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Abstract

Generative models have emerged as a symbol of artificial intelligence, enabling computers to
mimic human behavior based on large datasets. While the empirical results are impressive, the
theoretical understanding lags behind. Naturally, using more training data should result in a
better model. In a rigorous mathematical setting, we aim to bound a model’s error by a declining
function of the number of samples. In this thesis, we study such upper bounds for two models:
Generative Adversarial Networks (GANs) and Flow Matching. Furthermore, we will extend
Flow Matching to the setting of conditional distribution estimation. Along the way, we will also
investigate classical kernel-based methods for distribution estimation.
Since their introduction in 2014, GANs have evolved from the initial Vanilla setup to
several adaptations. The statistical literature mainly focuses on Wasserstein GANs and their
generalizations, which can build on the theory of optimal transport. In contrast, statistical
results for Vanilla GANs are limited to very specific settings. To bridge this gap, we establish
a connection between Vanilla GANs and the Wasserstein-1 distance by leveraging the neural
network architecture commonly used in practice. This enables us to transfer various results, such
as dimension reduction properties, to Vanilla GANs. Our findings finally explain the empirical
success of these early generative models.
Flow Matching is a very recent generative model introduced in 2023 that just emerged as
an alternative to diffusions, the current state-of-the-art. Consequently, theoretical results are
limited. First, we demonstrate the natural connection between Flow Matching and the kernel
density estimator. Then, we prove that, in an over-parameterized setting, Flow Matching achieves
minimax optimal rates in the Wasserstein distance. Additionally, we study the regularity of the
underlying dynamics, which are essential to statistical bounds. This enables us to derive rates
using smaller networks, improving and extending the few preceding results.
Subsequently, we study Flow Matching in a conditional setting. This allows us to employ Flow
Matching in a forecasting context. After extending the model in a mathematically reasonable way
and showing the connection to a Nadaraya-Watson-type estimator, we connect proper scoring
rules, which are a common way to measure model error in forecasting settings, to the concept
of risk in statistical learning. Then we study rates of convergence in the risk associated to the
Fourier-Score. After deriving lower bounds, we prove that the Nadaraya-Watson-type estimator
is minimax optimal. For certain dimensions, we extend our results to the conditional Flow
Matching estimator. Finally, we demonstrate Flow Matching’s practical capability to estimate a
conditional distribution.
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Notations

Relations, set of numbers
and other basics
R Real numbers
R>0 or (0,∞) Positive real numbers
R≥0 or [0,∞) Nonnegative real numbers
N positive integers
N0 Nonnegative integers
a ≲ b a ≤ c · b for a constant c ∈ (0,∞)

a ≳ b a ≥ c · b for a constant c ∈ (0,∞)

a ≍ b a = c · b for a constant c ∈ (0,∞)

O Landau notation
⌈x⌉ Largest integer not smaller than x ∈ R
⌊x⌋ Largest integer not larger than x ∈ R
a ∨ b Maximum of a, b ∈ R
a ∧ b Minimum of a, b ∈ R
Ω◦ Interior of the set Ω

1Ω Indicator function on the set Ω

Linear algebra
dim(X ) Dimension of the space X
x⊤ Transpose of the vector x
A⊤ Transpose of the matrix A
V ⊥ Orthogonal complement of the set V
⟨·, ·⟩ Euclidean inner product on X
| · | Euclidean norm on X
| · |p p-norm on X
∥ · ∥ Spectral norm
idX Identity mapping on X
IX or Idim(X ) Matrix corresponding to idX

A−1 Inverse of the matrix A (if existent)
A ⪰ 0 Matrix A is positive semi-definite
A ≻ 0 Matrix A is positive definite
A ⪯ 0 Matrix A is negative semi-definite
A ≺ 0 Matrix A is negative definite
A ⪰ B A greater than or equal B in the Loewner order
ei i-th basis vector of the canonical basis of X
|A|ℓ0 Number of nonzero entries of the matrix A
tr(A) Trace of the matrix A



X

Analysis
supp(f) Support of the function f
∂
∂xi
f Partial derivative of f with respect to xi

∇f Gradient of f
Hf Hessian of f
Dxf Jacobian of a vector valued function f

with respect to x ∈ X
Dk Mixed partial derivative w.r.t. a multiindex k
div(f) Divergence of f
Ff Fourier transform of f , see (2.10)
◦ Concatenation of functions or sets of functions
Probability and measure theory
BX Borel σ-algebra on X
δx Dirac measure in x ∈ X
dµ
dν Radon-Nikodym density of µ with respect to ν
≪ Absolute continuity
PX Distribution of the random variable X
X ∼ P X is a random variable whose distribution is P
X ∼ p X is a random variable whose density is p
EX∼P[X] or E[X] Expected value of X
VarX∼P(X) or Var(X) Variance of X
CovX∼P(X) or Cov(X) Covariance of X
N (a,Σ) Normal distribution with mean a and covariance Σ

U [a, b] Uniform distribution on [a, b]

p ∝ f Density p is proportional to f
p⊗n n-fold product measure of the probability

measure corresponding to the density p
φµ Characteristic function of µ, see (2.11)
Mµ Moment generating function of µ, see (2.12)
Kµ Cumulant generating function of µ, see (2.13)
Function spaces
Ck k-times continuously differentiable

functions, k ∈ [0,∞]

Lip(L) Lipschitz-L functions on Ω bounded by B, see (2.2)
Hα α-Hölder functions, see (2.4)
Bα

1,∞ α-Besov functions, see (2.5)
W k,∞ Sobolev space, see (2.9)
Hs Fractional Sobolev space, see (6.9)
∥ · ∥∞ Supremum norm, see (2.1)
∥ · ∥1 L1-norm, see (2.1)



XI

∥ · ∥Cβ Supremum norm of the derivatives
up to order β, see (2.7)

∥ · ∥Hα α-Hölder norm, see (2.3)
∥ · ∥Bα

1,∞
α-Besov norm, see (2.6)

∥ · ∥Wk,∞ Sobolev norm, see (2.8)
∥ · ∥Hs Fractional Sobolev norm, see (6.10)
N (τ,A, ∥ · ∥∞) Covering number of a set A with respect

to the supremum norm, see Definition 2.10
Distances between distributions
W1 Wasserstein-1, see Definition 2.1
W2 Wasserstein-2, see Definition 2.1
TV Total variation, see Definition 2.3
KL Kullback-Leibler divergence, see Definition 2.4
JS Jensen-Shannon, see Definition 2.5
Abbreviations
ReLU Rectified linear unit
ReQU Rectified quadratic unit
KDE Kernel density estimator
GAN Generative adversarial network
ODE Ordinary differential equation
SDE Stochastic differential equation
CNF Continuous normalizing flow
i.i.d. Independent, identically distributed
PDF Probability density function
CDF Cumulative distribution function
NW Nadaraya–Watson
CRPS Continuous ranked probability score
s.t. subject to
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Chapter 1

Introduction

Generative models have emerged as one of the most prominent symbols of modern artificial
intelligence tools. The idea that computers could mimic human activities used to be
unimaginable, or at least futuristic. While technological advancements in this field are
particularly rapid, the theoretical understanding of these models lags behind. This alone is
enough to arouse interest in the mathematical foundations of generative models. Moreover,
a profound understanding is necessary to adjust societal and legislative regulations in areas
substantially impacted by generative models such as intellectual property. For instance image
generation raises fundamental questions concerning artistic work and creativity.

Image generation also serves as the prototypical task of the models studied in this thesis. Assume
we have a sample of images encoded in numerical values, which could for example be pictures of
handwritten versions of the digit 3 with a fixed amount of pixels. For every pixel, a numerical
value represents a certain gray scale. Now we want to build a model based on these observations,
that creates a new picture looking like a handwritten 3. New means that the picture should
not copy one of the 3s from the observations, but learn from the samples to create a seemingly
handwritten 3 by itself just like another human would do. On a pixel level this means outputting
a value for each pixel such that the corresponding picture is recognized as a 3 by humans. Instead
of human creativity or distinct fine motor skills, the mathematical model uses a draw from a
probability distribution and a function that transforms the draw to values whose colorization
ideally looks like a 3. Another draw of the same probability distribution leads to a different 3.
The process of finding this function is called training, the process of generating a new picture
is called data generation. This general setting is illustrated in Figure 1.1. The precise model of
Figure 1.1 and all subsequent images in this introduction can be found in Appendix A.
Figure 1.1 also illustrates what is known as dimension reduction. On the left hand side, the
function G1 is constructed such that the number of pixels of the input of G1 is as large as the
number of pixels in the samples. On the right hand side, the number of pixels of the input of G2

is much smaller, instead of 784, only 25 pixels are used. As we can see, this leads to generated
images that are not visibly worse than generated images of G1.

While here the assessment of the author whether one 3 is not visibly worse than another 3

hopefully coincides with the judgment of the reader, it is far from a precise quantification of
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Data Sample

Data generation using G1 Data generation using G2

G1 G2

Training

G1

G1

G2

G2

Figure 1.1.: Two different generative models trained on pictures of handwritten 3s. The first
model, represented by the function G1 transforms draws from the 784-dimensional
Gaussian into images that look like a handwritten 3. The second model, represented
by the function G2, uses draws from the 25-dimensional Gaussian for the same task.

difference. The natural question, how well the model is in imitating humans writing down 3s,
cannot be answered quantitatively by human judgment. Looking at the underlying mathematical
construct, one can quickly find a better approach to quantifying these differences. The key
objective of this thesis is to analyze how well a given model is depending on the number of
samples that were used for training.

Generative models and their evaluation

To introduce the underlying mathematical construct, suppose we observe n independent,
identically distributed (i.i.d.) observations X1, ..., Xn from an unknown probability distribution
P∗ on some measurable space (X ,BX ). Further, choose another probability distribution U on
another measurable space (Z,BZ), the latent distribution. We want to learn a measurable,
deterministic function G : Z → X such that the distribution of a transformed sample Z from
U, denoted by PG(Z), is a good imitation of P∗. In statistical language, this would be referred
to as PG(Z) being a good estimator of P∗. As we are not approximating a certain property of a
distribution, but the entire distribution as such, this is called distribution estimation. The goal
is that this imitation of the unknown distribution is as good as possible. Naturally, this can
either be the case by choosing a good latent distribution U or by choosing a good function G.
The generative approach is to focus on the latter, but aim for a preferably small dimension of Z.
Thus, suppose we have a set G of potential functions for G and want to choose the best possible
G. This conceptual setting of a generative model is summarized in Figure 1.2.



3

(Z,BZ ,U) (X ,BX ,PG(Z))

(X ,BX ,P∗)

≈ Objective

G ∈ G

Figure 1.2.: Conceptual setting of generative models. U represents the latent distribution. A
sample Z from U is transformed using a function G from the generator class to
mimic the unknown distribution P∗.

From Figure 1.2 two questions arise immediately. The first is in which way to measure how
well PG(Z) approximates P∗. Thereupon, the second concerns the choice of the set G and the
function G.

Quantifying the difference between two probability distributions is a question that arises in
many settings, particularly in statistics. Thus, it has been of theoretical interest for a long
time. There are several metrics and divergences that have been studied in various settings.
Since, in general, metrics on spaces of probability distributions are not equivalent, the concrete
choice can heavily influence the generative model. For distances that are not metrics, this is at
least equally important. Note that in this thesis, a distance refers to any dissimilarity measure,
not necessarily a metric. In this introduction, we are going to focus on one key aspect that a
distance should have in this setting: The distance used for evaluation should again be chosen
such that there is a meaningful interpretation of one choice of G being better than another in
terms of this distance. Additionally, a lot of distances are related to each other, some being
stronger and immediately implying bounds in other distances. Thus, choosing a rather strong
distance is beneficial. As we shall see, stronger distances and meaningful interpretations act
contrarily in some cases.

A straightforward choice of G is then such that it minimizes a distance between PG(Z) and P∗

over all G ∈ G. This can either be the same distance that was chosen to evaluate the model,
but is of course not restricted to this choice. Subsequently, an easy naive approach is to set
G as large as possible, including all BZ -BX -measurable functions. However, for an efficient
sampling from the generated distribution, we need to be able to evaluate the function quickly.
This implies that the function needs to be implementable on a computer and the mathematical
components of the functions must be sufficiently simple. At the same time, the function class
should ideally be flexible and large. Therefore, G is typically chosen as some set of neural
networks.

In the first chapters, we are going to use the Wasserstein-1 distance between two probability
distributions P and Q, on Rd equipped with the Euclidean norm | · | defined as

W1(P,Q) = inf
π∈Π(P,Q)

∫
Rd

|x− y| dπ(x, y),
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where Π(P,Q) is the set of all joint distributions whose marginals are P and Q. The Wasserstein-
1 distance can be interpreted as the minimal effort in terms of the Euclidean norm required to
shift the mass from P to Q. This distance is very well studied in the context of optimal transport,
see Villani (2008), and profits from a nice dual form. It is weak enough to allow for meaningful
interpretations and strong enough to metrize weak convergence. This makes the Wasserstein-1
distance a frequent choice when evaluating distribution estimators, see for example Liang (2017);
Huang et al. (2022); Chen et al. (2020); Lee et al. (2025); Stéphanovitch et al. (2024); Berry &
Sauer (2017); Berenfeld & Hoffmann (2021); Divol (2022); Wu & Wu (2022); Gao et al. (2024b);
Schreuder et al. (2021); Vardanyan et al. (2024). The precise application of the Wasserstein-1
distance in these references will be discussed in the course of this thesis. In this introduction,
the references will mostly be presented as short, enumerative examples. In the corresponding
chapters, we will discuss the literature in more detail and emphasize the contributions of this
thesis based on it.
In other settings, the choice of the evaluation distance will be motivated by the area of application.
In Chapter 6 we are going to study generative models in forecasting settings. Thus, we use
distances based on proper scoring rules, which is the classical tools to evaluate forecasts.

Generative adversarial networks

The first method we are going to study are Generative Adversarial Networks (GANs),
which were introduced by Goodfellow et al. (2014). In the aforementioned theoretical setting,
this model uses the shifted Jensen-Shannon distance as an optimization criterion. This leads to
the following objective function, called the Vanilla GAN :

inf
G∈G

JS(PG(Z),P∗)− log(4) = inf
G∈G

sup
D measurable
D(X )⊂(0,1)

EX∼P∗
Z∼U

[
logD(X) + log

(
1−D(G(Z))

)]
. (1.1)

Without going into detail about the existence of the minimum and maximum here, this shows
a classical minimax-game: the function D, which is called the discriminator is chosen so that
its values are as close as possible to 1 wherever the mass of P∗ lies and as close as possible to
0 wherever the mass of PG(Z) lies. When evaluated empirically, using observation of P∗ and
PG(Z), the discriminator can be interpreted as a classifier. In adversarial position, the generator
G wants to transform Z such that the discriminator assigns values as close as possible to 1 on
the mass of PG(Z).
In practice, G and D are parameterized using neural networks whose parameters are optimized
successively. This implies that the Jensen-Shannon distance is not calculated directly, but is
rather estimated via the functionD. The GAN approach of determining the function G directly is
classical for early generative models in the 2010s. Another prominent example is the Wasserstein
autoencoder (Tolstikhin et al., 2018). The use of the Jensen-Shannon distance leads to the
problem that in case PG(Z) and P∗ are singular, this distance is by definition maximal. This is
regularly the case if dim(Z) < dim(X ), which refers to the right hand side of Figure 1.1, where
the number of pixels in the latent space is much lower than the number of pixels in the generated
image. As this is an important setting in practice, the underlying Jensen-Shannon distance has
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been replaced by several other distances. The most famous replacement leads to the Wasserstein
GAN (Arjovsky et al., 2017) using the dual formulation of the 1-Wasserstein distance

inf
G∈G

W1(PG(Z),P∗) = inf
G∈G

sup
D∈Lip(1)

EX∼P∗
Z∼U

[
D(X)−D(G(Z))

]
. (1.2)

Just like in Vanilla GANs, the Wasserstein GAN has the classical adversarial structure: the
discriminator function W is chosen such that it discriminates as well as possible between P∗

and PG(Z), the generator function G tries to make this discrimination as hard as possible. The
difference lies in the objective function and the restriction on the function D. Again, the set
of Lipschitz 1 functions is in practice replaced by neural networks. The Wasserstein distance
allows for a more meaningful interpretation of W1(PG1(Z),P∗) = W1(PG2(Z),P∗) for G1, G2 ∈ G
also in case of dim(Z) < dim(X ). As already mentioned, the Wasserstein distance is very
well studied. Hence, most theoretical results focus on the statistical properties of Wasserstein
GANs or close relatives: next to optimization and asymptotic properties (Biau et al., 2021),
error decompositions in Kullback-Leibler divergence, the Hellinger distance and the Wasserstein
distance (Liang, 2021), dimension reduction settings (Schreuder et al., 2021; Tang & Yang,
2023) and general rates of convergence in the Wasserstein distance in several settings (Liang,
2017; Huang et al., 2022; Chen et al., 2020; Lee et al., 2025; Stéphanovitch et al., 2024) have
been studied. These results will be reviewed more detailed in Chapter 3.
Although Vanilla GANs were introduced much earlier, the statistical understanding remained
largely very limited. Biau et al. (2020) derived a central limit theorem and Puchkin et al.
(2024) used smooth neural networks to evaluate the model in the Jensen-Shannon distance itself
assuming that Z = X . Despite the theoretical limitations, Vanilla GANs did work in practice
even in cases where dim(Z) < dim(X ). In fact, the model used for Figure 1.1 is a Vanilla GAN.
In Chapter 3 we are going to bridge this gap. This allows us to obtain the first rate of convergence
for Vanilla GANs allowing for singular measures.
The prototypical analysis of GANs separates the error that occurs due to the use of neural
networks instead of measurable or Lipschitz-1 functions and the error that the model (1.1) (or
(1.2) respectively) itself causes. Using this approach, it is unclear how to obtain convergence
results for the Vanilla GAN when dim(Z) < dim(X ). In order to analyze Vanilla GANs, we
are going to take another perspective: instead of paying for the use of neural networks in the
proof, we exploit this restriction of the underlying model. We show that using a set of neural
networks instead of all measurable functions actually enables the model to cope with the case
dim(Z) < dim(X ). As a network class, we use Hölder continuous feedforward ReLU networks
and derive a novel approximation result suited for our conditions. This result extends Gühring
et al. (2020), who approximate a function and its derivative. Due to the restriction of the
discriminator class, a uniform bound on the approximation error such as Yarotsky (2017); Kohler
& Langer (2021); Schmidt-Hieber (2020) is not enough for our purpose. Notably, we do not need
to use smooth networks, which aligns more closely to practice. We derive a rate of convergence
with respect to the Wasserstein-1 distance for a broad class of unknown distributions P∗. If the
intrinsic dimension of P∗ is smaller than the dimension of X , our rate depends on the dimension of
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the latent space Z and thus circumvents the curse of dimensionality. In the end, we demonstrate
our theoretical findings on synthetic data.

Generative Flow Matching

The second model we are going to analyze is typical of generative models in the 2020s: instead
of obtaining G as the minimizer of some optimization problem directly, models are designed such
that underlying dynamics are approximated. This seemingly more complicated approach often
leads to objectives that are much easier. Distances between probability measures are usually
hard to calculate in high dimensions, e.g. the Wasserstein distance on Rd for d ≥ 2. As we saw,
one key feature of GANs is that this distance is also approximated using a neural network. The
second model we are going to study is Flow Matching, which is one example of this more recent
approach of generative models. In Flow Matching the mapping G is replaced by a function with
an additional time input ψ : X × [0, 1] → X . This function is obtained as the solution of an
ordinary differential equation (ODE),

∂ψt
∂t

(x) = vt(ψt(x)), ψ0(x) = x, ∀x ∈ X , (1.3)

where v : X × [0, 1]→ X is a vector field. Note that the input dimension in space is the same as
the output dimension. The vector field v is chosen so that for a fixed latent distribution U on
X , Z ∼ U and t ∈ [0, 1], the distribution of ψt(Z) has nice properties. Additionally, v should be
constructed so that (1.3) has a unique solution. By the boundary condition (1.3) we know that
Pψ0(Z) ∼ U. We want to construct the model so that Pψ1(Z) ≈ P∗. Note that for the generative
model in the GAN setting, these two distributions would be enough. However the Flow Matching
model provides estimates for all t ∈ [0, 1]. In the setting of Lipman et al. (2023), both U and
P∗ are assumed to admit densities, p and p∗ respectively. The vector field vt is then constructed
such that the density pt of ψt(Z) is given by

pt(x) =

∫
p
(x− µt(y)

σt

)
p∗(y) dy, (1.4)

where µ : X × [0, 1] → X is a mean shift function and σ : [0, 1] → R>0 is a variance function.
These two functions are chosen such that

p0(x) = p(x), p1(x) =

∫
p(
x− y
σmin

)p∗(y) dy,

where σmin ∈ (0, 1). In case of X = R, Figure 1.3 illustrates a flow where p0 is the density of the
standard Gaussian.
The corresponding vector field v can be obtained through an equivalent formulation of (1.3) that
connects a vector field to the corresponding density path via a partial differential equation. This
vector field should be approximated by a function classM, i.e. a function v̂ ∈M is chosen as

inf
ṽ∈M

Et∼U(0,1)
Xt∼pt

[|ṽt(Xt)− vt(Xt)|2]. (1.5)
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Figure 1.3.: Flow from U = N (0, 1) over time t ∈ [0, 1] to a bimodal Camelback distribution for
two different variance functions, σ(1)t = 1− (1− σmin)t (green dots) and σ(2)t = σtmin

(red dots). Each model is trained on n = 50 samples (grey dots) and uses the linear
mean shift.

In practice, M is a class of neural networks. The function for the generative model ψ1 is then
obtained by solving the ODE (1.3). Compared to GANs, we thus do not obtain a generator
function directly, but rather the underlying vector field of this generator function. To see why
this is beneficial, we need to take one more step: Neither pt nor vt are accessible in practice,
as they depend on the unknown distribution p∗. Thus, the important observation of Lipman
et al. (2023) is that in case of a parameterized class M, the gradients of (1.5) with respect to
the parameters of ṽ are the same as the gradients of

E t∼U(0,1)
X∼P∗

Xt∼p( ·−µt(X)
σt

)

[
|ṽt(Xt)− vt(Xt|X)|2

]
, (1.6)

where vt(·|x), x ∈ X is a vector field that can be derived from the setting in closed form. Looking
at the empirical counterpart of (1.6)

1

n

n∑
i=1

E t∼U(0,1)

Xt∼p( ·−µt(Xi)

σt
)

[
|ṽt(Xt)− vt(Xt|Xi)|2

]
, (1.7)

we can finally see the advantage of Flow Matching. We are in full control of every term in (1.7)
and the objective to minimize is a simple least squares problem. This easy objective function is
one of the key characteristics of generative models in the 2020s. Another very famous approach
are diffusion models (Song et al., 2021), which are based on stochastic differential equations
(SDEs). Instead of a vector field, the gradient of the log-density, also called the score, of a
constructed time dependent density is approximated. This approach leads to a least squares
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problem similar to (1.7). Diffusion models leverage the theory of score matching. This also
indirectly explains the name Flow Matching for the ODE based model.

For our theoretical analysis of Flow Matching, we choose the Wasserstein-1 metric as an
evaluation distance. Additionally to the previous mentioned advantages of this metric, this
allows for comparability to the results obtained for Vanilla GANs. As we are interested in the
performance of the distribution estimation model, we aim to analyze W1(P∗,Pψ̂1(Z)), where ψ̂
is the solution to the ODE (1.3) using the minimizer of (1.7) for the vector field. Given the
structure of the Flow Matching model, it is natural to choose a reference ψ∗ that is the solution
of the ODE (1.3) using a reference vector field v∗ and decompose the error in the following way

W1(P∗,Pψ̂1(Z)) ≤W1(P∗,Pψ
∗
1(Z))︸ ︷︷ ︸

reference error

+W1(Pψ
∗
1(Z),Pψ̂1(Z))︸ ︷︷ ︸

approximation error

.

For the reference v∗, there are two natural candidates: the first one is v from (1.5), which is
the vector field leading to the density path (1.4). This corresponds to the choice of the scarce
previous theoretical works in this area of research (Fukumizu et al., 2025; Gao et al., 2024b).
Hereafter, we are going to call this choice the population reference. There is another candidate
for v∗. Going backwards from the empirical least squares problem (1.7), we show that there are
empirical counterparts of (1.5), of the vector field and of (1.4). The empirical counterpart of
(1.4) is given by

pnt (x) =
1

n

n∑
i=1

p
(x− µt(Xi)

σt

)
. (1.8)

This is related to the kernel density estimator using the density p as a kernel, which has been
studied in the statistical literature for a long time. We are going to call this the empirical
reference. In this thesis, we are going to study both settings, the empirical and the population
reference.
The reference error W1(P∗,Pψ∗

1(Z)) is the Wasserstein distance between distributions with
densities (1.4) or (1.8) and the unknown distribution P∗. In the mentioned literature, this
error is typically forced to be negligible by choosing σmin extremely small. In kernel density
estimation in contrast, the choice of the bandwidth, which corresponds to the choice of σmin in
our setting, is of utmost importance for the capability to profit from smoothness in the unknown
distribution. In the analysis via the empirical reference, studying W1(P∗,Pψ∗(Z)) corresponds to
studying the kernel density estimator.
The classical literature on kernel density estimation focuses on error bounds in the mean squared
error or the L1 error (Tsybakov, 2009; Devroye & Lugosi, 2012; Scott, 1992). Albeit these results
sometimes imply bounds on Wasserstein distance, the corresponding bounds are suboptimal.
Recently, the use of the Wasserstein-1 distance became more popular in the analysis of kernel
density estimation, particularly on unknown manifolds (Berry & Sauer, 2017; Berenfeld &
Hoffmann, 2021; Divol, 2022; Wu & Wu, 2022), but the only optimal bounds so far are for
very specific kernels that do not include the Gaussian kernel. The use of the Gaussian kernel
corresponds to using U = N (0, Id) as latent distribution. We are going to show that the kernel
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density estimator can estimate certain unknown densities with a rate of convergence that is
optimal up to logarithmic factors. Our results allow for standard choices of kernels such as
the Gaussian kernel. Furthermore, in case the unknown distribution is supported on a linear
subspace, we show that the curse of dimensionality can be circumvented. This result and the
use of the empirical reference enables us to profit from a careful choice of σmin.
In the analysis of the population reference, the reference error W1(P∗,Pψ∗

1(Z)) itself is minimized
by choosing σmin as small as possible. In the limit case σmin → 0, (1.4) implies for the convolution
p1(x) → p∗(x). However, we are going to see that even in this case, the theoretical analysis of
the entire model can profit from a carefully chosen σmin.
The second step is to bound the error caused by approximation, W1(Pψ

∗
1(Z),Pψ̂(Z)). While

the approximation of underlying dynamics leads to the easier objectives (1.6) and (1.7), in the
theoretical analysis we need to track down the effects of the vector field approximation on the
corresponding generated distributions. Albeit the stability of solutions of ODEs is a question
that arises in various problems, Grönwall’s inequality is the method of choice in such general
settings, see for example Albergo & Vanden-Eijnden (2023); Benton et al. (2024); Gao et al.
(2024b); Fukumizu et al. (2025); Stéphanovitch et al. (2025). This leads to bounds that depend
exponentially on the Lipschitz constant of the vector field, which is one of the key difficulties
in the theoretical analysis of Flow Matching. In contrast, diffusion models, whose similarities
to Flow Matching will be motivated in Section 5.1.2, can profit from Girsanov’s theorem which
circumvents this issue (Chen et al., 2023a,b,c; Oko et al., 2023; Tang & Yang, 2024; Azangulov
et al., 2024; Zhang et al., 2024; Yakovlev & Puchkin, 2025). As a side effect of a fast evolving
area of research, some of the very recent results contain critical flaws. We defer a comment to
Chapter 5.
In our analysis via the empirical reference, we are going to look at the over-parameterized setting.
Using the empirical reference allows us to obtain bounds without making the trade-off in network
size that is typical in settings of empirical risk minimization over a set of functions, by far non-
exhaustive examples include in context of GANs Liang (2021), in context of diffusions Oko et al.
(2023); Yakovlev & Puchkin (2025) and more general in context of score-based generative models
Stéphanovitch et al. (2025). This is also the approach of the previous results for Flow Matching,
see Gao et al. (2024b); Fukumizu et al. (2025). Therefore we can compensate the dependency
on the Lipschitz constant and ultimately obtain rates of convergence for a large class of bounded
unknown distributions that are minimax optimal up to a logarithmic factor. We can also extend
our dimension reduction result for unknown distributions supported on a linear subspace to the
Flow Matching estimator.
In the analysis via the population reference, we are going to employ a more classical approach.
Using a Bernstein-type inequality results in a bidirectional effect when larger networks are used.
This prohibits the compensation approach we exploited before. Thus, we start our analysis with
a detailed study of the Lipschitz constant of the population reference v. This study includes lower
bounds on the Lipschitz constant and a collection of assumptions that guarantee control over the
exponential term caused by the use of Grönwall’s lemma. Furthermore, our results hold for a
broad class of variance functions σt. General variance functions have, to the best of the author’s
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knowledge, not been studied in a statistical context. However, the optimal-transport-based result
of Tsimpos et al. (2025) shows that common choices are not optimal, which indicates the need
for general results. Afterwards we show that these assumptions are met by a class of unbounded,
non-log-concave distributions. Then, we use higher order smoothness of the population reference
v, which can be controlled by an appropriately chosen σmin, to improve the subsequent rate of
convergence. Although this rate is not optimal in a minimax sense, it improves existing results
of Gao et al. (2024b) for the estimation of unbounded distributions using Flow Matching.

Conditional distribution estimation via Flow Matching

So far, we have focused on learning how to approximate an unknown distribution P∗. Albeit
the goal has been the generation of new samples, the ability to sample in a cheap way paves the
way to estimating characteristic quantities, such as the mean or the variance of the unknown
distribution, via classical estimation methods. While this is of interest on its own, many
applications need specific characteristics based on some additional information that can vary.
One example of such applications is temperature prediction for the next day based on today’s
temperature and air pressure. Depending on the purpose, different values are of interest: A hiker
probably wants to know an interval in which the actual temperature lies with high probability
in order to provide corresponding equipment. An airport controller is rather interested in worst
case bounds in order to prevent accidents. In both cases, a simple point forecast corresponding
to a mean regression problem is insufficient. Rather, knowledge of the distribution given the
available information is necessary.

In a mathematical setting, this corresponds to estimating a conditional distribution and
inferences thereof. Thus, we now assume we observe n samples (X1,W1), ..., (Xn,Wn) from
the joint distribution P∗

X ,W . Our goal is to estimate the conditional distribution P∗
X |w for w ∈ W.

A straightforward approach to adapt Flow Matching to the setting of conditional distribution
estimation is to equip the vector field with an additional input in (1.7), leading to

1

n

n∑
i=1

E t∼U(0,1)

Xt∼p( ·−µt(Xi)

σt
)

[|ṽt(Xt,Wi)− vt(Xt|Xi)|2]. (1.9)

In this setting ṽ : [0, 1]×X ×W 7→ X , where W is the space of the covariates. From a machine
learning perspective, this is a special instance of a guided Flow Matching model (Zheng et al.,
2023). These models inter- and extrapolate between the unconditional and the conditional
model. So far there are, to the best of the author’s knowledge, no theoretical results of this
model. Conditional diffusions have been analyzed by Tang et al. (2025).
We start by showing that the Flow Matching model corresponds to vector fields that are well
defined only on a finite set of points. While this hinders further statistical analysis, a simple
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Figure 1.4.: Conditional density estimation with smoothing in the covariates, based on 500
samples, W ∼ U [−3, 3], X ∼ N (sin(W ), 0.52), 200 latent samples are chosen once
and then put through the model for different values of w.

adaptation avoids this. Thus, we introduce

1

n

n∑
i=1

E t∼U [0,1]

Xt∼p( ·−µt(Xi)

σt
)

W∼Khw (·−Wi)

[
|ṽt(Xt,W )− vt (Xt|Xi)|2

]
, (1.10)

where Khw is a kernel with bandwidth hw independent of t. Given a value w ∈ W and a
minimizer v̂ of (1.10) over some function class, we can solve the adapted ODE

∂ψt,w
∂t

(x) = v̂t,w(ψt,w(x)), ψ0,w(x) = x, ∀x ∈ X ,∀w ∈ W. (1.11)

The solution ψ̂t,w leads to the estimated conditional distribution Pψ̂t,w(Z). Figure 1.4 illustrates
a toy example in this setting. As we can sample from Pψ̂t,w(Z) at the small cost of sampling
from U and applying the function ψ̂t,w, we can obtain estimates for nearly arbitrary properties
of P∗

X |w.
In order to analyze the theoretical capability of (1.10) we again need to choose an evaluation
metric. As motivated above, conditional distribution estimation is the theoretical framework
of probabilistic forecasting. To achieve comparability, we adapt proper scoring rules to choose
an evaluation metric. Scoring rules are designed to evaluate an estimated distribution given a
true observation (Gneiting & Raftery, 2007). The characteristic proper refers to the preferable
property that the true distribution minimizes the scoring rule within a class of alternatives.
Common choices include the energy score SE by Gneiting et al. (2007), defined for some β ∈ (0, 2)

which maps a distribution P and a value x ∈ X to

SE(P, x) := EX∼P
[
|X − x|β2

]
− 1

2
E
X,X′i.i.d∼ P

[
|X −X ′|β2

]
. (1.12)
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The energy score is closely related to energy statistics by Székely (2003).

As visible from the example (1.12), a scoring rule can be used to compare a predictive
distribution P to a realization x. It accounts for both, the location of x relative to P, represented
by the first term in (1.12), and the spread of the predictive distribution, represented by the
second term in (1.12). In a first step, we connect the concept of proper scoring rules to
the notions of risk and thus, empirical risk minimization, which is fundamental to statistical
learning. In a nutshell, we are only interested in the difference between the model estimator and
the best possible estimator that would be chosen in case of full information.

Afterwards, we adopt the use of the empirical reference as in the unconditional case. This
reveals that the model (1.10) is closely connected to a Nadaraya-Watson-type estimator and
thus the classical extension of the kernel density estimator to the setting of conditional density
estimation (Hall et al., 1999). Proper scoring rules have hardly been investigated in the context of
statistical learning, except for Pic et al. (2023). First, we study lower bounds with respect to the
risk associated with the Fourier score, a generalization of the energy score (1.12). Then we show
that the Nadaraya-Watson-type estimator achieves this rate and is thus minimax optimal. For
the energy score, we obtain a rate that is as fast as the corresponding rate in a mean regression
problem evaluated in the weighted L2 distance, see Györfi (2002). Afterwards, we use our results
to derive a rate of convergence for the Flow Matching model using the energy score.
Ultimately, we apply our model to classical forecasting datasets, weather prediction tasks, and
toy examples that illustrate the behavior of our estimator. Our experiments show that the Flow
Matching estimator is a promising approach to estimating conditional distributions.

Outline

This thesis is structured as follows.
Chapter 2 begins with preliminaries, including general definitions of function spaces and
probability theory concepts. We discuss the distances between probability distributions necessary
for this thesis. Then, we briefly introduce the concept of proper scoring rules, connect them to the
previously presented distances, and define the scoring rules that will be used later. Afterwards,
we provide a precise definition of feedforward ReLU networks, which serve as the prototype for the
neural networks employed in subsequent chapters. In Section 2.4, we review the approximation
result used in Chapter 5 and Chapter 6 and derive a novel approximation result suited for the
setting in Chapter 3. Subsequently, we recall functional and concentration inequalities needed
in Section 5.5. In the end, we present a conceptual proof of an oracle inequality that serves as a
starting point for subsequent proofs.
Chapter 3 studies the Vanilla GAN. First, we introduce the Vanilla GAN distance, which
characterizes the optimization problem (1.1). Section 3.2 investigates the relationship between
the Vanilla GAN distance and the Wasserstein distance. We demonstrate that, while not
equivalent, the two distances are compatible with each other. Using this relationship, we derive
an oracle inequality for the Vanilla GAN, where G is a nonempty compact set and D is a
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set of Lipschitz functions. We show that Vanilla GANs can avoid the curse of dimensionality.
Afterwards, we consider the situation where G and D consist of neural networks. Here we relax
the Lipschitz condition to a α-Hölder condition and prove a convergence rate for the Vanilla
GAN with network generator and discriminator. Subsequently, we derive a convergence rate for
Wasserstein-type GANs with a network generator and discriminator using our approximation
result. This allows us to directly compare Vanilla GANs to Wasserstein GANs. In the end, we
illustrate our theoretical results with a numerical example based on synthetic data.
Chapter 4, revisits the kernel density estimator. We derive a rate of convergence in the
Wasserstein distance for the kernel density estimator, which is optimal up to logarithmic
constants. Afterwards we show that, in case the unknown distribution is supported by a linear
subspace, the kernel density estimator can overcome the curse of dimensionality.
Chapter 5 investigates Flow Matching. First, we provide a brief overview of related models.
Then, in Section 5.2, we demonstrate the connection to kernel density estimation. Afterwards,
we introduce the two reference models and derive a general error decomposition. Section 5.4
studies the over-parameterized setting, using the results of Chapter 4 to obtain minimax optimal
rates up to logarithmic constants. Section 5.5 investigates smaller networks. After studying the
Lipschitz constant of the vector field v from (1.5) for general variance functions, we derive a rate
of convergence.
Chapter 6 begins by adapting Flow Matching to the conditional distribution estimation setting.
Then we connect the concepts of proper scoring rules to risk. We derive a lower bound on the
risk related to the Fourier score and show that the Nadaraya-Watson-type estimator achieves this
rate. Subsequently, we demonstrate that the Flow Matching estimator can be minimax optimal
in the energy score. Ultimately, we apply the Flow Matching estimator to toy examples, classical
forecasting datasets, and weather prediction tasks.
Chapter 7 presents an overall conclusion and further avenues for research.
Throughout the thesis, the proofs are placed at the end of each chapter. An exception from this
is made in Chapter 2, where most proofs consist of references and brief remarks. The proof of
the novel approximation result is again moved to the end of Chapter 2.





Chapter 2

Foundations and network approximation

In this chapter, we recall definitions from the theory of function spaces and concepts from
probability theory that are essential for the subsequent chapters. Most importantly, we define
the distances between probability distributions and scoring rules used in this thesis and introduce
feedforward rectified linear unit (ReLU) neural networks. We also prove a novel approximation
result needed for Chapter 3. In the end, we present a short outline of a proof of a convergence
rate in distribution estimation, that will serve as a starting point for the subsequent chapters.
We assume that basic concepts of probability theory as well as fundamentals from calculus and
linear algebra, as those listed in the notation overview without a reference to a definition, are
known. Further, we will always adapt the definitions to the Euclidean setting studied in this
thesis. To prevent potential confusion concerning the dimension we will consider spaces X and
Y which are finite-dimensional Cartesian products of real numbers in this chapter. Likewise,
we are going to denote the probability measures in this chapter with Greek lower case letters,
reserving blackboard bold letters for later.
Whenever referring to a probability measure µ on X , we consider a probability space (X ,BX , µ).
As standard in statistics, whenX ∼ µ, we assume the canonical settingX : (X ,BX , µ)→ (X ,BX )
and X(x) = x. Due to this, we are going to use the terms probability measure and distribution
as synonyms.

2.1. Preliminaries

In this section, we will collect most of the definitions of function classes needed in the subsequent
chapters. Furthermore, we are going to fix the notion of the Fourier transform, the moment
generating function and the cumulant generating function used in this thesis. Since both concepts
are ubiquitously used, we refrain from further comments on the literature.

2.1.1. Function classes

Given a function f : Ω→ Y, where Ω ⊂ X , the supremum norm and the L1-norm are defined by

∥f∥∞,Ω := ess sup
x∈Ω

|f(x)| and ∥f∥1,Ω :=

∫
Ω
|f(x)| dx. (2.1)

In case the domain Ω is clear, we frequently omit it.
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Lipschitz and Hölder functions In case X is equipped with | · |q, we denote the set of
bounded Lipschitz functions by

Lip(L,B,Ω) :=
{
f : Ω→ R

∣∣∣ ∥f∥∞,Ω ≤ B,
|f(x)− f(y)|
|x− y|q

≤ L, x, y ∈ Ω
}
. (2.2)

The set of unbounded Lipschitz functions is abbreviated by Lip(L,Ω) := Lip(L,∞,Ω). By
Rademacher’s theorem (Evans, 2010, Theorem 6), a Lipschitz function is differentiable almost
everywhere. For α ∈ (0, 1] we define the α-Hölder norm by

∥f∥Hα(Ω) := max
{
∥f∥∞, ess sup

x,y∈Ω

|f(x)− f(y)|
|x− y|αq

}
(2.3)

and the α-Hölder ball of functions with Hölder constant Γ > 0 as

Hα(Γ,Ω) :=
{
f : Ω→ R

∣∣ ∥f∥Hα(Ω) ≤ Γ
}
. (2.4)

In particular, Lip(L,B,Ω) ⊆ Hα(max(L, 2B),Ω) for any α ∈ (0, 1).

Besov spaces In case Y = R, α ∈ (0, 1] and M ∈ R>0, the Besov ball Bα
1,∞(M,Ω) is defined

as
Bα

1,∞(M,Ω) :=
{
f ∈ L1(Ω): |f |Bα

1,∞(Ω) < M
}
, (2.5)

where
|f |Bα

1,∞(Ω) := sup
t>0

t−αω1(f, t)1, ω1(f, t)1 := sup
0<|h|≤t

∫
|f(x)− f(x+ h)| dx.

