KIT | KIT-Bibliothek | Impressum | Datenschutz

Exploring the Mechanism of Surface Cationic Vacancy Induces High Activity of Metastable Lattice Oxygen in Li‐ and Mn‐Rich Cathode Materials

Zhao, Tian; Zhang, Jilu 1; Wang, Kai; Xiao, Yao ; Wang, Qin; Li, Longfei; Tseng, Jochi; Chen, Meng-Cheng; Ma, Jian-Jie; Lu, Ying-Rui; Hirofumi, Ishii; Shao, Yu-Cheng; Zhao, Xiaoxian ; Hung, Sung-Fu; Su, Yaqiong; Mu, Xiaoke 2; Hua, Weibo 1
1 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Li- and Mn-rich layered oxides exhibit high specific capacity due to the cationic and anionic reaction process during high-voltage cycling (≥4.6 V). However, they face challenges such as low initial coulombic efficiency (~70 %) and poor cycling stability. Here, we propose a combination of H$_3$BO$_3$ treatment and low temperature calcination to construct a shell with cationic vacancy on the surface of Li$_{1.2}$Ni$_{0.2}$Mn$_{0.6}$O$_2$ (LLNMO). The H$_3$BO$_3$ treatment produces cationic vacancy and lattice distortion, forming an oxidized O$^{n−}$ (0<n<2) on the surface, accompanied by electrons redistribution. Low temperature calcination eliminates lattice distortion, activates metastable O$^{n−}$ and promotes coherent lattice formation. In addition, the cationic vacancy shell reduces the diffusion energy barrier of Li$^+$, allowing more Li$^+$ and oxygen to participate in deeper reactions and increasing the oxidation depth of oxygen. The modified material (LLNMO-H10-200) exhibits an initial coulombic efficiency of up to 88 % and a capacity of 256 mAh g$^{−1}$. Moreover, similar enhancements were observed with Co-containing lithium-rich materials, with a 280 mAh  g$^{−1}$ discharge capacity and 89 % coulombic efficiency. ... mehr


Originalveröffentlichung
DOI: 10.1002/anie.202419664
Scopus
Zitationen: 10
Web of Science
Zitationen: 10
Dimensions
Zitationen: 10
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien (IAM)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 19.05.2025
Sprache Englisch
Identifikator ISSN: 1433-7851, 1521-3773
KITopen-ID: 1000188518
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Weitere HGF-Programme 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design &amp; Material Architecture
Erschienen in Angewandte Chemie International Edition
Verlag John Wiley and Sons
Band 64
Heft 21
Vorab online veröffentlicht am 09.02.2025
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page