP1, FP2, F3, FZ, F4, T7, C3, CZ, C4, T8, P3, PZ, P4, PO3, PO4 

and Oz

Since g.Tec’s g.Nautilus is a wireless EEG cap, a possible source of artifacts in the data stream is connection 
losses. However, this artifact is expected to be nonsignificant and can be addressed during EEG data preproc-
essing steps.

Before EEG data acquisition, the participants’ scalp was prepared using a skin exfoliation gel (Weaver and 
Company Nuprep skin prep gel) and a conductive gel (g.Tec g.GAMMA gel). The electrode impedance was kept 
below 5 kΩ.

Body Joints

1. Hip 12. Left Forearm

2. Abdomen 13. Left Hand

3. Chest 14.Right Thigh

4. Neck 15. Right Shin

5. Head 16. Right Foot

6. Right Shoulder 17. Left Thigh

7. Right Upper Arm 18. Left Shin

8. Right Forearm 19. Left Foot

9. Right Hand 20. Right Toe

10. Left Shoulder 21. Left Toe

11. Left Upper Arm

Marker

Joint

Fig. 4  Illustration of the positioning of markers and joints in an articulated figurine, along with the naming of 
the rigid body joints. 3D motion data includes 37 markers and 21 joints.

Fig. 5  EEG channel locations used for data acquisition. The 16 active channels used during the experiments are 
highlighted in blue, distributed over the whole head (frontal, central, parietal, and occipital regions).
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Along with the EEG data, the g. Nautilus also recorded data from the inertial measurement unit (IMU), 
which measured acceleration data in its 3 axes (x, y, z). Acceleration data were recorded using the same sampling 
rate and data structure as EEG data.

Data Alignment.  The three data modalities (EEG, IMU, and 3D motion) were collected at two different 
sampling rates. To ensure data alignment between EEG/IMU and 3D motion data, we embed time-event triggers 
into the data streams. These triggers identify, within each trial/epoch, the condition (confident, sad, natural/solo, 
pair, body shake) for the respective paradigm (walking or dancing), and the corresponding temporal segment 
within the epoch (fixation cross, instruction, execution, etc.). These triggers are introduced as two separate data 
channels (trial/epoch condition and trial/epoch time segment) in the data streams, through a numerical code. 
Table 2 presents the numerical code for each trigger, and their corresponding categories.

There is one folder for each participant containing one file per sensor modality and per recording block (a 
block consists of 3 × 10 = 30 trials/epochs). The number of files for each sensor modality depends on the total 
number of recording blocks collected during acquisition. The files corresponding to the same recording block 
for each sensor modality should be used for multimodal analyses. Due to technical issues, the 3D motion data 
does not match the exact number of recording blocks as the EEG data. Table 3 presents an overview of the differ-
ence between the sensor modalities, showing the average and standard deviation of the number of trials/epochs 
per participant within each group and paradigm.

The 3D motion data files contain two separate registers for the stimuli and cues stored independently. In 
contrast, the EEG data files embed the stimuli and cues directly within the data as two separate channels, corre-
sponding to the two lowest rows of the data matrix. Stimuli and cues are sampled at the same sampling rate as 
the corresponding data modality where they are embedded in.

Data Records
The Move4AS dataset is stored in the Figshare repository18. The dataset is organized in folders. The root folder, 
starting hierarchically, contains each participant’s label folder. Participants in the control group range from S1 
to S20, while on the clinical group participants range from P1 to P14. Within each participant’s label folder, the 
paradigm folder can be found, either “walk” or “dance”. Within these folders, the data files are placed with a 
specific name for the data modality and the respective recording block for the participant. Figure 6 summarizes 
the structure and naming for the folders and files of the dataset. The data files found in the dataset are in .mat 
format.

Within the 3D motion data files modality the data registers of relevance and their dimensions are as follows:

•	 rigidbodyData: This cell matrix contains the 3D coordinates and quaternion samples for each of the 21 
rigid body joints. Its dimensions are 1 × Ns cells, where each cell is of size 7 × 21. Ns is the number of samples.