If x+ h /∈ Ω, the integrand is taken to be zero. Replacing |f |Bα
1,∞(Ω) < M with |f |Bα

1,∞(Ω) < ∞
in (2.5), we obtain the Besov space Bα

1,∞(Ω). The corresponding norm on Bα
1,∞(Ω) is

∥f∥Bα
1,∞(Ω) := ∥f∥L1(Ω) + |f |Bα

1,∞(Ω). (2.6)

Smooth function classes Ck(Ω) denotes the set of functions whose component functions
are k-times continuously differentiable with bounded derivatives in the supremum norm. For a
multi-index k ∈ Ndim(X )

0 with |k|1 =
∑dim(X )

i=1 ki, we write

Dk :=
∂|k|1

∂xk11 · · · ∂x
kdim(X )

d

and for β ∈ N we define
∥f∥Cβ := max

k : |k|≤β
∥Dkf∥∞. (2.7)

Sobolev spaces For Section 2.4, we are going to need Sobolev spaces. The set of locally
integrable functions is given by

L1
loc(Ω) :=

{
f : Ω→ R

∣∣∣ ∫
K
|f(x)| dx <∞, for all compact K ⊂ Ω◦

}
.
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A function f ∈ L1
loc(Ω) has a weak α-th derivative, Dα

wf for a multi index α ∈ Ndim(X )
0 , provided

there exists a function g ∈ L1
loc(Ω) such that∫

Ω
g(x)ϕ(x)dx = (−1)|α|

∫
Ω
f(x)Dαϕ(x)dx for all ϕ ∈ C∞(Ω) with compact support.

If such a g exists, we define Dα
wf := g. For f ∈ L1

loc(Ω) and k ∈ N0 the Sobolev norm is

∥f∥Wk,∞(Ω) := max
|α|≤k

∥Dα
wf∥∞,Ω , (2.8)

with semi-norm
|f |Wk,∞(Ω) := max

|α|=k
∥Dα

wf∥∞,Ω .

The Sobolev space
W k,∞(Ω) := {f ∈ L1

loc(Ω) : ∥f∥Wk,∞(Ω) <∞} (2.9)

is a Banach space (Brenner & Scott, 2008, Theorem 1.3.2).
Note that Lip(L,B,Ω) ⊂W 1,∞(Ω), since ∥f∥W 1,∞ ≤ max(L,B) for any f ∈ Lip(L,B,Ω).

2.1.2. Fourier transform and related objects

Let f : X → R be a such that ∥f∥1 <∞. Then we define the Fourier transform of f as

Ff(u) :=
∫
ei⟨x,u⟩f(x) dx, (2.10)

where i is the imaginary unit. Compared to the classical definition, we neglect the constant and
invert the sign.
The characteristic function of a distribution µ on X is defined as

φµ(u) := EX∼µ
[
ei⟨X,u⟩

]
. (2.11)

In case µ admits a density p with respect to the Lebesgue measure, then

φµ(u) = Fp(u),

which explains our deviation from the classical definition of the Fourier transform.
The moment generating function of a distribution µ on X is defined as

Mµ(t) := EX∼µ
[
e⟨X,t⟩

]
, (2.12)

if the term on the right hand side exists for t ∈ (−h, h) for some h > 0. In this case, for a
multiindex ℓ ∈ Ndim(X )

0

DℓMµ(0) = EX∼µ[X
ℓ1
1 · ... ·X

ℓdim(X )

dim(X ) ].
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The cumulant generating function is defined as the logarithm of the moment generating function,

Kµ(t) = log
(
EX∼µ

[
e⟨X,t⟩

])
. (2.13)

The ℓ-th cumulant is defined as
κℓ := DℓKµ(0).

In case dim(X ) > 1, the cumulant is also called the joint cumulant.

2.2. Distances between probability measures

To quantify how close a generated distribution is to the distribution that should be imitated, we
need to choose a distance (not necessarily a metric) between the two probability measures. In the
following, we introduce some examples of distances between probability measures and connect
them if possible.

2.2.1. Wasserstein distance

Of high importance to this thesis is the Wasserstein distance, it will be used as both an evaluation
metric and as an underlying concept to some of the models we are going to study.

Definition 2.1. (Wasserstein distances) Let d be a metric on X , and let p ∈ [1,∞). For two
probability measures µ, ν on X ,

Wp(µ, ν) :=
(

inf
π∈Π(µ,ν)

∫
X
d(x, y)p dπ(x, y)

)1/p
(2.14)

is called the Wasserstein distance of order p between µ and ν. Π(µ, ν) denotes the set of all joint
probability measures π on X with marginals µ and ν.

The Wasserstein distance is the optimal value of an optimal transport problem: if the metric
is interpreted as a cost function, then the Wasserstein distance is the minimal cost necessary
to transport the mass of measure µ to ν. The metric d can be replaced by other suitable cost
functions and the Euclidean setting can be generalized to Polish metric spaces. An example
will be presented in context of Definition 2.3. Since both generalizations are beyond the needs
for this thesis, we refer to Villani (2008) for a comprehensive analysis of the fascinating field of
optimal transport.
In the following, we present properties of the Wasserstein distance which are of significance to
this thesis.

Metric As shown by Villani (2008, p. 94), the Wasserstein distance satisfies the axioms of a
metric, i.e. for p ∈ [1,∞)

Wp(µ, ν) = Wp(ν, µ), (symmetry),

Wp(µ, ν) ≤Wp(µ, ρ) +Wp(ρ, ν), (triangle inequality),
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Wp(µ, ν) ≥ 0,Wp(µ, ν) = 0⇐⇒ µ = ν, (definiteness).

On the space of probability measures with finite p-th moments, Wp is finite. Combined with the
above, Wp is a metric (Villani, 2008, p. 95).

Strength Additionally, Wp metrizes weak convergence in the space of probability measures
with finite p-th moment (Villani, 2008, Theorem 6.9). This means that if (µk)k∈N is a sequence of
probability measures with finite p-th moment and µ is another measure with finite p-th moment,
then

(µk)k∈N converges weakly to µ ⇐⇒ Wp (µk, µ)
k→∞−→ 0.

Duality In case of p = 1 the Kantorovich duality (Villani, 2008, Theorem 5.10) leads to the
following useful dual representation of W1: For any µ, ν with finite first moment we have

W1(µ, ν) = sup
W∈Lip(1)

EX∼µ
Y∼ν

[
W (X)−W (Y )

]
. (2.15)

In case of discrete measures on X , this is exactly the same duality as the duality in linear
programs. The following illustration is inspired by Solomon (2018).
Consider discrete probability measures µ =

∑k1
i=1 δxivi on Z = {x1, ..., xk1} ⊂ X and ν =∑k2

i=1 δyiwi on W = {y1, ..., yk2} ⊂ X with vi, wi ≥ 0,
∑k1

i=1 vi =
∑k2

i=1wi = 1. For the cost of
transporting mass from xi to yj , we equip X with the q-norm | · |q and define for i ∈ {1, ..., k1}
and j ∈ {1, ..., k2}

cij := |xi − yj |q.

Let Tij be the total amount of mass that should be transported from xi to yj and denote

T :=


T11 · · · T1k2
...

. . .
...

Tk11 · · · Tk1k2

 .

This is a linear optimization problem:

(LP ) : min
T∈Rk1×k2

k1∑
i=1

k2∑
j=1

Tijcij

s.t. Tij ≥ 0, ∀ i, j,
k2∑
j=1

Tij = vi, ∀ i ∈ {1, ..., k1},

k1∑
i=1

Tij = wj , ∀ j ∈ {1, ..., k2}.
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Define the (k1 + k2)× k1k2-dimensional matrix

A :=



1 0 . . . 0 1 0 . . . 0 . . . 1 0 . . . 0

0 1 . . . 0 0 1 . . . 0 . . . 0 1 . . . 0
...

. . . . . . . . .
...

0 0 . . . 1 0 0 . . . 1 . . . 0 0 . . . 1

−1 −1 . . . −1 0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 −1 −1 . . . −1 . . . 0 0 . . . 0
...

...
0 0 . . . 0 0 0 . . . 0 . . . −1 −1 . . . −1


and

t :=



T11
...

Tk11

T21
...

Tk1k2


, c :=



c11
...

ck11

c21
...

ck1k2


, u :=



v1
...
vk1

−w1

...
−wk2


.

Then we can reformulate the linear optimization problem (LP ) and the corresponding dual
problem as

min
t∈Rk1·k2

≥0

c⊤t

s.t. At = u,

max
z∈Rk1+k2

u⊤z

s.t. z⊤A ≤ c⊤.

For an introduction to the duality of linear programming, we refer to Nickel et al. (2022, Kapitel
1.8). The restrictions of the dual problem read as

zi − zk1+j ≤ |xi − yj | ∀i ≤ k1, ∀j ≤ k2,

the objective function extends to

max
z∈Rk1+k2

k1∑
i=1

vizi −
k2∑
j=1

wjzk1+j .

Let h : X → R be a function such that

z1 = h(x1), ..., zk1 = h(xk1),

zk1+1 = h(y1), ..., zk1+k2 = h(yk2).

Then the dual problem can be stated as

max
h

EX∼µ
Y∼ν

[h(X)− h(Y )]

s.t. h(x1)− h(y1) ≤ |x1 − y1|
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...

h(xk1)− h(yk2) ≤ |xk1 − yk2 |.

This is exactly the Lipschitz condition of (2.15) on the relevant set of points in the discrete case.

Closed form For d = 1 the Wasserstein-1 distance has the following closed form
representation.

Lemma 2.2. Let X = R. Further let F,G be the cumulative distribution functions of µ, ν and
F−1, G−1 their quantile functions. Then

W1(µ, ν) =

∫ ∞

−∞
|F (x)−G(x)| dx =

∫ 1

0

∣∣F−1(y)−G−1(y)
∣∣ dy.

Proof. For the first equality, we refer to Santambrogio (2015, Theorem 2.9). For the second
equality, we note that

{(x, y) ∈ R2 : min(F (x), G(x)) ≤ y ≤ max(F (x), G(x))}
= {(x, y) ∈ R2 : min(F−1(y), G−1(y)) ≤ x ≤ max(F−1(y), G−1(y))}

and thus the definition of a cumulative distribution function implies∫ ∞

−∞
|F (x)−G(x)| dx =

∫ 1

0

∫ max(F (x),G(x))

min(F (x),G(x))
dy dx

=

∫ ∞

∞

∫ max(F−1(y),G−1(y))

min(F−1(y),G−1(y))
dx dy

=

∫ 1

0

∣∣F−1(y)−G−1(y)
∣∣ dy.

For d ≥ 2 there is, to the author’s best knowledge, no closed form of the Wasserstein-1 distance.
However, the closed form in Lemma 2.2 gave rise to the sliced Wasserstein distance (Bonnotte,
2013). For a moment, this distance was thought to be equivalent (Bayraktar & Guo, 2021),
however, the proof turned out to be false in case of d ≥ 2 (Bayraktar & Guo, 2024).

2.2.2. Total variation distance

Next, we are going to introduce the total variation distance between probability measures, which
behaves differently compared to the Wasserstein distance.

Definition 2.3. (Total variation) Let µ, ν probability measures on X and BX be the Borel σ-
algebra on X . The total variation distance between µ and ν is defined as

TV(µ, ν) := sup
A∈BX

|µ(A)− ν(A)|.

Note that the properties of a metric can easily be checked. As apparent from the definition, the
total variation distance takes values in [0, 1]. Additionally, if µ and ν are singular measures, then
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TV(µ, ν) = 1. If the metric d in Definition 2.1 is replaced by the function 1x ̸=y, then, as noted
by Villani (2008, p. 972),

TV(µ, ν) = inf
π∈Π(µ,ν)

∫
X
1{x ̸=y} dπ(x, y), (2.16)

where again Π(µ, ν) denotes the set of all joint probability measures π on X with marginals µ and
ν. This already gives a intuition in what sense the total variation distance behaves differently
than the Wasserstein distance: while (2.16) can only detect non-coinciding areas of mass, (2.14)
incorporates differences quantitatively.
In case µ and ν have densities pµ and pν with respect to the Lebesgue measure, Scheffé’s lemma
shows that

TV(µ, ν) =
1

2

∫
|pµ(x)− pν(x)| dx. (2.17)

2.2.3. Kullback-Leibler divergence and the Jensen-Shannon divergence

Not all distances between probability measures are metrics. One of the most famous examples
is the Kullback-Leibler divergence.

Definition 2.4. (Kullback-Leibler divergence) Let µ and ν be probability measures on X . The
Kullback-Leibler divergence of µ from ν is defined as

KL(µ | ν) :=


∫
log
(dµ
dν

)
dµ, if µ≪ ν,

+∞, otherwise,

where dµ
dν denotes the Radon-Nikodym density of µ with respect to ν.

From the definition we see that the Kullback-Leibler divergence is not symmetric, does not
satisfy the triangle inequality and is hence not a metric. The Kullback-Leibler divergence can be
connected to the classical maximum likelihood estimation. Assume we observe n i.i.d. samples
X1, ..., Xn from a distribution µ on X . Further assume we have a parametric family {pϑ | ϑ ∈ Θ},
where Θ is a parameter space which is such that the maximal argument exists in the following
definition. The maximum likelihood estimator ϑ̂ is chosen such that

ϑ̂ ∈ argmax
ϑ∈Θ

1

n

n∑
i=1

log(pϑ(Xi)). (2.18)

Denote the distribution associated to an element of the parametric family by µϑ. Assume that
{pϑ | ϑ ∈ Θ} is such that the Kullback-Leibler divergence of µ from µϑ is finite for all ϑ ∈ Θ.
Then

KL(µ | µϑ) =
∫

log
(pµ(x)
pϑ(x)

)
pµ(x) dx =

∫
log(pµ(x))pµ(x) dx− EX∼µ[log(pϑ(X))].

The last term is the population counterpart of (2.18). Further, we can rearrange

EX∼µ[log(pϑ(X))] =

∫
log(pµ(x))pµ(x) dx− KL(µ | µϑ).
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As the first term on the right hand side is independent of ϑ, the following two sets are, in case
of existence, the same

argmax
ϑ∈Θ

EX∼µ[log(pϑ(X))] = argmin
ϑ∈Θ

KL(µ | µϑ).

Albeit the Kullback-Leibler divergence itself is not symmetric, we can construct a symmetric
version.

Definition 2.5. (Jensen-Shannon divergence) Let µ and ν be probability measures on X . The
Jensen-Shannon divergence between µ and ν is defined as

JS(µ, ν) :=
1

2
KL
(
µ
∣∣∣ µ+ ν

2

)
+

1

2
KL
(
ν
∣∣∣ µ+ ν

2

)
.

The Jensen-Shannon divergence takes values in [0, log(2)], which in case µ and ν admit densities
with respect to the Lebesgue measure follows from pµ(x)

pµ(x)+pν(x)
≤ 1 for all x ∈ X . This maximal

value is attained if µ and ν are singular, since

JS(µ, ν) =
1

2
KL
(
µ
∣∣∣ µ
2

)
+

1

2
KL
(
ν
∣∣∣ ν
2

)
=

1

2

∫
log(2) dµ+

1

2

∫
log(2) dν = log(2).

(2.19)

Additionally, the square root of the Jensen-Shannon divergence is a metric (Endres & Schindelin,
2003, p. 1859).

2.2.4. Illustrative comparison of the distances

In this section, we illustratively compare the metrics defined in Section 2.2.1, Section 2.2.2 and
Section 2.2.3 in case X = R. For a first illustration, we plot

x 7→ d(U [0, 1],U [x, x+ 1]), x ∈ [0, 2], d ∈ {W1,TV, JS}.

Using the quantile function representation of the Wasserstein-1 distance from Lemma 2.2, the
evaluations are straightforward and summarized in Figure 2.1.
For x > 1, neither TV nor JS captures the distance between the support of the two uniform
distributions.
While for x ≤ 1 the behavior of all three distances is the same, this cannot be generalized
as the second illustration shows in this situation. From comparing Lemma 2.2 to (2.17) and
Definition 2.5, we see that the Wasserstein-1 distance operates on the level of differences in
the cumulative distribution function, while the total variation distance and the Jensen-Shannon
distance operate on the density level. In case of equal support, this can be seen directly when
considering a kinked adjustment of the first example. To this end, we define the following
adaptation of a triangle wave with slope ±2

Λ(t) = (−1)⌊t⌋
(
1− 2

∣∣∣(t− ⌊t⌋)− 1

2

∣∣∣).
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Figure 2.1.: Different behavior evaluating x 7→ d(U [0, 1],U [x, x + 1]) for d ∈ {W,TV, JS} for
different values of x. The green dots correspond to d = W1, the blue line correspond
to d = TV and the orange dashed line corresponds to d = JS.

Then define for n ∈ N and c ∈
(
0, 1

2(n+1)

]
the functions

Fn(x) =


0, x ≤ 0,

x+ c · Λ((n+ 1)x), 0 < x < 1,

1, x ≥ 1,

and F (x) =


0, x ≤ 0,

x, 0 < x < 1,

1, x ≥ 1.

From the properties of Fn we conclude that there is a distribution µn such that Fn is its
cumulative distribution function. The function F is the cumulative distribution function of
U [0, 1]. Figure 2.2 shows the two functions for example values of n.
For the Wasserstein-1 distance between the two distributions, we calculate

W1(µn,U [0, 1]) =
∫ ∞

−∞
|Fn(x)− F (x)| dx = c

∫ 1

0
|Λ((n+ 1)x)| dx

=
c

n+ 1

∫ n+1

0
|Λ(t)| dt = c

2
≤ c

4(n+ 1)
.

For n → ∞, clearly W1(µn,U [0, 1]) → 0, in line with the weak convergence of the two
distributions.
For the total variation norm, we first calculate the densities, which exist everywhere except for
the set of kink points. Thus for k ∈ {0, ..., n+ 1} and x ∈

(
k

n+1 ,
k+ 1

2
n+1

)
∪
(
k+ 1

2
n+1 ,

k+1
n+1

)
,

fn(x) := F ′
n(x) =

1 + 2c(−1)k(n+ 1), x ∈
(

k
n+1 ,

k+ 1
2

n+1

)
,

1− 2c(−1)k(n+ 1), x ∈
(
k+ 1

2
n+1 ,

k+1
n+1

)
.
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(a) n = 5, c = 1
2(n+1) (b) n = 20, c = 1

2(n+1)

Figure 2.2.: F (blue) and Fn (orange) for different values of n.

For the total variation distance, we obtain for fixed c = m
2(n+1) ,m ∈ (0, 1],

TV(µn,U [0, 1]) =
1

2

∫ 1

0
|fn(x)− 1| dx = c(n+ 1) =

m

2
.

Hence, TV(µn,U [0, 1]) is independent of n and does not converge to 0 for n→∞. The comparison
between the Wasserstein-1 distance and the Jensen-Shannon divergence was part of the author’s
masters thesis. Due to examination regulations, it cannot be presented in this thesis. The
calculations are more complex but follow the same line. Unsurprisingly, the Jensen-Shannon
divergence shows the same behavior as the total variation norm.
This second example shows that even for distributions with the same support, a careful choice
of the evaluation distance is of high importance.

2.3. Proper scoring rules

In probabilistic forecasting, a different, though not entirely unrelated, approach to evaluating
distributions is taken and well established in the literature, see (Gneiting & Raftery, 2007).
Let P be a convex set of probability distributions on X , that is for any µ1, µ2 ∈ P and any
λ ∈ [0, 1]

λµ1 + (1− λ)µ2 ∈ P.

Then a proper scoring rule is a measurable function that is quasi-integrable in the second
argument with respect to all distributions in P and

S : P × X → R, such that EX∼µ[S(µ,X)] ≤ EX∼µ[S(ν,X)] for all µ, ν ∈ P.

Here R is the extended real line [−∞,∞]. For a definition of quasi-integrable functions, we
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refer to Elstrodt (2018, Definition 3.2). A strictly proper scoring rule is a proper scoring rule
where the inequality holds in a strict sense for all µ ̸= ν. In order to enable comparisons to the
previous chapter, we define proper scoring rule via the distribution. Note that in the literature the
definition via the cumulative distribution function is also common. Additionally, the orientation
is frequently reversed, specifically in Gneiting & Raftery (2007).
Next, we assume that a distribution µ ∈ P is approximated by a distribution ν ∈ P and the
approximation is evaluated using the expectation of a proper scoring rule. We can decompose
the expected score

EX∼µ[S(ν,X)] = EX∼µ[S(µ,X)] + EX∼µ[S(ν,X)]− EX∼µ[S(µ,X)].

We refer to µ 7→ EX∼µ[S(µ,X)] as the entropy function and to (µ, ν) 7→ EX∼µ[S(ν,X)] −
EX∼µ[S(µ,X)] as the divergence function. The entropy function depends only on µ, the choice
of ν is irrelevant. The divergence function captures the difference between µ and ν and is therefore
in line with the distances presented in Section 2.2.
In the following, we are going to present proper scoring rules that are either used for comparison
to Section 2.2 or of interest in Chapter 6. Due to that, we restrict this presentation of scoring
rules to the continuous case, but the concept is also applicable to categorical variables, see the
aforementioned Gneiting & Raftery (2007, Section 3).
In case X = R, let F be the cumulative distribution function and p be the density with respect
to the Lebesgue measure of a distribution µ ∈ P.
The logarithmic score, dating back to Good (1952, Section 8), is defined for x such that p(x) > 0

as
Slog(µ, x) = − log(p(x)).

The divergence function is the Kullback-Leibler divergence, introduced in Definition 2.4. The
logarithmic score is strictly proper relative to the class of distributions that admit a Lebesgue
density (Gneiting & Raftery, 2007, Section 4.1).
Another score defined via the density is the Hyvärinen score, defined implicitly by Hyvärinen
(2005). For the definition we assume the density p is twice continuously differentiable and define

SH(µ, y) = 2
p′′(y)

p(y)
−
(
p′(y)

p(y)

)2

.

The divergence function for two distributions µ and ν admissible to the Hyvärinen score is given
by

EX∼µ[SH(ν,X)]− EX∼µ[SH(µ,X)] =

∫ (
q′(y)

q(y)
− p′(y)

p(y)

)2

q(y) dy,

where q is the density of ν with respect to the Lebesgue measure. The Hyvärinen score is proper
relative to a class of distributions called valid, for the definition we refer to Ehm & Gneiting
(2009, Definition 3.1). The divergence function of the Hyvärinen score will appear in context of
diffusion models in Section 5.1.2.
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The continuous ranked probability score (CRPS) is defined as

CRPS(µ, x) =

∫
(F (y)− 1{y ≥ x})2dy = EX∼µ[|X − x|]−

1

2
E
X,X′i.i.d∼ µ

[|X −X ′|].

The CRPS is strictly proper with respect to the class of probability distributions with finite first
moment, see Gneiting & Raftery (2007) who give further references for the above equality. The
divergence function of the CRPS is given by

EX∼µ[CRPS(ν,X)]− EX∼µ[CRPS(µ,X)] =

∫
(F (y)−G(y))2 dy.

Thus, the divergence function of the CRPS is another example of distances between one-
dimensional probability measures based on integral norms: in Section 2.2 we already saw the
Wasserstein-1 distance as the L1 distance between the cumulative distribution functions and the
total variation distance as the scaled L1 distance between the densities. In Section 2.2.4 we
illustrated that distances using integral norms based on densities are too strong to capture weak
convergence.
In Chapter 6, we will not limit ourselves to the univariate case, but also consider the case where
dim(X ) > 1. In the higher-dimensional case the natural extension of the CRPS is the energy
score

ES(µ, x) := EX∼µ[|X − x|β]−
1

2
E
X,X′iid∼µ

[
|X −X ′|β

]
,

where β ∈ (0, 2). The associated divergence function is given by

dES(µ, ν) = EY∼µ,Z∼ν [|Y − Z|β]−
1

2
E
Y,Y ′iid∼µ

[|Y − Y ′|β]− 1

2
E
Z,Z′iid∼ν

[|Z − Z ′|β].

This is the square root of the energy distance (Székely, 2003) multiplied with the factor 2. By
Gneiting & Raftery (2007, Theorem 4), the energy score is strictly proper with respect to the
class of probability distributions such that EX∼µ[|X|β] <∞.
Gneiting & Raftery (2007, Section 5.3) have generalized this to the Fourier score

FS(µ, y) = ∥φµ − ei⟨·,y⟩∥2γ , with ∥ψ∥2γ :=

∫
Rd

|ψ(u)|2
∥u∥γ du, (2.20)

where φµ is the characteristic function corresponding to µ and γ ≥ 0 as defined in Section 2.1.2.
The associated divergence function of the Fourier score is given by

dFS(µ, ν) =

∫ |φµ(u)− φν(u)|2
∥u∥γ du.

For γ = 0, we get the L2 distance between the characteristic functions. In case γ = d + β we
obtain the energy score (Székely, 2003, Proposition 2).
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2.4. ReLU networks and approximation properties

In the following chapters, we frequently use approximation results on feedforward ReLU networks.
In each of the proofs, we will isolate an approximation error of the form

inf
fapprox∈M

∥f − fapprox∥∞, (2.21)

where f is some function intrinsic to the model and M is a set of functions that serve as
candidates for the best approximation of f . In all cases, we are going to need to ensure that the
functions inM satisfy some smoothness assumption.
Theoretically, we could choose an arbitrary set of measurable functions for the set M that
satisfies the smoothness assumption. The proofs are structured such that they can be easily
adapted to arbitrary approximation results that provide quantitative bounds on (2.21). In view
of (2.21), the set M should be chosen as large as possible. The state-of-the-art method to
employ a large function class is of course the use of neural networks. For a mathematical proof,
we additionally need some kind of structure in the set M. We use fully connected feedforward
ReLU networks, which enjoy nice approximation properties, see for example Yarotsky (2017),
Gühring et al. (2020), Kohler & Langer (2021), Schmidt-Hieber (2020), Suzuki (2019).
In this chapter, we are going to define feedforward ReLU networks precisely, present the result
used in Chapter 5 and Chapter 6 and prove the result needed in Chapter 3.
To fix the notation we give a general definition of feedforward neural networks. Let
d, L,N1, ..., NL ∈ N. A function fNN : Rd → R is a neural network with L layers and N1+· · ·+NL

neurons if it results for an argument x ∈ Rd from the following scheme:

x0 := x,

xl := σ (Alxl−1 + bl) , for l = 1, . . . L− 1,

fNN(x) =xL := ALxL−1 + bL,

(2.22)

where for l ∈ {1, ..., L}, Al ∈ RNl×Nl−1 , bl ∈ RNl and σ : R → R is an element-wise applied
arbitrary activation function. The number of nonzero weights of the matrices Aℓ and bℓ is
given by

∑L
j=1 (|Aj |ℓ0 + |bj |ℓ0). In the theoretical results, we focus on the ReLU activation

function σ(x) = max(0, x). When talking about the size of a network, we refer to a property
that concerns the number of layers, the number of nonzero weight and the number of neurons
jointly.

In this section, we denote the number of layers with L. This should not be confused with the
Lipschitz constant L omnipresent in Chapter 3.
In practice, there are many more advanced architectures of neural networks. A quite simple
example that still aligns with the notation of the feedforward neural network can be seen in the
architecture behind Figure 1.1 presented in Appendix A: the generator consists of layers with
different activation functions. Another example are deviations from the scheme (2.22).
In order to maintain at least some accordance with the theoretical results, all implementations
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in this thesis are restricted to feedforward networks.

2.4.1. Approximation in W s,p-norms

In Chapter 5 and Chapter 6 we need to control the Lipschitz constant of the neural network
used for the vector field in the Flow Matching model. Additionally, in both chapters, we want
to approximate a function that is in C∞. We recall the following theorem from Gühring et al.
(2020).

Theorem 2.6. (Gühring et al., 2020, Corollary 4.2) Let d ∈ N, n ∈ N≥2, 1 ≤ p ≤ ∞, B > 0,
and 0 ≤ s ≤ 1. Further, let f ∈Wn,p

(
(0, 1)d

)
and assume ∥f∥Wn,p((0,1)d) ≤ B.

For any ε ∈ (0, 1/2), there is a ReLU neural network fNN,ε with no more than
⌈
c·log2

(
ε−n/(n−s)

) ⌉
layers,

⌈
c · ε−d/(n−s) · log22

(
ε−n/(n−s)

) ⌉
nonzero weights and

⌈
c · ε−d/(n−s) · log22

(
ε−n/(n−s)

) ⌉
neurons, where c = c(d, n, p,B, s) is a constant, such that

∥fNN,ε − f∥W s,p((0,1)d) ≤ ε.

Note that Gühring et al. (2020) refers to the networks following the scheme (2.22) as standard
neural networks. In their main theorem (Gühring et al., 2020, Theorem 4.1), they use networks
with skip-connections. This is an example for the previous mentioned deviations from the scheme
(2.22). In (2.22), only connections between neighboring layers are feasible. In networks with skip-
connections, the activation function is applied to all previous layers, see Gühring et al. (2020,
Definition 2.1). As the number of neurons and nonzero weights is of the same magnitude, we
sometimes omit the number of neurons in the following chapters.

2.4.2. Approximation in Hα-norms

In Chapter 3, the underlying function f is only Lipschitz continuous. Hence it does not satisfy
the smoothness assumption needed for Theorem 2.6. Additionally, we cannot use uniform
approximation results, since we need to control at least the Hölder smoothness of the function.
Thus, we derive our own approximation result suited for the setting in Chapter 3.

Theorem 2.7. Let K,B > 0, and 0 < α < 1. Then there are constants B and c(d,K, α,B) with
the following properties: For any ε ∈ (0, 1/2) and any f ∈ Lip(K,B, (0, 1)d), there is a ReLU
neural network fNN,ε with no more than

⌈
c log2(ε

− 1
1−α )

⌉
layers,

⌈
cε−

d
1−α log22(ε

− 1
1−α )

⌉
nonzero

weights and
⌈
cε−

d
1−α (log22(ε

− 1
1−α ) ∨ log2(ε

− 1
1−α ))

⌉
neurons such that

∥∥fNN,ε − f∥∥∞ ≤ ε and fNN,ε ∈ Hα
(
max(K, 2B) + ε

)
.

Compared to Theorem 2.6, we can see that Theorem 2.7 is an extension to the approximation of
less smooth functions. While Theorem 2.6 requires n−s ≥ 1, we allow for a smaller gap between
the smoothness of the approximated function and the smoothness of the approximation. For the
limit case α→ 1, we see that the size of the network diverges for every ε ∈ (0, 1/2).
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2.5. Functional and concentration inequalities

We focus on the setting needed in Section 5.5, which specifically assumes the continuous setting
with µ having a density pµ with respect to the Lebesgue measure. First we recall some classical
concentration inequalities. Afterwards we are going to look at connections between functional
inequalities and further concentration properties of distributions.

2.5.1. Concentration inequalities

Of fundamental importance is Markov’s inequality.

Theorem 2.8 (Markov’s inequality). Let µ be a distribution on R and h : R → [0,∞) a
nondecreasing function. Then

h(a)PX∼µ(X ≥ a) ≤ EX∼µ[h(X)].

Proof. We have that

h(a)P(X ≥ a) =
∫
h(a)1{x≥a}pµ(x) dx ≤

∫
h(x)1{x≥a}pµ(x) dx ≤ E[h(X)].

If we choose h(x) = etx for t > 0 in Theorem 2.8, we recover the general form of the Chernoff
inequality:

P(X ≥ a) = P(etX ≥ eta) ≤ E[etX ]e−ta.

This implies
P(X ≥ a) ≤ inf

t>0
E[etX ]e−ta.

In a statistical context, very classical problems are high-probability bounds on the difference
between the (empirical) mean of an i.i.d. sample and the expected value of the underlying
distribution, i.e. bounds on

P
(∣∣∣ 1
n

n∑
i=1

Xi − E[Xi]
∣∣∣ > a

)
. (2.23)

In case that the underlying distribution is bounded, the following version of a Bernstein inequality
provides a concentration inequality.

Theorem 2.9 (Bernstein inequality). (Vershynin, 2018, Special case of Theorem 2.9.5) Let
X1, . . . , Xn be i.i.d. random variables with E[Xi] = 0, Var(Xi) = σ2 and |Xi − E[Xi]| ≤ K for
all i. Then, for every t ≥ 0, we have

P
(∣∣∣ 1
n

n∑
i=1

Xi − E[Xi]
∣∣∣ ≥ t) ≤ 2 exp

(
− nt2

2(σ2 +Kt/3)

)
.

A subsequent question arises when considering the setting (2.23) but applied to random variables
that have been transformed by functions from some set of functions G. To this end, we first define
the covering number of a set of functions.
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Definition 2.10. Let G be a set of bounded functions of X . For τ > 0, define the covering
number of G with respect to the supremum norm as

N (τ,G, ∥ · ∥∞) := min{N ∈ N |∃f1, . . . , fN ∈ G such that ∀f ∈ G,
∃i ∈ {1, . . . , N} : ∥f − fi∥∞ ≤ τ}

Using the covering number as a complexity measure of G, we recall the following result.

Theorem 2.11. (Chen et al., 2023b, Lemma 15) Let G be a class of functions on X such that
∥G∥∞ ≤ B for a B > 0. Let X1, . . . , Xn ∈ X be i.i.d. random variables. For any δ ∈ (0, 1), a ≤ 1,
and τ > 0, we have

P

(
sup
g∈G

1

n

n∑
i=1

g (Xi)− (1 + a)E[g(X)] >
(1 + 3/a)B

3n
log
N (τ,G, ∥ · ∥∞)

δ
+ (2 + a)τ

)
≤ δ and

P

(
sup
g∈G

E[g(X)]− 1 + a

n

n∑
i=1

g (Xi) >
(1 + 6/a)B

3n
log
N (τ,G, ∥ · ∥∞)

δ
+ (2 + a)τ

)
≤ δ.

We note that the proof of Chen et al. (2023b, Lemma 15) contains some minor typos that can
easily be corrected.

2.5.2. Poincaré and log-Sobolev inequalities

We start by defining the Poincaré inequality in a probabilistic continuous setting. This concept
of bounding the fluctuation of a function around its mean by the norm of the gradient is of
fundamental interest in many areas.

Definition 2.12. A distribution µ on X satisfies the Poincaré inequality with Poincaré constant
ρ > 0 if for all smooth functions f such that the terms below are well-defined

Varµ(f) := EX∼µ[(f(X)− EX∼µ[f(X)])2] ≤ ρEX∼µ[|∇f(X)|2].

The Poincaré constant of Gaussian distributions will be of particular importance.

Theorem 2.13. Let µ = N (a, σ2IX ). Then the Poincaré inequality is fulfilled with Poincaré
constant σ2.

Proof. From Boucheron et al. (2013, Theorem 3.20) we know that N (0, IX ) satisfies the Poincaré
inequality with Poincaré constant 1. Thus, via defining g(x) := f(σx+ a) and

Varµ(g) ≤ σ2EX∼µ[|∇g(X)|2],

we see that the Poincaré constant of N (a, σ2Id) is σ2.

As apparent from Definition 2.12, the Poincaré constant controls the variance of a function using
its expected gradient. A natural extension is the control of higher moments in the same setting.
Therefore we are going to define the logarithmic Sobolev inequality.
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First, we define the entropy of a function f : X → (0,∞) with respect to µ in case
EX∼µ[f(X) log(f(X))] <∞ as

Entµ(f) := EX∼µ[f(X) log(f(X))]− EX∼µ[f(X)] log(EX∼µ[f(X)]).

This definition is closely related to the Kullback-Leibler divergence, also called the relative
entropy: assume µ≪ ν in Definition 2.4 and note that

KL(µ | ν) =
∫

dµ

dν
log
(dµ
dν

)
dν.

If we replace dµ
dν with a positive function f with EX∼µ[f(X) log(f(X))] <∞, that is normalized

using its integral with respect to ν, then∫
f∫
f dν

log
( f∫

f dν

)
dν =

1∫
f dν

(∫
f log

(
f
)
dν − log

( ∫
f dν

) ∫
f dν

)
.

This coincides with Entµ(f) up to normalization by
∫
f dν, which explains the similar naming.

Definition 2.14. A distribution µ on X with density pµ satisfies the logarithmic Sobolev
inequality with log-Sobolev constant λ > 0 if for all smooth functions f such that the terms
below are well-defined

Entµ(f
2) ≤ 2λEX∼µ[|∇f(X)|2]. (2.24)

The relation of the logarithmic Sobolev inequality to the control over higher order moments will
become apparent in the next subsection. Again, are we interested in the log-Sobolev constant of
Gaussian distributions.

Theorem 2.15. Let µ = N (a, σ2IX ). Then the logarithmic Sobolev inequality is fulfilled with
log-Sobolev constant σ2.

Proof. From Boucheron et al. (2013, Theorem 5.4) we know that N (0, IX ) satisfies the
logarithmic Sobolev inequality with log-Sobolev constant 1. Then we can use the same scaling
argument as in the proof of Theorem 2.13.

Theorem 2.15 is the motivation of the factor 2 appearing on the left hand side of (2.24). As
expected, the logarithmic Sobolev inequality implies the Poincaré inequality.

Theorem 2.16. If µ satisfies a logarithmic Sobolev inequality, then it satisfies a Poincaré
inequality.

Proof. This is a special case of Bakry et al. (2013, Proposition 5.1.3).

2.5.3. Sub-Gaussian and sub-exponential distributions

Next, we are going to look at distributions whose tails decay at least as fast as the Gaussian or
the exponential distribution. We restrict the definitions to the case X = R, which is sufficient
for the results needed in this thesis.
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Definition 2.17.

1. A distribution µ on R is called sub-Gaussian, if there is a constant ρ > 0 such that for
X ∼ µ and every t ≥ 0

PX∼µ(|X| ≥ t) ≤ 2 exp
(
− t2

ρ2
)
.

2. A distribution µ on X is called sub-exponential, if there is a constant ρ > 0 such that for
X ∼ µ and every t ≥ 0

PX∼µ(|X| ≥ t) ≤ 2 exp
(
− t

ρ

)
.

In both cases, the defining properties can be characterized in several useful ways. We start with
the characterizations of sub-Gaussian distributions.

Theorem 2.18. (Vershynin, 2018, Proposition 2.5.2) Let µ be a distribution on R and X ∼ µ.
The following statements are equivalent

1. The distribution µ is sub-Gaussian with constant ρ > 0.

2. For every q ≥ 1 we have that
(EX∼µ[|X|q])

1
q ≲ ρ

√
q.

3. For a constant ρ1 proportional to ρ, i.e. ρ1 ≍ ρ, it holds that

EX∼µ[exp(λ
2X2)] ≤ exp(ρ21λ

2), for all λ such that |λ| ≤ 1

ρ1
.

4. For a constant ρ2 proportional to ρ we have that

EX∼µ

[
exp

(X2

ρ22

)]
≤ 2.

If additionally E[X] = 0, then the following statement is also equivalent

5. For a constant ρ3 proportional to ρ it holds that

E[exp(λX)] ≤ exp(ρ23λ
2), for all λ ∈ R.

Furthermore, we can define a norm on the space of sub-Gaussian distributions.

Theorem 2.19. Let µ be a sub-Gaussian distribution on R and X ∼ µ. Define

∥X∥ψ2 = inf
{
t > 0 : E[exp

(
X2/t2

)
] ≤ 2

}
.

Then ∥ · ∥ψ2 is a norm on the space of sub-Gaussian distributions.

Proof. This is a special instance of an Luxemburg-Orlicz norm (Pick et al., 2012, Section 4.8)
driven by the function ψ2(x) = ex

2 − 1.

Similarly, sub-exponential distributions can be characterized using the following properties.
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Theorem 2.20. (Vershynin, 2018, Proposition 2.7.1) Let µ be a distribution on R and X ∼ µ.
The following statements are equivalent

1. The distribution µ is sub-exponential with constant ρ > 0.

2. For every q ≥ 1 we have that
(EX∼µ[|X|q])

1
q ≲ ρq.

3. For a constant ρ1 proportional to ρ it holds that

EX∼µ[exp(λ|X|)] ≤ exp(ρ1λ), for all λ such that 0 ≤ λ ≤ 1

ρ1
.

4. For a constant ρ2 proportional to ρ we have that

EX∼µ

[
exp

( |X|
ρ2

)]
≤ 2.

If additionally E[X] = 0, then the following statement is also equivalent

5. For a constant ρ3 proportional to ρ it holds that

EX∼µ[exp(λX)] ≤ exp(ρ23λ
2), for all λ such that |λ| ≤ 1

ρ3
.

On the space of sub-exponential distributions, we can also define a norm.

Theorem 2.21. Let µ be a sub-exponential distribution on R and X ∼ µ. Define

∥X∥ψ1 = inf
{
t > 0 : E[exp (|X|/t)] ≤ 2

}
.

Then ∥ · ∥ψ1 is a norm on the space of sub-exponential distributions.

Proof. This is again a special instance of an Luxemburg-Orlicz norm (Pick et al., 2012, Section
4.8) driven by the function ψ1(x) = ex − 1.

Sub-Gaussian and sub-exponential distributions are linked in several ways. Two of those links
are going to be of relevance for this thesis. First, as apparent from comparing Theorem 2.18
No. 2 to Theorem 2.20 No. 2, a sub-Gaussian random variable is always sub-exponential. Second,
the product of two sub-Gaussian random variables is sub-exponential.

Theorem 2.22. (Vershynin, 2018, Proposition 2.7.6) Let µ and ν be sub-Gaussian distributions
and X ∼ µ, Y ∼ ν. Then XY is sub-exponential and

∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2 .

