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Autism has primarily been characterized at a social-cognitive level, with evidence suggesting
impairments in action-perception and motor function. However, there is a lack of publicly available
datasets that specifically address the neural and behavioral mechanisms linking these functions in
autism. The Move4AS dataset aims to fill this gap, having been designed to facilitate the study of the
underlying mechanisms of motor function in the autism spectrum. It combines multiple data modalities,
including electroencephalography (EEG) and 3D motion data, collected during motor imitation tasks -
dancing and walking - designed to recruit motor function in emotional and social contexts. It comprises
a control group of 20 participants and a clinical group of 14 participants. EEG was recorded through a
16-channel wireless EEG cap, and 3D motion was captured using marker-based motion capture suits
tracked by a 10-camera setup. Additionally, the dataset includes neuropsychological characterization of
the participants (1Q and autism score).

Background & Summary

Although autism is primarily recognized as a condition characterized by social and emotional difficulties,
substantial research highlights significant difficulties in action perception and motor abilities in individuals
throughout the autism spectrum (AS), affecting both children and adults. Autistic individuals frequently display
difficulties with motor coordination, posture, repetitive behaviors, and learning by imitation. These difficulties
often appear as early as infancy', prompting the hypothesis that they could lead to unconventional perceptions
of movement and reduced social engagement, potentially influencing the onset of the core symptoms of autism?
Hence, studying complex motor function in autism is vital to uncover the pathophysiology of autism and to
support practical efforts such as early diagnosis and therapy.

There is considerable behavioral evidence indicating that autistic individuals struggle with imitation, though
experts debate whether these difficulties are specific to imitation or part of a larger problem. Certain researchers
suggest that these imitation challenges in AS do not stem from flawed action observation or mirror neuron
circuitry, but rather from trouble executing precise gestures or developmental dyspraxia®. Nevertheless, it is
uncertain whether these issues arise from delayed development, impaired perception of social actions, or a
deeper problem in complex neural moor dynamics>.

Accordingly, there is growing enthusiasm for integrating diverse data modalities to enhance the evaluation
and understanding of motor function in autism, with the goal of identifying neuronal markers of these differ-
ences®. Yet, there remains a shortage of datasets that combine behavioral and neurophysiological observations
for analyzing motor function in AS®. Many studies rely on functional MRI to explore brain activity, but this
approach is incompatible with the recording of naturalistic motor tasks since participants cannot move freely.
Beyond MRI, common sensor modalities include EEG, eye tracking, and facial tracking systems, as reviewed
in®. Due to these constraints in data collection, discovering clear neuronal markers of motor function in autism
continues to be an open research question®.
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Fig. 1 Overview of the experimental protocol. The visual paradigm (upper block) is divided into distinct time
periods: fixation cross, visual instruction, and execution. During the visual instruction period, a moving point-
light figure was displayed, which participants were instructed to imitate. These movements represented different
social and emotional contexts, like pair dancing and sad walking. The data modalities, EEG and 3D motion
capture, were collected simultaneously. Time event triggers were integrated into the data, to mark the distinct
periods of the trial, including baseline, instruction and execution phases.

In this paper, we introduce the Move4AS dataset, which combines wireless electroencephalography (EEG)
and 3D motion capture modalities, as shown in Fig. 1. Data were collected during two distinct imitation tasks,
designed to elicit motion recognition and execution under different emotional and social contexts.

This dataset was created to primarily enable the characterization of motor function in autism through objec-
tive analyses, aiming to understand underlying neural mechanisms. Additionally, it supports the development of
potential innovative screening approaches for early diagnosis and intervention. The dataset uniquely combines
sensor modalities (EEG and 3D motion), while also offering the flexibility to be used on a single modality basis,
either EEG or 3D motion. The Move4AS dataset potentially represents a significant contribution to neuroscience
research, providing a valuable resource for understanding motor function in autism. It also facilitates interdisci-
plinary research in fields such as biomedical applications, engineering and machine learning, serving neuronal
marker discovery and the benchmarking of classification models in screening applications.