•	 markerData: This cell matrix contains the 3D coordinates samples for each of the 37 reflective markers. Its 
dimensions are 1 × Ns cells, where each cell is of size 3 × 37.

•	 cueRegister: This register is a 1 × Ns vector pertaining to the cue label for each sample.
•	 stimRegister: This register is a 1 × Ns vector pertaining to the stimuli label for each sample.
•	 timestamp: This register is a 1 × Ns vector pertaining to the timestamp for each sample.

The EEG data files contain a single matrix eegDataT of dimensions Nchannels × Ns, where Nchannels are the 
number of EEG channels plus 2 bottom rows, the stimuli and cue labels for each sample, respectively. Ns is the 
number of samples.

# Stimuli #

Cue

Walk Dance

1 Fixation cross 1 Confident walk Solo dancing

2 Instruction (text and moving point-light animation) 2 Natural walk Body shake

3 Lower tone auditory beep 3 Sad walk Imaginary duo

4 Execution of Movement

5 Higher tone auditory beep

6 Return Instruction

Table 2.  Correspondence between numerical and categorical labels for Stimuli and cues. The numerical labels 
correspond to the event triggers found in the data streams.

EEG/IMU 3D Motion

Control Clinical Control Clinical

Dancing 118 ± 8 90 ± 11 99 ± 36 77 ± 19

Walking 120 ± 7 87 ± 8 80 ± 43 63 ± 37

Table 3.  Number of trials per sensor modality within each group. The presented values are averages and 
standard deviations of trials per participant.
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Of particular importance, is the fact that when processing participants where only 14 usable channels were 
recorded, the 14th row should be considered as noise. The channel location files are provided in the dataset’s 
root directory.

Coming from the same EEG amplifier, the IMU data files contain a single matrix imuDataT of dimensions 
5 × Ns, where the 3D accelerations are the first 3 rows, and the stimuli and cue labels for each sample, respec-
tively, are the final 2 rows. Ns is the number of samples.

At the dataset’s root directory, there are supporting files and code for dataset handling, parsing and pre-
processing. These files also provide descriptions for each data modality and their corresponding recording 
blocks’ particular limitations. Participants neuropsychological measurements and biological data are present in 
a .xlsx file. Table 4 describes each one of these files.

Technical Validation
In this section, each modality was analyzed separately. The goal was to confirm the presence of relevant informa-
tion within the dataset, which encourages research into this topic using the dataset. We quantified motion within 
each group and applied a simple classification approach to discriminate between groups.

3D Motion Data Analysis.  To analyze the 3D motion modality’s data, we performed a participant-based 
and group-based motion quantification of the imitation tasks’ execution period. Each participant’s data were 
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Fig. 6  Dataset’s folders and files organization. At the file level the symbol ∗ represents the participants 
numerical identifier and # the recording block for the participant in the paradigm. A file is also named with P or 
an S depending on the participant’s group.

File Name Description

Participants.xlsx Biological and neuropsychological information per participant.

3DMotion_Participants_info.xlsx
Description of limitations found during 3D motion data inspection per participant’s 
recording block (corresponding to each data file), and list of trials/epochs used in the 
technical validation.

EEG_Participants_info.xlsx Detailed description of limitations found per participant during EEG acquisition.

channelslocation14to15channels.ced EEGlab compatible file of EEG channel locations for participants recorded with 14 or 
15 usable channels.

channelslocation16channels.ced EEGlab compatible file of EEG channel locations for participants recorded with 16 
usable channels.

Skeletal_info.mat Matlab .mat file with positioning and labels of the marker points and rigid body joints. 
For the rigid body joints, there is also the hierarchy of each joint’s parent.

Imitation_Tasks_videos.zip

This file contains the video sequences presented to participants during each imitation 
task. Textual cues are given in Portuguese. Each imitation sequence consists of four 
sequential phases: 1. fixation cross, 2. Observation of textual and point-light animation 
cues 3. black screen, corresponding to the execution of motion. 4. Textual cue to return 
to the initial position.

Preprocess_EEG_rawfiles.m Matlab .m script file to read and preprocess EEG raw data. Uses the EEGlab toolbox.