2.5.4. Log-concave distributions

A common assumption on the unknown distribution, especially in the analysis of diffusion models,
is that it is strongly log-concave (Bruno et al., 2025; Gao & Zhu, 2025; Tang & Zhao, 2024). In
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this section, we are going to introduce the Brascamp-Lieb inequality, which is one of the main
reasons to impose this assumption. We start with the definition of convexity.

Definition 2.23. Let f : X → R be a twice differentiable function. Then

1. we call f convex if Hf (x) ⪰ 0 for all x ∈ X ,

2. we call f strictly convex if Hf (x) ≻ 0 for all x ∈ X ,

3. we call f strongly convex with parameter m > 0 if Hf (x) ⪰ mId for all x ∈ X .

Note that requiring Hf (x) ≻ 0 for all x ∈ X implies the classical definition via inequalities of
function values of strict convexity, but is not equivalent to it.

Theorem 2.24 (Brascamp-Lieb inequality). (Brascamp & Lieb, 1976, Theorem 4.1) Let µ be
a probability measure on X with density pµ with respect to the Lebesgue measure and pµ(x) > 0

for all x ∈ X . Further denote h := − log(pµ) and assume that h is strictly convex. Then for any
differentiable function g : X → R

Varµ(g) ≤ EX∼µ

[
⟨∇g(X), (Hh(X))−1∇g(X)⟩

]
.

A distribution that satisfies the assumption of Theorem 2.24 is typically referred to as a strictly
log-concave distribution. In case h is not only strictly but strongly convex with parameter m, we
call the corresponding distribution strongly log-concave with parameter m. In this case we can
use Theorem 2.24 to obtain an immediate bound on the coordinate variances of µ. To this end,
we set g(x) = xi for i ∈ {1, ...,dim(X )}. Then Hh(x) −mId ⪰ 0 for all x ∈ X , which implies
x⊤Hh(x)

−1x ≤ 1
m |x|2 for all x ∈ X . Choosing ei yields (Hh(x)

−1)ii ≤ 1
m for all x ∈ X . Hence

VarX∼µ(Xi) ≤
1

m
.

2.5.5. Connections

The functional inequalities of Section 2.5.2, and the properties discussed in Section 2.5.3 and
Section 2.5.4 can be related to each other. First we relate log-concave distributions to the
Poincaré and the logarithmic Sobolev inequality.

Theorem 2.25. Let µ be a probability measure on X .

1. If µ is log-concave, then it satisfies the Poincaré inequality.

2. If µ is strongly log-concave, then it satisfies the logarithmic Sobolev inequality.

Proof.

1. See Bobkov (1999, Theorem 1.2) or Bakry et al. (2013, Theorem 4.6.3).

2. See Villani (2008, Theorem 21.2, Remark 12.4), referring to the Bakry–Emery theorem of
Bakry & Émery (1985).
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The relation of the functional inequalities to the tail behavior properties is restrained to the case
X = R in this presentation. The following argument is commonly known as Herbst’s argument.

Theorem 2.26. Let µ be a distribution on R. If µ satisfies the logarithmic Sobolev inequality
with log-Sobolev constant λ, then the centered shift of µ is sub-Gaussian with constant ρ̃ ≍ λ.

Proof. In the entire proof we assume X ∼ µ. The proof follows along the lines of Ledoux (1999,
p. 148). Set f(x) = e

ϑX
2 for a ϑ > 0 in (2.24). Define H(ϑ) := E[eϑX ]. Then using the dominated

convergence theorem

Ent(f2) = E[ϑXeϑX ]− E[eϑX ] log
(
E[eϑX ]

)
= ϑH ′(ϑ)−H(ϑ) log(H(ϑ)).

Further
2λE[|∇f(X)|2] = ϑ2λ

2
E[eϑX ] =

ϑ2λ

2
H(ϑ).

Thus by (2.24)

ϑH ′(ϑ)−H(ϑ) log(H(ϑ)) ≤ ϑ2λ

2
H(ϑ) ⇐⇒ 1

ϑ

H ′(ϑ)

H(ϑ)
− log(H(ϑ))

ϑ2
≤ λ

2
.

Now define K(ϑ) := 1
ϑ log(H(ϑ)). Then

K ′(ϑ) =
1

ϑ

H ′(ϑ)

H(ϑ)
− log(H(ϑ))

ϑ2
≤ λ

2
.

As
lim
ϑ→0

K(ϑ) = lim
ϑ→0

E[XeϑX ]
E[eϑX ]

= lim
ϑ→0

M ′(ϑ)

M(ϑ)
= E[X],

where M is the moment generating function, we can extend the definition of K to

K(ϑ) :=

 1
ϑ log(H(ϑ)), ϑ > 0,

E[X], ϑ = 0.

Hence

K(ϑ) = K(0) +

∫ ϑ

0
K ′(u) du ≤ E[X] +

ϑλ

2
.

Going back to the function H, we get

1

ϑ
log(H(ϑ)) ≤ E[X] +

ϑλ

2

⇐⇒ H(ϑ) ≤ exp
(
ϑE[X] +

ϑ2λ

2

)
⇐⇒ E[eϑX ] ≤ exp

(
ϑE[X] +

ϑ2λ

2

)
.

Now Markov’s inequality yields

P(X − E[X] ≥ r) = P
(
exp(ϑ(X − E[X])) ≥ exp(ϑr)

)
≤ E[exp(ϑ(X − E[X]))]

exp(ϑr)
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= exp(−ϑr)E[e
ϑX ]

eϑE[X]
≤ exp(−ϑr)exp(ϑE[X] + ϑ2λ

2 )

eϑE[X]
= e

ϑ2λ
2

−ϑr.

Setting f(x) = e−
ϑX
2 , we obtain analogously

P(X − E[X] ≤ −r) ≤ eϑ2λ
2

−ϑr.

Thus a union bound argument and setting ϑ = r
λ leads to

P(|X − E[X]| ≥ r) ≤ 2e−
r2

2λ .

The Poincaré inequality is weaker than the logarithmic Sobolev inequality. Thus, the implied
concentration is weaker as well. As Section 5.5 does not rely on concentration implied by Poincaré
inequalities, we do not elaborate the dependencies between the constants.

Theorem 2.27. (Villani, 2008, special case of Theorem 22.30) Let µ be a distribution on R. If
µ satisfies the Poincaré inequality, then there is a constant C depending on the Poincaré constant
such that

P(|X| ≥ t) ≤ 2 exp(−Cmin(t, t2)).

Theorem 2.27 shows that the Poincaré inequality leads to sub-Gaussian tail behavior for small t
and sub-exponential tail behavior for large t. For X = R, we summarized the relations needed
in this thesis in Figure 2.3.

µ strongly log concave

=⇒

µ log concave

=⇒

=⇒

µ satisfies LSI

=⇒

µ satisfies PI

=⇒ µ sub-Gaussian

=⇒

µ sub-exponential

Figure 2.3.: Overview of the relations in case of X = R needed in this thesis. In all cases, we
assume for simplicity EX∼µ[X] = 0. PI is short for Poincaré inequality, LSI is short
for logarithmic Sobolev inequality.

2.6. Conceptual proof of oracle and related inequalities

In this section, we present a conceptual proof of convergence rate in a distribution estimation
setting. To this end, let P be some set of distributions on X . Assume we have an evaluation
distance d : P ×P → R≥0, which satisfies the triangle inequality, and a selection criterion c : P ×
P → R≥0. Further assume we observe n i.i.d. observations X1, ..., Xn of an unknown distribution
µ∗. Based on these observations, we define the empirical distribution

µn :=
1

n

n∑
i=1

δXi

and assume we have a class of potential distribution estimators PΘ ⊂ P such that the minimizers
below exist.
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The empirical risk minimizer of the model associated with c is chosen as

µ̂ ∈ argmin
µ∈PΘ

c(µn, µ).

Our goal is to bound d(µ∗, µ̂). Let µ̃ be some reference measure and εref := d(µ∗, µ̃) the
corresponding reference error. We assume a linear, multiplicative relation between d and c,
i.e. there exists a constant εd,c > 0 such that

d(µ, ν) ≤ εd,cc(µ, ν), for all µ, ν ∈ P.

Further, we assume an additive relation between c(µ̃, ·) and c(µn, ·), i.e. for all ν ∈ PΘ

|c(µ̃, ν)− c(µn, ν)| ≤ εnc .

Note that n is an index here. Of course, εnc depends on the reference measure µ̃. Then for any
µ ∈ PΘ

d(µ∗, µ̂) ≤ εref + d(µ̃, µ̂) (triangle inequality)

≤ εref + εd,cc(µ̃, µ̂) (difference of criterion)

≤ εref + εd,c(ε
n
c + c(µn, µ̂)) (stochastic error)

≤ εref + εd,c(ε
n
c + c(µn, µ)) (empirical risk minimization)

≤ εref + εd,c(2ε
n
c + c(µ̃, µ)). (stochastic error)

As this holds for any µ ∈ PΘ, we conclude

d(µ∗, µ̂) ≤ εref + εd,c(2ε
n
c + min

µ∈PΘ

c(µ̃, µ)).

The error εd,c depends only on the relationship between the distance d and the criterion c. The
error minµ∈PΘ

c(µ̃, µ) depends on the ability of the class PΘ to approximate µ̃ in criterion c. The
stochastic error εnc can be controlled using concentration inequalities, such as the ones presented
in Section 2.5.1. This error can be avoided when using µ̃ = µn as a reference distribution.
In this case, the reference error is the distance between the true distribution and the empirical
distribution based on X1, ..., Xn. As the empirical distribution cannot reflect the regularity of
the distribution µ∗, the use of µn as a reference distribution comes at the cost of profiting from
this smoothness in the rate.
The presented conceptual proof serves as a starting point; all models studied in this thesis will
require adaptations tailored to the corresponding setting.

2.7. Proof of Theorem 2.7

To prove Theorem 2.7, we need some auxiliary results and notation.
Theorem 2.7 is very similar to Gühring et al. (2020, Theorem 4.1), which however applies only
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to functions f which are at least twice (weakly) differentiable. Our proof can thus build on
numerous auxiliary results and arguments from this previous work. We keep the proof structure
of Gühring et al. (2020) which in turn relies on Yarotsky (2017).
Let d,N ∈ N. For m ∈ {0, ..., N}d, define the functions ϕm : Rd → R,

ϕm(x) =

d∏
ℓ=1

ψ
(
3N
(
xℓ −

mℓ

N

))
, where ψ(x) =


1, |x| < 1,

0, |x| > 2,

2− |x|, 1 ≤ |x| ≤ 2.

By definition, we have ∥ϕm∥∞ = 1 for all m and

suppϕm ⊂
{
x : sup

k
|xk −

mk

N
| < 1

N

}
=: B 1

N
,|·|∞(

m

N
). (2.25)

Gühring et al. (2020, Lemma C.3 (iv)) have verified that ∥ϕm∥W 1,∞(Rd) ≤ cN for some constant
c > 0. A direct consequence of Lemma 2.11, Lemma C.3, Lemma C.5 and Lemma C.6 by
Gühring et al. (2020) is the following approximation result for the localizing functions ϕm via
ReLU networks.

Lemma 2.28. For any ε ∈ (0, 1/2) and any m ∈ {0, ..., N}d there is a network ψε with ReLU
activation function, no more than C1 log2(ε

−1) layers, no more than C2(N+1)d log22(ε
−1) nonzero

weights and no more than C3(N + 1)d(log22(ε
−1) ∨ log2(ε

−1)) neurons such that for k ∈ {0, 1}

∥ψε − ϕm∥Wk,∞ ≤ cNkε,

where C1, C2, C3 and c are constants independent of m and ε. Additionally,

ϕm(x) = 0 =⇒ ψε(x) = 0,

and therefore suppψε ⊂ B 1
N
,|·|∞(mN ).

Next we approximate a bounded Lipschitz function using linear combinations of the set {ϕm : m ∈
{1, ..., N}d}. The approximation error will be measured in the Hölder norm from (2.3).

Lemma 2.29. Let 0 < α < 1. There exists a constant C1 > 0 such that for any f ∈W 1,∞((0, 1)d)

there are constants cf,m for m ∈ {0, ..., N}d such that∥∥∥f − ∑
m∈{0,...,N}d

cf,mϕm

∥∥∥
Hα
≤ C1

( 1

N

)1−α
∥f∥W 1,∞ .

The coefficients satisfy for a C2 > 0

|cf,m| ≤ C2∥f̃∥W 1,∞(Ωm,N ),

where Ωm,N := B 1
N
,|·|∞(mN ) and f̃ ∈W 1,∞(R) is an extension of f.

Proof. Let E : W 1,∞((0, 1)d)→W 1,∞(R) be the continuous linear extension operator from Stein
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(1970, Theorem 5) and set f̃ := Ef. As E is continuous there exists a CE > 0 such that

∥f̃∥W 1,∞(Rd) ≤ CE∥f∥W 1,∞ .

Step 1 (Choice of cf,m): For each m ∈ {0, . . . , N}d we define

cf,m :=

∫
Bm,N

f̃(y)ρ(y) dy for Bm,N := B 3
4N

,|·|

(m
N

)
and an arbitrary cut-off function ρ supported in Bm,N , i.e.

ρ ∈ C∞
c (Rd) with ρ(x) ≥ 0 for all x ∈ Rd, supp ρ = Bm,N and

∫
Rn

ρ(x)dx = 1.

Then

|cm,f | =
∣∣∣ ∫

Bm,N

f̃(y)ρ(y) dy
∣∣∣ ≤ ∥f̃∥∞,Ωm,N

∫
Bm,N

ρ(y) dy = ∥f̃∥∞,Ωm,N
≤ CE∥f∥W 1,∞(Ωm,N ).

Step 2 (Local estimates in ∥ · ∥Wk,p): The coefficients cm,f are the averaged Taylor polynomials
in the sense of Brenner & Scott (2008, Definition 4.1.3) of order 1 averaged over Bm,N . As Gühring
et al. (2020, Proof of Lemma C.4, Step 2) showed, the conditions of the Bramble-Hilbert-Lemma
(Brenner & Scott, 2008, Theorem 4.3.8) are satisfied. Hence for k ∈ {0, 1}

|f̃ − cm,f |Wk,∞(Ωm,N ) ≤ C1

(2√d
N

)1−k
|f̃ |W 1,∞(Ωm;n) ≤ C2

( 1

N

)1−k
∥f̃∥W 1,∞(Ωm;n).

Now using ϕm as defined above, we get∥∥∥ϕm(f̃ − cf,m)∥∥∥
∞,Ωm,N

≤ ∥ϕm∥∞,Ωm,N
·
∥∥∥f̃ − cf,m∥∥∥

∞,Ωm,N

≤ C2
1

N
∥f̃∥W 1,∞(Ωm,N ). (2.26)

Due to the product inequality for weak derivatives (Gühring et al., 2020, Lemma B.6) there is a
constant C ′ > 0 such that the supremum norm of the weak derivative is bounded by∣∣∣ϕm(f̃ − cf,m)∣∣∣

W 1,∞(Ωm,N )
≤ C ′|ϕm|W 1,∞(Ωm,N ) ·

∥∥∥f̃ − cf,m∥∥∥
∞,Ωm,N

+ C ′ ∥ϕm∥∞,Ωm,N
· |f̃ − cf,m|W 1,∞(Ωm,N )

≤ C ′ · cN · C2
1

N
∥f̃∥W 1,∞(Ωm,N ) + C ′ · C3∥f̃∥W 1,∞(Ωm,N )

= C4∥f̃∥W 1,∞(Ωm,N ). (2.27)

Combining (2.26) and (2.27) we get∥∥∥ϕm(f̃ − cf,m)∥∥∥
W 1,∞(Ωm,N )

≤ C5∥f̃∥W 1,∞(Ωm,N ).
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Step 3 (Global estimate in ∥ · ∥Wk,p): As
∑

m∈{0,...,N}d ϕm = 1, we have that

f̃(x) =
∑

m∈{0,...,N}d
ϕm(x)f̃(x), for almost every x ∈ (0, 1)d.

As f̃
∣∣
(0,1)d

= f we have for k ∈ {0, 1}
∥∥∥f − ∑

m∈{0,...,N}d
ϕmcf,m

∥∥∥
Wk,∞((0,1)d)

=
∥∥∥f̃ − ∑

m∈{0,...,N}d
ϕmcf,m

∥∥∥
Wk,∞((0,1)d)

=
∥∥∥ ∑
m∈{0,...,N}d

ϕm
(
f̃ − cf,m

)∥∥∥
Wk,∞((0,1)d)

≤ sup
m̃∈{0,...,N}d

∥∥∥ ∑
m∈{0,...,N}d

ϕm
(
f̃ − cf,m

)∥∥∥
Wk,∞(Ωm̃,N )

,

(2.28)

where the last step follows from (0, 1)d ⊂ ⋃
m̃∈{0,...,N}d Ωm̃,N . Now we obtain for each m̃ ∈

{0, . . . , N}d using (2.25), (2.26) and (2.27)∥∥∥ ∑
m∈{0,...,N}d

ϕm
(
f̃ − cf,m

)∥∥∥
Wk,∞(Ωm̃,N )

≤ sup
m∈{0,...,N}d
|m−m̃|∞≤1

∥∥ϕm(f̃ − cf,m)∥∥Wk,∞(Ωm̃,N )

≤ sup
m∈{0,...,N}d
|m−m̃|∞≤1

∥∥ϕm(f̃ − cf,m)∥∥Wk,∞(Ωm,N )

≤ C6

( 1

N

)1−k
sup

m∈{0,...,N}d,
|m−m̃|∞≤1

∥f̃∥W 1,∞(Ωm,N ).

Plugging this into (2.28), we obtain for k ∈ {0, 1}∥∥∥f − ∑
m∈{0,...,N}d

ϕmcf,m

∥∥∥
Wk,∞((0,1)d)

≤ C6

( 1

N

)(1−k)
sup

m̃∈{0,...,N}d

(
sup

m∈{0,...,N}d,
|m−m̃|∞≤1

∥f̃∥W 1,∞(Ωm,N )

)

≤ C7

( 1

N

)(1−k)
sup

m̃∈{0,...,N}d
∥f̃∥W 1,∞(Ωm̃,N )

≤ C8

( 1

N

)(1−k)
∥f̃∥W 1,∞(Rd)

≤ C9

( 1

N

)(1−k)
∥f∥W 1,∞((0,1)d). (2.29)

Step 4 (Interpolation): Define the linear operators T0 : W
1,∞((0, 1)d) → L∞((0, 1)d),

Tα : W
1,∞((0, 1)d)→ Hα((0, 1)d) and T1 : W 1,∞((0, 1)d)→W 1,∞((0, 1)d) via

Tk(f) := f −
∑

m∈{0,...,N}d
ϕmcf,m, k ∈ {0, α, 1}.

Note that the linearity follows from the definition of the constants cf,m. Using Lunardi (2018,
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Theorem 1.6), for the nontrivial interpolation couple see Lunardi (2018, p. 11 f.), leads to

∥Tα∥ ≤ ∥T0∥1−α∥T1∥α.

Note that ∥ · ∥Hα is equivalent to ∥ · ∥W s,∞(Ω) in Gühring et al. (2020). Using (2.29) we conclude

∥∥∥f − ∑
m∈{0,...,N}d

ϕmcf,m

∥∥∥
Hα
≤ C10

( 1

N

)1−α
∥f∥W 1,∞ .

Now we want to approximate the function
∑

m∈{0,...,N}d cf,mϕm in Hölder norm using a ReLU
network.

Lemma 2.30. For any ε ∈ (0, 1/2) there is a neural network fNN,ε with ReLU activation function
such that for (cf,m)m from Lemma 2.29, there is a constant C > 0 such that∥∥∥ ∑

m∈{0,...,N}d
ϕmcf,m − fNN,ε

∥∥∥
Hα
≤ C∥f∥W 1,∞Nαε,

the number of layers of fNN,ε is at most ⌈C1 log2(ε
−1)⌉, the number of nonzero weights is at most

⌈C2(N+1)d log22(ε
−1)⌉ and the number of neurons is at most ⌈C3(N+1)d(log22(ε

−1)∨log2(ε−1))⌉,
with C1, C2 and C3 from Lemma 2.28.

Proof. From Lemma 2.28 we know that there are neural networks ψε,m with at most
⌈C1 log2(ε

−1)⌉ layers, ⌈C2(N + 1)d log22(ε
−1)⌉ nonzero weights and ⌈C3(N + 1)d(log22(ε

−1) ∨
log2(ε

−1))⌉ neurons that approximate ϕm such that for k ∈ {0, 1}

∥ϕm − ψε,m∥Wk,∞ ≤ c′Nkε.

Now we parallelize these networks and multiply with the coefficients cf,m afterwards. Hereby, we
construct a network fNN,ε with 1 + ⌈C1 log2(ε

−1)⌉ layers, Nd + ⌈C2(N + 1)d log22(ε
−1)⌉ nonzero

weights and 1 + ⌈C3(N + 1)d(log22(ε
−1) ∨ log2(ε

−1))⌉ neurons such that

fNN,ε =
∑

m∈{0,...,N}d
cf,mψε,m. (2.30)
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For each m ∈ {0, ..., N}d denote Ωm,N = B 1
N
,|·|∞(mN ) as above. For k ∈ {0, 1} we get

∥∥∥fNN,ε −
∑

m∈{0,...,N}d
cf,mϕm

∥∥∥
Wk,∞((0,1)d)

=
∥∥∥ ∑
m∈{0,...,N}d

cf,m(ψε,m − ϕm)
∥∥∥
Wk,∞((0,1)d)

≤ sup
m̃∈{0,...,N}d

∥∥∥ ∑
m∈{0,...,N}d

cf,m(ψε,m − ϕm)
∥∥∥
Wk,∞(Ωm̃,N∩(0,1)d)

≤ 3d sup
m̃∈{0,...,N}d

sup
m∈{0,...,N}d

∥∥∥cf,m(ψε,m − ϕm)∥∥∥
Wk,∞(Ωm̃,N∩(0,1)d)

≤ 3d sup
m̃∈{0,...,N}d

sup
m∈{0,...,N}d

|cf,m|
∥∥∥(ψε,m − ϕm)∥∥∥

Wk,∞(Ωm̃,N∩(0,1)d)

≤ 3d sup
m̃∈{0,...,N}d

sup
m∈{0,...,N}d

∥f̃∥W 1,∞(Ωm,N )∥ψε,m − ϕm∥Wk,∞(Ωm̃,N∩(0,1)d)

≤ CNkε∥f∥W 1,∞ .

The second to last inequality follows from the fact that on Ωm̃,N is within the support of ϕm only
for |m − m̃|∞ ≤ 1. The last inequality follows from (2.30) and the continuity of the extension
operator, see Stein (1970, Theorem 5). As in Step 4 of Lemma 2.29, we conclude using Lunardi
(2018, Theorem 1.6) ∥∥∥fNN,ε − ∑

m∈{0,...,N}d
ϕmcf,m

∥∥∥
Hα
≤ CNαε∥f∥W 1,∞ .

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. Combining Lemma 2.29 and Lemma 2.30 with ∥f∥W 1,∞ ≤ B yields for a
constant C > 0 for any ε̃ ∈ (0, 1/2) that

∥f − fNN,ε̃∥Hα ≤
∥∥∥f − ∑

m∈{0,...,N}d
cf,mϕm

∥∥∥
Hα

+
∥∥∥ ∑
m∈{0,...,N}d

cf,mϕm − fNN,ε̃
∥∥∥
Hα

≤ CB
(( 1

N

)1−α
+Nαε̃

)
, (2.31)

where ε̃ determines the approximation accuracy in Lemma 2.30. For

N :=

⌈( ε

2CB

)−1/(1−α)
⌉
,

we get for the first term in (2.31) ( 1

N

)1−α
≤ ε

2CB
.

Choosing

ε̃ =
ε

2CB

(( ε

2CB

)− 1
1−α

+ 1
)−α

(2.32)

leads to
∥f − fNN,ε̃∥Hα ≤ ε.

From Lemma 2.28 we know that there is a ReLU network with no more than 1+ ⌈C1 log2(ε̃
−1)⌉
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layers, Nd+
⌈
C2(N+1)d log22(ε̃

−1)
⌉

nonzero weights and 1+
⌈
C3(N+1)d(log22(ε̃

−1)∨ log2(ε̃−1))
⌉

neurons with the required properties. Inserting (2.32) and assuming CB > 1
2 yields

log2(ε̃
−1) ≤ log2

(2CB
ε

2α
( ε

2CB

)− α
1−α
)
≤ C ′ log2(ε

− 1
1−α ).

Thus there are C ′, C ′′ and C ′′′ such that the ReLU network has no more than 1+
⌈
C ′ log2(ε

− 1
1−α )

⌉
layers,

⌈
C ′′ε−

d
1−α log22(ε

− 1
1−α )

⌉
nonzero weights and 1 +

⌈
C ′′′ε−

d
1−α (log22(ε

− 1
1−α ) ∨ log2(ε

− 1
1−α ))

⌉
neurons. Taking the largest constant yields the first part of the result.
Since f ∈ Lip(K,B) ⊆ Hα(Γ) for Γ = max(K, 2B), we conclude

∥fNN,ε̃∥Hα ≤ ∥f∥Hα + ∥fNN,ε̃ − f∥Hα ≤ Γ + ε.



Chapter 3

Generative adversarial networks

The first method we are going to analyze are Generative Adversarial Networks (GANs)
introduced by Goodfellow et al. (2014). As already indicated in the introduction, GANs have
attracted much attention in the 2010s, initially due to impressive results in the creation of
photorealistic images. Meanwhile, the areas of application have expanded far beyond this, and
GANs serve as a prototypical example of generative models. To ensure easy readability, we
shortly recall the definitions from the introduction.
The Vanilla GAN as constructed by Goodfellow et al. (2014) relies on the minimax game

inf
G∈G

sup
D∈D

E
[
logD(X) + log

(
1−D(G(Z))

)]
, (3.1)

to learn an unknown distribution P∗ of the random variable X. The generator G chosen from
a set G, applied to the latent random variable Z aims to mimic the distribution of X as closely
as possible. The discriminator D, chosen from a set D, has to distinguish between real and fake
samples.
Generalizations of the underlying Jensen-Shannon distance have led to various extensions of
the original GAN, such as f -GANs (Nowozin et al., 2016). More famously, Wasserstein GANs
(Arjovsky et al., 2017), characterized by

inf
G∈G

sup
W∈Lip(1)

E
[
W (X)−W (G(Z))

]
, (3.2)

are obtained by replacing the Jensen-Shannon divergence by the Kantorovich dual of the
Wasserstein distance. This approach can be generalized using Integral Probability Metrics
(Müller, 1997).
In contrast to Wasserstein GANs, Vanilla GANs and the Jensen-Shannon divergence have been
studied less extensively, and fundamental questions have not been settled. In particular, all
statistical results for Vanilla GANs require the same dimension of the latent space and the
target space which is in stark contrast to common practice. By (2.19), the Jensen-Shannon
divergence between singular measures is maximal. This leads to the algorithmic drawback of
Vanilla GANs highlighted by Arjovsky & Bottou (2017) is that an arbitrarily large discriminator
class prevents the generator from learning. Thus, using neural networks as a discriminator class
must be advantageous compared to the set of all measurable functions. This empirical fact is
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supported by the numerical results of Farnia & Tse (2018) who impose a Lipschitz constraint on
the discriminator class. In the following, we broaden the theoretical boundaries of Vanilla GANs
to cope with the empirical evidence. To this end, we replace the Jensen-Shannon framework
with a Wasserstein perspective.

Related work The existence and uniqueness of the optimal generator for Vanilla GANs is
shown by Biau et al. (2020) under the condition that the class G is convex and compact. They
also study the asymptotic properties of Vanilla GANs. Puchkin et al. (2024) have shown a non-
asymptotic rate of convergence in the Jensen-Shannon divergence for Vanilla GANs with neural
networks under the assumption that the density of P∗ exists and that the generator functions
are continuously differentiable.
In practice, however, the ReLU is commonly used (Aggarwal, 2018, p. 13). The resulting neural
network generates continuous piecewise linear functions. Therefore, the convergence rate of
Puchkin et al. (2024) combined with Belomestny et al. (2023) is not applicable to this class of
functions.
The statistical analysis of Wasserstein GANs is much better understood. Biau et al. (2021) have
studied optimization and asymptotic properties. Liang (2021) has shown error decompositions
with respect to the Kullback-Leibler divergence, the Hellinger distance and the Wasserstein
distance. The case where the unknown distribution lies on a low-dimensional manifold is
considered in Schreuder et al. (2021) as well as Tang & Yang (2023). The latter also derived
minimax rates in a more general setting using the Hölder metric. Assuming that the density
function of P∗ exists, Liang (2017) has shown a rate of convergence in Wasserstein distance
with ReLU activation function and a factor growing exponentially in the depth of the network.
Theoretical results including sampling the latent distribution in addition to dimension reduction
have been derived by Huang et al. (2022), who have also shown a rate of convergence in a slightly
more general Hölder setting using ReLU networks whose Lipschitz constant grows exponentially
in the depth. A rate of convergence using the total variation metric and leaky ReLU networks
has been shown in Liang (2021).
Convergence rates with respect to the Wasserstein distance have been studied by Chen et al.
(2020) and Lee et al. (2025). Up to a logarithmic factor, optimal rates in the Hölder metric were
obtained by Stéphanovitch et al. (2024) using smooth networks. In a similar setting, Chakraborty
& Bartlett (2025) discussed several methods for dimension reduction. Recently, Suh & Cheng
(2024) have reviewed the theoretical advances in Wasserstein GANs.
Ensuring Lipschitz continuity of the discriminator class is the essential property of Wasserstein
GANs. Lipschitz-constrained neural networks and their empirical success are subject of ongoing
research (Khromov & Singh, 2024). In context of GANs see Than & Vu (2021). Implementations
of the Lipschitz constrained discriminator have evolved from weight clipping (Arjovsky et al.,
2017) to penalizing the objective function (Gulrajani et al., 2017; Wei et al., 2018; Zhou et al.,
2019; Petzka et al., 2018; Miyato et al., 2018; Asokan & Seelamantula, 2023), which heuristically
leads to networks with bounded Lipschitz constants. Farnia & Tse (2018) use an objective
function that combines Wasserstein and Vanilla GANs.
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Own contribution This chapter aims to bridge the gap in theoretical analysis between
Vanilla GANs and Wasserstein GANs while addressing the theoretical limitations of the former
ones. By imposing a Lipschitz condition on the discriminator class in (3.1), we recover
Wasserstein GAN-like behavior. As a main result, we can derive an oracle inequality for the
Wasserstein distance between the true data generating distribution and its Vanilla GAN estimate.
In particular, this allows us to transfer key features, such as dimension reduction, known from
the statistical analysis of Wasserstein GANs. We show that the statistical error of the modified
Vanilla GAN depends only on the dimension of the latent space, independent of the potentially
much larger dimension of the feature space X . Thus, Vanilla GANs can avoid the curse of
dimensionality. Such properties are well known from practice, see for example Figure 1.1, but
cannot be verified by the classical Jensen-Shannon analysis. On the other hand the derived rate
of convergence for the Vanilla GAN is slower than for Wasserstein GANs which is in line with
the empirical advantage of Wasserstein GANs.
Afterwards we consider the most relevant case where the classes G and D are parameterized
by neural networks. Using our previous results, we derive an oracle inequality that depends
on the network approximation errors for the best possible generator and the optimal Lipschitz
discriminator. To bound the approximation error of the discriminator, we replace the Lipschitz
constraint on the networks with a less restrictive Hölder constraint. This enables the use of
the approximation result shown in Theorem 2.7. As a result, we obtain the rate of convergence
n−α/2d

∗
, α ∈ (0, 1), with latent space dimension d∗ ≥ 2 for sufficiently large classes of networks.

Additionally, our approximation theorem allows for an explicit bound on the discriminator
approximation error for Wasserstein-type GANs, which achieve the rate n−α/d∗ , α ∈ (0, 1).
We use a simple illustrative example to assess the practical implications of our theoretical results.
This example allows us to quantify the rate depending on the number of observations, the
dimension reduction property, and the stabilizing effect of a Lipschitz-constrained discriminator
class.

3.1. The Vanilla GAN distance

Let us first fix two notations that are unusual or specific to this chapter. For ease of notation
we abbreviate for x ∈ (0,∞)

[x]1;1/2 := max{x,√x}. (3.3)

When referring to function spaces, we omit the domain Ω in in this chapter if Ω = (0, 1)d.

In this chapter, we assume to observe i.i.d. samples X1, ..., Xn ∼ P∗ with values in X := (0, 1)d.
On another space Z := (0, 1)d

∗ , called the latent space, we choose a latent distribution U. Unless
otherwise specified, X ∼ P∗ and Z ∼ U. We further assume that P∗ and U have finite first
moments. Throughout, the generator class G is a nonempty set of measurable functions from Z
to X .
Typically the discriminator class consists of functions mapping to R concatenated to a sigmoid
function that maps into (0, 1) to account for the classification task. This is especially the case
for standard classification networks. The most common sigmoid function used for this purpose
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is the logistic function x 7→ (1+ e−x)−1, which we fix throughout. Together with a shift by log 4,
we can rewrite the Vanilla GAN optimization problem (3.1) as

inf
G∈G

VW(P∗,PG(Z)) (3.4)

in terms of the Vanilla GAN distance between probability measures P and Q on X

VW(P,Q) := sup
W∈W

EX∼P
Y∼Q

[
− log

(1 + e−W (X)

2

)
− log

(1 + eW (Y )

2

)]
, (3.5)

where W is a set of measurable functions W : X → R. As long as 0 ∈ W, we have that VW ≥ 0.

To choose the generator Ĝn as the empirical risk minimizer, the unknown distribution P∗ in
(3.4) must be replaced by the empirical distribution Pn based on the observations X1, ..., Xn. In
practice, the expectation with respect to Z ∼ U is replaced by an empirical mean too, which we
omit for the sake of simplicity. Along Huang et al. (2022), the next and all subsequent results
easily extend to the corresponding setting.
The following error bound in terms of the Vanilla GAN distance provides an error decomposition
for the empirical risk minimizer of the Vanilla GAN. To this end, define Lip(1) ◦W as the set of
all concatenations f ◦ g, where f ∈ Lip(1) and g ∈ W.

Lemma 3.1. Assume that G is chosen such that a minimum exists. Let W be symmetric, that
is, W ∈ W implies −W ∈ W. For

Ĝn ∈ argmin
G∈G

VW(Pn,PG(Z)) (3.6)

we have that

VW(P∗,PĜn(Z)) ≤ min
G∈G

VW(P∗,PG(Z)) + 2 sup
W∈Lip(1)◦W

1

n

n∑
i=1

(
W (Xi)− E[W (X)]

)
. (3.7)

The first term in (3.7) is the error due to the approximation capabilities of the class G. The second
term refers to the stochastic error due to the amount of training data. As W is symmetric, the
stochastic error is non-negative. Both error terms depend on the discriminator class W. Large
discriminator classes lead to finer discrimination between different probability distributions and
thus to a larger approximation error term. Similarly, the stochastic error term will increase with
the size of W. The cost of small classes W is a less informative loss function on the left side of
(3.7).

If W is the set of all measurable functions, the analysis by Goodfellow et al. (2014, Theorem 1)
shows that the Vanilla GAN distance is equivalent to the Jensen-Shannon distance. Arjovsky
& Bottou (2017) have elaborated on the theoretical and practical disadvantages of this case.
As already emphasized, the Jensen-Shannon divergence is not compatible with high-dimensional
settings because it cannot distinguish between different singular measures. Therefore, we need a
weaker distance and thus restrict W.
The key insight of Wasserstein GANs (3.2) is that this particular drawback of the Jensen-Shannon



3.2. Relation between Vanilla GAN and Wasserstein distance 49

distance can be solved by the Wasserstein distance, as introduced in Section 2.2.1. In this chapter,
we need a slightly adapted version of the Wasserstein distance. Instead of taking the supremum
over all Lipschitz 1 functions in (2.15), we only consider Lipschitz 1 functions W such that
W (0) = 0. Since this adaptation only leads to the addition of a constant, which cancels in the
objective function, we conclude that

W1(P,Q) = sup
W∈Lip(1)
W (0)=0

EX∼P
Y∼Q

[W (X)−W (Y )]. (3.8)

Bounds for weaker metrics, such as the Kolmogorov or Levy metric, can be easily derived from
the bounds in the Wasserstein metric under weak conditions, see e.g. Gibbs & Su (2002).

Therefore, we chooseW = Lip(L) for some L ≥ 1 in Lemma 3.1. In this case the following result
shows that the existence of an empirical risk minimizer is guaranteed as soon as G is compact.

Lemma 3.2. Assume G is compact with respect to the supremum norm. The map T : G → R≥0,

T (G) := VLip(L)(Pn,PG(z)) is continuous and argmin
G

VLip(L)(P∗,PG(z)) is nonempty.

Hence, we throughout assume the following:

Assumption 3.3. G is compact with respect to the supremum norm.

In the context of neural networks the compactness assumption is satisfied for all practically
relevant implementations. Furthermore, it should be noted that the aforementioned assumption
is only required for the use of the minimizing argument.

3.2. Relation between Vanilla GAN and Wasserstein distance

Our subsequent analysis builds on the following equivalence result between the Vanilla GAN
distance and the Wasserstein distance with an additional L2-penalty term on the discriminator.

Theorem 3.4. For L > 2 and B > 0 we have for probability measures P and Q on X

sup
W∈Lip(1,B′)

W (·)>− log(2−2/L)

{
EX∼P
Y∼Q

[W (X)−W (Y )]− L(L− 1)

2
EX∼Q[W (X)2]

}
≤ VLip(L,B)(P,Q)

≤ sup
W∈Lip(L,B)
W (·)>− log(2)

{
EX∼P
Y∼Q

[W (X)−W (Y )]− eB

(2eB − 1)2
EX∼Q[W (X)2]

}
,

where B′ = log((1 + eB)/2).

Note that, using the function g : (−∞, log(2 − 2/L)) → R, g(x) = − log(2e−x − 1), we obtain
lower and upper bounds with a penalty term depending on E[W (Y )2] instead of E[W (X)2].
Theorem 3.4 reveals that the Vanilla GAN distance is indeed compatible with the Wasserstein
distance and will allow us to prove rates of convergence of the Vanilla GAN with respect to the
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Wasserstein distance. In doing so, we need to investigate the consequences of the penalty term.
An upper bound without the penalty term and independent of B can be shown as in the proof
of Theorem 3.5. For the lower bound, a similiar improvement cannot be expected in general as
indicated in Example 3.6. However, the restriction to Lip(1, B′) has far less severe consequences
than the corresponding restriction in the upper bound.
We can deduce from Theorem 3.4 that the Vanilla GAN distance is bounded from above and
below by the Wasserstein distance or the squared Wasserstein distance, respectively. In the
following, we equip X with the p-norm | · |p for 1 ≤ p ≤ ∞.

Theorem 3.5. Let L > 2 and B ∈ [1,∞]. For probability measures P and Q on X we have

min
(
c1W1(P,Q), c2W1(P,Q)2

)
≤ VLip(L,B)(P,Q) ≤ LW1(P,Q),

where c1 = 1
2
log(2−2/L)

d1/p
and c2 = 1

2d2/p
1

L(L−1) , setting 1/p = 0 if p =∞.

The assumption L > 2 is not very restrictive. In practically relevant cases, such as neural network
discriminators, the Lipschitz constant is typically quite large. A higher Lipschitz constraint on
the discriminator will subsequently result in a less stringent constraint on the neural network.
However, an arbitrarily large Lipschitz constant is also undesirable, as the upper bound grows
linearly in L.
More importantly, we observe a gap between W1(P,Q)2 in the lower bound and W1(P,Q) in
upper bound when W1(P,Q) < 1 which is a consequence of the penalty term in Theorem 3.4.
The following example indicates that this loss is unavoidable, by restricting the discriminator
class to a subset of Lip(L).

Example 3.6. For ε, γ > 0, γ+ ε < 1 let P = 1
2(δγ + δγ+ε) and Q = 1

2(δ0+ δε). The Wasserstein
distance is then given by

W1(P,Q) = γ.

We consider the Vanilla GAN distance using L-Lipschitz affine linear functions as discriminator,
Va·+b(P,Q), with a, b ∈ R and |a| ≤ L. Note that the class of affine linear functions can be
represented by one layer ReLU neural networks. The optimal b can be calculated explicitly, the
optimal a can be determined numerically. Using the optimal slope a and b we obtain for γ < ε,

ε = 1
4 and a > 16

W1(P,Q)2

2
≤ Va·+b(P,Q) ≤ a ·W1(P,Q)2.

If γ ≥ ε, then the optimal a is a = L and

log(2) ·W1(P,Q) ≤ Va·+b(P,Q) ≤ a ·W1(P,Q).

Wasserstein GANs, where the generator is chosen as the empirical risk minimizer of the
Wasserstein distance (3.8), achieve optimal convergence rates up to logarithmic factors with
respect to the Wasserstein distance as proved by Stéphanovitch et al. (2024). In view of
Theorem 3.5 we cannot hope that Vanilla GANs achieve the same rate even if we use a Lipschitz
discriminator class. This is in line with the better performance of Wasserstein GANs in practice.
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However, Theorem 3.5 allows us to study the behavior of Vanilla GANs in settings where the
dimension of the latent space is smaller than the dimension of the sample space, a setting that
is excluded in all previous works on convergence rates for Vanilla GANs.