Methods

Setup and Data Collection. The setup for data acquisition incorporates a marker-based motion capture
system, a wireless EEG system, and a processing and display system. The equipment used for EEG data collection
was the g.Nautilus” wearable EEG headset (gTec, Austria) with 16 g. LADYbird active gel-based EEG electrodes
(sampling rate of 250 Hz). For 3D motion capture, it was used the OptiTrack Flex 3 in a 10 camera configuration
setup, overlooking a 5 x 5 meter area (data acquisition at 120 Hz). 37 body markers were used for automatic skel-
eton reconstruction. The screen used for presenting visual stimuli to the participants, was a 49" LCD TV screen
with 60 Hz refresh rate and a pixel resolution of 1920 x 1080. A wide-angle view of the scene and setup can be
observed in Fig. 2.

The EEG and 3D motion information were collected using a processing station, consisting of a desktop
computer, using home-made Mathworks’ Matlab® scripts using the Data Acquisition Toolbox and Simulink
gTec models for EEG data recording, and OptiTrack’s Motive software for motion capture recording. Alignment
between data streams was ensured through event triggers embedded in the data streams. The screen was used to
provide instructions and timing cues to participants, as detailed in Fig. 3.

Participants. The Move4AS dataset includes data from two groups: one with non-autistic adults and another
with autistic adults. The non-autistic group comprises 20 neurotypical individuals, 13 males and 7 females, with
an average and standard deviation age of 25.9 =+ 3.8 years. The autistic group includes 14 autistic individuals, 12
males and 2 females, with an average and standard deviation age of 27 + 6.8 years. The diagnosis of autism was
previously confirmed by qualified professionals in the field. Gold standard instruments were also performed,
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Fig. 2 Views of the experimental setup and the participant’s position. left: motion capture system. Right: the
walking range showing the participant facing the screen where task instructions were displayed.
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Fig. 3 Visual representation of the paradigms. Top: the paradigm’s chronological flow, showing the dancing
(green) and walking (red) tasks. Middle: the instructions provided to participants for each task. Bottom: EEG
and 3D motion data recorded at their respective frame rates, and the introduction of the event triggers to allow
data alignment at specific moments, for both tasks. Right: the point-light animations displayed on the screen to
relay instructions to participants.

Group Age FSIQ AQ ADOS Total
Control 259438 |118£124 19+7.54 | NA
Clinical 27+6.8 88.5+19.7 |NA 942.06

Table 1. Average and standard deviation of demographic and neuropsychological data for the participants
included in each group.

when possible, such as parental or caregiver interview with the Autism Diagnostic Interview-Revised, ADI-R?,
direct structured subject assessment with the Autism Diagnostic Observation Schedule, ADOS?, and the current
diagnostic criteria for AS according to the Diagnostic and Statistical Manual of Mental Disorders 5, DSM-5'.
Moreover, both groups underwent a neuropsychological evaluation that included the assessment of the intel-
ligence quotient (IQ) with a short version of the Wechsler Adult Intelligence Scale (WAIS-III)'! and the meas-
urement of autistic symptomology through the Autism-Spectrum Quotient (AQ)'%. These parameters are
summarized in Table 1, being the individual participant characterization provided in the dataset’s repository.

Data collection and studies were approved by the Ethical Committee of The Faculty of Medicine of the
University of Coimbra (Ref. CE-084/2022), and fully respect the safety guidelines for human research and the
content of Regulation (EU) 2016/679: General Data Protection Regulation. All participants signed an informed
consent form in accordance with the Declaration of Helsinki prior to participation, which also includes the
consent to share the dataset. The dataset does not contain any personal information from the participants, per-
taining to their identity or residency. All participants’ data are organized using alphanumerical identifiers. The
control group ranges from S1 to S20 and the clinical group from P1 to P14.