Preprocess_3DMotion_rawfiles.zip

Python code to preprocess the 3D motion raw files. It performs parsing and extraction 
of desired stimuli parts of each epoch, interpolates samples to have a constant sampling 
time, and performs skeleton normalization for equal skeleton segments’ lengths across 
all participants. The README.txt file, found inside, provides usage notes.

Table 4.  Brief description of the files’ contents found in the dataset’s root folder.
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divided into several epochs. Each rigid body joint’s motion was summed over each epoch to have a measure of 
how much it has moved.

Before preprocessing the data, a visual inspection was conducted to identify artifacts. A trial-based inspec-
tion was applied to each recording block, and unusable trials were excluded. We encountered issues com-
prising uninterpretable skeletal reconstructions, and incorrect upper limb or lower limb tracking. The file 
3DMotion_Participants_info.xlsx (included in the dataset repository) lists the selected trials 
and provides comments on any issues detected. Figures 7 and 8 show the number of trials before and after 
visual inspection for each participant. In the code used in this section, the parameter “-blacklist” (code in 
Preprocess_3DMotion_rawfiles.zip) lists the excluded recording blocks. The whole dataset is pro-
vided since the reported observations should be considered depending on the analyses being performed by the 
dataset users.

Interpolation.  The first preprocessing step involved time interpolation of the execution period within each 
epoch. Due to the variable sampling rate, samples have variable timestamp intervals. An interpolation was 

Fig. 7  Number of trials before and after inspection of the 3D motion data for the walking task.

Fig. 8  Number of trials before and after inspection of the 3D motion data for the dancing task.
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carried out to allow to adequately quantify the motion. Let T be the set of timestamps (T is therefore different 
for each sample). tint ∈ T denotes the point in time that the data is interpolated to, ti ∈ T the previous time stamp 
before tint, and ti+1 ∈ T the next timestamp after tint. The interpolation was computed by: 
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S t S t( ) ( )
( )
( )

( ( ) ( ))
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int i
int i

i i
i i

1
1

Where S(t) is the 3D motion sample (either marker or rigid body joint) at timestamp t, being either tint, ti or 
ti+1. Therefore, after this step, all execution segments were equally sampled, containing N samples, N being the 
highest number of samples found in the dataset for the execution segments.

Normalization.  To mitigate the variability of participants’ body sizes, we performed a skeleton’s segment-wise 
normalization. Meaning, that for every direct joint-to-joint segment of the body (e.g., shoulder to elbow), the 
segment was normalized to the size of that segment’s average taken from all the participants. Therefore, the 
average segment size for one participant was calculated and then a normalization factor was applied. The nor-
malization methodology follows the work in19. The result was a normalized skeleton for each participant. This 
allowed for an accurate comparison of motion between participants and groups. It should be noted that when 
computing the motion quantification, the motion measurements are normalized.

Motion quantification.  The employed motion quantification took into account the reference system placed in 
the hip joint for the first sample of each epoch. It was also considered each joint’s hierarchy, which allowed to 
remove the influence of the motion of a joint’s parent on that respective joint. For instance, the influence of the 
elbow’s motion on the hand’s joint’s motion. Therefore, the following transformation was first applied to each 
joint J and its so-called parent Jp for each sample in the interpolated and normalized dataset, before quantifying 
the motion, as in: 

S t J S t J S t J( , ) ( , ) ( , ) (2)p= −

Where the computation was performed for each dataset’s sample S at timestamp t for each joint and its parent.
This motion corresponds to the displacement of a joint over a time sequence or epoch T. To quantify the 

motion of each joint we used: 

M S t S t( ) ( )
(3)

J
i

T

i i1∑= −+

Where MJ is the summed motion of joint J across the whole time sequence. This calculation was performed 
for each joint of a participant’s data within each epoch. Then, we computed the participant’s full body motion 
quantification, by summing all the joints’ motion, within the respective epoch. Since the skeleton’s segments are 
normalized, the quantification is not the physical displacement of each participant, but rather a relative value 
that enables comparison across participants.