3.3. Oracle inequalities for Vanilla GANs

Our aim is to bound the Wasserstein distance between the unknown distribution P∗ and the
generated distribution PĜn(Z) using the empirical risk minimizer Ĝn of the Vanilla GAN. The
following oracle inequality shows that imposing a Lipschitz constraint on the discriminator class
does circumvent the theoretical limitations of Vanilla GANs which is caused by the Jensen-
Shannon distance. Recall the notation introduced in (3.3).

Theorem 3.7. Let L > 2 and B ∈ [1,∞]. For the empirical risk minimizer Ĝn from (3.6) with
W = Lip(L,B) we have

W1(P∗,PĜn(Z)) ≤ c
[
inf
G∈G

W1(P∗,PG(Z))
]1;1/2

+ (1 + c)[W1(Pn,P∗)]1;1/2, (3.9)

for some constant c > 0 depending on d, p and L.

Note that the discriminator class Lip(L,B) admits no finite-dimensional parameterization and
is therefore not feasible in practice. We will return to this issue in Section 3.4. The terms in
(3.9) can be interpreted analogously to the interpretation of the bound in Lemma 3.1, but here
we have an oracle inequality with respect to the Wasserstein distance. The first term is the
approximation error. It is large when G is not flexible enough to provide a good approximation
of P∗ by PG(Z) for some G ∈ G. The second term refers to the stochastic error. With a growing
number of observations the empirical measure Pn converges to P∗ in Wasserstein distance, see
Dudley (1969), and thus the stochastic error converges to zero.
Within the framework of the conceptual proof in Section 2.6, the evaluation distance is the
Wasserstein-1 distance, and the optimization criterion c is the Vanilla GAN distance. In
Theorem 3.7, we chose the empirical measure as the reference measure, which results in εnc = 0.
Theorem 3.5 revealed that the relation between the evaluation distance and the optimization
criterion is not linear, resulting in the mixed dependency.
Together with the bounds on W1(Pn,P∗) by Schreuder (2020) we conclude the following:

Corollary 3.8. Let L > 2, B ∈ [1,∞]. The empirical risk minimizer Ĝn from (3.6) with
W = Lip(L,B) satisfies for some constant c > 0 depending on d, p and L that

E[W1(P∗,PĜn(Z))] ≤ inf
G∗ : Z→X

{
c[W1(P∗,PG

∗(Z))]1;1/2 + c[ inf
G∈G
∥G−G∗∥∞]1;1/2

}

+ c


n−1/2d, d > 2,

n−1/4(log n)1/2, d = 2,

n−1/4, d = 1,

where the infimum is taken over all Borel measurable functions G∗ : Z → X .
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If there is some G∗ such that P∗ = PG∗(Z), which is commonly assumed in the GAN literature,
see e.g. Stéphanovitch et al. (2024), the first term vanishes and the approximation error is
bounded by infG∈G [∥G−G∗∥1;1/2∞ ]. In the bound of the stochastic error we observe the curse of
dimensionality: For large dimensions d the rate of convergence n−1/2d deteriorates.
To allow for a dimension reduction setting, we adopt the miss-specified setting from Vardanyan
et al. (2024, p. 5). In this scenario we can conclude statistical guarantees for Vanilla GANs that
are comparable to the results obtained for Wasserstein GANs by Schreuder et al. (2021, Theorem
2). In view of Theorem 3.4 we expect a slower rate of convergence compared to Wasserstein
GANs.

Theorem 3.9. Let L > 2, B ∈ [1,∞] and M > 0. The empirical risk minimizer Ĝn from (3.6)
with W = Lip(L,B) satisfies

E[W1(P∗,PĜn(Z))] ≤ inf
G∗∈Lip(M,Z)

{
c[W1(P∗,PG

∗(Z))]1;1/2 + c[ inf
G∈G
∥G−G∗∥∞]1;1/2

}

+ c


n−1/2d∗ , d∗ > 2,

n−1/4(log n)1/2, d∗ = 2,

n−1/4, d∗ = 1,

for some constant c depending d∗, d, p, L and M .

The Wasserstein distance W1(PG
∗(Z),P∗) now includes an error due to the dimension reduction

while the stochastic error is determined by the potentially much smaller dimension d∗ < d

of the latent space. Compared to Corollary 3.8, the only price for this improvement is the
additional Lipschitz restriction on G∗. We observe a trade-off in the choice of d∗, since large
latent dimensions reduce the approximation error for P∗, but increase the stochastic error term.
Additionally, there is a trade-off in M . A larger constant M results in a smaller value of
W1(P∗,PG∗(Z)), but increases the constant c. If the unknown distribution P∗ is supported on a
lower-dimensional subspace and there exists a G∗ ∈ Lip(M,Z) such that PG∗(Z) = P∗, then the
rate of convergence is solely determined by the dimension d∗ of Z. This is true for the smallest
possible d∗ for which a perfect G∗ exists, as well as any d∗∗ > d∗.
In many applications, the smallest possible d∗ is unknown. Theorem 3.9 covers both over- and
underestimation of the true dimension of the lower-dimensional subspace. If the choice of d∗ is
too small, then W1(P∗,PG∗(Z)) might not converge to 0, but the stochastic error still converges
with the smaller rate d∗. If d∗ is selected to be larger than the dimension of the lower-dimensional
subspace, then there could be a G∗ ∈ Lip(M,Z) such that W1(P∗,PG∗(Z)) = 0, but the stochastic
rates converges only with rate d∗. In the special case that a function G∗ ∈ Lip(M,Z) exists
such that W1(P∗,PG∗(Z)) = 0 the rate n−1/2d∗ is slower than the rate n−1/d∗ obtained for the
Wasserstein GAN by Schreuder et al. (2021). This is in line with Theorem 3.5 and Example 3.6.
However, Theorem 3.9 reveals why Vanilla GANs do perform well in high dimensions in the
setting of an unknown distribution on a lower-dimensional manifold. This phenomenon could
not be explained in previous work on Vanilla GANs. Puchkin et al. (2024) and Biau et al. (2020)
both obtain rates in the Jensen-Shannon distance.
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3.4. Rates of convergence for Vanilla GANs in Wasserstein

distance

In practice, both G and D are sets of neural networks. Our conditions on the generator class
G are compactness and good approximation properties of some G∗ which is chosen such that
PG∗(Z) mimics P∗. Since neural networks have a finite number of weights, and the absolute value
of those weights is typically bounded, the compactness assumption is usually satisfied and neural
networks enjoy excellent approximation properties, c.f. DeVore et al. (2021).
The situation is more challenging for the discriminator class. So far, D was chosen as the set of
Lipschitz functions concatenated to the logistic function. The Lipschitz property is crucial for
proof of Theorem 3.7 and thus for all subsequent results.
Controlling the Lipschitz constant while preserving the approximation properties is an area of
ongoing research and is far from trivial. Without further restrictions on the class of feedforward
networks, the Lipschitz constant would be a term that depends exponentially on the size of the
network, see Liang (2017, Theorem 3.2). Bounding the Lipschitz constant of a neural network is a
problem that arises naturally in the implementation of Wasserstein GANs. Arjovsky et al. (2017)
use weight clipping to ensure Lipschitz continuity. Later, other approaches such as gradient
penalization (Gulrajani et al., 2017; Wei et al., 2018; Zhou et al., 2019), Lipschitz penalization
(Petzka et al., 2018), or spectral penalization (Miyato et al., 2018) were introduced and have
achieved improved performance in practice.
To extend the theory from the previous section to neural network discriminator classes, we first
generalize Theorem 3.7 from W = Lip(L,B) to subsets W ⊆ Lip(L,B). As a result there is an
additional approximation error term that accounts for the smaller discriminator class.

Theorem 3.10. Let L > 2, B ∈ [1,∞]. The empirical risk minimizer Ĝn from (3.6) with
W ⊆ Lip(L,B) satisfies

W1(P∗,PĜn(Z)) ≤ c
[
inf
G∈G

W1(P∗,PG(Z))
]1;1/2

+ c
[

inf
W ′∈W

sup
W∈Lip(L,B)

∥W −W ′∥∞
]1;1/2

+ c
[
W1(Pn,P∗)

]1;1/2
,

for some constant c > 0 depending on d, p and L.

The approximation error of the discriminator depends on the supremum norm bound B of the
functions in W. While the statement remains true for B = ∞, when approximating the set
Lip(L,B), this bound will be essential. To apply this result, we must ensure that the Lipschitz
constant of a set of neural networks W is uniformly bounded by some constant L. Adding
penalties to the objective function of the optimization problem does not guarantee a fixed bound
on the Lipschitz constant. Approaches such as bounds on the spectral or row-sum norm of
matrices in feedforward neural networks ensure a bound on the Lipschitz constant, but lead to
a loss of expressiveness when considering ReLU networks, even in very simple cases such as the
absolute value, see Huster et al. (2019) and Anil et al. (2019). On the other hand, Eckstein (2020)
has shown that one-layer L Lipschitz networks are dense (with respect to the uniform norm) in
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the set of all L Lipschitz functions on bounded domains. While this implies that the discriminant
approximation error converges to zero for growing network architectures, the density statement
does not lead to a rate of convergence that depends on the size of the network.
Anil et al. (2019), motivated by Chernodub & Nowicki (2016), have introduced an adapted
activation function, Group Sort, which leads to significantly improved approximation properties
of the resulting networks. They show that networks using the Group Sort activation function
are dense in the set of Lipschitz functions, but there is no quantitative approximation result. A
discussion of the use of Group Sort in the context of Wasserstein GANs can be found in Biau
et al. (2021).
To overcome this problem, we would like to approximate not only the optimal discriminating
Lipschitz function from the Wasserstein optimization problem in the uniform norm, but also its
(weak) derivative. This would allow us to keep the Lipschitz norm of the approximating neural
network bounded. For networks with regular activation functions Belomestny et al. (2023) have
studied the simultaneous approximation of smooth functions and their derivatives. Gühring
et al. (2020) have focused on ReLU networks and have derived quantitative approximation
bounds in higher order Hölder and Sobolev spaces. As an intrinsic insight from approximation
theory, the regularity of the function being approximated must exceed the regularity order of the
norm used to derive approximation bounds. Therefore, we cannot expect to obtain quantitative
approximation results for ReLU networks in Lipschitz norm without assuming the continuous
differentiability of the approximated function.
Unfortunately, the maximizing function of the Wasserstein optimization problem is in general just
Lipschitz continuous. Since we cannot increase the regularity of the target function, we instead
relax the Lipschitz assumption of the discriminator in Theorem 3.11 to α-Hölder continuity for
α ∈ (0, 1). This generalization in the context of Wasserstein GANs has recently been discussed
by Stéphanovitch et al. (2024). Recall the definition of the Hölder ball from (2.4).

Theorem 3.11. Let L > 2, B ∈ [1,∞), Γ > max(L, 2B) and M > 0. The empirical risk
minimizer Ĝn from (3.6) with W ⊆ Hα(Γ) satisfies

E[W1(P∗,PĜn(Z))] ≤ inf
G∗∈Lip(M,Z)

{
c
[
inf
G∈G
∥G∗ −G∥α∞

]1;1/2
+ c
[
W1(P∗,PG

∗(Z))α
]1;1/2}

+ c
[

inf
W∈W

sup
W ∗∈Lip(L,B)

∥W −W ∗∥∞
]1;1/2

+ c


n−α/2d

∗
, 2α < d∗,

n−1/4(log n)1/2, 2α = d∗,

n−1/4, 2α > d∗,

for some constant c depending on d∗, d, p, L,M and Γ.

The lower bound on the Hölder constant of the discriminator classW is not overly restrictive when
employing neural networks for this function class. Since c is increasing in Γ, it is advantageous
to control the value of Γ.
It remains to show that there are ReLU networks that satisfy the assumptions of Theorem 3.11.
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To this end, we use the approximation result obtained in Theorem 2.7.
Combining Theorem 3.11 and Theorem 2.7 with a standard approximation result for the
generator approximation error, such as Yarotsky (2017, Theorem 1), leads to a rate of
convergence. The networks in G approximating the function G∗ ∈ Lip(M,Z) are only required
to be measurable without any additional smoothness assumption.

Corollary 3.12. For 0 < α < 1, Γ > 5, M > 0, d∗ > 2α and n > 2
2d∗
α choose G as the set of

ReLU networks with at most ⌈c · log(n)⌉ layers, ⌈c · n log(n)⌉ nonzero weights and ⌈c · n log(n)⌉
neurons and W ′ as the set of ReLU networks with at most ⌈c · log(n)⌉ layers,

⌈
c ·n

α
2(1−α) log2(n)

⌉
nonzero weights and

⌈
c ·n

α
2(1−α) log2(n)

⌉
neurons, where c is a constant depending on d, d∗,Γ,M

and α. Then the empirical risk minimizer Ĝn from (3.6) with W =W ′ ∩Hα(Γ) satisfies

E
[
W1

(
P∗,PĜn(Z)

)]
≤ c · n−α/2d∗ + c

[
inf

G∗∈Lip(M,Z)
W1(P∗,PG

∗(Z))α
]1;1/2

.

From Theorem 2.7 we know that the set W ′ ∩ Hα(Γ) of ReLU networks of finite width
and depth is nonempty. In practice, this corresponds to a discriminator network with a
controlled Hölder constant. On a bounded domain, any Lipschitz function is a Hölder
function. Corollary 3.12 shows that Vanilla GANs with a Hölder regular discriminator class
are theoretically advantageous. The Hölder parameter α can be chosen arbitrarily close to one.
On the one hand this reveals why a Lipschitz regularization as implemented for Wasserstein
GANs also improves the Vanilla GAN. An empirical confirmation can be found in Zhou et al.
(2019) and Section 3.6. On the other hand the corollary then requires more neurons in the
discriminator than in the generator class which coincides with common practice.
The width of the generator networks in Corollary 3.12 can be improved by replacing G∗ ∈
Lip(M,Z) with G∗ ∈ Cn−1(Z), n ∈ N, whose (n− 1)-th derivative is Lipschitz continuous with
Lipschitz constant M. Once more, this results in a trade-off, as

[
W1(P∗,PG∗(Z))α

]1;1/2 increases
when G∗ is selected from a smaller set of functions.

3.5. Wasserstein-type GAN with ReLU network discriminator

The same analysis can be applied to Wasserstein-type GANs. The constraint on the Hölder
constant can be weakened, as we do not need Theorem 3.5. Note that this does not impact the
rate, but the constant. Define the Wasserstein-type distance with discriminator class W as

WW(P,Q) = sup
W∈W

EX∼P
Y∼Q

[W (X)−W (Y )].

The following theorem shows that by using Hölder continuous ReLU networks as the
discriminator class, Wasserstein-type GANs can avoid the curse of dimensionality. Furthermore,
this avoids the difficulties arising from the Lipschitz assumption of the neural network, as pointed
out by Huang et al. (2022).

Theorem 3.13. For 0 < α < 1, Γ > 1,M > 0 and d > 2α and n > 2
d
α choose G as the set of

ReLU networks with at most ⌈c · log(n)⌉ layers, ⌈c · n log(n)⌉ nonzero weights and ⌈c · n log(n)⌉
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neurons and W ′ as the set of ReLU networks with at most ⌈c · log(n)⌉ layers,
⌈
c ·n

α
(1−α) log2(n)

⌉
nonzero weights and

⌈
c · n

α
(1−α) log2(n)

⌉
neurons, where c is a constant depending on d, d∗,Γ,M

and α. The empirical risk minimizer with W =W ′ ∩Hα(Γ),

Ĝn ∈ argmin
G∈G

WW(Pn,PG(Z)),

satisfies
E[W1(P∗,PĜn(Z))] ≤ c · n− α

d∗ + inf
G∗∈Lip(M,Z)

W1(P∗,PG
∗(Z)).

Compared to Corollary 3.12 the rate improves to n−α/d
∗ for any α < 1. The number of

observations necessary for the theorem to hold, the size of the discriminator network and the
lower bound for Γ decrease. Note that Γ does not effect the rate, but the constants. In case there
exists a G∗ such that W1(P∗,PG∗(Z)) = 0, this upper bound coincides with the lower bound in
Tang & Yang (2023, Theorem 1) up to an arbitrary small polynomial factor.
Our rate does not depend exponentially on the number of layers like the results of Liang (2017),
Huang et al. (2022) and we use non-smooth simple ReLU networks compared to smooth ReQU
(using max(0, x)2 as activation function in (2.22)) networks in Stéphanovitch et al. (2024) or
group sort networks in Biau et al. (2021).

3.6. Simulation

The results in Section 3.4 and Section 3.5 were obtained under the assumption that the
discriminator class consists of Lipschitz networks. In the context of image generation, these
findings align with the results of Zhou et al. (2019), Miyato et al. (2018), Kodali et al. (2017),
and Fedus et al. (2017). Furthermore, Fedus et al. (2017) demonstrated in a two-dimensional
experiment that a Vanilla GAN with a gradient penalty (and, consequently, a lower Lipschitz
constant) can be effective in scenarios where the measures P∗ and PĜ(Z) are singular.
This section presents a transparent and accessible example that confirms our theoretical findings
and especially demonstrates how imposing a Lipschitz constant on the discriminator stabilizes
the Vanilla GAN. Additionally, it demonstrates the capacity of the Vanilla GAN to detect a
lower-dimensional manifold. In order to monitor rates of convergence, it is necessary to at least
approximately evaluate W1(P∗,PĜn(Z)). Therefore, we study the numerical performance of the
Vanilla GAN in a simulation setting where the true data distribution is known by construction.
In this work, the Wasserstein distance is employed as the metric for measuring the rate of
convergence. In practice, the Wasserstein distance is only computable in the one-dimensional
case. To investigate multivariate distributions, we approximated the Wasserstein distance by
averaging the Wasserstein distance on the marginals.
In order to model the distribution P∗ of a lower-dimensional manifold, we employed a one-
dimensional uniform distribution on the graph of the function x 7→ sin(4πx) on the diagonal
of the two-dimensional unit cube, resulting in a three-dimensional distribution. For the latent
distribution, we used the one-dimensional standard Gaussian distribution. Consequently, the
dimensions of the lower-dimensional manifold and the latent space are identical.
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(a) Step 0, 100 obs. (b) Step 15000, 100 obs. (c) Step 30000, 100 obs.

(d) Step 0, 1000 obs. (e) Step 15000, 1000 obs. (f) Step 30000, 1000 obs.

Figure 3.1.: Training of Vanilla GAN with weight clip using 100 observations (first row) or 1000
observations (second row). Red dots show 1000 generated samples, green dots show
the observations used for the training. The blue line is the one-dimensional manifold.

For the discriminator, we used a neural network with four layers of width 128 concatenated to
a sigmoid function. For the generator, we used a neural network with three layers of width 64.

In order to preserve as much alignment as possible with the theoretical result, we used plain
ReLU activations. Each training consisted of 30000 training iterations. We used the Adam
optimizer (Kingma & Ba, 2014) with parameters β1 = 0.9 and β2 = 0.999, and a learning rate
of γ = 0.0005. When the number of observations exceeded 512, we used minibatches of that size
in each iteration. We updated generator and discriminator alternating.
Three snapshots of the training of the Vanilla GAN for samples sizes n = 100 and n = 1000 are
given in Figure 3.1, respectively. The difference between Figure 3.1c and Figure 3.1f is solely due
to the number of observations. The observations in Figure 3.1a to Figure 3.1c cover the manifold
to a smaller extent than the observations in Figure 3.1d to Figure 3.1f. This corresponds to a
larger stochastic error.
To maintain the Lipschitz constant within a controllable range, we implemented the simple
weight clipping mechanism of Arjovsky et al. (2017), limiting each weight to a value of 0.5. It is
important to note that the network used in the unclipped case is also Lipschitz continuous,
however, we do not have control over this Lipschitz constant. Given the width and depth
parameters used in this study, it is evident that the Lipschitz constant of the clipped network
remains relatively high and is considerably distinct from the theoretical value typically employed
in Wasserstein GANs. However, a smaller Lipschitz constant requires an adjustment to the
learning rate. Otherwise the weights are likely to remain at their maximum absolute value. This
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Figure 3.2.: Marginal W1 distance depending on number of observations. Thick line shows the
average over 50 independent runs, ribbons show the first to third quartile.

affects the experiment in several other ways. To ensure a fair and accurate comparison between
the clipped and unclipped scenarios, we kept the learning rate consistent.
The results are summarized in Figure 3.2. As predicted by our theory, the averaged marginal
Wasserstein distance between the generated distribution and the true data distribution decays
approximately as n−1/2 for n ∈ {10, 100, 1000}. While we see a clear improvement with 10000

observations, the additional gain is limited by the optimization error, since the manifold is already
densely covered for 1000 observations.
It is apparent that controlling the Lipschitz constant overall stabilizes the training process,
resulting in less variability in the results. In certain cases, the GAN without weight clipping can
achieve the same level of effectiveness. This does not negate the outcome. Since the discriminator
without clipped weights is still Lipschitz continuous (with a large Lipschitz constant), the
theoretical limitations of Vanilla GANs without restricted discriminator classes do not directly
translate to practice. This, combined with the finite nature of the implementations, ultimately
resulted in the empirical success of these models. The variability between different simulation
runs is described by the first to the third quartile in Figure 3.2 which again confirms a more
stable behavior of the clipped algorithm.
Figure 3.3 demonstrates the high degree of precision with which the generated samples
concentrate on the low-dimensional support of the true data distribution. Our experiments
show that this concentration holds true across all sample sizes and can be observed in both the
clipped and unclipped case. However, a high concentration does not necessarily indicate that
the generated distribution is an accurate imitation of the unknown distribution with respect
to the Wasserstein distance. Consequently, Figure 3.3 is only informative in conjunction with
Figure 3.2.
Additionally, we investigated the use of a space U of the same dimension as the ambient
space. Our observations indicated that the Vanilla GAN is still capable of identifying the lower-
dimensional subspace with reasonable efficacy.
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Figure 3.3.: Percentage of generated samples with Euclidean distance to manifold greater than
ε using 1000 observations and a discriminator with 0.5 clip. Transparent lines show
the individual runs, thick line shows the average over 50 runs.

3.7. Proofs

3.7.1. Proofs of Section 3.1

Proof of Lemma 3.1. Let X ∼ P∗, X̂ ∼ Pn and Z ∼ U. The symmetry of W and the Lipschitz
continuity of x 7→ log(1 + e−x) yields for any G ∈ G

VW(P∗,PĜn(Z))

= sup
W∈W

E
[
− log

(1 + e−W (X)

2

)
+ log

(1 + e−W (X̂)

2

)
− log

(1 + e−W (X̂)

2

)
− log

(1 + eW (Ĝn(Z))

2

)]
≤ sup

W∈W
E
[
− log(1 + e−W (X)) + log(1 + e−W (X̂))

]
+ VW(Pn,PĜn(Z))

≤ sup
W∈W

E
[
− log(1 + e−W (X)) + log(1 + e−W (X̂))

]
+ VW(Pn,PG(Z))

= sup
W∈W

E[− log(1 + e−W (X)) + log(1 + e−W (X̂))]

+ sup
W∈W

E[− log(1 + e−W (X̂)) + log(1 + e−W (X))] + VW(P∗,PG(Z))

≤ 2 sup
W∈Lip(1)◦W

E[W (X)−W (X̂)] + VW(P∗,PG(Z)).

The bound for Ĝn from (3.6) follows since G ∈ G was arbitrary.

Proof of Lemma 3.2. Let (Gn)n∈N ∈ G be a sequence that converges to G ∈ G. If
VLip(L)(P∗,PG(Z)) ≥ VLip(L)(P∗,PGn(Z)), then

VLip(L)(P∗,PG(Z))− VLip(L)(P∗,PGn(Z))



60 3. Generative adversarial networks

≤ sup
W∈Lip(L)

E
[
log
(1 + e−W (Gn(Z))

2

)
− log

(1 + e−W (G(Z))

2

)]
≤ sup

W∈Lip(L)
E
[
W (Gn(Z))−W (G(Z))

]
≤ L∥Gn −G∥∞.

The case VLip(L)(P∗,PG(Z)) < VLip(L)(P∗,PGn(Z)) can be bounded analogously. Therefore, T is
continuous and there is at least one minimizer if G is compact.

3.7.2. Proofs of Section 3.2

Before we prove the main results from Section 3.2 we require an auxiliary lemma, whose proof
can be found in Section 3.7.6:

Lemma 3.14. For X ∼ P and Y ∼ Q and an arbitrary set of measurable functions W we have
that

VW(P,Q) ≤ sup
W∈W

E[− log
(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
].

Proof of Theorem 3.4. Defining

ψ : R→ R, ψ(x) := − log
(1 + e−x

2

)
,

we can rewrite
VLip(L,B)(P,Q) = sup

W∈Lip(L,B)
E[ψ(W (X)) + ψ(−W (Y ))].

The function f : [− log(2 − 2/L),∞) → R, f(x) = log(2ex − 1) is bijective and Lipschitz
continuous with Lipschitz constant L and satisfies ψ(−f(x)) = x for all x ≥ − log(2 − 2/L).
Therefore, we obtain a lower bound

VLip(L,B)(P,Q) ≥ sup
W∈Lip(1,log((1+eB)/2))
W (·)≥− log(2−2/L)

E[ψ(f(W (X))) + ψ(−f(W (Y )))]

= sup
W∈Lip(1,B′)

W (·)≥− log(2−2/L)

E[ψ(f(W (X)))−W (Y )].

Since f−1 ∈ Lip(1,R), we can estimate VLip(L,B) from above by

VLip(L,B)(P,Q) = sup
W∈Lip(L,B)

E[ψ(f(f−1(W (X)))) + ψ(−f(f−1(W (Y ))))]

≤ sup
W∈Lip(L,B)
W (·)>− log(2)

E[ψ(f(W (X))) + ψ(−f(W (Y )))]

= sup
W∈Lip(L,B)
W (·)>− log(2)

E[ψ(f(W (X)))−W (Y )].

A Taylor approximation at zero of the function ψ ◦ f(x) = log(2 − e−x) yields that for every
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x ∈ (− log(2),∞) there exists a ξ between x and 0 such that

ψ ◦ f(x) = x− eξ

(2eξ − 1)2
x2.

For the lower bound, we thus conclude

VLip(L,B)(P,Q) ≥ sup
W∈Lip(1,B′)

W (·)≥− log(2−2/L)

E[W (X)−W (Y )]− L(L− 1)

2
E[W (X)2].

For the upper bound, we get

VLip(L,B)(P,Q) ≤ sup
W∈Lip(L,B)
W (·)>− log(2)

E[W (X)−W (Y )]− eB

(2eB − 1)2
E[W (X)2].

To prove Theorem 3.5, we again need an auxiliary lemma:

Lemma 3.15. For X ∼ P and Y ∼ Q and an arbitrary set of measurable functions W we have
that

VW(P,Q) ≤ sup
W∈W

E[− log
(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
].

Proof of Theorem 3.5. We prove the lower bound first. Theorem 3.4 yields

VLip(L,B)(P,Q) ≥ sup
W∈Lip(1,B′)

W (·)>− log(2−2/L)

E[W (X)−W (Y )]− L(L− 1)

2
E[W (X)2]

≥ sup
W∈Lip(1,log(2−2/L))

E[W (X)−W (Y )]− L(L− 1)

2
E[W (X)2].

Let W ∗ ∈ argmax
W∈Lip(1,log(2−2/L))

E[W (X) −W (Y )]. This element exists by Villani (2008, Theorem

5.10 (iii)). Then δW ∗ ∈ Lip(1, log(2− 2/L)) for all δ ∈ (0, 1] and we can conclude

sup
W∈Lip(1,log(2−2/L))

E[W (X)−W (Y )]− L(L− 1)

2
E[W (X)2]

≥ sup
δ∈(0,1]

{
E[δW ∗(X)− δW ∗(Y )]− L(L− 1)

2
E[(δW ∗(X))2]

}
= sup

δ∈(0,1]

{
δE[W ∗(X)−W ∗(Y )]− δ2L(L− 1)

2
E[(W ∗(X))2]

}
,

which is independent of B. In case ∆ := E[W ∗(X)−W ∗(Y )] < L(L− 1)E[W ∗(X)2] we have for
δ = ∆

E[W ∗(X)2]L(L−1)
∈ (0, 1)

sup
W∈Lip(1,log(2−2/L))

E[W (X)−W (Y )]− L(L− 1)

2
E[W (X)2]

≥ ∆2

E[W ∗(X)2]L(L− 1)
− ∆2

2E[W ∗(X)2]L(L− 1)

=
∆2

2E[W ∗(X)2]L(L− 1)
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≥ ∆2

2 log(2− 2/L)2L(L− 1)
,

where we used |W ∗(x)| ≤ log(2 − 2/L) in the last step. In case ∆ ≥ L(L − 1)E[W ∗(X)2] we
obtain

E[W ∗(X)−W ∗(Y )]− L(L− 1)

2
E[W ∗(X)2] ≥ 1

2
E[W ∗(X)−W ∗(Y )].

Using the boundedness of [0, 1]d, we get

∆ = sup
W∈Lip(1,log(2−2/L))

E[W (X)−W (Y )]

≥ sup
W∈Lip(log(2−2/L)d−1/p,∞)

E[W (X)−W (Y )]

=
log(2− 2/L)

d1/p
W1(P,Q).

Hence we can conclude the claimed lower bound for

c1 =
1

2

log(2− 2/L)

d
1
p

, c2 =
1

2d
2
pL(L− 1)

.

For the upper bound we use Lemma 3.15 with W = Lip(L). Since for W ∈ Lip(L) the function
− log

(
1 + e−W (·)) ∈ Lip(L) we conclude

VLip(L,B)(P,Q) ≤ sup
W∈Lip(L)

E[ψ(W (X)) + ψ(W (Y ))]

≤ sup
W∈Lip(L)

E[− log
(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
]

≤ sup
W∈Lip(L)

E[W (X)−W (Y )]

= L sup
W∈Lip(1)

E[W (X)−W (Y )].

Proof of Example 3.6. For the Wasserstein distance we get W1(P,Q) = γ. The Vanilla
GAN distance using all Lipschitz L affine functions as discriminator yields in this example
Va·+b(P,Q) = maxa,b∈R,

|a|≤L
f(a, b) for

f(a, b) :=
1

2

(
− log

(
1 + e−aγ−b

)
− log

(
1 + e−a(γ+ε)−b

)
− log

(
1 + eb

)
− log

(
1 + eaε+b

))
+ log(4).

Standard calculus yields for fixed a the unique maximizer b∗ = −a(ε+γ)
2 and

f(a, b∗) = − log
(
1 + e−

a(ε+γ)
2
)
− log

(
1 + e

a(ε−γ)
2
)
+ log(4).

Since
∂

∂a
f(a, b∗) =

ε+ γ

2(e
a(γ+ε)

2 + 1)
− ε− γ

2(e−
a(ε−γ)

2 + 1)
,

for ε ≤ γ, the maximizing a is maximal a∗ = L. This coincides with the intuitive choice: as the
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support of PX and the support of PY can be separated by a single point on R, we expect the
optimal discriminator to be affine linear. Standard calculus yields the linear upper and lower
bound for ε = 1

4 . For ε > γ, the unrestricted maximizing a∗ solves the equation

(ε− γ)e
a∗(ε+γ)

2 − (ε+ γ)e−
a∗(ε−γ)

2 = 2γ.

While there is no closed form solution, a numerical approximation (for ε = 1
4) yields for γ < ε

and L > 16 such that a∗ is feasible

W1(PX ,PY )2

2
≤ Va·+b(PX ,PY ) ≤ a ·W1(PX ,PY )2.

3.7.3. Proofs of Section 3.3

Proof of Theorem 3.7. Using Theorem 3.5 and the triangle inequality for the Wasserstein
distance, we deduce for every G ∈ G and c = max(c−1

1 , c
−1/2
2 ) that

W1(P∗,PĜn(Z)) ≤W1(P∗,Pn) +W1(Pn,PĜn(Z))

≤W1(P∗,Pn) + c
[
VLip(L,B)(Pn,PĜn(Z))

]1;1/2
≤W1(P∗,Pn) + c

[
VLip(L,B)(Pn,PG(Z))

]1;1/2
≤W1(P∗,Pn) + cL

[
W1(Pn,PG(Z))

]1;1/2
≤ (1 + cL)

[
W1(P∗,Pn)

]1;1/2
+ cL

[
W1(P∗,PG(Z))

]1;1/2
.

As G ∈ G was arbitrary, we can choose the infimum over G.

Proof of Corollary 3.8. For every measurable G∗ : Z → X and any G ∈ G we have

W1(P∗,PĜn(Z)) ≤W1(P∗,PG
∗(Z)) +W1(PG

∗(Z),PG(Z))

= W1(P∗,PG
∗(Z)) + sup

W∈Lip(1)
E[W (G∗(Z))−W (G(Z))]

≤W1(P∗,PG
∗(Z)) + E[|G∗(Z)−G(Z)|p]

≤W1(P∗,PG
∗(Z)) + ∥G∗ −G∥∞.

Since G∗ was arbitrary, Theorem 3.7 yields for some constant c

E[W1(P∗,PG(Z))] ≤c · E[max(
√

W1(Pn,P∗),W1(Pn,P∗))]

+ c · inf
G∗ : Z→X

{
[W1(P∗,PG

∗(Z))]1;1/2 + [ inf
G∈G
∥G−G∗∥1;1/2∞ ]

}
.

Here the infimum can be used as we can increase the constant c multiplied with both terms by
an arbitrary small ε > 0 to account for the possibly infinitesimal smaller value. Using Jensen’s
inequality, we can bound the stochastic error term by

E[max(
√

W1(Pn,P∗),W1(Pn,P∗))] ≤ E[
√
W1(Pn,P∗)] + E[W1(Pn,P∗)]

≤
√

E[W1(Pn,P∗)] + E[W1(Pn,P∗)].
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From Schreuder (2020, Theorem 4) we know

E[W1(P∗,Pn)] ≤ c′


n−1/d, d > 2,

n−1/2 log(n), d = 2,

n−1/2, d = 1.

where c depends only on d. Since (log n)/
√
n ≤ 1, we conclude

√
E[W1(Pn,P∗)] + E[W1(Pn,P∗)] ≤ 2c′


n−1/2d, d > 2,

n−1/4(log n)1/2, d = 2,

n−1/4, d = 1.

This finishes the proof.

Proof of Theorem 3.9. With the same reasoning as in the proof of Corollary 3.8, there exists
some c such that for any measurable G∗ : Z → X and any G ∈ G

E[W1(P∗,PG(Z))] ≤ c
(√

E[W1(Pn,P∗)] + E[W1(Pn,P∗)]

+ [W1(P∗,PG
∗(Z))]1;1/2 + [ inf

G∈G
∥G∗ −G∥∞]1,1/2

)
.

By the triangle inequality

W1(Pn,P∗) ≤W1(Pn,PG
∗(Z)) +W1(PG

∗(Z),P∗).

Let Zi ∼ U be i.i.d. random variables and denote the corresponding empirical measure by Un.
For G∗ ∈ Lip(M,Z) we can then bound the first term by

W1(Pn,PG
∗(Z)) = sup

W∈Lip(1)

1

n

n∑
i=1

W (Xi)− E[W ◦G∗(Z)]

≤ sup
W∈Lip(1)

1

n

n∑
i=1

|W (Xi)−W ◦G∗(Zi)| (3.10)

+ sup
W∈Lip(1)

1

n

n∑
i=1

W ◦G∗(Zi)− E[W ◦G∗(Z)]

≤ 1

n

n∑
i=1

|Xi −G∗(Zi)|p + sup
f∈Lip(M)

1

n

n∑
i=1

f(Zi)− E[f(Z)] (3.11)

=
1

n

n∑
i=1

|Xi −G∗(Zi)|p +M ·W1(Un,U).

Hence,

E
[
W1(Pn,PG

∗(Z))
]
≤ 1

n

n∑
i=1

E[|Xi −G∗(Zi)|p] +M · E[W1(Un,U)].

Note that E[|Xi−G∗(Zi)|p] = W1(PG
∗(Z),P∗) by the duality formula of W1 used in this work, see
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Villani (2008, Definition 6.2 and Remark 6.5). For E[W1(Un,U)], we can exploit the convergence
rate for the empirical distribution as in Corollary 3.8, but now in the d∗-dimensional latent space
Z. Therefore, there exists a c′ such that

√
E[W1(Pn,P∗)] + E[W1(Pn,P∗)] ≤ c′[W1(PG

∗(Z),P∗)]1;1/2 + c′


n−1/2d∗ , d∗ > 2,

n−1/4(log n)1/2, d∗ = 2,

n−1/4, d∗ = 1.

This concludes the proof.

3.7.4. Proofs of Section 3.4

Proof of Theorem 3.10. First, we verify that for any two nonempty sets W1 and W2 we have

VW1(P,Q) ≤ VW2(P,Q) + 2 inf
W∈W2

sup
W ∗∈W1

∥W −W ∗∥∞. (3.12)

Indeed, the difference VW1(P,Q)− VW2(P,Q) is bounded by

inf
W∈W2

sup
W ∗∈W1

{
E
[
− log

(1 + e−W
∗(X)

2

)
− log

(1 + eW
∗(Y )

2

)]
− E

[
− log

(1 + e−W (X)

2

)
− log

(1 + eW (Y )

2

)]}
≤ inf
W∈W2

sup
W ∗∈W1

{
E
[∣∣∣− log

(1 + e−W
∗(X)

2

)
+ log

(1 + e−W (X)

2

)∣∣∣]
+ E

[∣∣∣− log
(1 + eW

∗(Y )

2

)
+ log

(1 + eW (Y )

2

)∣∣∣]}
≤ inf

W∈W2

sup
W ∗∈W1

{
E[|W ∗(X)−W (X)|] + E[|W ∗(Y )−W (Y )|]

}
≤ 2 inf

W∈W2

sup
W ∗∈W1

∥W ∗ −W∥∞,

due to Lipschitz continuity of x 7→ − log((1 + ex)/2). From (3.12) we deduce for W ⊂ Lip(L,B)

VLip(L,B)(P,Q) ≤ VW(P,Q) + 2 inf
W ′∈W

sup
W∈Lip(L,B)

∥W −W ′∥∞.

We abbreviate ∆W := infW ′∈W supW∈Lip(L,B) ∥W − W ′∥∞. Now we can proceed as in
Theorem 3.7. In particular, it is sufficient to bound W1(Pn,PĜn(Z)). Due to Theorem 3.5 there
is some constant c > 0 such that for every G ∈ G

W1(Pn,PĜn(Z)) ≤ c[VLip(L,B)(Pn,PĜn(Z))]1;1/2

≤ c[VW(Pn,PĜn(Z)) + 2∆W ]1;1/2

≤ c[VW(Pn,PĜn(Z))]1;1/2 + 2c[∆W ]1;1/2

≤ c[VW(Pn,PG(Z))]1;1/2 + 2c[∆W ]1;1/2.
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Because VW(Pn,PG(Z)) ≤ VLip(L,B)(Pn,PG(Z)) due to W ⊂ Lip(L,B), the rest of the proof is
identical to the proof of Theorem 3.7.

Proof of Theorem 3.11. Since W1(Pn,P∗) can be estimated as in Theorem 3.9, we only need to
bound W1(Pn,PĜn(Z)). For Γ > max(L, 2B), we have Lip(L,B) ⊂ Hα(Γ), α ∈ (0, 1), and the
assumptions of Theorem 3.5 are satisfied. Therefore for every α ∈ (0, 1)

W1(Pn,PĜn(Z)) ≤ c
[
VLip(L,B)(Pn,PĜn(Z))

]1;1/2 ≤ c[VHα(Γ)(Pn,PĜn(Z))
]1;1/2

.

Now, (3.12) yields

VHα(Γ)(Pn,PĜn(Z)) ≤ VW(Pn,PĜn(Z)) + 2∆W for ∆W := inf
W∈W

sup
W ∗∈Hα(Γ)

∥W ∗ −W∥∞.

Using that Ĝn is the empirical risk minimizer and W ⊆ Hα(Γ), we thus have

W1(Pn,PĜn(Z)) ≤ c
[
VW(Pn,PĜn(Z))

]1;1/2
+ c[∆W ]1;1/2

≤ c
[
VW(Pn,PG(Z))

]1;1/2
+ c[∆W ]1;1/2

≤ c
[
VHα(Γ)(Pn,PG(Z))

]1;1/2
+ c[∆W ]1;1/2.

To bound the first term, we apply Lemma 3.15 and {− log(1 + e−W (·)) | W ∈ Hα(Γ)} ⊂ Hα(Γ)
to obtain

VHα(Γ)(Pn,PG(Z)) ≤ sup
W∈Hα(Γ)

EX̂∼Pn
[− log

(
1 + e−W (X̂)

)
+ log

(
1 + e−W (G(Z))

)
]

≤ sup
W∈Hα(Γ)

EX̂∼Pn
[W (X̂)−W (G(Z))] (3.13)

≤ sup
W∈Hα(Γ)

EX̂∼Pn
[W (X̂)−W (X)] + sup

W∈Hα(Γ)
E[W (X)−W (G(Z))].

For the second term we have by Hölder continuity, Jensen’s inequality and the duality formula
of W1 as used in the proof of Theorem 3.9 that

sup
W∈Hα(Γ)

E[W (X)−W (G(Z))] ≤ sup
W∈Hα(Γ)

E[|W (X)−W (G∗(Z))|]

+ sup
W∈Hα(Γ)

E[|W (G∗(Z))−W (G(Z))|]

≤ ΓE[|X −G∗(Z)|αp ] + Γ∥G∗ −G∥α∞
≤ ΓW1(P∗,PG

∗(Z))α + Γ∥G∗ −G∥α∞.