Imitation Paradigms. The tasks performed by the participants involved the imitation of specific move-
ment patterns designed to target different emotional and social contexts: (i) walking (confident vs. sad), and
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(ii) dancing (solo vs. duo). The paradigms aimed to encourage participants’ engagement thereby triggering the
recruitment of the mirror neuron system. The walking and dancing tasks were chosen given their social relevance.
Walking allows to study motion-related patterns in a daily activity, which may reflect different emotional states.
The dancing task, a more complex motion task, allows for the assessment of implicit social-related motion pat-
terns. Participants were instructed to follow the action instructions displayed on the screen, which were based
on point-light animations inspired by biological motion stimuli'’. A representation of a single frame from the
confident walk video is shown in Fig. 3.

The experimental protocols followed for both motion tasks are illustrated in Fig. 3 and are detailed below.
EEG and 3D motion data were captured at the respective sampling rate. Event triggers were introduced simul-
taneously in each data stream providing data alignment. The paradigms were programmed in MathWorks’
Matlab® taking advantage of the Psychtoolbox-3'%. Each recording session for each participant was structured
into recording blocks and breaks for rest. Participants performed the tasks in four recording blocks for the con-
trol group, and three recording blocks for the autistic group. Each block consisted of ten trials for each condition
performed in random order (e.g., confident, sad, natural/control; solo, pair, and body shake/control), totaling
30 trials per block.

Walking Task. For the walking task, participants started from an initial position marked on the ground with
blue tape. This location allowed a walking range of approximately 7 meters, which ensured the maximum dis-
tance possible while maintaining motion tracking and EEG recording coverage. Each trial started with a central
fixation cross (visual angle of 1.8°) baseline period of 3 seconds. Then, the instruction based on a video of a walk-
ing actor labeled as confident or sad was presented for 3 seconds. There was also a neutral instruction, which
served as a control condition, which was presented purely as text (no image is shown). This condition elicited
the participants’ natural walking pattern. As soon as the instruction disappeared, a beeping sound indicated that
the participants should start the motion task. The participants had a period of 4 seconds to walk straight ahead
following the patterns given in the instruction video. During this period, there was only a black background on
screen. A second beep marked the end of the motion period, and the participants had 6 seconds to return to the
initial position.

Dancing Task. For the dancing task, participants received instructions while positioned at 2 meters from
the screen. This point, also marked with blue tape, was located at the center of the tracking area, to maximize
participants’ freedom of movement. Each trial started with a baseline period of 1 second during which a cen-
tral fixation cross (visual angle of 3.6°) was displayed. Then a 3-second instruction period presented a video
of a dancing actor labeled as solo or duo. Additionally, a neutral instruction, similar to the walking paradigm,
was presented as text only, labeled “body shake”. As soon as the instruction disappeared, a beeping sound
indicated that the participant should start the motion task. The participants had 4 seconds to perform the
instructed dance within a circle of 1-meter radius, following the patterns shown in the instruction video. A
second beep marked the end of the motion period, and the participants had 3 seconds to return to the initial
position.

Visual Stimuli. ~ All the visual stimuli were generated using Psychtoolbox-3. The screen used for presentation
had a resolution of 1920 x 1080 pixels and a diagonal dimension of 49 inches. The stimuli were displayed as
white elements on a black background. The fixation cross was displayed in the center of the screen with a size
of 80 x 80 pixels. The text displayed on the screen, either accompanying the point-light animations or on its
own, had a font size of 48 pixels. All text is presented in Portuguese, horizontally centered and vertically placed
180 pixels above the screen’s center (66.7% of the screen’s height). The instructional point-light animations were
displayed at a 30 Hz frame rate, with moving points of 28 pixels in size. These animations were generated using
3D motion captures from public databases. The extracted 3D joint coordinates were used to create 2D frames,
centered horizontally and vertically using the hip point as reference. The 3D motion captures were selected as
follows:

« Confident walk: From the CMU database' video with reference 82_ 09, frames used 750-1292, no scaling,
speed 4x, no rotation and 17 points used.

