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1 | INTRODUCTION

The girth of a matroid M is the minimum number of elements in a circuit of M, or oo if M
has no circuits. Examples of cosimple matroids with large girth include the graphic matroid
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of a 3-edge-connected graph with large girth and M(K,)*, the dual of the graphic matroid of
the t-vertex clique K. Geelen, Gerards, and Whittle [5, Conjecture 5.4] conjectured that every
cosimple GF(q)-representable matroid of large girth contains one of these examples as a minor.
We prove their conjecture.

Theorem 1. Forany finite field GF(q) and any integer t, there exists an integer f(t, q) such that every
cosimple GF(q)-representable matroid with girth at least f(t, q) contains either M(K;) or M(K,)* as
a minor.

Theorem 1 generalizes the theorem of Thomassen [30] that any graph of minimum degree at
least three and sufficiently high girth contains K, as a minor. Thomassen’s theorem is celebrated,
and there are several strengthenings known for graphs [13, 15]. By considering the cographic case,
we can see that Theorem 1 also generalizes the classic lemma due to Mader [14] (and optimized
by Thomason [29] and Kostochka [11, 12]) which says that any sufficiently dense graph contains
K, as a minor. Both graphic and cographic matroids must be included as potential outcomes in
Theorem 1; this is because not every graph has a small cycle or cut. However, perhaps the condition
about representativity could be relaxed. We discuss this possibility in Section 3.

It was believed that a proof of Theorem 1 would require the use of a structure theorem for
matroid minors [5]. Yet our proof of Theorem 1 is surprisingly short; it relies on a previously
unexplored connection between the Matroid Growth Rate Theorem [7] and Haussler’s Shallow
Packing lemma [10]. In the context of simple GF(q)-representable matroids with a forbidden
graphic minor, the Growth Rate Theorem of Geelen and Whittle [7] bounds the number of
elements of the matroid by a linear function of its rank (we remark that there is also a more gen-
eral Growth Rate Theorem of Geelen, Kung, and Whittle [6]). This theorem directly generalizes
Mader’s theorem [14].

Our key observation is that for GF(q)-representable matroids, the Growth Rate Theorem (The-
orem 2) can be interpreted in terms of the shatter function of an associated set system. This
observation allows us to apply powerful tools such as Haussler’s Shallow Packing Lemma [10]
(Lemma 3). These concepts are fundamental notions in discrete and computational geometry [16,
28, 32], the combinatorics of set systems [25, 26, 31], and first-order logic [1, 4, 22]. However,
Theorem 1 is the first application we know of to matroids. "

The associated set system we consider in order to apply Haussler’s Shallow Packing Lemma
is inspired by fundamental graphs. If M can be represented by the columns of a binary matrix
[I | A] where I is an identity matrix whose columns correspond to a basis B of M, then the fun-
damental graph with respect to B is the bipartite graph whose bipartite adjacency matrix is A.
Thus, binary matroids are determined by their fundamental graphs. Fundamental graphs were
originally defined for binary matroids [2, 19]. However, they can also be defined and used for
general matroids [8, 9]. However, this usually requires more care, since matroids are not gen-
erally determined by their fundamental graphs. Instead of taking this approach, we will define
an associated set system that stores more information about the matroid than its fundamental
graph.

T A special case of this connection was implicitly used by the fourth author in order to motivate a conjecture [17,
Conjecture 3.5.4] about the neighbourhood complexity of graphs with a forbidden vertex-minor.
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2 | THE PROOF

In this section, we prove Theorem 4, which immediately implies Theorem 1. First, we need
to introduce some notation, as well as the Growth Rate Theorem and Haussler’s Shallow
Packing Lemma.

The Growth Rate Theorem for GF(q)-representable matroids of Geelen and Whittle [7] says the
following. We remark that Nelson, Norin, and Omana [18] have recently improved the bounds on
¢(t, q) to a singly exponential function.

Theorem 2 [7]. For any integers t and q, there exists an integer £ (t, q) such that any simple rank-n
GF(q)-representable matroid with no M(K,) minor has at most £(t, q) - n elements.

To state Haussler’s Shallow Packing Lemma, we need to introduce some definitions. Given a
finite ground set V, a set system F on V is a subset of 2. (We do not allow multisets.) The shatter
function of F, denoted by 7r(m), is the maximum size of 7 when restricted to any m elementsin V;
that is, 7(m) is the maximum, over all m-element subsets W C V, of the number of equivalence
classes of the relationship ~y, on F where two sets F, F’ € F satisfy F ~y, F'if FAnW =F' nW.
For a positive integer &, we say that two sets F, F/ € F are §-separated if their symmetric difference
FAF' has size at least & (that is, there are at least § elements in V which are in one of F, F’ but
not the other). We say that F is §-separated if any pair of distinct elements in F are §-separated.