Hence, we have for any G ∈ G and any measurable G∗ : Z → X for some constant c > 0

W1(Pn,PĜn(Z)) ≤c
[

sup
W∈Hα(Γ)

EX̂∼Pn
[W (X̂)−W (X)]

]1;1/2
+ c
[
W1(P∗,PG

∗(Z))α + ∥G∗ −G∥α∞
]1;1/2

+ c[∆W ]1;1/2.



3.7. Proofs 67

For the remaining stochastic error term, we first note that

sup
W∈Hα(Γ)

EX̂∼Pn
[W (X̂)−W (X)] ≤ sup

W∈Hα(Γ)
EXn∼Pn [W (Xn)−W (G∗(Z))]

+ sup
W∈Hα(Γ)

E[W (G∗(Z))−W (X)]

≤ sup
W∈Hα(Γ)

EXn∼Pn [W (Xn)−W (G∗(Z))] + ΓW1(P∗,PG
∗(Z))α

and as in (3.11) together with Schreuder (2020, Theorem 4) we obtain

E
[

sup
W∈Hα(Γ)

EXn∼Pn [W (Xn)−W (G∗(Z))]
]
≤ E

[
sup

W∈Hα(Γ)
|X −G∗(Z)|αp

]
+ E

[
sup

f∈Hα(M ·Γ)

1

n

n∑
i=1

f(Zi)− E[f(Z)]
]

≤ cW1(P∗,PG
∗(Z))α + c


n−α/d

∗
, 2α < d∗,

n−1/2 ln(n), 2α = d∗,

n−1/2, 2α > d∗.

For the expectation of the first term we use Jensen’s inequality

E[|Xi −G∗(Zi)|αp ] ≤ E[|Xi −G∗(Zi)|p]α = W1(P∗,PG
∗(Z))α.

3.7.5. Proof of Section 3.5

Proof of Theorem 3.13. First we note that for Γ > 1, there is an L > 0, such that there is a
B > 0 with 2B < Γ− 1 and with X̂ ∼ P∗

sup
W∈Lip(L)

E[W (X̂)−W (Ĝn(Z))] = sup
W∈Lip(L,2B)

E[W (X̂)−W (Ĝn(Z))].

This L > 0 exists as [0, 1]d is bounded and adding a constant to any function W ∈ Lip(L) will
not change the value of E[W (X̂)−W (Ĝn(Z))].

Then we get for every G ∈ G with the same reasoning as in the proof of Theorem 3.10

W1(P∗,PĜn(Z)) ≤W1(P∗,Pn) +W1(Pn,PĜn(Z))

= W1(P∗,Pn) +
1

L
WL(Pn,PĜn(Z))

≤W1(P∗,Pn) +
1

L
WW(Pn,PĜn(Z)) +

2

L
inf
W∈W

sup
W ′∈Lip(L,2B)

∥W −W ′∥∞

≤W1(P∗,Pn) +
1

L
WW(Pn,PG(Z)) +

2

L
inf
W∈W

sup
W ′∈Lip(L,2B)

∥W −W ′∥∞

≤W1(P∗,Pn) +
1

L
WHα(Pn,PG(Z)) +

2

L
inf
W∈W

sup
W ′∈Lip(L,2B)

∥W −W ′∥∞.

The bound on WHα(Pn,PG(Z)) depending on the intrinsic dimension d∗ was already derived
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in Theorem 3.11 (starting with Equation (3.13)). The bound on W1(P∗,Pn) depending on the
intrinsic dimension d∗ was already derived in Corollary 3.8.

3.7.6. Additional proofs of Section 3.7

Proof of Lemma 3.14. Since

log(1 + ex) + log(1 + e−x) ≥ log(4) for all x ∈ R,

we can bound

sup
W∈W

E
[
− log

(
1 + e−W (X)

)
− log

(
1 + eW (Y )

)]
= sup

W∈W
E[− log

(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
− log

(
1 + e−W (Y )

)
− log

(
1 + eW (Y )

)
]

≤ sup
W∈W

E[− log
(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
]

− inf
W∈W

E[log
(
1 + e−W (Y )

)
+ log

(
1 + eW (Y )

)
]

≤ sup
W∈W

E[− log
(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
]− log(4).

Proof of Lemma 3.15. Since

log(1 + ex) + log(1 + e−x) ≥ log(4) for all x ∈ R,

we can bound

sup
W∈W

E
[
− log

(
1 + e−W (X)

)
− log

(
1 + eW (Y )

)]
= sup

W∈W
E[− log

(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
− log

(
1 + e−W (Y )

)
− log

(
1 + eW (Y )

)
]

≤ sup
W∈W

E[− log
(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
]

− inf
W∈W

E[log
(
1 + e−W (Y )

)
+ log

(
1 + eW (Y )

)
]

≤ sup
W∈W

E[− log
(
1 + e−W (X)

)
+ log

(
1 + e−W (Y )

)
]− log(4).



Chapter 4

Kernel density estimation

Of course, distribution estimation is not a novelity of generative models. In case the distribution
admits a density with respect to the Lebesgue measure, the kernel density or Parzen-Rosenblatt
estimator (Rosenblatt, 1956; Parzen, 1962) is the classical method for estimating a smooth
density. Given an i.i.d. sample X1, ..., Xn of a distribution P∗ on Rd, d ∈ N and a kernel
function K : Rd → R which is itself a density of a distribution U on Rd, we define the kernel
density estimator (KDE) as

pn(x) :=
1

n · hd
n∑
i=1

K
(x−Xi

h

)
,

where h > 0 is a bandwidth parameter. The assumption that K is a density guarantees that pn
is a density. In the literature, kernels that are not densities are also discussed, see for example
Tsybakov (2009), but we will limit the possible kernels to densities. The reason for this will
become apparent in Chapter 5.
Typically, the KDE is analyzed using the expectation of the L1 distance, ∥pn − p∗∥1, or the
mean squared error (Tsybakov, 2009; Devroye & Lugosi, 2012). For the former, we known from
Scheffé’s lemma

∥pn − p∗∥1 = 2TV(P∗,PKDE),

where PKDE is the distribution corresponding to the density pn. The mean squared error is
defined as

MSE(P∗,PKDE) :=

∫
(pn(x)− p∗(x))2 dx.

Hence, both errors operate on the level of densities. To incorporate the KDE in our analysis in
Chapter 5, we need to bound the error in the Wasserstein-1 distance. This will be the goal of
this chapter.

Related work For an overview of classical analysis in the univariate case, see Tsybakov
(2009), Chapter 1.2 or Devroye & Lugosi (2012) and in the multivariate case see Scott (1992).
Despite its longstanding use, kernel density estimation is still the subject of ongoing research,
for example in density estimation on unknown manifolds (Berry & Sauer, 2017; Berenfeld &
Hoffmann, 2021; Divol, 2022; Wu & Wu, 2022). In particular, Divol (2022) uses the Wasserstein
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metric to evaluate the performance of a kernel density estimator, however he needs to assume
properties of the kernel that are not satisfied by standard choices such as the Gaussian kernel.

Own contribution In this chapter, we are going to derive a rate of convergence of the KDE
in Wasserstein-1 distance. We start by showing rates for compact kernels implied by existing
rates in the L1 distance. Then we show that we can improve these rates and allow for unbounded
kernels. Afterwards, we show using a smoothness condition that the KDE can attain minimax
optimal rates up to logarithmic constants. The assumptions made are satisfied by the Gaussian
kernel. In the end, we show that we can circumvent the curse of dimensionality in case the
unknown distribution is supported on a low-dimensional linear subspace.

4.1. Rate of convergence

We start by showing that for compact kernels, existing results for the L1-error of the KDE can
be exploited.

Theorem 4.1. Assume supp(p∗) is compact and p∗ ∈ Hα(C). Further assume that K is such
that supp(K) is compact,∫

Rd

|K(x)|dx <∞ and
∫
Rd

K(x)dx = 1,

as well as ∫
Rd

|K(z)|2dz <∞. (4.1)

Then there exist constants c1, c2 > 0 such that

E[W1(P∗,PKDE)] ≤ c1√
n · hd

+ c2 · C · hα.

This leads to a rate of convergence of n−
α

2α+d using h ≍ n−
1

2α+d . This rate can be improved
exploiting the Lipschitz 1 smoothness of the test function in the dual form of the Wasserstein-1
distance (2.15). Additionally, the assumption that K is compact makes Theorem 4.1 invalid in
case of standard kernels such as the Gaussian kernel. The following result will improve the rate
for d not too small, allowing for noncompact kernels.

Theorem 4.2. Assume p∗ ∈ Bα
1,∞(M,Rd), α ∈ (0, 1],M ∈ R>0. Further assume K is a

nonnegative d-dimensional kernel such that
∫
K(y)y dy = 0,∫

max(|u|2, |u|d+4)K2(u) du <∞ and
∫
|x|d+4p∗(x) dx <∞.

If h ≤ 1, then there are C1 and C2 such that

E
[
W1(P∗,PKDE)

]
≤ C1h

1+α +
C2√
nhd

.
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Choosing h ≍ n− 1
2+2α+d leads to the convergence rate n−

1+α
2+2α+d . For nonzero α and d big enough,

this rate decays faster than n−
1
d , the rate of convergence of the empirical measure (Dudley, 1969;

Boissard & Gouic, 2014). Compared to the rate implied by Theorem 4.1, we gain in the numerator
of the exponent but lose a bit in the denominator. For d large enough, this improves the rate
drastically. However, the following result shows that in case that p∗ has bounded support,
imposing a differentiability assumption on the kernel can improve the denominator up to the
level of Theorem 4.1 while keeping the numerator at the level of Theorem 4.2. This comes at
the cost of a logarithmic term.

Theorem 4.3. Assume d ≥ 2,M ∈ R>0, p
∗ ∈ Bα

1,∞(M,Rd), α ∈ (0, 1] and supp(p∗) bounded.
Assume K is a nonnegative d-dimensional kernel such that∫

yK(y) dy = 0, and
∫
|y|1+αK(y) dy <∞.

Further assume K ∈ C d+2
2 with ∥DkK∥1 ≤ C for k ∈ Nd0 such that |k| ≤ d+2

2 and some C > 0.
Then there are C1 and C2 such that

E
[
W1(P∗,PKDE)

]
≤ C1h

1+α +
C2√
hd−2

log n√
n
.

For h ≍ (n/ log2 n)−
1

2α+d we obtain E
[
W1(P∗,PKDE)

]
= O((n/ log2 n)−

1+α
2α+d ).

The convergence rate (n/ log2 n)−
1+α
2α+d coincides up to the logarithmic factor with the lower bound

by Niles-Weed & Berthet (2022, Theorem 3) and thus the above rate is minimax optimal up to
the logarithm. Divol (2022) also considers rates of convergence for kernel density estimators. In
case of d ̸= 2, he obtains the optimal rate for distributions bounded away from zero. However,
the kernels he considers must be smooth radial functions with bounded support in (0, 1)d (Divol,
2022, Condition A). Hence, his result does not apply to the Gaussian kernel.

Remark 4.4.

1. The assumption ∥DkK∥1 ≤ C for k ∈ Nd0 and C > 0 is satisfied by the Gaussian kernel.

2. The second term in the proof of Theorem 4.3 is the expected value of W1(Kh ∗Pn,Kh ∗P∗).

Results on the convergence of the smooth empirical measure have been discussed in case of
the Gaussian kernel. Goldfeld et al. (2020, Proposition 1) obtain a rate in O

(
1√
nhd

)
for

subgaussian distributions P∗, which coincides with the rate obtained in Theorem 4.2. Weed
(2018) looks at distributions on [−1, 1] and obtains a rate in O

(
1√
nhd

)
. Hence the results

above improves these results for distributions in Bα
1,∞ on bounded support.

4.2. Dimension reduction

The rate in Theorem 4.3 depends on the dimension d and therefore exhibits the classical curse
of dimensionality. In the following, we analyze a case in which the curse of dimensionality can
be circumvented and the rate depends on some intrinsic dimension d′ < d. Assume that the
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support of P∗ is a subset of an d′-dimensional linear subspace of Rd. Let the linear subspace V
be defined by

V :=
{
x ∈ Rd : ∃y ∈ Rd

′
s.t. x = Ay

}
,

where A is a Rd×d′ matrix with normalized orthogonal columns. Let p∗d′ be the density with
respect to the Lebesgue measure on Rd′ , such that for Y ∼ p∗d′ we have that AY ∼ P∗. This
setting has been studied in context of diffusions by Chen et al. (2023b) and Oko et al. (2023).
In this case we can improve the rate of convergence, such that the corresponding rate depends
only on the intrinsic dimension d′ and not on the ambient dimension d. We focus on the case of
the Gaussian kernel.

Theorem 4.5. Assume d′ ≥ 2 and supp(p∗d′) bounded. Consider the case of the Gaussian kernel.
Then there are C1 and C2 such that

E
[
W1(P∗,PKDE)

]
≤ C1h+

C2√
hd′−2

log n√
n
.

For h ≍ (n/ log2 n)−
1
d′ we obtain E

[
W1(P∗,PKDE)

]
= O((n/ log2 n)− 1

d′ ).

The above result is in line with Theorem 4.3 for α = 0 and similar results for kernel density
estimators for distributions on manifolds (Berenfeld & Hoffmann, 2021; Divol, 2022). Note
however that in these articles, the kernel is normalized with respect to the lower dimension,
i.e. they consider h−d′K(·/h) for bandwidth h > 0 or the evaluation metric is restricted to the
subspace. The setting we are going to study in Chapter 5 enforces us to use a result for kernels
which are normalized with respect to the ambient space dimension, i.e. h−dK(·/h).

4.3. Proofs

4.3.1. Proofs of Section 4.1

Proof of Theorem 4.1. Using the Kantorovich duality (2.15), we get

W1(P∗,PKDE) = sup
f∈Lip(1)

E X∼P∗

Y∼PKDE
[f(X)− f(Y )]

= sup
f∈Lip(1)
f(0)=0

E X∼P∗

Y∼PKDE
[f(X)− f(Y )]

= sup
f∈Lip(1)
f(0)=0

∫
f(x)(p∗(x)− pn(x)) dx

≤ sup
f∈Lip(1)
f(0)=0

sup
x∈A0

|f(x)|
∫
|p∗(x)− pn(x)| dx,

where A0 = {x ∈ Rd : p∗(x) ̸= 0 or pn(x) ̸= 0}. As p∗ and K (and therefore p1) have bounded
support, there exists some K(d) > 0 such that supx∈A0

|f(x)| ≤ K(d). By Kohler (2015, Satz
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2.4) there exist constants c1, c2 > 0 such that

E
∫
Rd

|pn(x)− p∗(x)| dx ≤
c1√
n · hd

+ c2 · hα. (4.2)

Proof of Theorem 4.2. Set µn := 1
n

∑n
i=1 δXi . We denote Kh := 1

hd
K( ·

h). By the triangle
inequality of the supremum we get

W1(P∗,PKDE) = sup
f∈Lip(1)

∫
f(x)(p∗(z)− (Kh ∗ µn)(z)) dz

≤ sup
f∈Lip(1)

∫
f(z)(p∗(z)− (Kh ∗ p∗)(z)) dz

+ sup
f∈Lip(1)

∫
f(z)((Kh ∗ p∗)(z)− (Kh ∗ µn)(z)) dz.

The first term is the bias of the kernel density estimator and the second term refers to the
stochastic error.
First term: Using Fubini’s theorem and

∫
Kh(y) dy = 1, we rewrite the first term as

sup
f∈Lip(1)

∫
f(z)(p∗(z)− (Kh ∗ p∗)(z)) dz

= sup
f∈Lip(1)

∫
f(z)

(∫
Kh(y)p

∗(z) dy −
∫
Kh(y)p

∗(z − y) dy
)
dz

= sup
f∈Lip(1)

∫
Kh(y)

(∫
f(z)p∗(z) dz −

∫
f(z)p∗(z − y) dz

)
dy

= sup
f∈Lip(1)

∫
Kh(y)

(
(f ∗ p∗(−·))(0)− (f ∗ p∗(−·))(y)

)
dy.

Then, since |p∗|Bα
1,∞
≤M, we have that

|∇(f ∗ p∗(−·))(x)−∇(f ∗ p∗(−·))(y)| =
∣∣∣ ∫ ∇f(z)p∗(x− z) dz − ∫ ∇f(z)p∗(y − z) dz∣∣∣

≤
√
dM |x− y|α,

where we use that |∇f | ≤
√
d for f ∈ Lip(1). Therefore by the generalized mean value theorem,

for every y there exists a ξy and a C ′
1 > 0 such that

sup
f∈Lip(1)

∫
Kh(y)

(∫
f(z)p∗(z) dz −

∫
f(z)p∗(z − y) dz

)
dy

= sup
f∈Lip(1)

∫
Kh(y)(∇(f ∗ p∗(−·))(ξy))⊤y dy

= sup
f∈Lip(1)

∫
Kh(y)(∇(f ∗ p∗(−·))(ξy)−∇(f ∗ p∗(−·))(0))⊤y dy

+

∫
Kh(y)(∇(f ∗ p∗(−·))(0))⊤y dy
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≤ sup
f∈Lip(1)

∫
|Kh(y)||∇(f ∗ p∗(−·))(ξy)−∇(f ∗ p∗(−·))(0)||y| dy

+

∫
Kh(y)(f ∗ p∗(−·))(0))⊤y dy

≤ C ′
1

∫
|Kh(y)||y|1+α dy +

∫
Kh(y)(∇(f ∗ p∗(−·))(0))⊤y dy.

For the first term we have that∫
Kh(y)|y|1+α dy =

1

hd

∫
K(

y

h
)|y|1+α dy = h1+α

∫
K(u)|u|1+α du.

For the last term we use the assumption
∫
Kh(y)y dy = 0. Hence we get

sup
f∈Lip(1)

∫
f(z)(p∗(z)− (Kh ∗ p∗)(z)) dz ≤ h1+αC ′

1

∫
K(u)|u|1+α du.

By assumption the last term is finite. Setting C1 := C ′
1

∫
K(u)|u|1+α du yields the first term in

the final bound.
Second term: To bound the expectation of (4.4) we first use that by Villani (2008, Theorem 6.15)

sup
f∈Lip(1)

∫
f(z)((Kh ∗ p∗)(z)− (Kh ∗ µn)(z)) dz ≤

∫
|z||(Kh ∗ p∗)(z)− (Kh ∗ µn)(z)| dz.

Then for ρ > d
2

E[
∫
|z||(Kh ∗ p∗)(z)− (Kh ∗ µn)(z)| dz]

=

∫
(1 + |z|)−ρ|z|(1 + |z|)ρE

[∣∣∣ 1
n

n∑
i=1

Kh(z −Xi)− E[Kh(z −Xi)]
∣∣∣] dz

≤ 1

n

√∫
(1 + |z|)−2ρ dz

√√√√∫ |z|2(1 + |z|)2ρE[( n∑
i=1

Kh(z −Xi)− E[Kh(z −Xi)]
)2]

dz,

(4.3)
where the equality holds by Fubini’s theorem and the inequality holds by the Jensen inequality
together with the Cauchy-Schwarz inequality.
Next we bound the expectation. Since E[Kh(z −Xi) − E[Kh(z −Xi)]] = 0 and X1, . . . , Xn are
i.i.d. we have that

E
[( n∑

i=1

Kh(z −Xi)− E[Kh(z −Xi)]
)2]

= nVar
(
Kh(z −X1)

)
≤ nE[(Kh(z −X1))

2].

Therefore ∫
|z|2(1 + |z|)2ρE

[( n∑
i=1

Kh(z −Xi)− E[Kh(z −Xi)]
)2]

dz
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= n

∫
E
[
|X1 + hy|2

(
1 + |X1 + hy|2ρ

)2
K2(y)

]
dy

≲
n

hd

∫
E
[
|X1 + hy|2 + |X1 + hy|2ρ+2

]
K2(y) dy

≲
n

hd

∫ (
E
[
|X1|2ρ+2

]
+ h2|y|2 + h2ρ+2|y|2ρ+2

)
K2(y) dy

≲
n

hd
(1 + h2 + h2ρ+2)

∫
max(|y|, |y|2ρ+2)K2(y) dy.

Using that h ≤ 1 we can bound (4.3) for ρ > d
2 further by

E
[ ∫
|z||(Kh ∗ p∗)(z)− (Kh ∗ µn)(z)| dz

]
≲

1√
nhd

∫
max(|y|, |y|2ρ+2)K2(y) dy.

For p = d
2 + 1 the last integral is finite and we thus obtain

E
[ ∫
|z||(Kh ∗ p∗)(z)− (Kh ∗ µn)(z)| dz

]
≤ C2√

nhd
.

In the end, we get for (4.4) that

E
[
W1(P∗,PKDE)

]
≤ C1h

1+α +
C2max(1, h, hp+1)√

nhd
.

Proof of Theorem 4.3. As in Theorem 4.2

W1(P∗,PKDE) = sup
f∈Lip(1)

∫
f(x)(p∗(z)− (Kh ∗ µn)(z)) dz

≤ sup
f∈Lip(1)

∫
f(z)(p∗(z)− (Kh ∗ p∗)(z)) dz

+ sup
f∈Lip(1)

∫
f(z)((Kh ∗ p∗)(z)− (Kh ∗ µn)(z)) dz. (4.4)

For the first term, we obtain as in Theorem 4.2

sup
f∈Lip(1)

∫
f(z)(p∗(z)− (Kh ∗ p∗)(z)) dz ≤ C1h

1+α.

Second term: We rewrite the second term as

sup
f∈Lip(1)

∫
f(z)((Kh ∗ p∗)(z)− (Kh ∗ µn)(z)) dz

= sup
f∈Lip(1)

∫ ∫
f(z)Kh(z − x)(p∗(x)− µn(x)) dx dz

= sup
f∈Lip(1)

∫
(Kh(−·) ∗ f)(x)p∗(x) dx−

∫
(Kh(−·) ∗ f)(x)µn(x) dx

= sup
g=Kh(−·)∗f
f∈Lip(1)

∫
g(x)(p∗(x)− µn(x)) dx.
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Using Youngs inequality and the properties of convolution, we obtain for k ∈ Nd0

∥Dk(Kh ∗ f)∥∞ ≤ ∥D1f∥∞∥Dk−1Kh(−·)∥1 ≤ 1 · ∥Dk−1Kh∥1.

By assumption ∥Dk−1K∥1 ≤ C and hence ∥Dk−1Kh∥1 ≤ Ch−k+1. Now we can use Schreuder
(2020, Theorem 4). For even d, set k = d

2 . Then there exists a constant C ′
2 > 0 such that

sup
g=Kh∗f
f∈Lip(1)

∫
g(x)(p∗(x)− µn(x)) dx ≤

C ′
2

h
d
2
−1
n−1/2 log(n).

For odd d > 1, we know that

∥D d−1
2 (f ∗Kh)∥∞ ≤ ∥D1f∥∞∥D

d−3
2 Kh∥1 ≤ C ′

2h
− d−3

2 ,

and
D

d−1
2 (f ∗Kh)(x)−D

d−1
2 (f ∗Kh)(y)

|x− y|1/2 ≤ 2C ′
2h

− d−3
2 ≤ 2C ′

2h
− d

2
+1.

Then we can use Schreuder (2020, Theorem 4) with α = d
2 again. Therefore, there is a C ′′

2 > 0

such that
sup

g=Kh∗f
f∈Lip(1)

∫
g(x)(p∗(x)− µn(x)) dx ≤

C ′′
2

h
d
2
−1
n−1/2 log(n).

Combining both terms we conclude that there are constants C1 and C2 with

W1(P∗,PKDE) ≤ C1h
1+α +

C2

h
d
2
−1
n−1/2 log(n).

4.3.2. Proof of Section 4.2

Proof of Theorem 4.5. Recall the definitions µn := 1
n

∑n
i=1 δXi and Kh := 1

hd
K( ·

h) from
Theorem 4.3. We start again by decomposing

W1(P∗,PKDE) ≤W1(P∗,P∗ ∗Kh) +W1(P∗ ∗Kh,PKDE),

where we identified the density Kh with the corresponding probability measure.
For the first term, we can bound

W1(P∗,P∗ ∗Kh) ≤ E X∼P∗
Zh∼Kh

[|X − (X + Zh)|] = EZh∼Kh
[|Zh|] = hEZ∼K [|Z|] ≲ h.

For the second term we use the orthogonality of A to obtain

W1(P∗ ∗Kh,PKDE)

= sup
f∈Lip(1)

∫
f(z)

(2πh2)d/2

(∫
exp

(
− ∥z − x∥

2

2h2

)
dP∗(x)− 1

n

n∑
i=1

exp
(
− ∥z −Xi∥2

2h2

))
dz

= sup
f∈Lip(1)

∫
f(z)

(2πh2)d/2

(∫
exp

(
− ∥z −AA

⊤z∥2 + ∥AA⊤z − x∥2
2h2

)
dP∗(x) (4.5)
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− 1

n

n∑
i=1

exp
(
− ∥z −AA

⊤z∥2 + ∥AA⊤z −Xi∥2
2h2

))
dz. (4.6)

By assumption, there is for every x ∈ V a y ∈ Rd′ such that x = Ay. As the support of of P∗

is subset of V , for every Xi there is a Y ∗
i mapping into Rd′ such that Xi = AY ∗

i and Y ∗
i ∼ p∗d′ .

Hence we get ∫
exp

(
− ∥z −AA

⊤z∥2 + ∥AA⊤z − x∥2
2h2

)
dP∗(x)

=

∫
exp

(
− ∥z −AA

⊤z∥2 + ∥AA⊤z −Ay∥2
2h2

)
p∗d′(y) dy

=

∫
exp

(
− ∥z −AA

⊤z∥2 + ∥A⊤z − y∥2
2h2

)
p∗d′(y) dy,

where the last equality holds due to the orthonormal columns of A. For (4.6) we proceed
analogously. Now we can decompose every z ∈ Rd uniquely into

z = Au+Bv, for some u ∈ Rd
′
, v ∈ Rd−d

′
,

where B ∈ Rd×(d−d′) is a matrix that maps Rd−d′ into V ⊥. As A⊤B = 0 and therefore

A⊤z = A⊤(Au+Bv) = A⊤Au = u and similar (Id −AA⊤)z = v.

We get for (4.5) and (4.6)

sup
f∈Lip(1)

∫
f(z)

(2πh2)d/2

(∫
exp

(
− ∥z −AA

⊤z∥2 + ∥A⊤z − y∥2
2h2

)
p∗d′(y) dy

− 1

n

n∑
i=1

exp
(
− ∥z −AA

⊤z∥2 + ∥A⊤z − Y ∗
i ∥2

2h2

))
dz

= sup
f∈Lip(1)

∫ ∫
f(Au+Bv)

(2πh2)(d−d′)/2
exp

(
− ∥v∥

2

2h2

)
dv
(∫ 1

(2πh2)d′/2
exp

(
− ∥u− y∥

2

2h2

)
p∗d′(y) dy

− 1

n

n∑
i=1

1

(2πh2)d′/2
exp

(
− ∥u− Y

∗
i ∥2

2h2

))
du.

For fixed v ∈ Rd−d′ and u,w ∈ Rd′ , we have that

∣∣∣ ∫ f(Au+Bv)

(2πh2)(d−d′)/2
exp

(
− ∥v∥

2

2h2

)
dv −

∫
f(Aw +Bv)

(2πh2)(d−d′)/2
exp

(
− ∥v∥

2

2h2

)
dv
∣∣∣

≤
∫ |f(Au+Bv)− f(Aw +Bv)|

(2πh2)(d−d′)/2
exp

(
− ∥v∥

2

2h2

)
dv

≤
∫ |A(u− w)|

(2πh2)(d−d′)/2
exp

(
− ∥v∥

2

2h2

)
dv

= |u− w|,

where we used the Lipschitz continuity of f in the second inequality, the orthogonality of the
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columns of A and the density of N (0, Id−d′) in the last equality. We conclude that the integral
is Lipschitz in u with Lipschitz constant 1. Hence

sup
f∈Lip(1)

∫ ∫
f(Au+Bv)

(2πh2)(d−d′)/2
exp

(
− ∥v∥

2

2h2

)
dv
(∫ 1

(2πh2)d′/2
exp

(
− ∥u− y∥

2

2h2

)
p∗d′(y) dy

− 1

n

n∑
i=1

1

(2πh2)d′/2
exp

(
− ∥u− Y

∗
i ∥2

2h2

))
du

≤ sup
f∈Lip(1)

∫
f(u) dv

(∫ 1

(2πh2)d′/2
exp

(
− ∥u− y∥

2

2h2

)
p∗d′(y) dy

− 1

n

n∑
i=1

1

(2πh2)d′/2
exp

(
− ∥u− Y

∗
i ∥2

2h2

))
du.

Now we can proceed along the proof of the second term of Theorem 4.3 to obtain the desired
bound.



Chapter 5

Generative Flow Matching

The second generative model we are going to investigate is Flow Matching as introduced by
Lipman et al. (2023). Again, to ease readability, we quickly recall the definitions from the
introduction and introduce the setting that will be studied in this chapter.
Assume we observe an i.i.d. sample X∗

1 , . . . , X
∗
n from an unknown distribution P∗ on Rd. Further

assume that P∗ has a density p∗ with respect to the Lebesgue measure and finite first moment.
For a time dependent vector field v : [0, 1] × Rd → Rd we consider the flow ψ : [0, 1] × Rd → Rd

given as the solution to the ODE

d

dt
ψt(x) = vt(ψt(x)), ψ0(x) = x. (5.1)

For a fixed latent distribution with Lebesgue density p0, the vector field v generates a probability
density path p : [0, 1]×Rd → R>0 with

∫
pt(x)dx = 1 for all t via the push-forward distributions

pt = [ψt]#p0, i.e. ψt(Z) ∼ pt for Z ∼ U,

where U is a chosen latent distribution in Rd that admits a density with respect to the Lebesgue
measure and has finite first moment. The ODE (5.1) corresponds to the Lagrangian description
(in terms of particle trajectories) of the conservation of mass formula (Villani, 2008, p. 14).
The change of variables formula links it to the Eulerian description: A necessary and sufficient
condition for vt to generate pt is

d

dt
pt + div(ptvt) = 0, (5.2)

see Villani (2008, p. 14).
Approximating a given vector field v that generates a certain density density path p using a
parameterized function ṽ leads to the Flow Matching objective

Et∼U [0,1]
Xt∼pt

[
|vt(Xt)− ṽt(Xt)|2

]
(5.3)

as in Lipman et al. (2023). To interpolate between U and an approximation of P∗, they have
considered a probability path of the form

pt(x, p
∗) =

∫
pt(x|y)p∗(y) dy, (5.4)
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where pt(·|y) : Rd → R is a conditional probability path generated by some vector field
vt(·|y) : Rd → Rd for y ∈ Rd. As we shall see in Lemma 5.4, one example of such a pair in
case U = N (0, Id) is

vt(x|y) :=
y − (1− σmin)x

1− (1− σmin)t
and pt(x|y) ∝ exp

(
− |x− ty|2

2(1− (1− σmin)t)2

)
.

The vector field generating (5.4) is then given by

vt(x, p
∗) =

∫
vt(x|y)

pt(x|y)p∗(y)
pt(x)

dy. (5.5)

In this setting Lipman et al. (2023) show that minimizing the Flow Matching objective (5.3) with
respect to the parameters of ṽ is equivalent minimizing the conditional Flow Matching objective

Ψ(ṽ) := E t∼U [0,1]
Y∼p∗

Xt∼pt(·|Y )

[
|ṽt(Xt)− vt (Xt|Y )|2

]
. (5.6)

Note that we changed the variable naming slightly compared to Chapter 1 to ease notation in this
chapter and to align with the literature. In the following, we are going to omit the dependency
of pt and vt on p∗.
Flow Matching algorithms have been successfully used in many different applications that benefit
from efficient sampling, such as text-to-speech (Guo et al., 2024) and text-to-image (Yang et al.,
2025; Esser et al., 2024) settings, the production of novel molecular or protein structures (Dunn
& Koes, 2024; Bose et al., 2024) or the construction of surrogate models in high energy physics
(Bieringer et al., 2024). It has also been adjusted theoretically to different settings. Atanackovic
et al. (2025) adapted Flow Matching to the case of interacting particles, Gat et al. (2024) explored
the discrete setting. Chen & Lipman (2024) generalized the Euclidean setting to the Riemannian
setting, allowing for more general geometries. Kerrigan et al. (2024) extended Flow Matching to
function spaces. However, the statistical properties have only recently been studied by Fukumizu
et al. (2025) and Gao et al. (2024b) in the Wasserstein-2 distance. They do not use the exact
setting of Lipman et al. (2023), but rather introduce stopping times that depend on the number
of samples, enabling the transfer of methods known from the statistical analysis of diffusion
models.

Related work Lipman et al. (2023) use a fixed latent distribution. Similar approaches
for flows between two possibly unknown distributions P and Q are studied by Tong et al.
(2024), Liu et al. (2023) and Albergo & Vanden-Eijnden (2023). Tong et al. (2024) also
generalize the mentioned methods. Gao et al. (2024b) prove a suboptimal rate of convergence
in the Wasserstein-2 distance. Benton et al. (2024) analyzed Flow Matching excluding the
approximation error by imposing assumptions on the covariance that lead to global Lipschitz
bounds on the vector field. They also focus on different constructions than Lipman et al.
(2023). Gong et al. (2025) study the properties of ReLU networks to approximate a vector
field corresponding to higher order trajectories.
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As Lipman et al. (2023) point out, Flow Matching is closely related to diffusion models. We
will provide a short overview of this connection in Section 5.1.2. For an overview of generative
diffusion models, see Cao et al. (2024). Indeed, even in cases that are not constructed to be
consistent with diffusion models, the approximation of a score function has similar properties to
the approximation of the Flow Matching vector field. Fukumizu et al. (2025) build up on this
connection. However, their proof has a critical flaw concerning the bounds of the integral in the
exponent on page 141. Furthermore, they rely on Oko et al. (2023, Theorem C.4), which is also
not completely correct, as pointed out by Yakovlev & Puchkin (2025). This second flaw appears
to be fixable (Stéphanovitch et al., 2025). The statistical properties of score matching are an
area of ongoing research, see for example Chen et al. (2023a), Chen et al. (2023b), Chen et al.
(2023c), Oko et al. (2023), Tang & Yang (2024), Azangulov et al. (2024), Zhang et al. (2024),
Yakovlev & Puchkin (2025). Marzouk et al. (2024) study the statistical properties of continuous
normalizing flows (CNFs) trained by likelihood maximization.

Own contribution In this chapter, we first demonstrate that Flow Matching in the setting
of Lipman et al. (2023) is closely related to the classical kernel density estimation (KDE).
This connection allows us to analyze Flow Matching from a new perspective. First, we show
that the motivation of Flow Matching also holds for its empirical counterparts. For sufficiently
large network classes, the resulting generative algorithm coincides exactly with a kernel density
estimator, where the kernel is given by the density of the latent distribution.
Then we show convergence rates that build up on the rates obtained in Section 4.1. Unlike
Fukumizu et al. (2025), we do exploit on the similarities to diffusion models. Separating the
error of the kernel density estimator allows us to use empirical risk minimization without the
need for Bernstein-type bounds. This avoids the problems pointed out by Yakovlev & Puchkin
(2025) in the analysis of diffusion models. Overall, the analysis of Flow Matching is more delicate,
since Girsanov’s theorem does not apply and thus the strategy of Chen et al. (2023c) cannot be
used. Therefore, our bound depends exponentially on the Lipschitz constant of the vector field.
This is one of the reasons for the difficulties in the proof of Fukumizu et al. (2025).
This analysis allows us to show convergence rates in Wasserstein-1 distance in the case where
finite neural networks are used for the vector field. While these rates are minimax optimal up
to a logarithmic constant, they suffer from the curse of dimensionality. In case the support of
P∗ is concentrated on a linear subspace, we improve our results in a way that the convergence
rate depends only on the intrinsic dimension. This provides a first justification for the excellent
performance of Flow Matching for high-dimensional data sets.
In a completely different second ansatz, we focus on smaller networks, that correspond more to
real world scenarios. This approach requires a detailed study of the Lipschitz constant of the
underlying population vector field (5.5). We provide upper and lower bounds on this Lipschitz
constant and develop conditions under which the unknown distribution admits a Lipschitz
controlled vector field. We demonstrate that our assumptions can be met even without assuming

1The separation of the outer integral does not imply the same separation of the integral in the exponent. The

correct factor in the integral is e2
∫ tj
T0

Ludu, where Lu is the Lipschitz constant of the approximated vector field,
which depends on T0 and is thus not bounded by a universal constant.
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log-concavety. Then, using the Bernstein-type inequality presented in Theorem 2.11, we obtain a
rate of convergence that allows for significantly smaller networks than the result obtained before.
As a consequence, the rate obtained is not minimax optimal, but still improves existing rates for
similar settings.

5.1. Overview of related methods

In the following, we give a quick overview of generative models related to Flow Matching.
First, we present predecessors of Flow Matching. Afterwards, we draw a connection from Flow
Matching to diffusions, which is restricted to properties that will be revisited later and is therefore
by far not exhaustive.

5.1.1. From Normalizing Flows to Flow Matching

A natural starting point for a generative model is the change of variables theorem. If Z ∼ pZ ,
then ψ(Z) admits the density

pψ(Z)(x) = pZ(ψ
−1(x))|detDxψ

−1(x)|. (5.7)

Applying the logarithm on both sides leads to

log(pψ(Z)(x)) = log(pZ(ψ
−1(x))) + log(|detDxψ

−1(x)|).

The use of concatenations of diffeomorphisms for the function ψ gave rise to normalizing flows.
The first approaches were defined by Tabak & Vanden-Eijnden (2010) and Tabak & Turner
(2013), but popularized by Rezende & Mohamed (2015) and Dinh et al. (2015). There have been
numerous approaches to construct the function ψ in this setting, for an overview see Kobyzev et al.
(2020). Although the models were constructed to limit computational costs of the calculation of
the determinant of the Jacobian, this remained the bottleneck of normalizing flows.
Expanding the discrete setting of concatenations of diffeomorphism to a continuous setting gave
rise to CNFs (Chen et al., 2018). Instead of (5.7), they showed and used the following continuous
adaptation named Instantaneous Change of Variables.

Theorem 5.1. (Chen et al., 2018, Theorem 1) Let v : Rd × [0, T ]→ Rd be uniformly Lipschitz
in the first component and continuous in the second component. Further, let ψt : Rd → Rd be the
flow resulting from v, i.e.

∂ψt(x)

∂t
= v (ψt(x), t) , ψ0(x) = x

Let Z be a random variable such that for each t ∈ [0, T ], the distribution Pψt(Z) is absolutely
continuous w.r.t. the Lebesgue measure with density pt. Then for almost every t ∈ [0, T ] and for
all x with pt (ψt(x)) > 0,

d

dt
log pt (ψt(x)) = − tr (Dxv (ψt(x), t)) .
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Theorem 5.1 replaces the calculation of the determinant with a trace operation, which is
computationally cheaper and linear. Chen et al. (2018) then use a maximum likelihood method
to optimize over a parameterized class of functions v. However, the training requires simulations
of the ODE, which results in high computational cost, see Grathwohl et al. (2019).
The Flow Matching approach offers an alternative objective circumventing the need for
simulations during training. Next to Lipman et al. (2023), Albergo & Vanden-Eijnden (2023)
and Liu et al. (2023) developed similiar models with the same advantage. Additionally, there are
several approaches that extend these models. For an overview, we refer to Tong et al. (2024).

5.1.2. Diffusion models

The regression objective of Flow Matching is similar to the score matching objective (Hyvärinen,
2005; Vincent, 2011), which is used to train diffusion models based on SDEs, introduced by
Song et al. (2021). In the following, we want to make this comparison more precise. To this
end, we start by recalling the standard definitions and constructions of Song et al. (2021). For
exhaustive definitions and assumptions necessary for existence and uniqueness of solutions to
SDEs and reverse processes, we refer to Øksendal (2003). Then we illustrate the connection of
diffusions based on Ornstein-Uhlenbeck processes to Flow Matching.
Song et al. (2021) introduced SDE-based diffusions via the very general SDE

dXt = f(Xt, t) dt+ g(t) dBt, (5.8)

where B is a d-dimensional Brownian motion, f : Rd × [0, T ] → Rd is the drift coefficient and
g : [0, T ]→ R is the diffusion coefficient for T > 0. For conditions that guarantee existence and
uniqueness of solutions of (5.8), we refer to Øksendal (2003, Theorem 5.2.1). The diffusion is
then initialized using the unknown distribution, e.g. X0 ∼ P∗. The density of Xt is denoted by
pt.
Under certain assumptions on the drift, the diffusion and pt, see Anderson (1982), the reverse
process of (5.8), i.e. the process satisfying

←−
X t ∼ XT−t, is given by the SDE

d
←−
X t = [f(

←−
X t, T − t)− g(T − t)2∇x log pT−t(

←−
X t)] dt+ g(T − t) d←−B t,

where
←−
B is another d-dimensional Brownian motion and the diffusion is initialized at

←−
X 0 ∼ PXT .