 Sad walk: From the CMU database'® video with reference 91 13, frames used 500-1300, no scaling, speed
4x, rotation —~ on the vertical axis y and 17 points used.

« Solo dancing:zFrom the University of Cyprus database' video with reference Vasso Salsa Shines-01,
frames used 1700-2500, scaling factor of 5, speed 3x, no rotation and 21 points used.

o Pair dancing: From the HDM5 mocap database'” video with reference HDM _dg_03-01 02 120, frames
used 1700-3500, scaling factor of 4.5, speed 3x, no rotation and 21 points used.

3D Motion Data Acquisition.  The motion capture system recorded 3D motion from the reflective markers
placed on the motion capture suit worn by the participants. The data were recorded through a polling process,
where Matlab scripts requested data to the Motive software. The sampling rate varied depending on the polling
cycle, resulting in a variable sampling time between samples. Across the collected 3D motion data, the average
sampling rate was 50 Hz. Every sample has a time stamp.

The motion data are divided into two sets, 3D markers and rigid body joints, as illustrated in Fig. 4. The 37
markers placed on the suit are provided in Cartesian coordinates (x,y,z). Each rigid body joint is represented by
a 7-dimensional vector containing Cartesian coordinates and a quaternion: (x, y, z, a, b, ¢, d), where (x, y, z) cor-
respond to the joint’s position in space and (a, b, ¢, d) represent its orientation. The coordinate reference system
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Body Joints
1. Hip 12. Left Forearm
saml 2. Abdomen 13. Left Hand
3. Chest 14.Right Thigh
4. Neck 15. Right Shin
5. Head 16. Right Foot
6. Right Shoulder 17. Left Thigh
7. Right Upper Arm 18. Left Shin
8. Right Forearm 19. Left Foot
9. Right Hand 20. Right Toe
10. Left Shoulder 21. Left Toe
11. Left Upper Arm

Fig. 4 Tllustration of the positioning of markers and joints in an articulated figurine, along with the naming of
the rigid body joints. 3D motion data includes 37 markers and 21 joints.
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Fig. 5 EEG channel locations used for data acquisition. The 16 active channels used during the experiments are
highlighted in blue, distributed over the whole head (frontal, central, parietal, and occipital regions).

is relative to the ground plane. The labels and placement of the markers and rigid body joints are provided in a
separate file in the dataset.

EEG Data Acquisition. EEG data were recorded with g.Tec g.Nautilus at a sampling rate of 250 Hz, with a notch
filter at 50 Hz applied to remove powerline interference. The reference channel was placed at the right ear lobe. Data
were collected from a maximum of 16 EEG channels at the following positions: Fpl, Fp2, F3, Fz, F4, T7, C3, Cz, C4,
T8, P3, Pz, P4, PO3, PO4 and Oz, distributed across the scalp as seen in Fig. 5. In some cases, data from channel Oz
(participants S1 to S20) could not be recorded. In other cases data from both channel Oz and channel PO3 were una-
vailable (participants P1 to P7). A list of participants with the corresponding recorded channels is provided below:

o Participants S1 - S20 (15 channels available): FP1, FP2, F3, FZ, F4, T7, C3, CZ, C4, T8, P3, PZ, P4, PO3 and
PO4

o Participants P1 - P7 (14 channels available): FP1, FP2, F3, FZ, F4, T7, C3, CZ, C4, T8, P3, PZ, P4 and PO4

o Participants P8 - P14 (16 channels available): FP1, FP2, F3, FZ, F4, T7, C3, CZ, C4, T8, P3, PZ, P4, PO3, PO4
and Oz

Since g.Tec’s g.Nautilus is a wireless EEG cap, a possible source of artifacts in the data stream is connection
losses. However, this artifact is expected to be nonsignificant and can be addressed during EEG data preproc-
essing steps.

