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Abstract
We prove a conjecture of Geelen, Gerards, and Whittle
that for any finite field GF(𝑞) and any integer 𝑡, every
cosimple GF(𝑞)-representable matroid with sufficiently
large girth contains either𝑀(𝐾𝑡) or𝑀(𝐾𝑡)

∗ as a minor.

MSC 2020
05B35 (primary), 05C83 (secondary)

1 INTRODUCTION

The girth of a matroid 𝑀 is the minimum number of elements in a circuit of 𝑀, or ∞ if 𝑀
has no circuits. Examples of cosimple matroids with large girth include the graphic matroid
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of a 3-edge-connected graph with large girth and 𝑀(𝐾𝑡)
∗, the dual of the graphic matroid of

the 𝑡-vertex clique 𝐾𝑡. Geelen, Gerards, and Whittle [5, Conjecture 5.4] conjectured that every
cosimple GF(𝑞)-representable matroid of large girth contains one of these examples as a minor.
We prove their conjecture.

Theorem1. For any finite fieldGF(𝑞) andany integer 𝑡, there exists an integer𝑓(𝑡, 𝑞) such that every
cosimple GF(𝑞)-representable matroid with girth at least 𝑓(𝑡, 𝑞) contains either𝑀(𝐾𝑡) or𝑀(𝐾𝑡)

∗ as
a minor.

Theorem 1 generalizes the theorem of Thomassen [30] that any graph of minimum degree at
least three and sufficiently high girth contains 𝐾𝑡 as a minor. Thomassen’s theorem is celebrated,
and there are several strengthenings known for graphs [13, 15]. By considering the cographic case,
we can see that Theorem 1 also generalizes the classic lemma due to Mader [14] (and optimized
by Thomason [29] and Kostochka [11, 12]) which says that any sufficiently dense graph contains
𝐾𝑡 as a minor. Both graphic and cographic matroids must be included as potential outcomes in
Theorem 1; this is because not every graphhas a small cycle or cut.However, perhaps the condition
about representativity could be relaxed. We discuss this possibility in Section 3.
It was believed that a proof of Theorem 1 would require the use of a structure theorem for

matroid minors [5]. Yet our proof of Theorem 1 is surprisingly short; it relies on a previously
unexplored connection between the Matroid Growth Rate Theorem [7] and Haussler’s Shallow
Packing lemma [10]. In the context of simple GF(𝑞)-representable matroids with a forbidden
graphic minor, the Growth Rate Theorem of Geelen and Whittle [7] bounds the number of
elements of the matroid by a linear function of its rank (we remark that there is also a more gen-
eral Growth Rate Theorem of Geelen, Kung, and Whittle [6]). This theorem directly generalizes
Mader’s theorem [14].
Our key observation is that for GF(𝑞)-representable matroids, the Growth Rate Theorem (The-

orem 2) can be interpreted in terms of the shatter function of an associated set system. This
observation allows us to apply powerful tools such as Haussler’s Shallow Packing Lemma [10]
(Lemma 3). These concepts are fundamental notions in discrete and computational geometry [16,
28, 32], the combinatorics of set systems [25, 26, 31], and first-order logic [1, 4, 22]. However,
Theorem 1 is the first application we know of to matroids.†
The associated set system we consider in order to apply Haussler’s Shallow Packing Lemma

is inspired by fundamental graphs. If 𝑀 can be represented by the columns of a binary matrix[
𝐼 | 𝐴

]
where 𝐼 is an identity matrix whose columns correspond to a basis 𝐵 of 𝑀, then the fun-

damental graph with respect to 𝐵 is the bipartite graph whose bipartite adjacency matrix is 𝐴.
Thus, binary matroids are determined by their fundamental graphs. Fundamental graphs were
originally defined for binary matroids [2, 19]. However, they can also be defined and used for
general matroids [8, 9]. However, this usually requires more care, since matroids are not gen-
erally determined by their fundamental graphs. Instead of taking this approach, we will define
an associated set system that stores more information about the matroid than its fundamental
graph.

†A special case of this connection was implicitly used by the fourth author in order to motivate a conjecture [17,
Conjecture 3.5.4] about the neighbourhood complexity of graphs with a forbidden vertex-minor.
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GIRTH IN GF(𝑄)-REPRESENTABLE MATROIDS 3403

2 THE PROOF

In this section, we prove Theorem 4, which immediately implies Theorem 1. First, we need
to introduce some notation, as well as the Growth Rate Theorem and Haussler’s Shallow
Packing Lemma.
The Growth Rate Theorem forGF(𝑞)-representable matroids of Geelen andWhittle [7] says the

following. We remark that Nelson, Norin, and Omana [18] have recently improved the bounds on
𝓁(𝑡, 𝑞) to a singly exponential function.