We use the following version of Haussler’s Shallow Packing Lemma [10]. This version is stated
as [3, Lemma 2.2], for instance. (Actually [3, Lemma 2.2] is a more general version; we only require
the case thatd = 1.)

Lemma 3 [10]. For any number ¢ > 1, there exists an integer c = c(£) so that for every positive integer
d, if F is a set system on a finite ground set V' so that F is §-separated and 7wy(m) < £m for every
positive integer m, then |F| < c|V| /8.

The following theorem immediately implies Theorem 1. We remark that even in the con-
text of graphs (so when M is graphic), this theorem already provides another strengthening of
Thomassen’s theorem [30].

Theorem 4. For any finite field GF(q) and any integer t, there exists an integer k = k(t, q) such that
if M is a cosimple GF(q)-representable matroid not containing M(K,) or M(K,)* as a minor, then for
every basis B of M, there is a circuit C of size at most k with |C\B| < 2.

Proof. Let M be a cosimple GF(g)-representable matroid which does not contain M(K;) or M(K,)*
as a minor, and let B be a basis of M. By performing row operations and deleting all zero rows, we
can obtain a matrix over GF(q) of the form [I | A] so that I is a |B| X |B| identity matrix, and M is
represented by the column vectors of [I | A] so that the columns of I correspond to the elements
in B. Thus we may view A as a |B| X |E(M) \ B|-matrix. Given elementsb € Band e € E(M) \ B,
we write A, , for the corresponding entry of A.

Recall that in the binary case, the fundamental graph is the bipartite graph with adjacency
matrix A. In this case, the set system would consist of the supports of the columns of A. In the
general case, we need to store more information about which element of GF(q) is contained in an
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FIGURE 1 A ternary matroid M with a representation [I | A] over GF(3) and the corresponding set system
F withe € E(M) \ Band F, = {(b,, 1), (b,, 1)} highlighted in blue.

entry A, , of A. So we now define a set system 7 on the ground set B x (GF(q) \ {0}), which we
denote by V for short.

For each element e € E(M) \ B, we write F, for the set of all tuples (b, a) € V so that A, = a;
see Figure 1 for an example. Thenweset F = {F, : e € E(M) \ B}. We may assume that all distinct
elements e,e¢’ € E(M) \ B have F, # F,, since otherwise e and ¢’ are represented by the same
column vector in A, and we have found the desired circuit.

Now we prove a key claim. Let Z = £(t, q) be the integer from the Growth Rate Theorem (Theo-
rem 2). So any simple rank-n GF(g)-representable matroid with no M(K,) minor has at most# - n
elements.

Claim 4.1. For any positive integer m, we have 7,(m) < £q - m.

Proof. Let W C V be an m-element set.

Let By, be the projection of W onto B. That is, By, is the set of all b € B such that there exists
a € GF(q) \ {0} so that (b, @) € W. Thus | By, | < m. Consider taking the matrix [I | A] which rep-
resents M and deleting from it the rows corresponding to elementsin B \ By;,. The column matroid
of this matrix is a minor of M; it is obtained from M by contracting the elements in B \ By;,. Thus,
by the Growth Rate Theorem (Theorem 2), its simplification (that is, the matroid obtained by
removing loops and only keeping one element from each parallel class) has at most ¢ - m elements.

Now consider two elementse,e’ € E(M) \ Bwith F, N W # F,, N W.Let (b,a) € W be an ele-
ment in one of these sets but not the other. Then one of 4;, , and A4 s is equal to « and the other
is not. So in particular, the columns corresponding to e and e’ are distinct even when restricted
to rows in By;,. Finally, let us consider what happens when we take the simplification of a GF(q)-
represented matroid with distinct columns. It has at most one loop for the all zero vector, and each
parallel class has at most g — 1 elements. It follows that 7-(m) < (g —1)(¢ - m)+ 1< £q - m, as
desired. O

Next we apply Haussler’s Shallow Packing Lemma (Lemma 3). We write ¢ = ¢(£q) for the func-
tion from Lemma 3, and we set § = £qc + 1. Note that § is just a function of ¢t and g. By Claim 4.1
and Haussler’s lemma, either F is not §-separated, or |F| < c|V|/6.

First, suppose that |F| < c¢|V| /8. Recall that all distinct elements in E(M) \ B correspond to dis-
tinct sets in F. So |E(M) \ B| = |F|. Since the dual of M is a simple GF(q)-representable matroid
with no M(K,) minor, the Growth Rate Theorem (Theorem 2) yields |[E(M*)| < #|E(M) \ B| =
Z|F|. Thus

V] =(q—1)IB| <qlE(M")| < £q|F| < £qc|V]/$.