Before EEG data acquisition, the participants’ scalp was prepared using a skin exfoliation gel (Weaver and
Company Nuprep skin prep gel) and a conductive gel (g.Tec g. GAMMA gel). The electrode impedance was kept
below 5 kQ.
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Cue
Stimuli # | Walk Dance
Fixation cross 1 | Confident walk | Solo dancing
Instruction (text and moving point-light animation) | 2 | Natural walk Body shake
Lower tone auditory beep 3 | Sad walk Imaginary duo

Execution of Movement

Higher tone auditory beep

Q|G| | W N =

Return Instruction

Table 2. Correspondence between numerical and categorical labels for Stimuli and cues. The numerical labels
correspond to the event triggers found in the data streams.

EEG/IMU 3D Motion

Control | Clinical | Control | Clinical
Dancing 118 +8 90+11 99 + 36 77 £ 19
Walking 120+ 7 87+8 80+43 63 £ 37

Table 3. Number of trials per sensor modality within each group. The presented values are averages and
standard deviations of trials per participant.

Along with the EEG data, the g. Nautilus also recorded data from the inertial measurement unit (IMU),
which measured acceleration data in its 3 axes (X, y, z). Acceleration data were recorded using the same sampling
rate and data structure as EEG data.

Data Alignment. The three data modalities (EEG, IMU, and 3D motion) were collected at two different
sampling rates. To ensure data alignment between EEG/IMU and 3D motion data, we embed time-event triggers
into the data streams. These triggers identify, within each trial/epoch, the condition (confident, sad, natural/solo,
pair, body shake) for the respective paradigm (walking or dancing), and the corresponding temporal segment
within the epoch (fixation cross, instruction, execution, etc.). These triggers are introduced as two separate data
channels (trial/epoch condition and trial/epoch time segment) in the data streams, through a numerical code.
Table 2 presents the numerical code for each trigger, and their corresponding categories.

There is one folder for each participant containing one file per sensor modality and per recording block (a
block consists of 3 x 10 = 30 trials/epochs). The number of files for each sensor modality depends on the total
number of recording blocks collected during acquisition. The files corresponding to the same recording block
for each sensor modality should be used for multimodal analyses. Due to technical issues, the 3D motion data
does not match the exact number of recording blocks as the EEG data. Table 3 presents an overview of the differ-
ence between the sensor modalities, showing the average and standard deviation of the number of trials/epochs
per participant within each group and paradigm.

The 3D motion data files contain two separate registers for the stimuli and cues stored independently. In
contrast, the EEG data files embed the stimuli and cues directly within the data as two separate channels, corre-
sponding to the two lowest rows of the data matrix. Stimuli and cues are sampled at the same sampling rate as
the corresponding data modality where they are embedded in.

Data Records
The Move4AS dataset is stored in the Figshare repository’®. The dataset is organized in folders. The root folder,
starting hierarchically, contains each participant’s label folder. Participants in the control group range from S1
to S20, while on the clinical group participants range from P1 to P14. Within each participant’s label folder, the
paradigm folder can be found, either “walk” or “dance”. Within these folders, the data files are placed with a
specific name for the data modality and the respective recording block for the participant. Figure 6 summarizes
the structure and naming for the folders and files of the dataset. The data files found in the dataset are in .mat
format.

Within the 3D motion data files modality the data registers of relevance and their dimensions are as follows:

o rigidbodyData: This cell matrix contains the 3D coordinates and quaternion samples for each of the 21
rigid body joints. Its dimensions are 1 x N, cells, where each cell is of size 7 x 21. N is the number of samples.

o markerData: This cell matrix contains the 3D coordinates samples for each of the 37 reflective markers. Its
dimensions are 1 X N; cells, where each cell is of size 3 x 37.

o cueRegister: Thisregisterisal x N, vector pertaining to the cue label for each sample.

o stimRegister: Thisregisterisal x N, vector pertaining to the stimuli label for each sample.

o timestamp: This registerisa 1 x N, vector pertaining to the timestamp for each sample.