Theorem 2 [7]. For any integers 𝑡 and 𝑞, there exists an integer 𝓁(𝑡, 𝑞) such that any simple rank-𝑛
GF(𝑞)-representable matroid with no𝑀(𝐾𝑡)minor has at most 𝓁(𝑡, 𝑞) ⋅ 𝑛 elements.

To state Haussler’s Shallow Packing Lemma, we need to introduce some definitions. Given a
finite ground set 𝑉, a set system  on 𝑉 is a subset of 2𝑉 . (We do not allow multisets.) The shatter
function of , denoted by𝜋 (𝑚), is themaximumsize of when restricted to any𝑚 elements in𝑉;
that is, 𝜋 (𝑚) is the maximum, over all𝑚-element subsets𝑊 ⊆ 𝑉, of the number of equivalence
classes of the relationship∼𝑊 on  where two sets 𝐹, 𝐹′ ∈  satisfy 𝐹 ∼𝑊 𝐹′ if 𝐹 ∩𝑊 = 𝐹′ ∩𝑊.
For a positive integer 𝛿, we say that two sets𝐹, 𝐹′ ∈  are 𝛿-separated if their symmetric difference
𝐹Δ𝐹′ has size at least 𝛿 (that is, there are at least 𝛿 elements in 𝑉 which are in one of 𝐹, 𝐹′ but
not the other). We say that  is 𝛿-separated if any pair of distinct elements in  are 𝛿-separated.
We use the following version of Haussler’s Shallow Packing Lemma [10]. This version is stated

as [3, Lemma 2.2], for instance. (Actually [3, Lemma 2.2] is amore general version; we only require
the case that 𝑑 = 1.)

Lemma3 [10].For anynumber𝓁 ⩾ 1, there exists an integer 𝑐 = 𝑐(𝓁) so that for every positive integer
𝛿, if  is a set system on a finite ground set 𝑉 so that  is 𝛿-separated and 𝜋 (𝑚) ⩽ 𝓁𝑚 for every
positive integer𝑚, then | | ⩽ 𝑐|𝑉|∕𝛿.

The following theorem immediately implies Theorem 1. We remark that even in the con-
text of graphs (so when 𝑀 is graphic), this theorem already provides another strengthening of
Thomassen’s theorem [30].

Theorem 4. For any finite fieldGF(𝑞) and any integer 𝑡, there exists an integer 𝑘 = 𝑘(𝑡, 𝑞) such that
if𝑀 is a cosimpleGF(𝑞)-representable matroid not containing𝑀(𝐾𝑡) or𝑀(𝐾𝑡)

∗ as aminor, then for
every basis 𝐵 of𝑀, there is a circuit 𝐶 of size at most 𝑘 with |𝐶∖𝐵| ⩽ 2.

Proof. Let𝑀 be a cosimpleGF(𝑞)-representablematroid which does not contain𝑀(𝐾𝑡) or𝑀(𝐾𝑡)
∗

as a minor, and let 𝐵 be a basis of𝑀. By performing row operations and deleting all zero rows, we
can obtain a matrix over GF(𝑞) of the form

[
𝐼 | 𝐴

]
so that 𝐼 is a |𝐵| × |𝐵| identity matrix, and𝑀 is

represented by the column vectors of
[
𝐼 | 𝐴

]
so that the columns of 𝐼 correspond to the elements

in 𝐵. Thus we may view𝐴 as a |𝐵| × |𝐸(𝑀) ⧵ 𝐵|-matrix. Given elements 𝑏 ∈ 𝐵 and 𝑒 ∈ 𝐸(𝑀) ⧵ 𝐵,
we write 𝐴𝑏,𝑒 for the corresponding entry of 𝐴.
Recall that in the binary case, the fundamental graph is the bipartite graph with adjacency

matrix 𝐴. In this case, the set system would consist of the supports of the columns of 𝐴. In the
general case, we need to store more information about which element of GF(𝑞) is contained in an
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3404 DAVIES et al.

F IGURE 1 A ternary matroid𝑀 with a representation
[
𝐼 | 𝐴

]
over GF(3) and the corresponding set system

 with 𝑒 ∈ 𝐸(𝑀) ⧵ 𝐵 and 𝐹𝑒 = {(𝑏1, 1), (𝑏2, 1)} highlighted in blue.