The function ∇x log pt is then approximated for all t ∈ [0, T ] by some parameterized function sθ.
The denoising score matching objective is obtained by using the equality

EXt [|∇x log pt(Xt)− sθ(Xt, t)|2] = EX0 [EXt|X0
[|∇x log pt(Xt|X0)− sθ(Xt, t)|2]] + C,

where C is a constant independent of sθ, which is due to Vincent (2011). In the above equation
pt(·|x0) is the conditional density of Xt given X0 = x0. The idea of approximating ∇x log pt
dates back to Hyvärinen (2005) and is naturally connected to the Hyvärinen score presented in
Section 2.3.
Song et al. (2021) already present two different instances, the variance exploding and the variance
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preserving diffusion. For the variance exploding diffusion, they set f ≡ 0 and use a function σ2(t)
with σ2(0) = 0 to build the diffusion coefficient g. Thus, they recover the SDE

dXt =

√
dσ2(t)

dt
dBt.

In this setting
Xt|X0 ∼ N (X0, σ

2(t)Id).

This explains the name variance exploding: if σ is chosen such that it grows in t, then pt(·|X0)

adds noise around the fixed mean X0. This model has been studied from a statistical perspective
by Zhang et al. (2024) and Dou et al. (2024).
The variance preserving diffusion behaves differently. For a function β : R → R>0, consider the
SDE

dXt = −
1

2
β(t)Xt dt+

√
β(t) dBt.

This is a linear SDE with solution

Xt = exp
(
− 1

2

∫ t

0
β(s) ds

)(
X0 +

∫ t

0
exp

(1
2

∫ s

0
β(z) dz

)√
β(s) dBs

)
.

Define
αt := exp

(
− 1

2

∫ t

0
β(s) ds

)
,

then the Ito isometry, see e.g. Øksendal (2003, Lemma 3.1.5) and standard integration leads to

Xt|X0 ∼ N (αtX0, (1− α2
t )Id).

A special instance of the variance preserving diffusion corresponds to the choice β(t) = 2. Then

Xt|X0 ∼ N (exp(−t)X0, (1− exp(−2t))Id). (5.9)

and for t → ∞ we recover the standard normal distribution. The resulting process is a
special instance of an Ornstein-Uhlenbeck process. From (5.9), the name variance preserving
is apparent: for growing t, the mean converges towards 0 and the variance converges towards
1. This model or slight adaptations of this model, such as the multiplication with the factor 2

or the multiplication of the diffusion coefficient with some factor σ > 0 have also been studied
extensively in the literature, see for example Chen et al. (2023a), Chen et al. (2023c), Oko et al.
(2023), Stéphanovitch et al. (2025), Arsenyan et al. (2025).

The asymptotic behavior of (5.9) for t → ∞ is the same as the behavior of Flow Matching for
t → 0, if N (0, Id) is chosen as the latent distribution which we will assume in this subsection.
Thus, we consider (5.9) for our comparison. In contrast to diffusions, Flow Matching works in a
finite time horizon. Additionally, the time runs in reverse direction, i.e. for t = 0 we have that
X0 ∼ P∗. To avoid confusion, we will use X∗ ∼ P∗ without a time index for the remainder of
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this subsection. Switching the time regime of the diffusion leads to

Xt|X∗ ∼ e−(1−t)X∗ +
√
1− e−2(1−t)Z,

for t ∈ (−∞, 1), where Z ∼ N (0, Id) and X∗ ∼ P∗ are independent. Set σt :=
√

1− e−2(1−t).
For t < 1 the density of the marginal is then given by

p̃t(x) =

∫
1

(2πσ2t )
d/2

exp
(
− |x− y|

2

2σ2t

)
ed(1−t)p∗

( y

e−(1−t)

)
dy

=

∫
1

(2πσ2t )
d/2

exp
(
− |x− e

−(1−t)z|2
2σ2t

)
p∗(z) dz.

Theoretical results of diffusion models need early stopping at a time t ∈ (0, 1) of the backward
process to prevent the score from blowing up. In Flow Matching as introduced in Chapter 1, the
analogue of this is the choice of a small variance σmin. We note that for the mean shift, there
is a slight difference: while early stopping leads to a small factor e−(1−t) for t close to 1, the
mean shift in Flow Matching guarantees that p1(x|y) is the density of a Gaussian with mean
y. Additionally, the backward process is started from N (0, Id) at some time −T (T + 1 in the
original time regime) for a large T . This additional setting does not occur in the Flow Matching
setting, as the vector field is constructed such that it transfers mass from the latent distribution
directly. Accounting for these differences, we can still compare the shift of variance across the
different models. To do so, we squeeze the diffusion time interval [−T, 1] into the Flow Matching
time interval [0, 1]. Figure 5.1 illustrates the difference in variance functions for different choices
of early stopping and different T > 0. Figure 5.2 illustrates the difference in the factors of the
mean shift.

0.25 0.5 0.75 1

σ′min

σmin

1− ε1
1− ε1.3

1

Figure 5.1.: Variance shifts of diffusion models (blue), the linear choice in Lipman et al. (2023)
(green) and the choice in Section 5.5.2 (red) for different values of σmin/early stopping
times: solid line 0.1, dashdotted 0.05, dashed 0.025, loosely dashed 0.01. εT is the
difference resulting from running the diffusion only to −T instead of −∞. Only
σmin = 0.1 and σ′min = 0.05 are labeled on the axis.
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0.25 0.5 0.75 1

0.2

0.4

0.6

0.8

1

Figure 5.2.: Mean shift factors of diffusion models (blue) and the linear choice in Lipman et al.
(2023) (green). We consider T = 1 (solid), T = 2 (dashed line), T = 10 (dashdotted
line). Early stopping leads to a bias in case of diffusions. Note that we only consider
the factors of the mean shift.

The upper time T is typically chosen as a monotonously increasing function of n, the stopping
time as a monotonously decreasing function of n. In the squeezed reverse-time interval [0, 1], this
leads to a steeper and later decline of the variance. We are going to show that there are classes
of unknown distributions that allow for a broad range of variance functions while preserving
controlled Lipschitz continuity of the vector field from (5.5).

5.2. Connection to kernel density estimation

As p∗ is unknown, in practice, the expectation in Y ∼ p∗ in (5.6) is replaced by the empirical
counterpart based on i.i.d. observations X∗

1 , . . . , X
∗
n from the unknown distribution P∗. This

leads to the empirical counterparts of (5.4) and (5.5) given by

pnt (x) =
1

n

n∑
i=1

pt(x|X∗
i ) and vnt (x) =

n∑
i=1

vt(x|X∗
i )

pt(x|X∗
i )∑n

j=1 pt(x|X∗
j )
. (5.10)

With this modification we recover the sufficient condition for vnt to generate pnt analogously to
Lipman et al. (2023, Theorem 1).

Lemma 5.2. If vt(·|X∗
i ) generates pt(·|X∗

i ) for all i = 1, . . . , n, then vnt generates pnt .

The motivation for the conditional Flow Matching objective (5.6) is the equivalence to the
unconditioned Flow Matching objective with respect to the optimizing arguments (Lipman et al.,
2023, Theorem 2). Using the empirical counterparts, this still holds true.

Theorem 5.3. Let pt(·|y) : Rd → R be a probability path generated by a vector field vt(·|y) : Rd →
Rd for y ∈ Rd. Using pnt and vnt from (5.10), and a class of parameterized vector fieldsM, which
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is constructed such that the minimal arguments exist, we have that

argmin
v̂∈M

∫ 1

0
EXt∼pnt

[
|v̂t(Xt)− vnt (Xt)|2

]
dt

= argmin
v̂∈M

∫ 1

0

1

n

n∑
i=1

EX̃t∼pt(·|X∗
i )

[
|v̂t(X̃t)− vt(X̃t|X∗

i )|2
]
dt.

Hence the empirical conditional Flow Matching objective

Ψ̃(ṽ) :=

∫ 1

0

1

n

n∑
i=1

EX̃t∼pt(·|X∗
i )

[
|ṽt(X̃t)− vt(X̃t|X∗

i )|2
]
dt (5.11)

is justified theoretically. Compared to Gao et al. (2024b), we use vt(·|X∗
i ) directly as proposed

by Lipman et al. (2023) and stick to the entire time interval. Note that for simplicity we do not
sample t.
From minimizing (5.11) in ṽ over a classM, which is constructed such that the minimal argument
exists and all corresponding ODEs admit a solution, we obtain an optimal argument v̂. Solving
the ODE (5.1) using v̂, we obtain a flow ψ̂t, i.e. ψ̂ is given by

d

dt
ψ̂t(x) = v̂t(ψ̂t(x)), ψ̂0(x) = x, for v̂ ∈ argmin

ṽ∈M
Ψ̃(ṽ). (5.12)

We use this flow to push forward the known, latent distribution U to time t = 1. In accordance
with the goal of generative modeling, the distribution of this pushforward should mimic P∗.

In order to apply Flow Matching, we have to construct a class of conditional probability paths.
Let Z ∼ U and letK denote the density of U. Consider the variance function σ : [0, 1]×Rd → R>0

and the mean shift µ : [0, 1]× Rd → Rd. Set for t ∈ [0, 1] and a given X∗
i , i ∈ {1, .., n},

ψt(Z|X∗
i ) := σt(X

∗
i )Z + µt(X

∗
i ). (5.13)

The density of ψt(Z|X∗
i ) is by the transformation formula

pt(x|X∗
i ) =

1

σdt (X
∗
i )
K
(x− µt(X∗

i )

σt(X∗
i )

)
.

We call pt(·|X∗
i ) the conditional kernel probability path. Setting

d

dt
ψt(x|X∗

i ) = vt(ψt(x|X∗
i )|X∗

i ), (5.14)

we recover the same result like Lipman et al. (2023, Theorem 3).

Lemma 5.4. Let pt (x|X∗
i ) be a conditional kernel probability path, and ψt(·|X∗

i ) its
corresponding flow as in (5.13). Then, the unique vector field that defines ψt(·|X∗

i ) via (5.14)
has the form

vt (x|X∗
i ) =

∂σt
∂t (X∗

i )

σt (X∗
i )

(
x− µt (X∗

i )
)
+
∂µt
∂t

(X∗
i ) .
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Set σmin > 0. To flow from pn0 (x) =
1
n

∑n
i=1K(x) = K(x) to pn1 (x) =

1
nσd

min

∑n
i=1K(

x−X∗
i

σmin
), we

can choose any differentiable functions σt and µt such that for every x ∈ X

µ0(x) = 0, µ1(x) = x and σ0(x) = 1, σ1(x) = σmin.

At time t = 1 the distribution Pψn
1 (Z) then coincides with the kernel density estimator

pn1 (x) =
1

nσdmin

n∑
i=1

K
(x−X∗

i

σmin

)
, (5.15)

where the kernel is given by the latent distribution U. Choosing U = Nd(0, 1), i.e., we consider
the d-dimensional Gaussian kernel K(x) = (2π)−d/2 exp(−|x|2/2), yields the proposed flow from
Lipman et al. (2023, Section 4). Moreover, considering general kernels is in line with methods
by Tong et al. (2024), Liu et al. (2023) and Albergo & Vanden-Eijnden (2023), which transform
an unknown distribution to another. Interestingly, a similiar connection in case of diffusions has
been studied by Li et al. (2024).

5.3. Wasserstein distance in Flow Matching

The aim of this chapter is to evaluate how well Flow Matching performs depending on the number
of observations n. To this end, we have to control the distance between P∗ and Pψ̂1(Z) with the
flow ψ̂ from (5.12). For the evaluation metric, we again use the Wasserstein-1 metric.
As already motivated in the introduction, Flow Matching admits two natural reference models:
the first is the model corresponding to the KDE, with pnt and vnt from (5.10). Using vnt as a
vector field for the ODE (5.1), we obtain the flow ψnt . Then we can bound

W1(P∗,Pψ̂1(Z)) ≤W1(P∗,Pψ
n
1 (Z)) +W1(Pψ

n
1 (Z),Pψ̂1(Z)). (5.16)

A second reference model is the population model with pt and vt from (5.4) and (5.5). Using vt
as a vector field for the ODE (5.1), we obtain the flow ψt. In this case we can bound

W1(P∗,Pψ̂1(Z)) ≤W1(P∗,Pψ1(Z)) +W1(Pψ1(Z),Pψ̂1(Z)). (5.17)

The following theorem provides a first comparison of the performance of ψ̂t and a flow ψ̃t obtained
as a solution of the ODE (5.1) using a vector field ṽ such that the solution exists.

Theorem 5.5. Let ψ̃ be the solution of the ODE (5.1) using a Lipschitz continuous vector field
ṽ. Assume that all functions in M are Lipschitz continuous for fixed t with Lipschitz constant
Γt. Then for any v̂ : [0, 1]×Rd → Rd, with v̂ ∈M and the corresponding solution ψ̂ of the ODE
(5.1),

W1(P∗,Pψ̂1(Z)) ≤W1(P∗,Pψ̃1(Z)) +
√
2ee

∫ 1
0 Γt dt

(∫ 1

0

∫
|ṽt(x)− v̂t(x)|2p̃t(x) dx dt

) 1
2

≤W1(P∗,Pψ̃1(Z)) +
√
2ee

∫ 1
0 Γt dt∥ṽ − v̂∥∞.

(5.18)
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The first term in (5.18) depends on the choice of the conditional densities pt(·|X∗
i ) and on the

number of observations, but is independent of the classM. Within the framework of Section 2.6,
we used Pψ̃1(Z) as the reference measure. Using the empirical reference (5.16), W1(P∗,Pψn

1 (Z)) is
the estimation error of a kernel density estimator studied in Chapter 4. Note that the empirical
reference is not the empirical distribution, but a smoothed version of it. Using the population
reference as in (5.17), W1(P∗,Pψ1(Z)) is the error of the convolution of the unknown distribution
with the latent distribution.
The second term depends on the setM and its ability to approximate ṽ. In case of the empirical
reference, we can use the fact that v̂ minimizes (5.11) directly. In contrast to Section 2.6, the
Flow Matching model regularizes intrinsically and the relation between the evaluation distance
and the optimization criterion is nonlinear. For a sufficiently rich classM this second term will be
negligible in this setting. Using the population reference, we first need to apply a concentration
inequality to reach an empirical risk minimization setting, which leads to the classical trade-off
in the size of the class M. As a consequence, we need to treat the Lipschitz constant more
carefully in this case.
The proof of Theorem 5.5 uses Grönwall’s Lemma, which leads to the factor e

∫ 1
0 Γt dt in the second

term in (5.18). This is standard in the analysis of ODEs, in context of flow-based generative
models see Fukumizu et al. (2025) and Albergo & Vanden-Eijnden (2023). Compared to the SDE
setting of diffusion models, there is no such result like Girsanov’s theorem, which is typically used
to study these models following Chen et al. (2023c) and leads to the avoidance of the exponential
dependence on the Lipschitz constant. This greatly complicates the analysis of Flow Matching.
Given this dependence, a Lipschitz regularization in the Flow Matching objective seems to be
theoretically beneficial. This could be a possible avenue for future research.

Remark 5.6. A bound for arbitrary Lipschitz ṽt cannot be better than W1(P∗,Pψn
1 (Z)). If vnt

is contained in M, then the Picard-Lindelöf theorem yields ψ̂t = ψnt and hence W1(P∗,Pψ̂1) =

W1(P∗,Pψn
1 ).

In Section 5.4, we are going to study the setting using the empirical reference based on the
results of Section 4.1. Subsequently, in Section 5.5 we investigate the setting using the population
reference.

5.4. Rate of convergence in the over-parameterized setting

In this section, we focus on the case where P∗ is a distribution on a compact set X ⊂ [−1, 1]d.
If the empirical vector field vn is contained in M, then the second error term in Theorem 5.5
vanishes and the Flow Matching model inherits, for suitable choices of the latent distribution,
the optimal rate of convergence from Theorem 4.3. In practice, (5.11) is optimized over a class
of neural networks to find a good approximation of vn. We thus have to take this approximation
error into account.
To analyze the ability of a network to approximate vn, it is necessary to know the properties
of vn for all t ∈ [0, 1]. Hence we are going to specify σt, µt and a latent distribution for the
subsequent analysis in this subsection.
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Assumption 5.7.

1. We consider the following choices of σ : [0, 1]× Rd → R>0 and µ : [0, 1]× Rd → Rd :

σt(X
∗
i ) = 1− (1− σmin)t and µt(X

∗
i ) = tX∗

i .

2. We choose U = N (0, Id) for the latent distribution.

3. d ≥ 2.

The choice of σt and µt in Assumption 5.7 coincides with the setting of Lipman et al. (2023) in
Example II. In Section 5.1.2 we already saw other specific shapes of mean shifts and variance
functions. We are going to study vt for general σt in Section 5.5.
Now we want to combine the approximation properties of ReLU networks with the results of
Chapter 4 to evaluate the performance of the Flow Matching mechanism from (5.12) where
M = NN(L,M,Γ) is a set of ReLU networks vNN : [0, 1] × Rd → Rd, (t, x) 7→ vt(x) with a fixed
maximal number of layers L, at most M nonzero weights and Lipschitz constant of vt of at most
Γ for any t. We obtain the following rate:

Theorem 5.8. Grant Assumption 5.7 and assume p∗ ∈ Bα
1,∞(M, [−1, 1]d), α ∈ (0, 1]. Set σmin =

n−
1

2α+d . Then there are sequences Ln,Mn,Γn ∈ N such that for n big enough

E
[
W1(P∗,Pψ̂1)

]
≲ n−

1+α
2α+d log2(n),

where ψ̂ is given by (5.12) with M = NN(Ln,Mn,Γn).

Remark 5.9.

1. The Lipschitz constraint in Theorem 5.8 is typically not enforced in practice. However, we
only require a bound on the Lipschitz constant of order Γn = 2d+1

σ3
min

+ 1
2 which is a mild

restriction for σmin → 0 as n→∞.

2. Compared to the literature on diffusion models and the first results on Flow Matching, we do
not use early stopping times, but rather set σmin > 0 according to n. In terms of variance,
both procedures are interchangeable: calculating σt∗ in Fukumizu et al. (2025, Theorem 9)
leads to exactly the same variance. We note that this separation is unaffected by the flaw
earlier in their proof. However, early stopping leads to a bias induced by the mean function
µ, which is not 1 at a time t < 1. This could be fixed using an adapted mean function, which
is 1 at the time of the early stopping, but this leads to much more complicated structures of
µ.

Theorem 5.8 shows that Flow Matching achieves minimax optimal rates (up to logarithmic
factors) for certain classes of unknown densities, giving some justification of their empirical
success.
The rate in Theorem 5.8 depends on the dimension d and therefore exhibits the classical curse
of dimensionality. In the following, we analyze the case, which enabled to circumvent the curse
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of dimensionality in Section 4.2. Hence, we assume the setting of Theorem 4.5, where P∗ lives
on a linear subspace of dimension d′. For a detailed definition, we refer to the previous chapter.
Analogous to Theorem 5.8, we obtain a rate of convergence in case ReLU networks are used for
the vector field.

Theorem 5.10. Grant the setting of Theorem 4.5, Assumption 5.7 and assume that for every
y ∈ supp(p∗d′) we have that Ay ∈ [−1, 1]d, where A is the matrix from the setting of Theorem 4.5.
Set σmin = n−

1
d′ . Then there are sequences Ln,Mn,Γn ∈ N such that for n big enough

E
[
W1(P∗,Pψ̂1)

]
≲ n−

1
d′ log2(n),

where ψ̂ is given by (5.12) with M = NN(Ln,Mn,Γn).

Theorem 4.5 and Theorem 5.10 demonstrate that Flow Matching can benefit from a lower
intrinsic dimension. Note that the method automatically adapts to the linear subspace, only the
dimension d′ is required for the choice of σmin. However, the smaller error bound comes at the cost
of even larger networks to ensure that the approximation error of the network remains negligible
compared to the faster rate of convergence in the dominating first term in decomposition (5.18).
Additionally, the rate does not exploit regularity of p∗d′ . Therefore, the above results can only
serve as first step to an analysis in a dimension reduction setting. A natural next step would be
a generalization from linear subspaces to d′-dimensional sub-manifolds.

5.5. Rate of convergence via Lipschitz guarantees

While the rate in Theorem 5.8 is minimax optimal up to logarithmic factors, the network size is
extremely large. Although this is part of the novelty of the result using the empirical reference, it
is unrealistic in practical implementations. In this section, we are going to study the population
reference. The use of a concentration inequality will lead to a trade-off in the network size.
While this results in smaller networks, which align more closely with practice, it also prohibits
the compensation for the exponential bound on the Lipschitz constant. Thus, we need to study
the Lipschitz constant more carefully.
We are going to focus on one specific probability path and assume the following:

Assumption 5.11. We assume that

pt(x|y) ∝ exp
(
− |x− µt(y)|

2

2σ2t

)
,

where the mean shift µ : [0, 1]× Rd → Rd and the variance function σ : [0, 1]→ R>0 are smooth,
(coordinate-wise) monotone functions such that

µ0(y) = 0, µ1(y) = y, σ0 = 1, σ1 = σmin,

for a σmin ∈ (0, 1).
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Assumption 5.11 means in particular that the latent distribution is N (0, Id). The monotonicity
assumption guarantees that there is no unnecessary movement of mass. Assumption 5.11
coincides with the construction in Lipman et al. (2023, Section 4). Very similar generative
models based on probability flows have been studied by Gao et al. (2024b,a). Additionally, the
use of N (0, Id) for the latent distribution is pervasive in generative modeling, e.g. in diffusions
building up on Sohl-Dickstein et al. (2015), which lead to the SDE based diffusions introduced
in Section 5.1.2.
For the smoothness of the unknown distribution, we stick to the setting of Section 5.4.

Assumption 5.12. We assume that

1. d ≥ 2.

2. p∗ ∈ Bα
1,∞(Rd), α ∈ (0, 1].

5.5.1. Lipschitz constant of the vector field

Under Assumption 5.11 Lipman et al. (2023), show that the corresponding vector field that
generates pt(·|y) for every y ∈ Rd is given by

vt(x|y) =
σ′t
σt

(x− µt(y)) + µ′t(y), (5.19)

where σ′t and µ′t are the derivatives in time. This is a special instance of Lemma 5.4 with
shortened notation. We conclude from this result that the definition of the variance function σt
is critical for bounding the Lipschitz constant, while only very special choices of the mean shift
µt have an influence. Therefore, we will focus on polynomial choices of µt, which generalize the
choice of Lipman et al. (2023).

Assumption 5.13. We consider the following choices of µ : [0, 1]× Rd → Rd for γ > 1:

µt(y) = tγy.

A natural first idea is to aim for a global Lipschitz constant, this corresponds to the assumption
that v has a bounded Lipschitz constant. The next result shows that such a constant cannot
exist in this setting. We can upper and lower bound the Lipschitz constant of v:

Theorem 5.14. Let

Bt
i,j :=

∥∥∥σ′t
σt
1i=j +

(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

Cov(Y ·,t)ij

∥∥∥
∞
,

where Y x,t is a random variable with density q ∝ pt(x|·)p∗(·) for x ∈ Rd. Assume Bi,j exists for
all i, j ∈ {1, .., d} and define B := (Bij)i,j=1,...,d.
For the Lipschitz constant in space Γt of vt on Rd, we have that

max
ij

Bi,j ≤ Γt ≤ dmax
ij

Bi,j .
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The upper and lower bound in Theorem 5.14 depend on the choice of σt. We want to choose σt
such that

∣∣σ′
t
σt

∣∣ does not grow too fast for small σt or large |σ′t|. The next result shows that it is
not possible to choose a function σt such that the absolute value of the quotient is smaller than
log(σ−1

min) for all t ∈ [0, 1] or that the integral over
∣∣σ′

t
σt

∣∣ remains small.

Lemma 5.15.

1. There is a t∗ ∈ [0, 1] such that
σ′t∗

σt∗
= log(σmin),

for any choice of σt satisfying Assumption 5.11.

2. For any choice of σt satisfying Assumption 5.11,∫ 1

0

∣∣σ′t
σt

∣∣ dt = log(σ−1
min).

We note that Lemma 5.15 does not depend on the specific probability path, it holds for all
quotients of smooth choices of σt. Furthermore, similar terms arise in all cases, where the chosen
probability path implies vector fields of the form (5.19). The first part of Lemma 5.15 reveals
that a global Lipschitz bound on vt independent of σmin and the covariance term is not feasible
in this setting. To compensate for σ′

t
σt

= log(σmin) in the case of i = j, the second term must
have the same absolute value. However, this prohibits a smaller bound when i ̸= j. The second
part of Lemma 5.15 implies that, even the case of Cov(Y x,t)ij ≲ σ2t for all i, j will lead to a
logarithmic dependency on σ−1

min, which ultimately influences the rate.
To control the Lipschitz constant, we thus need to assume that p∗ is such that the covariance
term in Theorem 5.14 decays in a controlled order for σt → σmin for i = j and the same decay
of the off-diagonal elements is fast enough.

Assumption 5.16. Assume there is a t∗ ∈
[

1
21/γ

, 1
)

independent of σmin such that for all x ∈ Rd

(I) Cov(Y x,t)ij ≲
(σt
tγ
)3
, i ̸= j, t > t∗,

(II) Var(Y x,t
i ) =

(σt
tγ
)2(

1 +O
((σt
tγ
) 1

κ
)
), for all i, t > t∗,

(III) Cov(Y x,t)ij ≤ C, for all i, j, t ≤ t∗,

where Y x,t is a random variable with density q ∝ pt(x|·)p∗(·) and κ ∈ R≥1 and C are fixed
constants.

Under these assumptions, any choice of σt satisfying Assumption 5.11 will lead to a bounded
Lipschitz constant.

Theorem 5.17. Grant Assumption 5.11, Assumption 5.13 and Assumption 5.16 with fixed
parameters γ, κ and t∗. Then there is a constant C independent of σmin such that∫ 1

0
Γt dt ≤ C.
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In order to allow for comparison with other works, we are going to show that the very abstract
Assumption 5.16 is satisfied if the unknown distribution is of the form

p∗(x) ∝ exp
(
− |x|

2

2
− a(x)

)
, ∥a∥C2 = L <∞. (5.20)

This setting was used in Stéphanovitch (2024) to construct Lipschitz continuous pushforward
maps in diffusion models. It specifically allows for unbounded distribution that are not
log-concave (i.e the logarithmic density is concave) and thus the Brascamp-Lieb inequality,
Theorem 2.24, cannot be applied directly. The log-concavity assumption has been popular in
the analysis of diffusion models and Flow Matching, see for example Gao & Zhu (2025); Bruno
et al. (2025); Gao et al. (2025, 2024b). First, we note that by Lemma 5.33, which can be found
in Section 5.6.4, the second assumption in Assumption 5.12 is satisfied for densities of the form
(5.20) with α = 1. For simplicity, we choose γ = 1, but the result extends easily to other γ.

Theorem 5.18. Set γ = 1. Assume that P∗ is of the form (5.20). Then Assumption 5.16 is
fulfilled with

C = e2L, κ = 1, and t∗ such that σt∗ = c(L, d),

where c(L, d) ∈ (0, 1) is a constant that depends only on L and d.

The uniform covariance bound is proven using the fact that we can control the effect of bounded
perturbations of Gaussians on the variance, which follows from the Holley-Strooke perturbation
principle. The bound on the diagonal entries employs proof techniques from the Cramer-Rao
lower bound. The bound on the off-diagonal elements is developed from the Brascamp-Lieb type
covariance estimate of Menz (2014).
The proof of Theorem 5.18 reveals that for t > t∗ large enough and i ̸= j, the covariance decay
is of order σ4t and κ = 1. This suggests that the class of distributions for which Theorem 5.17
applies is significantly larger.

5.5.2. Rate of convergence

In order to evaluate the performance of Flow Matching, we are going to derive a rate of
convergence using neural networks for the setM. Since ṽ is chosen such that it minimizes (5.11)
instead of (5.3), we cannot use the minimization property in Theorem 5.5 directly. Within the
framework of Section 2.6, this corresponds to εnc ̸= 0. The next theorem provides a more detailed
decomposition of the error in the form of a classical oracle inequality. In order to merge the results
later, we choose µt such that the results of Section 5.5.1 apply. For the variance function σt,
the analysis in Section 5.5.1 reveals that we are not restricted to the linear case. Thus, we can
choose a variance function that is suited for the application of a Bernstein-type inequality. Since
Bernstein-type inequalities rely on absolute value bounds, we are going to choose σt such that
the absolute value of (5.19) is as small as possible. Our choice follows from Lemma 5.15 and the
solution of the ODE

σ′t
σt

= log(σmin), σ0 = 1.
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Assumption 5.19. Assume that

µt(y) = ty and σt = (σmin)
t.

First, we chooseM as a set of continuous measurable functions ṽ : [0, 1]×Rd → R such that for
the j-th component function ṽj of ṽ

|ṽj |∞ ≤ e2L log(n)3 + (1 + e2L) log(n)2 + log(n) + 1. (5.21)

We are going to justify this bound in the proof of the following theorem.

Theorem 5.20. Let p∗ be of the form (5.20) and grant Assumption 5.11 and Assumption 5.19.
Assume that log(σmin) ≍ log(n). Then we have for every a ∈ (0, 1], τ ∈ R>0, b > 1 and n large
enough with probability of 1− 1

n

Et∼U [0,1]
Xt∼pt

[
|vt(Xt)− v̂t(Xt)|2

]
≲ inf

ṽ∈M

∫ ∫
|ṽt(x)− vt(x)|2pt(x) dx dt+ n−

1
2 (5.22)

+
a−1 log(n)7

n
log
(
2N (τ, g(M), ∥ · ∥∞)

)
+ (2 + a)τ + a log(n)6.

The proof of Theorem 5.20 uses the Bernstein-type concentration inequality of Chen et al.
(2023b), which is commonly used in the analysis of diffusion models, see for example Yakovlev
& Puchkin (2025). Theorem 5.20 shows that a careful choice of the variance shift can allow for
to a logarithmic dependency of the oracle bounds on σ−1

min instead of a linear dependency.
Using networks of the form (2.22) clipped at (5.21) for the set M, the next result combines
the findings of Section 5.5.1, Theorem 4.3 and Theorem 5.20 with the approximation theory
of Theorem 2.6 that allows for simultaneous approximation of a function and its derivative.
To facilitate the transfer of results, we refrain from inserting α = 1, which is the applicable
smoothness in this setting as shown in Lemma 5.33.

Theorem 5.21. Let p∗ be of the form (5.20) and grant Assumption 5.11 and Assumption 5.19.
Then for n large enough with probability of 1− 1

n for fixed η > 0

W1(P∗,Pψ̂1(Z)) ≲ polylog(n)n
− 1+α

d+4α+5+η ,

where ψ̂ is the solution of an ODE whose vector field is in M given by a ReLU neural network,
with no more than c · log (n) layers, c · nc′(d,α,η) · log2 (n) nonzero weights, where c and c′(d, α, η)
is a constant independent of n.

The proof of Theorem 5.21 exploits the fact that the vector field v from (5.5) is by construction
in C∞. In order to bound the higher order derivatives of v, we leverage the fact that densities
of the form (5.20) satisfy a logarithmic Sobolev inequality with a controlled constant. The rate
in Theorem 5.21 benefits from smoothness in the unknown distribution. Since smoothing is an
intrinsic property of Flow Matching, it is desirable that the rate also reflects this property. Even
though the rate is not optimal, the gap to the optimal rate of n−

1+α
2α+d is small for large d.
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Compared to Theorem 5.8, our result applies to networks with logarithmically growing depth
and polynomially growing numbers of non-zero weights. On the other hand, the rate deteriorates
slightly. However, the two results cannot be compared directly. Theorem 5.8 assumes that the
support of p∗ is compact, whereas Theorem 5.21 assumes full support on Rd. The evaluation
metric differs from that in Gao et al. (2024b), who use the Wasserstein-2 metric. According
to Villani (2008, Remark 6.5), their rate n−

1
d+5 is also valid for the Wasserstein-1 metric. For

α ̸= 0 and large d, the rate obtained in Theorem 5.21 is faster. However, this is just a rough
comparison, as the unknown distributions studied are different. Furthermore, they use a linear
variance shift and an early stopping approach, which hinders direct comparison even more.

5.6. Proofs

5.6.1. Proofs of Section 5.2

Proof of Lemma 5.2. A necessary and sufficient condition for vt to generate pt is given in (5.2).
We thus verify

d

dt
pnt (x) =

1

n

n∑
i=1

d

dt
pt(x|X∗

i ) = −
1

n

n∑
i=1

div(pt(x|X∗
i )vt(x|X∗

i ))

= −div
( 1
n

n∑
i=1

pt(x|X∗
i )

n∑
i=1

pt(x|X∗
i )vt(x|X∗

i )∑n
i=1 pt(x|X∗

i )

)
= −div(pnt (x)v

n
t (x)).

Proof of Theorem 5.3. For fixed t ∈ [0, 1] we have

|v̂t(x)− vnt (x)|2 = |v̂t(x)|2 − 2⟨v̂t(x), vnt (x)⟩+ |vnt (x)|2,
|v̂t(x)− vt(x|X∗

i )|2 = |v̂t(x)|2 − 2⟨v̂t(x), vt(x|X∗
i )⟩+ |vt(x|X∗

i )|2.

The last term does not influence the minimal argument in v̂. For the first two we have

EXt∼pnt [|v̂t(Xt)|2] =
∫
|v̂t(x)|2pnt (x) dx

=
1

n

n∑
i=1

∫
|v̂t(x)|2pt(x|X∗

i ) dx

=
1

n

n∑
i=1

EX̃t∼pt(·|X∗
i )
[|v̂t(X̃t)|2],

and

EXt∼pnt [⟨v̂t(Xt), v
n
t (Xt)⟩] =

∫
⟨v̂t(x), vnt (x)⟩pnt (x) dx

=

∫ 〈
v̂t(x),

n∑
i=1

vt(x|X∗
i )

pt(x|X∗
i )∑n

i=1 pt(x|X∗
i )

〉 1
n

n∑
i=1

pt(x|X∗
i ) dx

=
1

n

n∑
i=1

∫
⟨v̂t(x), vt(x|X∗

i )⟩pt(x|X∗
i ) dx



5.6. Proofs 97

=
1

n

n∑
i=1

EX̃t∼pt(·|X∗
i )
[⟨v̂t(X̃t), vt(X̃t|X∗

i )⟩].

5.6.2. Proofs of Section 5.3

Proof of Lemma 5.4. As σt(X∗
i ) > 0 for all t,X∗

i , we have that

ψ−1
t (x|X∗

i ) =
x− µt(X∗

i )

σt(X∗
i )

.

Hence
∂ψt
∂t

(z|X∗
i )
∣∣∣
z=ψ−1

t (x|X∗
i )

= vt(x|X∗
i ),

and
∂ψt
∂t

(x|X∗
i ) =

∂σt
∂t

(X∗
i )x+

∂µt
∂t

(X∗
i ).

Thus, we get

vt (x|X∗
i ) =

∂σt
∂t (X∗

i )

σt (X∗
i )

(
x− µt (X∗

i )
)
+
∂µt
∂t

(X∗
i ) .

Proof of Theorem 5.5. Since we assumed that U has finite first moment and ṽ and v̂ are
Lipschitz continuous, Pψ̃1(Z) and Pψ̂1(Z) have finite first moment. This implies finiteness of
W1(P∗,Pψ̂1(Z)),W1(P∗,Pψ̃1(Z)) and W1(Pψ̃1(Z),Pψ̂1(Z)). As W1 satisfies the triangle inequality,

W1(P∗,Pψ̂1(Z)) ≤W1(P∗,Pψ̃1(Z)) +W1(Pψ̃1(Z),Pψ̂1(Z)).

Using Villani (2008, Remark 6.5) we get

W1(Pψ̃1(Z),Pψ̂1(Z)) ≤W2(Pψ̃1(Z),Pψ̂1(Z))

≤
√

E[|ψ̃1(Z)− ψ̂1(Z)|2]

=
(∫
|ψ̃1(x)− ψ̂1(x)|2p0(x) dx

)1/2
.

Like in Albergo & Vanden-Eijnden (2023, Proposition 3) set

Qt =

∫
|ψ̃t(x)− ψ̂t(x)|2p0(x) dx.

Since p∗, ψ̃, ψ̂, ṽ and v̂ are integrable with respect to the Lebesgue measure, we can use the
dominated convergence theorem and interchange integration and differentiation to obtain

d

dt
Qt = 2

∫
(ψ̃t(x)− ψ̂t(x))⊤(ṽt(ψ̃t(x))− v̂t(ψ̂t(x)))p0(x) dx

= 2

∫
(ψ̃t(x)− ψ̂t(x))⊤(ṽt(ψ̃t(x))− v̂t(ψ̃t(x)))p0(x) dx

+ 2

∫
(ψ̃t(x)− ψ̂t(x))⊤(v̂t(ψ̃t(x))− v̂t(ψ̂t(x)))p0(x) dx.
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As 0 ≤ |ψ̃t(x)− ψ̂t(x)− (ṽt(ψ̃t(x))− v̂t(ψ̃t(x)))|2, we get

2(ψ̃t(x)− ψ̂t(x))⊤(ṽt(ψ̃t(x))− v̂t(ψ̃t(x))) ≤ |ψ̃t(x)− ψ̂t(x)|2 + |ṽt(ψ̃t(x))− v̂t(ψ̃t(x))|2,

and since for fixed t the vector field v̂t is Γt Lipschitz continuous

2(ψ̃t(x)− ψ̂t(x))⊤(v̂t(ψ̃t(x))− v̂t(ψ̂t(x))) ≤ 2Γt|ψ̃t(x)− ψ̂t(x)|2.

Therefore
d

dt
Qt ≤ (1 + 2Γt)Qt + 2

∫
|ṽt(ψ̃t(x))− v̂t(ψ̃t(x))|2p0(x) dx.

Now we use the formulation of Grönwall’s lemma in Walter (1970) and use Q0 = 0 (this holds
since ψ0(x) = ψ̂0(x) = x). This leads to

Q1 ≤ e
∫ 1
0 1+2Γt dt2

∫ 1

0

∫
|ṽt(ψ̃t(x))− v̂t(ψ̃t(x))|2p0(x) dx dt. (5.23)

By Theorem 5.3 the vector field v̂ is chosen such that it minimizes
∫ 1
0 EXt∼pt

[
|v̂t(Xt)−ṽt(Xt)|2

]
dt

and Xt = ψt(Z), thus we get for every v̂ ∈M

Q1 ≤ 2e
∫ 1
0 1+2Γt dt

∫ 1

0

∫
|ṽt(ψ̃t(x))− v̂t(ψ̃t(x))|2p0(x) dx dt

≤ 2e
∫ 1
0 1+2Γt dt

∫ 1

0
∥ṽt − v̂t∥2∞p0(x) dt,

≤ 2e
∫ 1
0 1+2Γt dt∥ṽ − v̂∥2∞.

Taking the square root leads to the result.

5.6.3. Proofs of Section 5.4

Preparations for the proof of Theorem 5.8 The proof of Theorem 5.8 requires
some additional results. In order to control the error e

∫ 1
0 Γt dt∥vn − v̂∥∞ (where we omitted

constants) we need to approximate the function vn and control the Lipschitz constant of the
apprximation v̂t for fixed t. However, we cannot expect to approximate a non-tivial function
on Rd with respect to the supremum norm. Additionally, vnt as constructed by Lipman et al.
(2023) is only locally Lipschitz in x for fixed t and the bound of the Lipschitz constant grows for
σmin → 0 (see Lemma 5.23). Hence we cannot expect to construct a network v̂ that approximates
vn and its Lipschitz constant on Rd with a small absolute error for every x ∈ R.
In the given setting, a rapid decay of the kernel function results in less significant approximation
errors outside of the support of p∗. We first show that in case of rapidly decreasing kernels the
error W1(Pψ(Z),Pψ̂(Z)) can be decomposed into two approximation errors, one depending on the
approximation of v on a compact domain and one corresponding to the area outside with little
probability mass.

Lemma 5.22. Assume that supp(p∗) ⊂ (−1, 1)d and σmin ≤ 1. Additionally, assume that K(x) =∏d
i=1 φ(xi), where φ is a one-dimensional symmetric density that decays faster than x 7→ e−λx
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for |x| > 2 and some λ > 0. Then for every a > 1 there is a network ṽ, which is cutoff outside
(−a, a)d such that

W1(Pψ
n
1 (Z),Pψ̂1(Z))

≤
√
2ee

∫ 1
0 Γt dt

(∫ 1

0

∫
(−a,a)d

|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt+ c
a2d+2e−da

σ2min

)1/2
.

Next we want to choose a in Lemma 5.22 and a neural network of finite size (depending on n) such
that the bound of W1(Pψ

n(Z),Pψ̂(Z)) decays at a rate of n−
1+α
2α+d . Hence we need to approximate

vnt (x) =

n∑
i=1

vt(x|X∗
i )

pt(x|X∗
i )∑n

i=1 pt(x|X∗
i )

and simultaneously control the Lipschitz constant of the approximation v̂ on (−a, a)d. This is
indeed sufficient, since using the same reasoning as in the proof of Lemma 5.22, it holds that if
x ∈ (−a, a)d, then vnt (x) ∈ (−a, a)d for every t. As v̂ approximates vn in the supremum norm,
the Lipschitz constant of v̂ will be at least of the order of the Lipschitz constant of vn. The same
applies to the supremum norm. Hence we need bounds for both, the Lipschitz constant and the
supremum norm of vn.

Lemma 5.23. Assume that supp(p∗) ⊂ [−1, 1]d. For every x ∈ (−a, a) we have that

|vnt (x)| ≤
√
d(1 + a)

1− (1− σmin)t
≤
√
d(1 + a)

σmin
.

Further for the Gaussian kernel and supp(p∗) ⊂ [−1, 1]d, for any x ∈ Rd and every t ∈ [0, 1]

Lip(vnt ) ≤
1

σt
+

2d

σ3t
.