The EEG data files contain a single matrix eegDataT of dimensions N,q,,eis X N, where Njq,..; are the
number of EEG channels plus 2 bottom rows, the stimuli and cue labels for each sample, respectively. N; is the
number of samples.
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DATASET

: P1 St :

H | | imu_P*‘dance’.mat
i ) dance eeg_P*dance/.mat

5 . . : |

b ) mdata_P*dance/ .mat
i E imu_S*walki.mat
| . . ]

: ] walk eeg_S*walk/.mat

E E mdata_S*walk”.mat

: P14 S20 :

Fig. 6 Dataset’s folders and files organization. At the file level the symbol * represents the participants
numerical identifier and # the recording block for the participant in the paradigm. A file is also named with P or
an S depending on the participant’s group.

File Name Description
Participants.xlsx Biological and neuropsychological information per participant.
Description of limitations found during 3D motion data inspection per participant’s
3DMotion Participants info.xlsx recording block (corresponding to each data file), and list of trials/epochs used in the
technical validation.
EEG_Participants_info.xlsx Detailed description of limitations found per participant during EEG acquisition.

EEGlab compatible file of EEG channel locations for participants recorded with 14 or

channelslocationl4tol5channels.ced
15 usable channels.

EEGlab compatible file of EEG channel locations for participants recorded with 16

channelslocationlé6channels.ced
usable channels.

Matlab . mat file with positioning and labels of the marker points and rigid body joints.

Skeletal info.mat For the rigid body joints, there is also the hierarchy of each joint’s parent.

This file contains the video sequences presented to participants during each imitation
task. Textual cues are given in Portuguese. Each imitation sequence consists of four
Imitation Tasks_videos.zip sequential phases: 1. fixation cross, 2. Observation of textual and point-light animation
cues 3. black screen, corresponding to the execution of motion. 4. Textual cue to return
to the initial position.

Preprocess_EEG_rawfiles.m Matlab . m script file to read and preprocess EEG raw data. Uses the EEGlab toolbox.

Python code to preprocess the 3D motion raw files. It performs parsing and extraction
of desired stimuli parts of each epoch, interpolates samples to have a constant sampling
time, and performs skeleton normalization for equal skeleton segments’ lengths across
all participants. The README . txt file, found inside, provides usage notes.

Preprocess_3DMotion rawfiles.zip

Table 4. Brief description of the files’ contents found in the dataset’s root folder.

Of particular importance, is the fact that when processing participants where only 14 usable channels were
recorded, the 14th row should be considered as noise. The channel location files are provided in the dataset’s
root directory.

Coming from the same EEG amplifier, the IMU data files contain a single matrix imuDataT of dimensions
5 X N,, where the 3D accelerations are the first 3 rows, and the stimuli and cue labels for each sample, respec-
tively, are the final 2 rows. N is the number of samples.

At the dataset’s root directory, there are supporting files and code for dataset handling, parsing and pre-
processing. These files also provide descriptions for each data modality and their corresponding recording
blocks’ particular limitations. Participants neuropsychological measurements and biological data are present in
a . x1sx file. Table 4 describes each one of these files.

Technical Validation

In this section, each modality was analyzed separately. The goal was to confirm the presence of relevant informa-
tion within the dataset, which encourages research into this topic using the dataset. We quantified motion within
each group and applied a simple classification approach to discriminate between groups.

3D Motion Data Analysis. To analyze the 3D motion modality’s data, we performed a participant-based
and group-based motion quantification of the imitation tasks” execution period. Each participant’s data were
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Fig. 7 Number of trials before and after inspection of the 3D motion data for the walking task.
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Fig. 8 Number of trials before and after inspection of the 3D motion data for the dancing task.

divided into several epochs. Each rigid body joint’s motion was summed over each epoch to have a measure of
how much it has moved.