entry 𝐴𝑏,𝑒 of 𝐴. So we now define a set system  on the ground set 𝐵 × (GF(𝑞) ⧵ {0}), which we
denote by 𝑉 for short.
For each element 𝑒 ∈ 𝐸(𝑀) ⧵ 𝐵, we write 𝐹𝑒 for the set of all tuples (𝑏, 𝛼) ∈ 𝑉 so that𝐴𝑏,𝑒 = 𝛼;

see Figure 1 for an example. Thenwe set = {𝐹𝑒 ∶ 𝑒 ∈ 𝐸(𝑀) ⧵ 𝐵}.Wemay assume that all distinct
elements 𝑒, 𝑒′ ∈ 𝐸(𝑀) ⧵ 𝐵 have 𝐹𝑒 ≠ 𝐹𝑒′ , since otherwise 𝑒 and 𝑒′ are represented by the same
column vector in 𝐴, and we have found the desired circuit.
Nowwe prove a key claim. Let 𝓁 = 𝓁(𝑡, 𝑞) be the integer from theGrowth Rate Theorem (Theo-

rem 2). So any simple rank-𝑛 GF(𝑞)-representable matroid with no𝑀(𝐾𝑡)minor has at most 𝓁 ⋅ 𝑛
elements.

Claim 4.1. For any positive integer𝑚, we have 𝜋 (𝑚) ⩽ 𝓁𝑞 ⋅𝑚.

Proof. Let𝑊 ⊆ 𝑉 be an𝑚-element set.
Let 𝐵𝑊 be the projection of𝑊 onto 𝐵. That is, 𝐵𝑊 is the set of all 𝑏 ∈ 𝐵 such that there exists

𝛼 ∈ GF(𝑞) ⧵ {0} so that (𝑏, 𝛼) ∈ 𝑊. Thus |𝐵𝑊| ⩽ 𝑚. Consider taking the matrix
[
𝐼 | 𝐴

]
which rep-

resents𝑀 and deleting from it the rows corresponding to elements in𝐵 ⧵ 𝐵𝑊 . The columnmatroid
of this matrix is a minor of𝑀; it is obtained from𝑀 by contracting the elements in 𝐵 ⧵ 𝐵𝑊 . Thus,
by the Growth Rate Theorem (Theorem 2), its simplification (that is, the matroid obtained by
removing loops and only keeping one element fromeachparallel class) has atmost𝓁 ⋅𝑚 elements.
Now consider two elements 𝑒, 𝑒′ ∈ 𝐸(𝑀) ⧵ 𝐵 with 𝐹𝑒 ∩𝑊 ≠ 𝐹𝑒′ ∩ 𝑊. Let (𝑏, 𝛼) ∈ 𝑊 be an ele-

ment in one of these sets but not the other. Then one of 𝐴𝑏,𝑒 and 𝐴𝑏,𝑒′ is equal to 𝛼 and the other
is not. So in particular, the columns corresponding to 𝑒 and 𝑒′ are distinct even when restricted
to rows in 𝐵𝑊 . Finally, let us consider what happens when we take the simplification of a GF(𝑞)-
representedmatroid with distinct columns. It has atmost one loop for the all zero vector, and each
parallel class has at most 𝑞 − 1 elements. It follows that 𝜋 (𝑚) ⩽ (𝑞 − 1)(𝓁 ⋅𝑚) + 1 ⩽ 𝓁𝑞 ⋅𝑚, as
desired. □

Next we apply Haussler’s Shallow Packing Lemma (Lemma 3).Wewrite 𝑐 = 𝑐(𝓁𝑞) for the func-
tion from Lemma 3, and we set 𝛿 = 𝓁𝑞𝑐 + 1. Note that 𝛿 is just a function of 𝑡 and 𝑞. By Claim 4.1
and Haussler’s lemma, either  is not 𝛿-separated, or | | ⩽ 𝑐|𝑉|∕𝛿.
First, suppose that | | ⩽ 𝑐|𝑉|∕𝛿. Recall that all distinct elements in𝐸(𝑀) ⧵ 𝐵 correspond to dis-

tinct sets in  . So |𝐸(𝑀) ⧵ 𝐵| = | |. Since the dual of𝑀 is a simple GF(𝑞)-representable matroid
with no 𝑀(𝐾𝑡) minor, the Growth Rate Theorem (Theorem 2) yields |𝐸(𝑀∗)| ⩽ 𝓁|𝐸(𝑀) ⧵ 𝐵| =
𝓁| |. Thus

|𝑉| = (𝑞 − 1)|𝐵| ⩽ 𝑞|𝐸(𝑀∗)| ⩽ 𝓁𝑞| | ⩽ 𝓁𝑞𝑐|𝑉|∕𝛿.
So 𝛿 ⩽ 𝓁𝑞𝑐, however we chose 𝛿 = 𝓁𝑞𝑐 + 1, a contradiction.
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GIRTH IN GF(𝑄)-REPRESENTABLE MATROIDS 3405

Thus  is not 𝛿-separated. So there exist distinct elements 𝑒, 𝑒′ ∈ 𝐸(𝑀) ⧵ 𝐵 so that there are
fewer than 𝛿 elements in the symmetric difference of 𝐹𝑒 and 𝐹𝑒′ . Thus there are fewer than 𝛿 rows
of

[
𝐼 | 𝐴

]
where the columns of 𝑒 and 𝑒′ differ. Let 𝐵′ ⊆ 𝐵 be the basis elements corresponding to

those rows. Given an element 𝑒 ∈ 𝐸(𝑀), wewrite 𝑒 for the corresponding column vector of
[
𝐼 | 𝐴

]
.