Looking at the proof of Lemma 5.23 and using standard analysis, we can bound the second
partial derivatives of vnt by C

σ5
t

for some C > 0. Now we are ready to prove Theorem 5.8.

Proof of Theorem 5.8. From Lemma 5.22, we know that

W1(Pψ
n
1 (Z),Pψ̂1(Z))

≤
√
2ee

∫ 1
0 L̃t dt inf

ṽ∈M

(∫ 1

0

∫
(−a,a)d

|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt+ c
a2d+2e−da

σ2min

)1/2
,

where we used the choice of (5.12) before dividing the area in (5.24) in the proof of Lemma 5.22
and L̃ is the Lipschitz constant of ṽ at time t. We neglect an arbitrary small additional error on
the right hand side to account for the use of the infimum, as the error bound corresponding to
the kernel density estimator in (5.18) is nonzero anyway. Note that due to the restriction of the
network class,

e
∫ 1
0 L̃t dt ≤ e · e

∫ 1
0

2d+1

σ3
t

dt
.
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Integration yields for n big enough∫ 1

0

1

σ3t
dt =

∫ 1

0

1

(1− (1− σmin)t)3
dt ≤ 1

2(1− σmin)σ2min

− 1

2(1− σmin)
≤ 1

σ2min

.

To bound the tail, we need to assure a is chosen such that

e
2d+1

σ2
min

ad+1e−
da
2

σmin
≤ n−

1+α
2α+d .

As in the setting d ≥ 1, we can use that for a ≥ 15

ad+1e−da/2 ≤ e− da
8 .

For σmin ≍ n−
1

2α+d , the above inequality is satisfied if

a ≥ max
(8
d

( 2 + α

2α+ d
log(n) + (2d+ 1)n

2
2α+d

)
, 15
)
.

To cover (−a, a)d with cubes of size (0, 1)d, we need ⌈2a⌉d little cubes.
Now we want to bound the approximation term. We can bound

(∫ 1

0

∫
(−a,a)d

|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt
)1/2

≤ ∥vnt − ṽt∥∞,(−a,a)d .

Note that vnt ∈ C∞ in case of the Gaussian kernel. Hence we can apply Theorem 2.6. The
bound of the second partial derivatives as well as the supremum norm bound of vn influence
the coefficients in Theorem 2.6, therefore we construct the network such that n−

5
2α+d vn is

approximated and choose the last weight matrix such that it scales the result up. This addition
of one layer does not influence the order of the layers and non zero weights of the network.
However, the approximation error gets scaled up too, hence we need to ensure a smaller error.
We need to choose ε in Theorem 2.6 such that

e(2d+1)n
2

2α+d√
ε ≤ n−

6+α
2α+d ⇐⇒ ε ≤ n−

12+2α
2α+d e−(4d+2)n

2
2α+d

.

The addition of one cutting layer to ensure the assumptions of Lemma 5.22 does not influence
the order of the layers and non zero weights of the network either. Hence choosing

L ≳
(
max

(
log(n) + n

2
2α+d , 15

))d
·
(
log2(n) + n

4
2α+d

)
,

M ≳
(
max

(
log(n) + n

2
2α+d , 15

))d
·
(
n

12+2α
2α+d e(4d+2)n

2
2α+d

)d
·
(
log2(n) + n

4
2α+d

)
,

yields the desired rate.

Proof of Theorem 5.10. We proceed completely analogous to Theorem 5.8 replacing d with d′.
However, since the vector field we want to approximate is still d-dimensional, we still need ⌈2a⌉d
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little cubes. Hence we choose

L ≳
(
max

(
log(n) + n

2
d′ , 15

))d
·
(
log2(n) + n

4
d′
)
,

M ≳
(
max

(
log(n) + n

2
d′ , 15

))d
·
(
n

12
d′ e(4d

′+2)n
2
d′
)d
·
(
log2(n) + n

4
d′
)
,

to obtain the desired rate.

Additional proofs of Section 5.6.3

Proof of Lemma 5.22. First, recall the proof from Theorem 5.20. For any a > 0 we can bound
the term from (5.23)

Q1 ≤
√
ee2

∫ 1
0 Γt dt

∫ 1

0

∫
|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt

=
√
ee2

∫ 1
0 Γt dt

(∫ 1

0

∫
(−a,a)d

|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt (5.24)

+

∫ 1

0

∫
Rd\(−a,a)d

|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt
)
.

The second term can be bounded by∫ 1

0

∫
Rd\(−a,a)d

|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt

≤ 2

∫ 1

0

∫
Rd\(−a,a)d

(
|vnt (ψnt (x))|2 + |ṽt(ψnt (x))|2

)
p0(x) dx dt. (5.25)

Now

|vnt (ψnt (x))|2 ≤ max
i∈{1,...,n}

|vt(ψnt (x)|X∗
i )|2

≤ |X
∗
i − (1− σmin)ψ

n
t (x)|2

(1− (1− σmin)t)2

≤ 2
|X∗

i |2 + (1− σmin)
2|ψnt (x)|2

(1− (1− σmin)t)2
.

As P∗ has compact support within (−a, a)d,

|X∗
i |2 ≤ d · a2.

To bound ψnt (x) for x ∈ Rd \ (−a, a)d, we use that

|ψnt (x)| ≤ |x|. (5.26)

To see why this is true, consider two cases. First, let t be small such that ψnt (x) /∈ (−a, a)d. Then
for every X∗

i , i ∈ {1, . . . , n} we have by construction that vnt (ψnt (x)|X∗
i ) is in the smallest convex

cone that includes ψnt (x) and (−1, 1)d, where ψnt (x) is the vertex of the convex cone. Any linear
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combination of vnt (ψnt (x)|X∗
i ), i = 1, . . . , n, must be in this convex cone as well. Therefore vnt (x)

must be in the convex cone. Since

d

dt
ψnt (x) = vnt (ψt(x)), ψn0 (x) = x,

this means that for small t, ψt pushes the initial condition x in the direction of (−a, a)d and
therefore (5.26) is true.
Second, let t′ be the smallest t such that ψnt′(x) ∈ (−a, a)d. Then for all t > t′ we have that
ψnt (x) ∈ (−a, a)d. This holds since within (−a, a)d \ (−1, 1)d using the same argument as in the
first case, vnt (x) is a linear combination of vnt (ψnt (x)|X∗

i ) and thus ψt pushes x in the direction of
(−1, 1)d. If t is such that ψt(x) ∈ (−1, 1)d, there cannot be a t′ > t such that ψt′(x) /∈ (−a, a)d,
since by continuity of ψt, there must be a t′′ with t < t′′ < t′ such that ψt′′(x) ∈ (−a, a)d. In
this case the corresponding vector field is oriented towards (−1, 1)d, which leads to ψt pushing
x back to (−1, 1)d. Hence, in any case for x /∈ (−a, a)d, we have that (5.26) is true.
Therefore we get for (5.25) for σmin ≤ 1∫ 1

0

∫
Rd\(−a,a)d

|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt

≤ 8

∫ 1

0

∫
Rd\(−a,a)d

da2 + (1− σmin)
2|x|2

(1− (1− σmin)t)2
p0(x) dx dt

≤ 8da2

σ2min

∫ 1

0

∫
Rd\(−a,a)d

p0(x) dx dt+
(1− σmin)

2

σ2min

∫ 1

0

∫
Rd\(−a,a)d

|x|2p0(x) dx dt.

For the first term we get

8da2

σ2min

∫
Rd\(−a,a)d

p0(x) dx =
8da2

σ2min

(∫
R\(−a,a)

φ(x) dx
)d
,

where φ is the PDF of the one-dimensional kernel distribution. Since a > 1, we get for the
second term

(1− σmin)
2

σ2min

∫
Rd\(−a,a)d

|x|2p0(x) dx =
(1− σmin)

2

σ2min

d∑
i=1

∫
Rd\(−a,a)d

x2i p0(x) dxi

≤ (1− σmin)
2

σ2min

d
(∫

R\(−a,a)
x2φ(x) dx

)d
.

By assumption φ decays faster than e−x. Using the upper incomplete Γ-function as defined in
Gabcke (1979, Satz 4.4.3), we obtain for a > 2∫

R\(−a,a)
φ(x) dx ≤

∫
R\(−a,a)

x2φ(x) dx

≤
∫
R\(−a,a)

x2e−x dx

= 2

∫ ∞

a
x2e−x dx
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= 2Γ(3, a)

≤ 6e−aa2,

where we accept this double usage of Γ for both the Lipschitz constant and the Gamma function,
due to the universal notation of the Gamma function. Hence∫ 1

0

∫
Rd\(−a,a)d

|vnt (ψnt (x))− ṽt(ψnt (x))|2p0(x) dx dt ≤ ca
2d+2e−da

σ2min

.

Proof of Lemma 5.23. For the supremum norm bound, observe that

|vnt (x)| =
∣∣∣ n∑
i=1

vt(x|X∗
i )

pt(x|X∗
i )∑n

i=1 pt(x|X∗
i )

∣∣∣
≤

n∑
i=1

|vt(x|X∗
i )|

pt(x|X∗
i )∑n

i=1 pt(x|X∗
i )

≤ max
i∈{1,...,n}

|vt(x|X∗
i )|

= max
i∈{1,...,n}

|(σt − t)X∗
i + x|

1− (1− σmin)t

≤ max
i∈{1,...,n}

|X∗
i |+ |x|

1− (1− σmin)t

≤
√
d(1 + a)

1− (1− σmin)t
.

For the Lipschitz bound, note that

∇xvnt (x) = ∇x
n∑
i=1

( ∂σt
∂t

σt
x− µt(Xi) +

∂µt
∂t

(Xi)
) pt(x|Xi)∑n

j=1 pt(x|Xj)
(5.27)

= ∇x
−(1− σmin)

σt
x−∇x

−(1− σmin)t

σt

∑n
i=1Xipt(x|Xi)∑n
j=1 pt(x|Xj)

+∇x
∑n

i=1Xipt(x|Xi)∑n
j=1 pt(x|Xj)

.

Now we get for the partial derivative of the ℓ-st coordinate function with respect to xk, ℓ, k ∈
{1, . . . , d}

∂

∂xk

∑n
i=1Xi,ℓpt(x|Xi)∑n
j=1 pt(x|Xj)

=

(∑n
i=1

(
− xk−tXik

σ2
t

)
Xi,ℓpt(x|Xi)

)
(
∑n

j=1 pt(x|Xj))(∑n
j=1 pt(x|Xj)

)2
−
(∑n

i=1Xi,ℓpt(x|Xi)
)(∑n

j=1

(
− xk−tXjk

σ2
t

)
pt(x|Xj)

)
(∑n

j=1 pt(x|Xj)
)2

=
t

σ2t

(∑n
i=1XikXiℓpt(x|Xi)∑n

j=1 pt(x|Xi)
−
(∑n

i=1Xikpt(x|Xi)
)(∑n

i=1Xiℓpt(x|Xi)
)(∑n

j=1 pt(x|Xi)
)2

)
.
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Since supp(p∗) ⊂ [−1, 1]d, we can bound

∂

∂xk

∑n
i=1Xi,ℓpt(x|Xi)∑n
j=1 pt(x|Xj)

≤ 2t

σ2t
.

Using t ∈ [0, 1], σmin ≤ 1, we get for (5.27)

∇xvnt (x) ≤
1

σt
Id +

2

σ3t
Jd,

where Id denotes the d × d identity matrix, Jd denotes the d × d matrix consisting of ones and
≤ denotes entry wise inequality. Using the mean value theorem, we obtain for x, y ∈ Rd

|vnt (x)− vnt (y)| ≤
∥∥∥ 1

σt
Id +

2

σ3t
Jd

∥∥∥
2
|x− y|.

As ∥∥∥ 1

σt
Id +

2

σ3t
Jd

∥∥∥
2
≤
∥∥∥ 1

σt
Id

∥∥∥
2
+
∥∥∥ 2

σ3t
Jd

∥∥∥
2

=
1

σt
+

2d

σ3t
,

we get the desired bound.

5.6.4. Proofs of Section 5.5

First, we calculate the constant leading to the equivalence of the Flow Matching objectives.

Lemma 5.24. Let pt(x) > 0 for all x ∈ Rd. In the above setting, it holds that for every
measurable function ṽ and vt from (5.5)

Et∼U [0,1]
Xt∼pt

[
|vt(Xt)− ṽt(Xt)|2

]
= E t∼U [0,1]

Y∼p∗
Xt∼pt(·|Y )

[
|ṽt(Xt)− vt (Xt|Y )|2

]
− E t∼U [0,1]

Y∼p∗
Xt∼pt(·|Y )

[|vt(Xt)− vt(Xt|Y )|2].

Proof of Lemma 5.24. From Lipman et al. (2023), we know that there is a constant C ∈ R
independent of ṽ such that

Et∼U [0,1]
Xt∼pt

[
|vt(Xt)− ṽt(Xt)|2

]
= E t∼U [0,1]

Y∼p∗
Xt∼pt(·|Y )

[
|ṽt(Xt)− vt (Xt|Y )|2

]
+ C.

Setting ṽt = vt, we obtain

0 = E t∼U [0,1]
Y∼p∗

Xt∼pt(·|Y )

[
|vt(Xt)− vt (Xt|Y )|2

]
+ C ⇐⇒ C = −E t∼U [0,1]

Y∼p∗
Xt∼pt(·|Y )

[
|vt(Xt)− vt (Xt|Y )|2

]
.

This concludes the proof.
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Proofs of Section 5.5.1

Proof of Theorem 5.14. First we show that we can calculate the Jacobian of v explicitly. The
proof and all subsequent proofs of auxiliary results are deferred to Section 5.6.4.

Lemma 5.25. Fix t ∈ [0, 1]. The Jacobian with respect to x of vt is given by

Dxvt(x) =
σ′t
σt
Id +

(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

Cov(Y x,t). (5.28)

The matrix (Bij)i,j=1,...,d consists of the component wise supremum norm of Dxvt.

By assumption Cov(Y x,t)ji is bounded for all x. For the upper bound we use that by the mean
value theorem, there exists an ξ ∈ Rd such that for the i-th coordinate function vjt

|vjt (x)− vjt (y)| = ⟨∇vjt (ξ), x− y⟩ ≤ |vjt (ξ)||x− y| ≤
√
d|x− y| max

i∈{1,...,d}

∥∥∥ ∂

∂xi
vjt

∥∥∥
∞
.

Then

|vt(x)− vt(y)| =
∣∣∣∣∣


v1t (x)− v1t (y)
...

vdt (x)− vdt (y)


∣∣∣∣∣ ≤ d|x− y| max

j∈{1,...d}
max

i∈{1,...,d}

∥∥ ∂

∂xi
vjt
∥∥
∞.

Therefore

|vt(x)− vt(y)| ≤ d|x− y|max
ij

∥∥∥σ′t
σt
1i=j +

(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

Cov(Y ·,t)ij

∥∥∥
∞

= d|x− y|max
ij

Bi,j .

Hence vt is Lipschitz continuous. For the lower bound we can use that by a Taylor expansion for
h, a ∈ Rd

vt(a+ h) = vt(a) +Dxvt(a)h+ r(h), (5.29)

with
lim
|h|→0

|r(h)|
|h| = 0.

Let the smallest Lipschitz constant of vt be Γt. Using (5.29) we can conclude

|Dxvt(a)h| = |vt(a+ h)− vt(a)− r(h)| ≤ |vt(a+ h)− vt(a)|+ |r(h)|
≤ Γt|h|+ |r(h)|.

Now
∥Dxvt(a)∥ = lim sup

|h|→0

|Dxvt(a)h|
|h| ≤ lim sup

|h|→0
Γt +

|r(h)|
|h| = Γt.

Let vit be the i-th component function of vt. Then for every i ∈ {1, ..., d} and every j ∈ {1, ..., d}

sup
a∈Rd

∥Dxvt(a)∥ = sup
a∈Rd

sup
|w|=1

|Dxvt(a)w| ≥ sup
a∈Rd

sup
|w|=1

|e⊤i Dxvt(a)w| = sup
a∈Rd

sup
|w|=1

|⟨∇vit(a), w⟩|.
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As the dual norm of the Euclidean norm is the Euclidean norm,

sup
a∈Rd

sup
|w|=1

|⟨∇vit(a), w⟩| = sup
a∈Rd

|∇vit(a)| ≥ sup
a∈Rd

|Dxvt(a)ij |.

Since i, j were arbitrary and the entries of the Jacobian are of the form (5.28), we obtain the
result.

Proof of Lemma 5.15.

1. We begin by setting
σ′t
σt

= ht,

where ht is a continuous function on [0, 1]. By separations of variables, all of the solutions
of this ODE are of the form

σt = ceHt ,

where Ht is an anti-derivative of ht and c ∈ R. We use σ0 = 1 as initial condition, which
leads to

1 = ceH0 ⇐⇒ c =
1

eH0
.

To assure σ1 = σmin, we need to choose H such that

σmin =
eH1

eH0
⇐⇒ H1 −H0 = log(σmin).

By the mean-value-theorem there is a t∗ ∈ [0, 1] such that H ′
t∗ = ht∗ = log(σmin).

2. By change of variables we have that∫ 1

0

∣∣∣σ′t
σt

∣∣∣ dt = −∫ 1

0

σ′t
σt

dt =

∫ 1

σmin

1

u
du = log(σ−1

min).

Proof of Theorem 5.17. For small t, we can use the following simple bound, which is independent
of the decay of Cov(Y x,t) in t:

Lemma 5.26. Let t∗ be such that σt∗ = 1
ϑ for ϑ ∈ R≥1. Grant Assumption 5.16 (III). Then

∫ t∗

0
Γt dt ≲ ϑ2(1 + log(ϑ)).

For large t, we need to assume that Cov(Y x,t)ij decays fast enough for i ̸= j and t→ 1 to bound
the integral over all Bij for i ̸= j. Under Assumption 5.16 (I), we know that for all i ̸= j and all
x ∈ Rd ∫ 1

t∗

∣∣∣(γtγ−1 − σ′tt
γ

σt

) tγ
σ2t

Cov(Y x,t)ij

∣∣∣ dt ≤ (t∗)−2γ

∫ 1

t∗

∣∣(γtγ−1σt − σ′ttγ)
∣∣ dt

≤ (t∗)−2γγ

∫ 1

0
σt − (t∗)−2γ

∫ 1

0
σ′t dt = (t∗)−2γ(γ + 1− σmin).
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For the bound of ∫ 1

t∗

∣∣∣σ′t
σt

+
(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

Var(Y x,t
i )

∣∣∣ dt
we need to use Assumption 5.16 (II). Inserting the expression for the variance Var(Y x,t

i ) we
obtain∫ 1

t∗

∣∣∣σ′t
σt

+
(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

Var(Y x,t
i )

∣∣∣ dt
=

∫ 1

t∗

∣∣∣σ′t
σt

+
(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

(σt
tγ

)2(
1 +O

((σt
tγ

) 1
κ
))∣∣∣ dt

≤
∫ 1

t∗

∣∣∣σ′t
σt

+
(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

(σt
tγ

)2∣∣∣ dt+ ∫ 1

t∗

∣∣∣(γtγ−1 − σ′tt
γ

σt

) tγ
σ2t

(σt
tγ

)2
O
((σt

tγ

) 1
κ
)∣∣∣ dt.

The first term simplifies to∫ 1

t∗

∣∣∣σ′t
σt

+
(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

(σt
tγ

)2∣∣∣ dt = ∫ 1

t∗
|γt−1| dt = −γ log(t∗).

For the second term we obtain∫ 1

t∗

∣∣∣(γtγ−1 − σ′tt
γ

σt

) tγ
σ2t

(σt
tγ

)2
O
((σt

tγ

) 1
κ
)∣∣∣ dt ≤ ∫ 1

t∗

∣∣∣(γtγ−1 − σ′tt
γ

σt

)∣∣∣∣∣∣ 1
tγ
O
((σt

tγ

) 1
κ
)∣∣∣ dt

≲
∫ 1

t∗
γt

−1−κ
γ σ

1
κ
t dt+

∫ 1

t∗

σ′t
σt

σ
1
κ
t

t
γ
κ

dt

≤ γ
∫ 1

t∗
t
−1−κ

γ dt+ (t∗)−
γ
κ

∫ 1

t∗

σ′t
σt
σ

1
κ
t dt

=
γ2

κ
((t∗)

−κ
γ − 1) + (t∗)−

γ
κκ(σ

1
κ
min − σ

1
κ
t∗).

Using that σ
1
κ
min − σ

1
κ
t∗ ≤ 1 yields the following bound on the integral over the Lipschitz constant∫ 1

0
Γt dt ≲ ϑ2(1 + log(ϑ)) + (t∗)−2γ(γ + 1) +

γ2

κ
((t∗)

−κ
γ − 1) + (t∗)−

γ
κκ.

Proof of Theorem 5.18.
Property (III):
For the uniform bound, we use that the distribution with density

q ∝ exp
(
− |x− ty|

2

2σ2t
− |y|

2

2

)
= exp

(
− 1

2

(
1 +

t2

σ2t

)(
|y|2 −

〈 t

σ2t

x

1 + t2

σ2
t

, y
〉))

(5.30)

is a Gaussian distribution with variance
(
1 + t2

σ2
t

)−1
Id. By Theorem 2.13, the density defined

above satisfies the Poincaré inequality with constant
(
1 + t2

σ2
t

)−1. Using the Holley-Strooke
perturbation principle Holley & Stroock (1987), in the form of Ledoux (2001, Lemma 1.2), we
can bound the Poincaré constant ρ of the perturbed Gaussian via

ρ ≤ e4L
(
1 +

t2

σ2t

)−1
.
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Thus
Var(Y x,t

i ) ≤
(
e−4L

(
1 +

t2

σ2t

))−1
≤ e4L

1 + t2

σ2
t

≤ e4L,

with L from (5.20). Using

Cov(Y x,t
i , Y x,t

j ) ≤
√
Var(Y x,t

i )Var(Y x,t
j ),

we conclude that for all t ∈ [0, 1]

Cov(Y x,t
i , Y x,t

j ) ≤ e4L.

Hence we can set C = e4L.
Property (II):
For the variance, we use that

Var(Y x,t
i ) = E[(Y x,t

i )2]− E[Y x,t
i ]2.

Let φ denote the density of N (0, Id). Further, let t > 0. Then

E[Y x,t
i ] =

∫
yiφ
(x−ty

σt

)
p∗(y) dy∫

φ
(x−ty

σt

)
p∗(y) dy

=

∫ (
xi−ziσt

t

)
φ(z)p∗(x−zσtt ) dy∫

φ(z)p∗(x−zσtt ) dy
=
xi
t
− σt

t

∫
ziφ(z)p

∗(x−zσtt ) dy∫
φ(z)p∗(x−zσtt ) dy

.

Similarly

E[
(
Y x,t
i

)2
] =

∫ (
xi−ziσt

t

)2
φ(z)p∗(x−zσtt ) dy∫

φ(z)p∗(x−zσtt ) dy

=
(xi
t

)2 − 2xiσt
t2

∫
ziφ(z)p

∗(x−zσtt ) dy∫
φ(z)p∗(x−zσtt ) dy

+
(σt
t

)2 ∫ z2i φ(z)p∗(x−zσtt ) dy∫
φ(z)p∗(x−zσtt ) dy

.

Now we define

A(zi) :=

∫
ziφ(z)p

∗(x−zσtt ) dz∫
φ(z)p∗(x−zσtt ) dz

, A(z2i ) :=

∫
z2i φ(z)p

∗(x−zσtt ) dz∫
φ(z)p∗(x−zσtt ) dz

.

We obtain for the variances

E[(Y x,t
i )2]− E[Y x,t

i ]2 =
(xi
t

)2
− 2xiσt

t2
A(zi) +

(σt
t

)2
A(z2i )−

(xi
t
− σt

t
A(zi)

)2
=
(σt
t

)2(
A(z2i )−A(zi)2

)
. (5.31)

Hence we need to bound the component variances of a random variable Z with density

pZ(z) =
φ(z)p∗(x−zσtt )∫
φ(z)p∗(x−zσtt ) dz

=
exp

(
− |z|2

2 −
|x−zσt|2

2t2
− a(x−zσtt )

)∫
exp

(
− |z|2

2 −
|x−zσt|2

2t2
− a(x−zσtt )

)
dz
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=
exp

(
− 1

2

(
1 +

σ2
t
t2

)(
|z|2 − 2⟨z, x σt

t2(1+(
σt
t
)2)
⟩
)
− a(x−zσtt )

)
∫
exp

(
− 1

2

(
1 +

σ2
t
t2

)(
|z|2 − 2⟨z, x σt

t2(1+(
σt
t
)2)
⟩
)
− a(x−zσtt )

)
dz
. (5.32)

First we bound the influence of the perturbation function a on the expected value. To do so, we
note that

EpZ [∂zi log(p(Z))] =
∫
∂zip(z) dz

=

∫
...

∫
zi∈R

∂zip(z) dzi d(z1, ..., zi−1, zz+1, ..., zd)

= 0.

This implies for (5.32) that

0 = −E
[(

1 +
σ2t
t2

)(
Zi − xi

σt
t2(1 + (σtt )

2)

)
− σt

t
∂zia

(x− Zσt
t

)]
⇐⇒

(
1 +

σ2t
t2

)(
E[Zi]− xi

σt
t2(1 + (σtt )

2)

)
= E

[σt
t
∂zia

(x− Zσt
t

)]

⇐⇒
∣∣∣E[Zi]− xi σt

t2(1 + (σtt )
2)

∣∣∣ = ∣∣∣∣∣
σt
t E
[
∂zia(

x−Zσt
t )

]
(
1 +

σ2
t
t2

)
∣∣∣∣∣.

Hence ∣∣∣E[Zi]− xi σt
t2(1 + (σtt )

2)

∣∣∣ ≤ σt
t

L(
1 +

σ2
t
t2

) , (5.33)

where L is from (5.20). From (5.32) we can see that this bounds the influence of the perturbation
function a on the expected value.
Now we bound the variance. To do so, we first note that

EpZ [(∂zi log(p(Z)))
2] =

∫
(∂zipZ(z))

2

pZ(z)
dz. (5.34)

As

∂zi log(pZ(z)) =
∂zipZ(z)

pZ(z)
, ∂2zi log(pZ(z)) =

∂2zipZ(z)

pZ(z)
− (∂zipZ(z))

2

(pZ(z))2
,

we have for (5.34)

EpZ [(∂zi log(p(Z)))
2] = EpZ

[∂2zipZ(z)
pZ(z)

]
− EpZ

[
∂2zi log(pZ(Z))

]
.

Since ∂zipZ(z)→ 0 for |z| → ∞, we conclude

EpZ [(∂zi log(p(Z)))
2] = −EpZ [∂2zi log(pZ(Z))]. (5.35)

For the right hand side, we obtain

−EpZ [∂2zi log(pZ(Z))] =
(
1 +

(σt
t

)2)
+
(σt
t

)2
EpZ

[
∂2zia

(x− σtz
t

)]
.
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The left side of (5.35) can be rewritten as

EpZ [(∂zi log(p(Z)))
2] = EpZ

[((
1 +

σ2t
t2

)(
Zi − xi

σt
t2(1 + (σtt )

2)

)
+
σt
t
∂zia

(x− σtZ
t

))2]
= EpZ

[((
1 +

σ2t
t2

)(
Zi − xi

σt
t2(1 + (σtt )

2)

))2]
+ 2EpZ

[(
1 +

σ2t
t2

)(
Zi − xi

σt
t2(1 + (σtt )

2)

)σt
t
∂zia

(x− σtZ
t

)]
+
(σt
t

)2
EpZ

[(
∂zia

(x− σtZ
t

))2]
.

Then

EpZ
[((

1 +
σ2t
t2

)(
Zi − xi

σt
t2(1 + (σtt )

2)

))2]
= EpZ

[((
1 +

σ2t
t2

)(
Zi − E[Zi] + E[Zi]− xi

σt
t2(1 + (σtt )

2)

))2]
=
(
1 +

σ2t
t2

)2
EpZ

[
(Zi − E[Zi])2

]
+ 2
(
1 +

σ2t
t2

)2(
E[Zi]− xi

σt
t2(1 + (σtt )

2)

)
EpZ

[
(Zi − E[Zi])

]
+
(
1 +

σ2t
t2

)2(
E[Zi]− xi

σt
t2(1 + (σtt )

2)

)2
=
(
1 +

σ2t
t2

)2(
EpZ

[
(Zi − E[Zi])2

]
+
(
E[Zi]− xi

σt
t2(1 + (σtt )

2)

)2)
.

Additionally

EpZ
[(

1 +
σ2t
t2

)
(Zi − xi

σt
t2(1 + (σtt )

2)
)
σt
t
∂zia

(x− σtZ
t

)]
= EpZ

[(
1 +

σ2t
t2

)(
Zi − E[Zi] + E[Zi]− xi

σt
t2(1 + (σtt )

2)

)σt
t
∂zia

(x− σtZ
t

)]
=
(
1 +

σ2t
t2

)σt
t
EpZ

[
(Zi − E[Zi])∂zia

(x− σtZ
t

)]
+
(
1 +

σ2t
t2

)σt
t

(
E[Zi]− xi

σt
t2(1 + (σtt )

2)

)
EpZ

[
∂zia

(x− σtZ
t

)]
.

Hence (
1 +

σ2t
t2

)2
EpZ

[(
Zi − E[Zi]

)2]
=
(
1 +

(σt
t

)2)
+
(σt
t

)2
EpZ

[
∂2zia

(x− σtz
t

)]
−
(σt
t

)2
EpZ

[(
∂zia

(x− σtZ
t

))2]
−
(
1 +

σ2t
t2

)2(
E[Zi]− xi

σt

t2(1 +
(
σt
t

)2
)

)2
− 2
(
1 +

σ2t
t2

)σt
t
EpZ

[
(Zi − E[Zi])∂zia

(x− σtZ
t

)]
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− 2
(
1 +

σ2t
t2

)σt
t

(
E[Zi]− xi

σt
t2(1 + (σtt )

2)

)
EpZ

[
∂zia

(x− σtZ
t

)]
.

Combining this with (5.33) and the fact that a has bounded derivatives, we obtain the following
upper and lower bounds:

(
1 +

σ2t
t2

)2
EpZ

[(
Zi − E[Zi]

)2]
≤
(
1 +

(σt
t

)2)
+
(σt
t

)2
L+ 2

(
1 +

σ2t
t2

)σt
t
L
√
EpZ

[
(Zi − E[Zi])2

]
+ 2
(
1 +

σ2t
t2

)σ2t
t2

L2(
1 +

σ2
t
t2

) ,
and (

1 +
σ2t
t2

)2
EpZ

[(
Zi − E[Zi]

)2]
≥
(
1 +

(σt
t

)2)
−
(σt
t

)2
L−

(σt
t

)2
L2

−
(
1 +

σ2t
t2

)2(σt
t

L(
1 +

σ2
t
t2

))2
− 2
(
1 +

σ2t
t2

)σt
t
L
√
EpZ

[
(Zi − E[Zi])2

]
− 2
(
1 +

σ2t
t2

)σ2t
t2

L2(
1 +

σ2
t
t2

) .
With the same reasoning via the Poincaré constant of a Gaussian and the Holley-Stroock
perturbation principle, we conclude that

EpZ
[
(Zi − E[Zi])2

]
≤ e4L.

As
(
1 +

σ2
t
t2

)2
> 0 and

1

1 +
σ2
t
t2

= 1−
σ2
t
t2

1 +
σ2
t
t2

,

dividing the first term in the upper and lower bound loosens the bound further. Thus we obtain

EpZ
[(
Zi − E[Zi]

)2]
= 1 +O

(σt
t

)
.

Multiplying with σ2
t
t yields the result for the variances via (5.31), we arrive at

Var(Y x,t
i ) =

(σt
t

)2(
1 +O

(σt
t

)
).

Property (I):
For the covariances, we need to find a stricter upper bound. We are going to use Menz (2014,
Theorem 2.3) applied to the component functions fi : Rd → R, fi(y) = yi. First we verify that
the assumptions are fulfilled in our setting. By construction, the distribution of Y x,t

i is a bounded
perturbation of a Gaussian. Hence Assumption 2.2 in Menz (2014) is satisfied.
For the Poincaré constant of the i-th conditional measure, e.g. the Poincaré constant of the
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distribution with the density

p(yi|y1, ..., yi−1, yi+1, ..., yd) ∝ exp
(
− (xi − tyi)2

2σ2t
− y2i

2
− a(yi|y1, ..., yi−1, yi+1, ..., yd)

)
,

where a(·|y1, ..., yi−1, yi+1, ..., yd) := a(y1, ..., yi−1, ·, yi+1, ..., yd) and i ∈ {1, ..., d}, we can use the
same arguments as in the proof of property (III) to obtain

ρ̃ti ≤ e4L
(
1 +

t2

σ2t

)−1
.

Note that a(·|y1, ..., yi−1, yi+1, ..., yd) is still bounded. Furthermore, we know that the off-diagonal
entries of the Hessian of the log-density are bounded by L. To profit from easier notation later,
we define the matrix

At = (At,ij)i,j=1,...,d, where At,ij :=

ρti − e−4L t2

σ2
t
, i = j,

−L, i ̸= j.

Here ρti = (ρ̃ti)
−1. This inversion provides accordance with the notation in Menz (2014), who

defines the Poincaré constant as the inverse of the constant in Definition 2.12. We need to find
a bound on t∗ such that the matrix At + e−4L t2

σ2
t
Id is positive definite. As At is symmetric by

construction, we know that the eigenvalues of At+ e−4L t2

σ2
t
Id are real numbers. By Gerschgorin’s

theorem (Gerschgorin, 1931, Satz 2), we know that the eigenvalues of At + e−4L t2

σ2
t
Id are in the

following union of intervals:

D =
d⋃
i=1

[
ρti − L(d− 1), ρti + L(d− 1)

]
. (5.36)

Inserting the lower bound of ρti, we choose t∗ such that for all t < t∗

e−4L
(
1 +

t2

σ2t

)
> L(d− 1) ⇐= σt

t
<

1√
e4LL(d− 1)− 1

. (5.37)

For this choice of t∗, we conclude that the matrix At,ij + e−4L t2

σ2
t
Id is positive definite. Thus all

of the assumptions in Menz (2014, Theorem 2.3) are satisfied.
We conclude that

|Cov(Y x,t)ij | ≤
((
e−4L t

2

σ2t
Id +At

)−1)
ij
.

Now (
e−4L t

2

σ2t
Id +At

)−1
= e4L

σ2t
t2

(
Id + e4L

σ2t
t2
At

)−1
. (5.38)

As At is a symmetric matrix, the spectral norm is the absolute value of the largest eigenvalue.
Using Gerschgorin’s theorem (Gerschgorin, 1931, Satz II) again, we know that the eigenvalues
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of At are in the following union of intervals:

D =
d⋃
i=1

[
ρti − e−4L t

2

σ2t
− L(d− 1), ρti − e−4L t

2

σ2t
+ L(d− 1)

]
. (5.39)

As ρti − e−4L t2

σ2
t
= e−4L we conclude that the largest eigenvalue is bounded by

λmax(At) ≤ e−4L + L(d+ 1).

We therefore deduce that∥∥∥e4Lσ2t
t2
At

∥∥∥ = e4L
σ2t
t2

∥∥∥At∥∥∥ ≤ σ2t
t2

(1 + e4LL(d− 1)).

If we choose t∗ such that for t > t∗

σ2t
t2

(1 + e4LL(d− 1)) ≤ σt
t
< 1 ⇐⇒ σt

t
≤ 1

1 + e4LL(d− 1)
,

we can use a Neumann series. This gives

(
Id + e4L

σ2t
t2
At

)−1
=

∞∑
k=0

(−1)ke4Lk σ
2k
t

t2k
Akt = Id − e4L

σ2t
t2
At +

∞∑
k=2

(−1)ke4Lk σ
2k
t

t2k
Akt .

Now for the ij-th element, we obtain

(
Id + e4L

σ2t
t2
At

)−1

ij
≤
(
1i=j + e4L

σ2t
t2
At,ij +

∥∥∥ ∞∑
k=2

(−1)ke4Lk σ
2k
t

t2k
Akt

∥∥∥).
Then we can bound∥∥∥ ∞∑

k=2

(−1)ke4Lk σ
2k
t

t2k
Akt

∥∥∥ ≤ ∞∑
k=2

∥∥∥e4Lk σ2kt
t2k

Akt

∥∥∥ ≤ ∞∑
k=2

∥∥∥e4Lσ2t
t2
At

∥∥∥k ≤ ∞∑
k=2

(σt
t

)k
Using the convergence of the geometric series, we get that

∞∑
k=2

(σt
t

)k
=

σ2
t
t2

1− σt
t

≤ σ2t
t2
.

Inserting everything into (5.38), we obtain

(
Id +

σ2t
t2
At

)−1

ij
≲
σ2t
t2

(
1i=j +

σ2t
t2

)
.

If we choose t∗ ≥ 1
2 , we know that σ2

t
t2
≤ 2σ2t . This gives the smaller bound on the covariances.
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Proofs of Section 5.5.2

Proof of Theorem 5.20. To validate the bound on |vjt |∞, we insert log(σmin) ≍ log(n) a bit later.
We start by defining A := [− log(n), log(n)]d and

g :M× Rd → Rd, g(v, y) :=

∫ 1

0

∫
|vt(x)− vt(x|y)|2pt(x|y) dx dt. (5.40)

Then we use Lemma 5.24,

Et∼U [0,1]
Xt∼pt

[
|vt(Xt)− v̂t(Xt)|2

]
= E t∼U [0,1]

Y∼p∗
Xt∼pt(·|Y )

[
|v̂t(Xt)− vt (Xt|Y )|2

]
− C, (5.41)

where
C := E t∼U [0,1]

Y∼p∗
Xt∼pt(·|Y )

[|vt(Xt)− vt(Xt|Y )|2]. (5.42)

We can split the integral

E t∼U [0,1]
Y∼p∗

Xt∼pt(·|Y )

[
|v̂t(Xt)− vt (Xt|Y )|2

]
=

∫
A

∫ 1

0

∫
|v̂t(x)− vt(x|y)|2pt(x|y) dx dt p∗(y) dy

+

∫
Rd\A

∫ 1

0

∫
|v̂t(x)− vt(x|y)|2pt(x|y) dx dt p∗(y) dy.

Note that ∫
A

∫ 1

0

∫
|v̂t(x)− vt(x|y)|2pt(x|y) dx dt p∗(x) dy = EY∼P∗ [g(v̂, Y )1Y ∈A].

We have for every x ∈ Rd and j ∈ {1, ..., d} and the t-th component function vjt of vt

|vjt (x)| =
∣∣∣ ∫ vjt (x|y)

pt(x|y)∫
pt(x|z)p∗(z) dz

p∗(y) dy
∣∣∣

=
∣∣∣ ∫ (σ′t

σt
xj +

(
1− σ′t

σt
t
)
yj

) pt(x|y)∫
pt(x|z)p∗(z) dz

p∗(y) dy
∣∣∣

≤
∣∣∣σ′t
σt

∣∣∣|xj |+ ∣∣∣(1− σ′t
σt
t
)∣∣∣
∫
|yj | exp

(
− |x−ty|2

2σ2
t
− |y|2

2 − a(y)
)
dy∫

exp
(
− |x−ty|2

2σ2
t
− |y|2

2 − a(y)
)
dy

≤
∣∣∣σ′t
σt

∣∣∣|xj |+ e2L
∣∣∣(1− σ′t

σt
t
)∣∣∣E

Z∼N ( t

t2+σ2
t
x,(1+ t2

σ2
t
)−1Id)

[|Zj |]

≤
∣∣∣σ′t
σt

∣∣∣|xj |+ e2L
∣∣∣(1− σ′t

σt
t
)∣∣∣( t

t2 + σ2t
|xj |+

(
1 +

t2

σ2t

)− 1
2
)

=
(∣∣∣σ′t
σt

∣∣∣+ e2L
∣∣∣(1− σ′t

σt
t
)∣∣∣ t

t2 + σ2t

)
|xj |+

∣∣∣(1− σ′t
σt
t
)∣∣∣(1 + t2

σ2t

)− 1
2
.

As
max
t∈[0,1]

∣∣∣σ′t
σt

∣∣∣ = log(σ−1
min),

(
1 +

t2

σ2t

)− 1
2 ≤ 1
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and due to Lemma 5.32
t

t2 + σ2t
≤ max(log(σ−1

min), e
2)

we obtain for the maximum over t ∈ [0, 1] for n big enough

|vjt (x)| ≲ log(n)2|xj |+ log(n).

The constants lead to the bound in (5.21). An analogous calculation shows that, for t ∈ [0, 1],
the norm of vt is bounded by

|vt(x)| ≲ log(n)2|x|+ log(n). (5.43)

Therefore, we obtain for every v ∈ M and y ∈ A using the construction of vt(·|·) and fact that
the functions inM are cut at (5.21) [− log(n), log(n)]d for all t,

g(v, y) =

∫ 1

0

∫
|vt(x)− vt(x|y)|2pt(x|y) dx dt

≲ log(n)6 +

∫ 1

0

∫
|v(x|y)|2pt(x|y) dx dt.