Before preprocessing the data, a visual inspection was conducted to identify artifacts. A trial-based inspec-
tion was applied to each recording block, and unusable trials were excluded. We encountered issues com-
prising uninterpretable skeletal reconstructions, and incorrect upper limb or lower limb tracking. The file
3DMotion Participants info.x1lsx (included in the dataset repository) lists the selected trials
and provides comments on any issues detected. Figures 7 and 8 show the number of trials before and after
visual inspection for each participant. In the code used in this section, the parameter “~blacklist” (codein
Preprocess_3DMotion rawfiles.zip) lists the excluded recording blocks. The whole dataset is pro-
vided since the reported observations should be considered depending on the analyses being performed by the
dataset users.

Interpolation. The first preprocessing step involved time interpolation of the execution period within each
epoch. Due to the variable sampling rate, samples have variable timestamp intervals. An interpolation was
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Average and standard deviation of summed motion (Walking) Average and standard deviation of summed motion (Dancing)

Clinical Clinical
Control Control

3

-

5

Summed motion (m)
Summed motion (m)

Confident Natural Sad Solo Body shake Duo

Fig. 9 Quantification of the summed up motion distance for each group. It is presented the average summed
motion for each paradigm and respective cues, with the respective standard deviation. The motion values are
high due to the summed motion of all the 21 joints combined.

carried out to allow to adequately quantify the motion. Let T be the set of timestamps (T is therefore different
for each sample). t;,,, € T denotes the point in time that the data is interpolated to, t; € T the previous time stamp
before t;,,, and t;, | € T the next timestamp after f;,,. The interpolation was computed by:

(tin B ti)

—m . (S(ti+1) - S(ti))

(tip = t) ey
Where S(¢) is the 3D motion sample (either marker or rigid body joint) at timestamp ¢, being either t;,, t; or

t;,1. Therefore, after this step, all execution segments were equally sampled, containing N samples, N being the
highest number of samples found in the dataset for the execution segments.

S(tint) = S8(t) +

Normalization. 'To mitigate the variability of participants’ body sizes, we performed a skeleton’s segment-wise
normalization. Meaning, that for every direct joint-to-joint segment of the body (e.g., shoulder to elbow), the
segment was normalized to the size of that segment’s average taken from all the participants. Therefore, the
average segment size for one participant was calculated and then a normalization factor was applied. The nor-
malization methodology follows the work in'®. The result was a normalized skeleton for each participant. This
allowed for an accurate comparison of motion between participants and groups. It should be noted that when
computing the motion quantification, the motion measurements are normalized.

Motion quantification. 'The employed motion quantification took into account the reference system placed in
the hip joint for the first sample of each epoch. It was also considered each joint’s hierarchy, which allowed to
remove the influence of the motion of a joint’s parent on that respective joint. For instance, the influence of the
elbow’s motion on the hand’s joint’s motion. Therefore, the following transformation was first applied to each
joint J and its so-called parent J, for each sample in the interpolated and normalized dataset, before quantifying
the motion, as in:

St J) = S(t, J) — S(t, J,) (2

Where the computation was performed for each dataset’s sample S at timestamp ¢ for each joint and its parent.
This motion corresponds to the displacement of a joint over a time sequence or epoch T. To quantify the
motion of each joint we used:

T
My = >7S(t;,) — S(t) )

Where M; is the summed motion of joint J across the whole time sequence. This calculation was performed
for each joint of a participant’s data within each epoch. Then, we computed the participant’s full body motion
quantification, by summing all the joints’ motion, within the respective epoch. Since the skeleton’s segments are
normalized, the quantification is not the physical displacement of each participant, but rather a relative value
that enables comparison across participants.
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Fig. 11 Number of trials before and after inspection of the EEG data for the dancing task.

For group-level analysis, we averaged the full-body motion across all epochs for each group and imitation
task (walking and dancing). The results are presented in Fig. 9 showing the average and standard deviation in
meters for each motion condition. Looking at the figure, we observe distinctions between groups. This obser-
vation reinforces the study of motor function in AS, showing the relevance of the addition of the 3D motion
modality into this dataset.