So 𝑒 − 𝑒′ is in the span of {𝑏 ∶ 𝑏 ∈ 𝐵′}. Thus 𝐵′ ∪ {𝑒, 𝑒′} contains a circuit of𝑀. Since |𝐵′| ⩽ 𝛿 − 1,
the theorem holds with 𝑘 = 𝛿 + 1. □

3 CONCLUSION

In this section,wediscuss possible extensions of Theorem 1 that relax the condition of beingGF(𝑞)-
representable.
We write 𝑈2,𝑞 for the 𝑞-element line, and, more generally, 𝑈𝑡,𝑞 for the uniform matroid with 𝑞

elements and rank 𝑡. That is,𝑈𝑡,𝑞 is the 𝑞-elementmatroidwhere the circuits are the sets of size 𝑡 +
1. The Growth Rate Theorem of Geelen andWhittle [7] also applies to matroids that forbid𝑈2,𝑞+2

as a minor, rather than just to GF(𝑞)-representable matroids. (Recall that GF(𝑞)-representable
matroids do not have 𝑈2,𝑞+2 minors; see for instance [20, Corollary 6.5.3].)

Theorem 5 [7]. For any integers 𝑡 and 𝑞, there exists an integer 𝓁(𝑡, 𝑞) such that any simple rank-𝑛
matroid with no𝑈2,𝑞+2 or𝑀(𝐾𝑡)minor has at most 𝓁(𝑡, 𝑞) ⋅ 𝑛 elements.

In light of Theorem 1 and the Growth Rate Theorem (Theorem 5), it is natural to conjecture the
following.

Conjecture 6. For any positive integer 𝑡, there exists an integer𝑝(𝑡) such that every cosimplematroid
with girth at least 𝑝(𝑡) contains either𝑈2,𝑡+2,𝑈𝑡,𝑡+2,𝑀(𝐾𝑡), or𝑀(𝐾𝑡)

∗ as a minor.

For large 𝑡, both𝑈𝑡,𝑡+2 and𝑀(𝐾𝑡)
∗ have large girth, while𝑀(𝐾𝑡) has a cosimple minor of large

girth. However, it is less satisfying to forbid the line 𝑈2,𝑡+2. So it is natural to ask the more gen-
eral question: What are the unavoidable cosimple matroids of large girth? To frame this problem
precisely, let us consider a property  of classes of matroids. For example, we write girth for
the property ‘the class contains cosimple matroids of arbitrarily large girth’. A class of matroids
 is minor-minimal with respect to  if  is minor-closed,  has property  , and no proper
minor-closed subclass of has property  .
As an example, the class of all graphic matroids is minor-minimal with respect to girth due to

Thomassen’s theorem [30]. Likewise, the class of all cographic matroids is minor-minimal with
respect to girth due to Mader’s theorem [15]. It is straightforward to see that the closure of all col-
ines 𝑈𝑡,𝑡+2 under minors is also minor-minimal with respect to girth. We conjecture that classes
with property girth have a finite characterization.

Conjecture 7. There exist a finite number of classes 1,2, … ,𝑘 which are minor-minimal
with respect to property girth such that a class of matroids  has property girth if and only if it
contains at least one of1,2, … ,𝑘 .

Matroids are not well-quasi-ordered underminors, even though graphs famously are, as proven
by Robertson and Seymour [24]. Moreover, Conjecture 7 is an example of ‘second-level better-
quasi-ordering’, and it is wide open whether graphs are second-level better quasi-ordered under
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3406 DAVIES et al.

minors. See [21] for recent progress on this question and [23] for a brief discussion by Robertson
and Seymour. Still, we are optimistic about Conjecture 7 since there are some natural matroids
to forbid.
In particular, let us write 𝐵(𝐺) for the bicircular matroid of a graph 𝐺. Bicircular matroids

were introduced by Simões Pereira [27], and we refer the reader there for definitions. It can be
proven using Thomassen’s theorem [30] that the class of bicircular matroids is minor-minimal
with respect to girth. We conjecture the following, which would imply Conjecture 7.

Conjecture 8. There exists a function g such that for every integer 𝑡, every cosimple matroid with
girth at least g(𝑡) contains either𝑈𝑡,𝑡+2,𝑀(𝐾𝑡),𝑀(𝐾𝑡)

∗, or 𝐵(𝐾𝑡) as a minor.
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