Fig. 9  Quantification of the summed up motion distance for each group. It is presented the average summed 
motion for each paradigm and respective cues, with the respective standard deviation. The motion values are 
high due to the summed motion of all the 21 joints combined.
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For group-level analysis, we averaged the full-body motion across all epochs for each group and imitation 
task (walking and dancing). The results are presented in Fig. 9 showing the average and standard deviation in 
meters for each motion condition. Looking at the figure, we observe distinctions between groups. This obser-
vation reinforces the study of motor function in AS, showing the relevance of the addition of the 3D motion 
modality into this dataset.

EEG Data Analysis.  We have performed a previous preliminary validation of the collected data in20, where 
we analyzed only the control group. The goal was to evaluate the hypothesis that, in the μ frequency band (8-13 
Hz), specific oscillatory signatures would be observed during motion recognition and execution. This band is 
known to be related to the mirror neuron system21,22. That work demonstrated the correct recruitment of the 
brain regions related to motion, validating the paradigms, and collected data.

In this paper, we focused on discriminating between autistic and control groups to assess whether the data 
contain meaningful discriminative patterns. This is important to validate the relevance of this dataset, support-
ing its potential to uncover underlying neural mechanisms of motor function.

Fig. 10  Number of trials before and after inspection of the EEG data for the walking task.

Fig. 11  Number of trials before and after inspection of the EEG data for the dancing task.
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Considering the temporal sequence of each epoch, we focused on the 3 seconds of biological motion recog-
nition (instruction). This is the period in which the participants observed the imitation tasks and were standing 
still. This was the time frame in which there was no considerable motion involvement.

For each imitation task (walking and dancing), we performed a classification test between groups. We con-
sidered only the epochs involving imitation, in which point-light animations and text were displayed. The neu-
tral conditions were not considered since there is no imitation task involved. We divided the dataset into autistic 
(clinical) and control groups. The two condition types of epochs for all participants are compiled together in 
each group, and labeled according to the group. We further divided the data for each group into training and 
testing, being 80% of the epochs (3-second windows) for training.

The EEG data were preprocessed offline with a Hamming windowed sinc FIR bandpass filter between 1 and 
45Hz, followed by removal of epochs that presented system disconnections. Independent component analysis 
(ICA) was used to remove artifacts from eye blinking, muscular interference, and channels with low signal qual-
ity. The EEG channels used are (Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4). The EEG data was preprocessed 
using the EEGlab23 toolbox in Matlab. The whole number of epochs per participant in the preprocessed dataset 
is shown in Figs. 10 and 11.

The classification strategy was based on a Common Spatial Pattern (CSP) feature extractor24 combined with 
a Linear Discriminant Analysis (LDA) model. The LDA model was fed with the first and last projections of CSP, 
pertaining to a two-value vector of the logarithmic variance of the power. For each imitation task (dancing and 
walking), a binary classification was performed to discriminate between groups.

Looking at Table 5, it is observed that this simplistic classification test points toward discriminative features 
present in the data. To guarantee that there was minimal influence from motion in this classification, we also 
present the accelerometer data recorded by the EEG amplifier. Looking at the two groups, the same average 
amount of motion is observed between them, during the instruction period, and at minimal motion ranges.

Usage Notes
For the purpose of reading and analyzing the provided dataset, MATLAB or Python are recommended. The data 
should be preprocessed, for removal of noisy or faulty epochs and filtering. We provide code scripts which are in the 
same root folder as the dataset, which was used for preprocessing data as in the Technical Validation section. For 3D 
motion data processing, we used Python version 3.12.12 with Scipy 1.13.0, Numpy 1.26.4, and Pickle 4.0 toolboxes. 
EEG data preprocessing was performed using custom scripts based on the EEGlab toolbox (version 2024.2.0) run-
ning in MATLAB R2021b. The use of these scripts is optional and is intended as a reference for users of the dataset.

Code availability
There is no mandatory code needed to use this dataset. The provided code scripts can be found in18, and are based 
on MATLAB and Python, and are used for preprocessing. They are provided to facilitate quick data handling. 
They are free to use. They can be found in the root folder of this dataset.
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