EEG Data Analysis. We have performed a previous preliminary validation of the collected data in®, where
we analyzed only the control group. The goal was to evaluate the hypothesis that, in the ;1 frequency band (8-13
Hz), specific oscillatory signatures would be observed during motion recognition and execution. This band is
known to be related to the mirror neuron system?!?2. That work demonstrated the correct recruitment of the
brain regions related to motion, validating the paradigms, and collected data.

In this paper, we focused on discriminating between autistic and control groups to assess whether the data
contain meaningful discriminative patterns. This is important to validate the relevance of this dataset, support-
ing its potential to uncover underlying neural mechanisms of motor function.

SCIENTIFIC DATA|

(2025) 12:959 | https://doi.org/10.1038/s41597-025-05313-0

10


https://doi.org/10.1038/s41597-025-05313-0

www.nature.com/scientificdata/

Average summed motion (m)

Paradigm | Accuracy (%) | Control Clinical
Dancing | 71.4 0.11 0.14
Walking 78 0.08 0.10

Table 5. Classification results for group discrimination. The average summed up motion distance (head’s total
displacement) across all the epochs of each group, in the instruction period, is also provided, confirming the
residual quantity of motion during this period for both groups.

Considering the temporal sequence of each epoch, we focused on the 3 seconds of biological motion recog-
nition (instruction). This is the period in which the participants observed the imitation tasks and were standing
still. This was the time frame in which there was no considerable motion involvement.

For each imitation task (walking and dancing), we performed a classification test between groups. We con-
sidered only the epochs involving imitation, in which point-light animations and text were displayed. The neu-
tral conditions were not considered since there is no imitation task involved. We divided the dataset into autistic
(clinical) and control groups. The two condition types of epochs for all participants are compiled together in
each group, and labeled according to the group. We further divided the data for each group into training and
testing, being 80% of the epochs (3-second windows) for training.

The EEG data were preprocessed offline with a Hamming windowed sinc FIR bandpass filter between 1 and
45Hz, followed by removal of epochs that presented system disconnections. Independent component analysis
(ICA) was used to remove artifacts from eye blinking, muscular interference, and channels with low signal qual-
ity. The EEG channels used are (Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4). The EEG data was preprocessed
using the EEGlab® toolbox in Matlab. The whole number of epochs per participant in the preprocessed dataset
is shown in Figs. 10 and 11.

The classification strategy was based on a Common Spatial Pattern (CSP) feature extractor* combined with
a Linear Discriminant Analysis (LDA) model. The LDA model was fed with the first and last projections of CSP,
pertaining to a two-value vector of the logarithmic variance of the power. For each imitation task (dancing and
walking), a binary classification was performed to discriminate between groups.

Looking at Table 5, it is observed that this simplistic classification test points toward discriminative features
present in the data. To guarantee that there was minimal influence from motion in this classification, we also
present the accelerometer data recorded by the EEG amplifier. Looking at the two groups, the same average
amount of motion is observed between them, during the instruction period, and at minimal motion ranges.

Usage Notes

For the purpose of reading and analyzing the provided dataset, MATLAB or Python are reccommended. The data
should be preprocessed, for removal of noisy or faulty epochs and filtering. We provide code scripts which are in the
same root folder as the dataset, which was used for preprocessing data as in the Technical Validation section. For 3D
motion data processing, we used Python version 3.12.12 with Scipy 1.13.0, Numpy 1.26.4, and Pickle 4.0 toolboxes.
EEG data preprocessing was performed using custom scripts based on the EEGlab toolbox (version 2024.2.0) run-
ning in MATLAB R2021b. The use of these scripts is optional and is intended as a reference for users of the dataset.

Code availability

There is no mandatory code needed to use this dataset. The provided code scripts can be found in'®, and are based
on MATLAB and Python, and are used for preprocessing. They are provided to facilitate quick data handling.
They are free to use. They can be found in the root folder of this dataset.
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