So § £ £qc, however we chose § = £qc + 1, a contradiction.

859017 SUOWIWOD A eI a|qedl|dde aup Aq peusenob afe sopie VO 9sn Jo S8|n Joj AfeiqiT 8UlUO AB]1/ UO (SUONIPUOD-PUR-SWLBIALIOY A8 1M Ase.q 1 Ul |uo//Sdy) SsuonIpuoD pue swie ] 3y 88S *[SZ0zZ/ZT/2T] uo ARlqiauljuo A8 |1 ‘6STOL SWG/ZTTT OT/I0p/W0d A8 Im AR.q Ul U0 d0SyFRWPUO|//Sdny Wwouy papeojumoq ‘TT ‘G202 ‘02TZ69YT



GIRTH IN GF(Q)-REPRESENTABLE MATROIDS | 3405

Thus F is not §-separated. So there exist distinct elements e,e’ € E(M) \ B so that there are
fewer than & elements in the symmetric difference of F, and F,,. Thus there are fewer than & rows
of [I | A] where the columns of e and e’ differ. Let B’ C B be the basis elements corresponding to
those rows. Given an elemente € E(M), we write ¢ for the corresponding column vector of [I I A] .
Soé— ¢ isin the span of{B : b € B'}. Thus B’ U {e, ¢’} contains a circuit of M. Since |B’| < 6 — 1,
the theorem holds with k = § + 1. O

3 | CONCLUSION

In this section, we discuss possible extensions of Theorem 1 that relax the condition of being GF(q)-
representable.

We write Uz’q for the g-element line, and, more generally, Ut,q for the uniform matroid with g
elements and rank ¢t. Thatis, Ut’q is the g-element matroid where the circuits are the sets of size ¢ +
1. The Growth Rate Theorem of Geelen and Whittle [7] also applies to matroids that forbid U, 4.,
as a minor, rather than just to GF(q)-representable matroids. (Recall that GF(g)-representable
matroids do not have U, 4+ minors; see for instance [20, Corollary 6.5.3].)

Theorem 5 [7]. For any integers t and q, there exists an integer £(t, q) such that any simple rank-n
matroid with no Uy g2 OF M(K,) minor has at most £(t, q) - n elements.

In light of Theorem 1 and the Growth Rate Theorem (Theorem 5), it is natural to conjecture the
following.

Conjecture 6. For any positive integert, there exists an integer p(t) such that every cosimple matroid
with girth at least p(t) contains either U, 5, U, ;,,, M(K,), or M(K,)* as a minor.

For large t, both U, ;,, and M(K,)* have large girth, while M(K,) has a cosimple minor of large
girth. However, it is less satisfying to forbid the line U, ;,,. So it is natural to ask the more gen-
eral question: What are the unavoidable cosimple matroids of large girth? To frame this problem
precisely, let us consider a property 7 of classes of matroids. For example, we write Py, for
the property ‘the class contains cosimple matroids of arbitrarily large girth’. A class of matroids
M is minor-minimal with respect to P if M is minor-closed, M has property P, and no proper
minor-closed subclass of M has property P.

As an example, the class of all graphic matroids is minor-minimal with respect to Py;;, due to
Thomassen’s theorem [30]. Likewise, the class of all cographic matroids is minor-minimal with
respect to Py, due to Mader’s theorem [15]. It is straightforward to see that the closure of all col-
ines U, ;,, under minors is also minor-minimal with respect to Py;.,. We conjecture that classes
with property Py, have a finite characterization.

Conjecture 7. There exist a finite number of classes M, M,, ..., M. which are minor-minimal
with respect to property Py, such that a class of matroids M has property Py, if and only if it
contains at least one of My, M, ..., M,.

Matroids are not well-quasi-ordered under minors, even though graphs famously are, as proven
by Robertson and Seymour [24]. Moreover, Conjecture 7 is an example of ‘second-level better-
quasi-ordering’, and it is wide open whether graphs are second-level better quasi-ordered under
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minors. See [21] for recent progress on this question and [23] for a brief discussion by Robertson
and Seymour. Still, we are optimistic about Conjecture 7 since there are some natural matroids
to forbid.

In particular, let us write B(G) for the bicircular matroid of a graph G. Bicircular matroids
were introduced by Simdes Pereira [27], and we refer the reader there for definitions. It can be
proven using Thomassen’s theorem [30] that the class of bicircular matroids is minor-minimal
with respect to Py, We conjecture the following, which would imply Conjecture 7.

Conjecture 8. There exists a function g such that for every integer t, every cosimple matroid with
girth at least g(t) contains either U, ,,,, M(K,), M(K,)*, or B(K,) as a minor.
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