Since ∫
|v(x|y)|2pt(x|y) dx =

∫ ∣∣∣σ′t
σt
x+

(
1− σ′t

σt
t
)
y
∣∣∣2pt(x|y) dx

=
∣∣∣σ′t
σt

∣∣∣2 ∫ |x|2pt(x|y) dx+
(
1− σ′t

σt
t
)2
|y|2,

and as pt(·|y) is the density of a Gaussian with mean y and variance σ2t Id,∫
|x|2pt(x|y) dx = t2|y|2 + σ2t d, (5.44)

we obtain for g(v, y)

g(v, y) ≲ log(n)6 +

∫ 1

0

∣∣∣σ′t
σt

∣∣∣2(t2|y|2 + σ2t d) dt+ |y|2
∫ 1

0
(1− σ′t

σt
t)2 dt ≲ log(n)6.

We denote the constant in the bound of g(v, y) by D. Now we can use Theorem 2.11 and conclude
that for every a ∈ (0, 1], δ1 ∈ (0, 13) and τ ∈ R>0

P
(
sup
v̄∈M

EY∼P∗ [g(v̄, Y )1Y ∈A]−
1 + a

n

n∑
i=1

g(v̄, Xi)1Xi∈A

>
(1 + 6/a)D log(n)6

3n
log
(N (τ, g(M), ∥ · ∥∞)

δ1

)
+ (1 + a)τ

)
≤ δ1.
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We keep the term a
n

∑n
i=1 g(v̄, Xi)1Xi∈A separate. For 1

n

∑n
i=1 g(v̄, Xi)1Xi∈A we conclude that

with a probability of at least 1− δ1∫
A

∫ ∫
|v̂t(x)− vt(x|y)|2pt(x|y) dx dt p∗(x) dy

≤ 1 + a

n

n∑
i=1

g(v̂, Xi)1X∈A +
(1 + 6/a)D log(n)6

3n
log
(N (τ, g(M), ∥ · ∥∞)

δ1

)
+ (1 + a)τ.

Due to the choice of v̂ as the empirical risk minimizer, we know that for every ṽ ∈M

1

n

n∑
i=1

g(v̂, Xi) =
1

n

n∑
i=1

(∫ ∫
|v̂t(x)− vt(x|Xi)|2pt(x|Xi) dx dt

)
1Xi∈A

=
1

n

n∑
i=1

∫ ∫
|v̂t(x)− vt(x|Xi)|2pt(x|Xi) dx dt

− 1

n

n∑
i=1

(∫ ∫
|v̂t(x)− vt(x|Xi)|2pt(x|Xi) dx dt

)
1Xi /∈A

≤ 1

n

n∑
i=1

∫ ∫
|ṽt(x)− vt(x|Xi)|2pt(x|Xi) dx dt

− 1

n

n∑
i=1

(∫ ∫
|v̂t(x)− vt(x|Xi)|2pt(x|Xi) dx dt

)
1Xi /∈A.

As

1

n

n∑
i=1

∫ ∫
|ṽt(x)− vt(x|Xi)|2pt(x|Xi) dx dt

=
1

n

n∑
i=1

(∫ ∫
|ṽt(x)− vt(x|Xi)|2pt(x|Xi) dx dt

)
1Xi∈A

+
1

n

n∑
i=1

(∫ ∫
|ṽt(x)− vt(x|Xi)|2pt(x|Xi) dx dt

)
1Xi /∈A,

we can use the other case of Theorem 2.11 to conclude that for every a ∈ (0, 1], δ2 ∈ (0, 13) and
τ ∈ R>0

P
(
sup
v̄∈M

1

n

n∑
i=1

g(v̄, Xi)1Xi∈A − (1 + a)EY∼P∗ [g(v̄, Y )1Y ∈A]

>
(1 + 3/a)D log(n)6

3n
log
(N (τ, g(M), ∥ · ∥∞)

δ2

)
+ (1 + a)τ

)
≤ δ2.

We conclude that with a probability of 1− δ2

1

n

n∑
i=1

(∫ ∫
|ṽt(x)− vt(x|Xi)|2pt(x|Xi) dx dt

)
1Xi∈A

≤ (1 + a)EY∼P∗ [g(ṽ, Y )1Y ∈A] +
(1 + 3/a)D log(n)6

3n
log
(N (τ, g(M), ∥ · ∥∞)

δ2

)
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+ (1 + a)τ.

Like before, we separate aEY∼P∗ [g(ṽ, Y )1Y ∈A]. Using Lemma 5.24 again, we obtain

EY∼P∗ [g(ṽ, Y )1Y ∈A] = E t∼U [0,1]
Y∼p∗

Xt∼pt(·|Y )

[
|ṽt(Xt)− vt (Xt|Y )|2

]
−
∫
Rd\A

∫ ∫
|ṽt(x)− vt(x|y)|2pt(x|y) dx dt p∗(x) dy.

Further
E t∼U [0,1]

Y∼p∗
Xt∼pt(·|Y )

[
|ṽt(Xt)− vt (Xt|Y )|2

]
= Et∼U [0,1]

Xt∼pt

[
|vt(Xt)− ṽt(Xt)|2

]
+ C.

Note that C cancels with the same constant in (5.41). The terms arising from the restriction of
the Bernstein-bound to the set A can be bounded with high probability by the following result.

Lemma 5.27. Fix C ∈ R. Let log(σ−1
min) ≍ log(n). With a probability of 1− 1

3n for n ≥ e3(d+7+ 1
2
)

|E[g(v̂, Y )1Y /∈A]− E[g(ṽ, Y )1Y /∈A] +
n∑
i=1

g(ṽ, Xi)1Xi /∈A − g(v̂, Xi)1Xi /∈A| ≤ n−
1
2 .

Collecting all other terms, inserting log(σmin) ≍ log(n), setting δ1 = δ2 = 1
3n and using the

union bound leads to the result. The infimum can be used due to the presence of other nonzero
terms.

Preparation for the proof of Theorem 5.21. The proof of Theorem 5.21 requires some additional
results to bound the covering number and apply the approximation result. We further need
to look carefully into the approximation result of Theorem 2.6 and the proof of Gühring et al.
(2020).
As we cannot approximate a function on Rd with a finite neural network with fixed precision, we
are going to look at functions that approximate v on the set [− log(n), log(n)]d× [0, 1] and show
that the error on the complement is small. Hence we want to determine a network necessary to
obtain ∫ ∫

[− log(n),log(n)]d
|ṽt(x)− vt(x)|2pt(x) dx dt ≤ ε,

for a given approximation error ε > 0. We map any point outside of [− log(n), log(n)]d back to
this hypercube using the one layer ReLU net associated with the following clipping function

clipinput(xi,− log(n), log(n)) := xi − ϕ(xi − log(n)) + ϕ(−xi − log(n)),

where ϕ is the ReLU activation function. Thus, the Lipschitz constant of a network that
approximates v on the set [− log(n), log(n)]d × [0, 1] is bounded by the Lipschitz constant of
the network on [− log(n), log(n)]d × [0, 1]. A similar one layer clipping function can be used to
clip the component functions at (5.21). The order of the number of layers and the number of
nonzero weights will not change with both adaptations. For the error on the complement, we



118 5. Generative Flow Matching

use the following result:

Lemma 5.28. For every ṽ in M and log(σ−1
min) ≍ log(n), if n ≥ e4( 12+6+d) then∫ 1

0

∫
Rd\[− log(n),log(n)]d

|vt(x)− ṽt(x)|2pt(x) dx dt ≤ n− 1
2 .

Bound of the covering number:

Lemma 5.29. We have for v̄1, v̄2 ∈M and every y ∈ [− log(n), log(n)]d, that

|g(v̄1, y)− g(v̄2, y)| ≲ ∥v̄1 − v̄2∥∞ log(n)4.

Hence we can bound
N (τ, g(M), ∥ · ∥∞) ≤ N (

τ

log(n)4
,M, ∥ · ∥∞).

From Suzuki (2019, Lemma 3) we know that the covering number of the set ReLU networks of
a cube [0, 1]d, denoted by NNReLU, is

log(N (τ,NNReLU, ∥ · ∥∞,[0,1]d)) ≤ 2SL log
(
τ−1L(B ∨ 1)(W + 1)

)
,

where L is the number of layers, S is the number of nonzero weights, B is the maximal absolute
value of a single weight and W is the maximal width. A careful inspection of the proof of the
approximation result will later reveal the specific choices.
To consider functions on [− log(n), log(n)]d×[0, 1], we proceed analogously to Yakovlev & Puchkin
(2025, p. 46), multiplying the first d coordinates of the weight matrix of the first lemma with
log(n) and dividing the input vector with the same value. This has of course an impact on the
bound of the weights, which will scale up by the factor log(n). Additionally, the weights of the
clipping layers are of order log(n)3. We thus obtain

log(N (τ, g(M), ∥ · ∥∞)) ≲ 2SL log
(
τ−1 log(n)4L(B ∨ 1) log(n)3(W + 1)

)
.

Approximation result:
Since the covering number depends on the maximum bound of the weights, we need to track this
in the proof of Theorem 2.6 by Gühring et al. (2020). Gühring et al. (2020, Lemma C.3 (v))

reveals that the biggest single weight is set to N , which is later chosen as
⌈(

ε
2CL

)− 1
s−1
⌉
, where L

is the bound on the partial derivatives up to the highest order considered. To apply Theorem 2.6
without tracking the bound on the partial derivatives in their proof, we approximate v divided
by this bound and scale the approximated function up in the end. This can be achieved adding
a layer in front and a layer after the network. The maximal weight used is of the size of the
bound.
As v is in C∞, we can apply Theorem 2.6 for arbitrary large s. However, the use of a larger
s will lead to a larger bound on the absolute value of the partial derivatives up to the order s.
Since this scales up the approximation error, we need a precise quantification. The next result
uses the logarithmic Sobolev inequality to bound higher derivatives of v.
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Lemma 5.30. Fix s ∈ N. Let {i1, ..., is} ⊂ {1, ..., d}s. For the k-th order partial derivative of v
we have that

∂s

∂xi1 , ..., ∂xis
vjt (x) ≲ log(σ−1

min)σ
−s+1
min .

For the derivatives with respect to t, we obtain the following result.

Lemma 5.31. Fix s ∈ N. Assume that log(σmin) ≥ s. For every k ∈ {1, ..., s} we have that

∂k

∂tk
vjt (x) ≲ polylog(σ−1

min) polylog(n)σ
−s−2
min .

The bound on mixed derivatives follows exactly the same lines as the proofs of Lemma 5.30 and
Lemma 5.31. Now we are ready to prove Theorem 5.21.
Proof of Theorem 5.21.
We scale the function down by σ−s−2

min log2(n) and approximate v · σ−s−2
min log2(n) instead of v.

After that, we add another layer to scale the output of the neural net up. The approximation
error, ε, will also scale up by σ−s−2

min log2(n). The maximal weight in the inner network will then
no longer depend on this bound, but the largest weight might increase. Hence we can set

W = C
(
ε−

1
s−2 ∨ σ−s−2

min log2(n)
)
.

Inserting everything into Theorem 5.20 and setting d̃ = d + 1, we obtain for a < 1 with a
probability of 1− 1

n for n big enough

Et∼U [0,1]
Xt∼pt

[
|vt(Xt)− ṽt(Xt)|2

]
≲ +

∫ 1

0

∫
Rd\[− log(n),log(n)]d

|vt(x)− ṽt(x)|2pt(x) dx dt+ (2 + a)τ + a log(n)4 + εσ−s−2
min log2(n)

+
a−1 log(n)7

n
ε−

d̃
s−1 log

(
2
(
τ−1 log(n)7L(B ∨ 1)(ε−

1
s−1 ∨ σ−s−2

min log2(n)
))

+ (2 + a)τ + a log(n)6 + εσ−s−2
min log2(n). (5.45)

Note that B and L will depend on ε, thus we are restricting feasible choices of ε to choices that
grow at most polynomial in n−1. Ignoring logarithmic terms, we first solve for a

a−1ε−
d̃

s−1

n
≍ a ⇐⇒ a ≍

(ε− d̃
s−1

n

) 1
2
.

τ can be set such that the corresponding term is of the same order, it suffices to set

τ ≍

(
ε
− d̃

s−1

n

) 1
2

2 +
(
ε
− d̃

s−1

n

) 1
2

.

This choice, as well as the choice of ε, influence the first term in (5.45) only logarithmically. Now
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we solve for ε (ε− d̃
s−1

n

) 1
2 ≍ εσ−s−2

min ⇐⇒ ε ≍ n−
s−1

d̃+2s−2σ
(s+2) 2s−2

d̃+2s−2

min .

Restricting σmin to polynomials in n, we ensure ε is polynomial in n. Thus, ignoring logarithmic
factors in n, we obtain with a probability of 1− 1

n for n big enough

Et∼U [0,1]
Xt∼pt

[
|vt(Xt)− ṽt(Xt)|2

]
≲ polylog(n)n

− s−1

d̃+2s−2σ
(s+2)

(
2s−2

d̃+2s−2
−1
)

min .

To choose σmin such that is is optimal in the setting of Theorem 5.5, we have to set it such that

σ1+αmin ≍
(
n−

s−1
d+2s−2σ

(s+2)
(

2s−2

d̃+2s−2
−1
)

min

) 1
2 ⇐⇒ σmin ≍ n

− 1

s+2
s−1 d̃+(2α+2)

(
d̃

s−1+2

)
.

This choice is a polynomial of n−1 and hence a feasible choice for σmin. For n ≥ 1 and σmin < 1,
we know that the network approximates the Lipschitz constant of v with precision εσ−s−2

min .
Plugging in the choice of σmin leads to

εσ−s−2
min ≍ n

− 2+2α
s+2
s−1 d̃+(2α+2)( d̃

s−1+2) ≤ 1.

Hence we obtain for the Lipschitz constant L̂t of v̂t

e
∫ 1
0 L̂t dt ≤ e

∫ 1
0 Γt+1 dt ≤ eC+1.

Note that we cannot let s → ∞, as this will blow up the constant. However, for every fixed
η > 0, we can choose s such that

s =
⌈
(5 + 2α)

d̃

η
+ 1
⌉
.

This leads to the final choice
σmin ≍ n−

1
d̃+4α+4+η .

Now we use the results of Lemma 5.27, set δ = 1
2n and use the union bound. Combining this

with Theorem 5.5, Theorem 5.17, Theorem 4.3 and d̃ = d + 1, we obtain with a probability of
1− 1

n

W1(P∗,Pψ̂1(Z)) ≲ polylog(n)n
− 1+α

d+4α+5+η .

The number of hidden layers L of fNN is bounded by c·log (n) and the number of nonzero weights
S is bounded by c · nc(d,α,η) · log2 (n), where c is a constant independent of n.

Additional proofs of Section 5.6.4

Proof of Lemma 5.25. By the definition of vt and vt(·|·), we get

vt(x) =

∫ (σ′t
σt

(x− µt(y)) + µ′t(y)
)pt(x|y)
pt(x)

p∗(y) dy,
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where ′ indicates the derivative with respect to t. For the Jacobian, we get using µt(y) = tγy

Dxvt(x) = Dx

∫ (σ′t
σt

(x− µt(y)) + µ′t(y)
)pt(x|y)
pt(x)

p∗(y) dy

= Dx
σ′t
σt

x

pt(x)

∫
pt(x|y)p∗(y) dy −Dx

σ′t
σt

tγ

pt(x)

∫
ypt(x|y)p∗(y) dy

+Dx
γtγ−1

pt(x)

∫
ypt(x|y)p∗(y) dy

=
σ′t
σt
Id +

(
γtγ−1 − σ′tt

γ

σt

)
Dx

∫
ypt(x|y)p∗(y) dy

pt(x)
.

For the derivative with respect to xi of the j−th coordinate function, we get using the dominated
convergence theorem

∂

∂xi

∫
yjpt(x|y)p∗(y) dy∫
pt(x|y)p∗(y) dy

=
(
∫
yj

∂
∂xi
pt(x|y)p∗(y) dy)(

∫
pt(x|y)p∗(y) dy)− (

∫
yjpt(x|y)p∗(y) dy)(

∫
∂
∂xi
pt(x|y)p∗(y) dy)

(
∫
pt(x|y)p∗(y) dy)2

=
(
∫
yj(−xi−tγyi

σ2
t

)pt(x|y)p∗(y) dy)(
∫
pt(x|y)p∗(y) dy)

(
∫
pt(x|y)p∗(y) dy)2

−
(
∫
yjpt(x|y)p∗(y) dy)(

∫
(−xi−tγyi

σ2
t

)pt(x|y)p∗(y) dy)
(
∫
pt(x|y)p∗(y) dy)2

=
tγ
∫
yjyipt(x|y)p∗(y) dy

σ2t
∫
pt(x|y)p∗(y) dy

− tγ(
∫
yjpt(x|y)p∗(y) dy)(

∫
yipt(x|y)p∗(y) dy)

σ2t (
∫
pt(x|y)p∗(y) dy)2

.

For fixed x and t let Y x,t be a random variable with density pt(x|·)p∗(·)∫
pt(x|y)p∗(y) dy . Then for t ∈ [0, 1)

∂

∂xi

∫
yjpt(x|y)p∗(y) dy∫
pt(x|y)p∗(y) dy

=
tγ

σ2t
(E[Y x,t

i Y x,t
j ]− E[Y x,t

i ]E[Y x,t
j ]) =

tγ

σ2t
Cov(Y x,t)ji.

We obtain for the derivative of with respect to xi of the j − th coordinate function

∂

∂xi
vjt (x) =

σ′t
σt
1i=j +

(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

Cov(Y x,t)ji.

Proof of Lemma 5.26. Let t∗ be such that σt∗ = 1
ϑ . Then

∫ t∗

0

∣∣∣σ′t
σt
1i=j +

(
γtγ−1 − σ′tt

γ

σt

) tγ
σ2t

Cov(Y ·,t)ij

∣∣∣ dt
≤
∫ t∗

0

∣∣∣σ′t
σt

∣∣∣ dt+ ∫ t∗

0

∣∣∣(γtγ−1 − σ′tt
γ

σt

) tγ
σ2t

Cov(Y ·,t)ij

∣∣∣ dt.
For the first term, we can use that σ′t is non positive and hence by change of variables∫ t∗

0

∣∣∣σ′t
σt

∣∣∣ dt = −∫ t∗

0

σ′t
σt

dt =

∫ 1

σt∗

1

u
du = log(σ−1

t∗ ) = log(ϑ).
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For the second integral, we can bound the Covariance term by

∣∣Cov(Y ·,t)ij
∣∣ ≤ C.

Now we get ∫ t∗

0

∣∣∣(γtγ−1 − σ′tt
γ

σt

) tγ
σ2t

Cov(Y ·,t)ij

∣∣∣ dt ≤ C ∫ t∗

0

∣∣∣(γtγ−1 − σ′tt
γ

σt

) tγ
σ2t

∣∣∣ dt
≤ C

∫ t∗

0

∣∣∣γtγ−1 t
γ

σ2t

∣∣∣ dt+ C

∫ t∗

0

∣∣∣σ′tt2γ
σ3t

∣∣∣ dt ≤ ϑ2C ∫ t∗

0
γtγ−1 dt

+ ϑ2C

∫ t∗

0

∣∣∣σ′t
σt

∣∣∣ dt ≲ ϑ2(1 + log(ϑ)).

Proof of Lemma 5.27. First we abbreviate

B := E[g(v̂, Y )1Y /∈A]− E[g(ṽ, Y )1Y /∈A] +
n∑
i=1

g(ṽ, Xi)1Xi /∈A − g(v̂, Xi)1Xi /∈A.

Both |ṽ|∞ and |v̂|∞ are bounded by D′ log(n)3, where D′ is a constant collecting all terms in
(5.21). In the proof of Theorem 5.20, we showed that

g(v, y) ≲ log(n)6 + log(n)2|y|2 + log(σ−1
min)

2 log(n)2|y|2.

Thus, we obtain

EXi [|B|] ≲ E
[∣∣∣1Y /∈A( log(n)6 + log(n)2|Y |2

)∣∣∣]
= log(n)6

∫
Rd\A

p∗(y) dy + log(n)2
∫
Rd\A

|y|2p∗(y) dy.

Using the structure of p∗ and assuming n ≥ 4, we obtain

∫
Rd\A

p∗(y) dy ≤
∫
Rd\A

|y|2p∗(y) dy =

∫
Rd\A |y|2 exp

(
− |y|2

2 − a(y)
)
dy∫

exp
(
− |y|2

2 − a(y)
)
dy

≤ e2L
∫
Rd\A |y|2 exp

(
− |y|2

2

)
dy∫

exp
(
− |y|2

2

)
dy

= e2L

(
2

∫∞
log(n) y

2
1 exp

(
− y21

2

)
dy1∫

exp
(
− y21

2

)
dy1

)d
.

As

0 ≤
∫ ∞

log(n)
y21 exp

(
− y21

2

)
dy

=
[
− y1 exp

(
− y21

2

)]∞
log(n)

−
∫ ∞

log(n)
exp

(
− y21

2

)
dy1 ≤ log(n) exp

(
− log(n)2

2

)
,
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we can bound the above by

e2L

(
2

∫∞
log(n) y

2
1 exp

(
− y21

2

)
dy1∫

exp
(
− y21

2

)
dy1

)d
≲
(
log(n) exp

(
− log(n)2

2

))d
.

For large n, this decays faster than any polynomial in n. We conclude

EXi [|B|] ≲ log(n)6
(
log(n) exp

(
− log(n)2

2

))d
.

Now Markov’s inequality yields

P(B ≥ n− 1
2 ) ≲ log(n)6

(
log(n) exp

(
− log(n)2

2

))d
n

1
2 ,

P(B ≤ −n− 1
2 ) ≲ log(n)6 exp

(
− log(n)2

2

))d
n

1
2 .

Notice that we can shift the constant as a factor of the bound of B. As log(σ−1
min) ≍ log(n), we

need to choose n large enough such that

log(n)6
(
log(n) exp(− log(n)2

2
)
)d
n

1
2 ≲

1

3n
⇐= n ≳ e3(d+7+ 1

2
),

where the implication stems from a loose upper bound using log(n)6+d ≤ n6+d. This finishes the
proof.

Proof of Lemma 5.28. From the proof of Theorem 5.20 and as log(σ−1
min) ≍ log(n) we know that

|vt(x)| ≲ log(n)2|x|+ log(n), |ṽt(x)| ≲ log(n)3.

Thus∫ 1

0

∫
Rd\[− log(n),log(n)]d

|vt(x)− ṽt(x)|2pt(x) dx dt ≲ log(n)6
∫ 1

0

∫
Rd\[− log(n),log(n)]d

pt(x) dx

+ log(n)4
∫ 1

0

∫
Rd\[− log(n),log(n)]d

|x|2pt(x) dx.

By the definition of pt and due to the fact that the convolution of two densities is again a density,
we know that

pt(x) =

∫
pt(x|y)p∗(y) dy =

∫
exp

(
− |x−ty|2

2σ2
t
− |y|2

2 − a(y)
)
dy∫ ∫

exp
(
− |x−ty|2

2σ2
t
− |y|2

2 − a(y)
)
dy dx

≤ e2L
∫
exp

(
− |x−ty|2

2σ2
t
− |y|2

2

)
dy∫ ∫

exp
(
− |x−ty|2

2σ2
t
− |y|2

2

)
dy dx

.
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Now for the inner integrals, we obtain∫
exp

(
− |x− ty|

2

2σ2t
− |y|

2

2

)
dy = exp

(
− |x|

2

2σ2t

)∫
exp

(
− 1

2

(
1 +

t2

σ2t

)
|y|2 +

〈 t

σ2t
x, y
〉)

dy

= (2π)d/2
( σ2t
t2 + σ2t

)d/2
exp

(
− |x|2

2(t2 + σ2t )

)
.

Inserting this into the bound and collecting all factors of |x|2, we obtain

pt(x) ≤ e2L
exp

(
− 1

2
1

σ2
t+t

2 |x|2
)∫

exp
(
− 1

2
1

σ2
t+t

2 |x|2
)
dx

=
e2L

(2π(σ2t + t2))
d
2

exp
(
− 1

2

1

σ2t + t2
|x|2
)
.

Now we bound∫ 1

0

∫
Rd\[− log(n),log(n)]d

pt(x) dx dt

≤
∫ 1

0

∫
Rd\[− log(n),log(n)]d

|x|2pt(x) dx dt

≤
∫ 1

0

e2L

(2π(σ2t + t2))
d
2

∫
Rd\[− log(n),log(n)]d

|x|2 exp
(
− 1

2

1

σ2t + t2
|x|2
)
dx dt

= 2

∫ 1

0

e2L

(2π(σ2t + t2))
d
2

(∫ ∞

log(n)
x21 exp

(
− 1

2

1

σ2t + t2
x21

)
dx1

)d
dt

≤ 2

∫ 1

0

e2L

(2π(σ2t + t2))
d
2

(
log(n)(σ2t + t2) exp

(
− 1

2

1

σ2t + t2
log(n)2

))d
dt,

where the last inequality follows from the same arguments as the bound in the proof of the first
part of this Lemma. As (σ2t + t2) ≤ 2, we can bound∫ 1

0

∫
Rd\[− log(n),log(n)]d

pt(x) dx dt ≲ log(n)d exp
(
− 1

4
log2(n)

)
.

Overall, we need to choose n big enough such that

log(n)6+d exp
(
− 1

4
log2(n)

)
≤ n− 1

2 ⇐= n ≥ e4( 12+6+d),

where again the implication stems from a loose upper bound using log(n)6+d ≤ n6+d.

Proof of Lemma 5.29. Similar to Yakovlev & Puchkin (2025, p. 44), we bound

∣∣∣ ∫ 1

0

∫
|v̄1t (x)− vt(x|y)(x)|2pt(x|y) dx dt−

∫ 1

0

∫
|v̄2t (x)− vt(x|y)(x)|2pt(x|y) dx dt

∣∣∣
≲
∫ 1

0

∫
|v̄1t (x)− v̄2t (x)|(|v̄1t (x)|+ |v̄2t (x)|+ 2|vt(x|y)|)pt(x|y) dx dt.

For x ∈ Rd and y ∈ [− log(n), log(n)]d, we have

|vt(x|y)| =
∣∣∣σ′t
σt

(x+ (σt − t)y)
∣∣∣ ≤ ∣∣∣σ′t

σt

∣∣∣(|x|+ |y|) ≤ ∣∣∣σ′t
σt

∣∣∣(|x|+√d log(n)).
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By (5.43) all v̄ ∈M are such that |v̄t(x)| ≲ log(n)3. Therefore∫ 1

0

∫
|v̄1t (x)− v̄2t (x)|(|v̄1t (x)|+ |v̄2t (x)|+ 2|vt(x|y)|)pt(x|y) dx dt

≲ ∥v̄1 − v̄2∥∞(log(n)3 + log(n)

∫ 1

0

∣∣∣σ′t
σt

∣∣∣ ∫ |x|pt(x|y) dx dt)

≲ ∥v̄1 − v̄2∥∞ log(n)4.

The last inequality follows from Jensen’s inequality and the same argument as in (5.44). This
concludes the proof.

Proof of Lemma 5.30. For an s-th order partial derivative and {i1, ..., is} ⊂ {1, ..., d}s, we know
from the definition of vt

∂s

∂xi1 , ..., ∂xis
vjt (x) = 1s=1

σ′t
σt

+
(
1− σ′tt

σt

) ∂s

∂xi1 , ..., ∂xis
Eqt,x [Yj ], (5.46)

where
qt,x ∝ exp

(
− ∥x− ty∥

2

2σ2t
− ∥y∥

2

2
− a(y)

)
∝ exp(⟨η, Y ⟩)h(y),

where η = t
σ2
t
x and h(y) = exp(−( t2

2σ2
t
+ 1

2)∥y∥2 − a(y)). Define

A(η) := log

∫
exp(⟨η, Y ⟩)h(y) dy.

In context of exponential families, A is typically called the log-partition function. Then

∂

∂ηj
A(η) = Eqt,x [Yj ].

Thus,

∂s

∂xi1 , ..., ∂xis
Eqt,x [Yj ] =

∂s

∂xi1 , ..., ∂xis

∂

∂ηj
A(η) =

( t

σ2t

)s ∂s

∂ηi1 , ..., ∂ηis

∂

∂ηj
A(η).

Further recall the definition of the cumulant generating function from Section 2.1.2,

K(λ) := log
(
E[exp(⟨λ, Y ⟩)]

)
.

Then
E[exp(⟨λ, Y )] = exp(A(λ+ η)−A(η)), K(λ) = A(λ+ η)−A(η).

Differentiating in λ yields

∂s+1

∂λi1 , ..., ∂λis , ∂λj
K(λ)

∣∣∣
λ=0

=
∂s+1

∂λi1 , ..., ∂λis , ∂λj
A(λ+ η)−A(η)

∣∣∣
λ=0

=
∂s+1

∂ηi1 , ..., ∂ηis , ∂ηj
A(η).

Hence,
∂s

∂xi1 , ..., ∂xis
vjt (x) = 1s=1

σ′t
σt

+
(
1− σ′tt

σt

)( t

σ2t

)s
κ(Yi1 , ..., Yis , Yj),
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where κ(Yi1 , ..., Yis , Yj) is the joint cumulant, of Yi1 , ..., Yis , Yj , which is defined as exactly this
partial derivative. For s ≥ 1, this cumulant is shift invariant, hence

κ(Yi1 , ..., Yis , Yj) = κ(Yi1 − E[Yi1 ], ..., Yis − E[Yi2], Yj − E[Yj ]).

Using the formula from Leonov & Shiryaev (1959) we can express the cumulant using products
of mixed moments

|κ(Yi1 − E[Yi1 ], ..., Yis − E[Yis ], Yj − E[Yj ])| =
∑
π

(|π| − 1)!
∏
B∈π

E
(∏
ℓ∈B
|Yℓ − E[Yℓ]|

)

≤
(∑

π

(|π| − 1)!
) s+1∏
ℓ=1

(E[|YBℓ
− E[YBℓ

]|s+1])
1

s+1 , (5.47)

where
∑

π represents the sum over all partitions of {i1, ..., is, j} and Bℓ is the ℓ-th element of
{i1, ..., is, j}.
From Theorem 2.15, we know that the distribution with density (5.30) satisfies the logarithmic
Sobolev inequality with log-Sobolev constant (1+ t2

σ2
t
)−1. By Ledoux (2001, Lemma 1.2) we know

that a bounded perturbation will again only impact the log-Sobolev constant by an exponential
term. Thus, we can bound the log-Sobolev constant of the distribution of Y x,t by

λ ≤ e4L
(
1 +

t2

σ2t

)−1
. (5.48)

Now we can use Theorem 2.26 to obtain

P(|Yi − E[Yi]| ≥ r) ≤ 2e−
r2

2λ .

Now we can bound the s + 1-th moment along the lines of Vershynin (2018, Proposition 2.5.2)
via

E[|Yi − E[Yi]|s+1] =

∫ ∞

0
P(|Yi − E[Yi]|s+1 ≥ u) du =

∫ ∞

0
P(|Yi − E[Yi]| ≥ r)rs(s+ 1) dr

≤ 2(s+ 1)

∫ ∞

0
e−

r2

2λ rs dr = 2
s+1
2 λ

s+1
2 Γ
(s+ 1

2

)
.

Taking the s+ 1-th root leads to the bound

E[|Yi − E[Yi]|s+1]
1

s+1 ≲ λ
1
2 .

Plugging in the log-Sobolev constant of Y from (5.48), we can control all moments via

E[|Y x,t
ij
− E[Y x,t

ij
]|s+1]

1
s+1 ≲

σt√
σ2t + t2

≤ min
(
1,
σt
t

)
.
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Thus we can bound (5.47) by

s+1∏
ℓ=1

(E[|YBℓ
− E[YBℓ

]|s+1])
1

s+1 ≲ min
(
1,
σs+1
t

ts+1

)
.

We obtain for

∂s

∂xi1 , ..., ∂xis
vjt (x) ≲ 1s=1

σ′t
σt

+
(
1− σ′tt

σt

)( t

σ2t

)s
min

(
1,
σs+1
t

ts+1

)
.

Minimizing in σt and using σ′
t
σt

= log(σmin) leads to

∂s

∂xi1 , ..., ∂xis
vjt (x) ≲ log(σmin)σ

−s+1
min .

Proof of Lemma 5.31. Define

qx,t(y) :=
exp

(
− |x−ty|2

2σ2
t
− |y|2

2 − a(y)
)

∫
exp

(
− |x−ty|2

2σ2
t
− |y|2

2 − a(y)
)
dy
, wx,t(y) := exp

(
− |x− ty|

2

2σ2t
− |y|

2

2
− a(y)

)
.

For k = 1 we obtain using the dominated convergence theorem, the quotient rule and the
derivative of the logarithm

∂

∂t
vjt (x) =

∂

∂t
EY∼qx,t [vt(x|Y )j ]

= EY∼qx,t

[ ∂
∂t
vt(x|Y )j

]
+ EY∼qx,t

[
vt(x|Y )j

∂

∂t
log(wx,t(Y ))

]
− EY∼qx,t

[
vt(x|Y )j

]
EY∼qx,t

[ ∂
∂t

log(wx,t(Y ))
]

= EY∼qx,t

[ ∂
∂t
vt(x|Y )j

]
+Cov

(
vt(x|Y )j ,

∂

∂t
log(wx,t(Y ))

)
.

(5.49)

We can use the same structure to obtain higher derivatives. Thus, all terms occurring in an
derivative of vt of order k are either derivatives of vt(x|y)j , derivatives of log(wx,t(Y )) (including
the functions themselves as 0-th order derivative) or products of these derivatives. Since

vt(x|y)j = log(σmin)(xj − tyj) + yj ,

∂

∂t
vt(x|y)j = log(σmin)yj ,

(5.50)

all higher derivatives of vt(·|·) vanish. For the second term occurring in (5.49), we have that

∂

∂t
log(wx,t(Y )) = − ∂

∂t

1

2
(|x− ty|2)σ−2

t = (⟨x, y⟩− t|y|2)σ−2
t +

1

2
|x− ty|2 ·2 log(σmin)σ

−2
t . (5.51)

We conclude that
∂k

∂tk
log(wx,t(Y )) ≲ poly(x, y, t) polylog(σ−1

min)σ
−2
t , (5.52)

where poly(x, y, t) is a again polynomial of finite degree in the components of x, y, t. Thus,
bounds that are worse than σ−2

t can only appear when ∂
∂t log(wx,t(Y )) occurs raised to a power.
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Looking at (5.49), we see that the highest power of ∂
∂t log(wx,t(Y )) increases by 1 each time the

derivative is taken via the covariance term. Hence in the k-th derivative, the highest order terms
are of the form

Cov
(
f(Y )

( ∂
∂t

log(wx,t(Y ))
)k−1

,
∂

∂t
log(wx,t(Y ))

)
,

where either f ≡ 1 or f is of the form (5.50) or (5.52). First, let f ≡ 1. Then due to (5.51)

Cov
(( ∂

∂t
log(wx,t(Y ))

)k−1
,
∂

∂t
log(wx,t(Y ))

)
= E

[( ∂
∂t

log(wx,t(Y ))− E
[ ∂
∂t

log(wx,t(Y ))
])k]

= σ−2k
t E

[(
⟨(1− t2 log(σmin))x, Y ⟩ − E[⟨(1− t2 log(σmin))x, Y ⟩]

+ (t22 log(σmin)− t)|Y |2 − E[(t22 log(σmin)− t)|Y 2|]
)k]

≲ σ−2k
t

d∑
i=1

(1− t2 log(σmin))
kxkE

[(
Yi − E[Yi]

)k]
+

d∑
i=1

(t22 log(σmin)t− t)kE
[(
Y 2
i − E[Y 2

i ]
)k]

,

where all expectations are taken with respect to Y ∼ qx,t. From the proof of Lemma 5.30 we
know that

E
[(
Yi − E[Yi]

)k]
≲
( σ2t
t2 + σ2t

) k
2 ≤ min

(σ2t
t2
, 1
) k

2
= min

(σkt
tk
, 1
)
.

By Theorem 2.22 we know that if Yi−E[Yi] is subgaussian, which was shown in Lemma 5.30, then
(Yi − E[Yi])2 is subexponential with the same order of subgaussian and subexponential norm.

E
[(
Y 2
i − E[Y 2

i ]
)k]

= E
[(
(Yi − E[Yi])2 − E[(Yi − E[Yi])2] + 2E[Yi](Yi − E[Yi])

)k]
Note that E[Yi] ≲ polylog(n) as x ∈ [− log(n), log(n)]d. Hence Y 2

i −E[Y 2
i ] can be represented by

the sum of a subexponential and a subgaussian variable. Furthermore, if Yi−E[Yi] is subgaussian
then it is also subexponential and the subexponential norm differs only by a constant from the
subgaussian norm. From Theorem 2.21 we learn that the sum of subexponential random variables
is again subexponential and that we can bound the subexponential norm of the sum by the sum
of the individual subexponential norms. Using that the subgaussian norm of Yi−E[Yi] is of order

σt√
σ2
t+t

2
, we obtain using Theorem 2.20

E
[(
Y 2
i − E[Y 2

i ]
)k]

≲
( σ2t
t2 + σ2t

) k
2 ≤ min

(σkt
tk
, 1
)
.

Now we consider the case that f is of the form (5.50) or (5.52). First, we note that as shown
in the proof of Theorem 5.18, the distribution with density qx,t satisfies the Poincaré inequality
with a constant

ρ ≤ e2L
(
1 +

t2

σ2t

)−1
.

An immediate consequence of the Poincaré inequality, defined in Definition 2.12, is the following
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bound for all smooth functions g, h

Cov(g(Y ), h(Y )) ≤ ρ
√
E[|∇g(Y )|2]E[|∇h(Y )|2]. (5.53)

We are going to use this to bound

Cov
(
f(Y )

( ∂
∂t

log(wx,t(Y ))
)k−1

,
∂

∂t
log(wx,t(Y ))

)
.

Define
g(y) := f(y)

( ∂
∂t

log(wx,t(y))
)k−1

.

Then

∇g(y) = (∇f(y))
( ∂
∂t

log(wx,t(y))
)k−1

+ f(y)(k − 1)∇
( ∂
∂t

log(wx,t(y))
)k−2(

∇ ∂

∂t
log(wx,t(y))

)
and

|∇g(y)|2 ≲ |∇f(y)|2
∣∣∣ ∂
∂t

log(wx,t(y))
∣∣∣2(k−1)

+ |f(y)|2(k − 1)2
∣∣∣( ∂
∂t

log(wx,t(y))
)∣∣∣2(k−2)∣∣∣∇ ∂

∂t
log(wx,t(y))

∣∣∣2
≲ |∇f(y)|2

∣∣∣σ−4(k−1))
t |x− ty|2(k−1)|y|2(k−1)

∣∣∣ (5.54)

+
∣∣∣σ−4(k−1)
t

1

2
|x− ty|4(k−1)(2 log(σmin))

2(k−1)
∣∣∣ (5.55)

+ |f(y)|2
(∣∣∣σ−4(k−2)

t |x− ty|2(k−2)|y|2(k−2)
∣∣∣ (5.56)

+
∣∣∣σ−4(k−2)
t

1

22(k−1)
|x− ty|4(k−2)(2 log(σmin))

2(k−2)
∣∣∣) (5.57)

· |σ−2
t (x− 2ty + t(x− ty)2 log(σmin))|2. (5.58)

All possible functions f are polynomials in y, hence the derivatives are also polynomials. As
vt(·|·) is linear in yi and ∂

∂t log(wx,t) is quadratic in the components, the derivatives are of that
degree or lower. We denote this by poly2(x, y, t). In case f is of the form (5.52) ∇f and f are
of order σ−2

t , else the dependency on σmin or σt is only logarithmically. For (5.54)

E[|∇f(Y )|2σ−4(k−1)
t |x− tY |2(k−1)|Y |2(k−1)

]
=

∫
polylog(σmin) poly2(x, y, t)σ

−4(k−1))
t |x− ty|2(k−1)|y|2(k−1)

·
exp

(
− |x−ty|2

2σ2
t
− |y|2

2 − a(y)
)

∫
exp

(
− |x−ty|2

2σ2
t
− |y|2

2 − a(y)
)
dy

dy

≤ e2L polylog(σmin)∫
exp

(
− |z|2

2 −
|x−σtz

t
|2

2

)
dy

·
∫

poly2

(
x,
x− σz
t

, t
)
σ
−4(k−1)
t |σtz|2(k−1)

∣∣∣x− σtz
t

∣∣∣2(k−1)
exp

(
− |z|

2

2
− |

x−σtz
t |2
2

)
dy

≲ polylog(σmin)σ
−2k−2
t |x|2(k−1),
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where the last inequality stems from similar arguments as in the proof of Theorem 5.18 and
Theorem 5.20 for higher order moments. The exact calculations are omitted for the sake of
brevity. The same calculation for the other terms in (5.55), (5.57), (5.56) and (5.58) yield

E[|∇g(y)|2] ≲ polylog(σmin) log(n)
4(k−1)σ−2k−4

t ,

where we used that x ∈ [− log(n), log(n)]d to combine the worst case dependencies. For h, we
obtain in similar manner

E[|∇h(y)|2] ≲ σ−4
t log(n)4.

Inserting these bounds in (5.53), we obtain

Cov(f(Y )(
∂

∂t
log(wx,t(Y )))k−1,

∂

∂t
log(wx,t(Y ))) ≲ polylog(σmin) polylog(n)

σ2t
σ2t + t2

σ−k−4
t .

Hence in all cases, the terms occurring in the k-th derivative are bounded by

∂k

∂tk
vjt (x) ≲ polylog(σmin) polylog(n)σ

−k−2
min .

This concludes the proof.

Helper results

Lemma 5.32. Let σt = σtmin with σmin ∈ (0, 1). Then for t ∈ (0, 1)

t

t2 + σ2t
≤ max(log(σ−1

min), e
2).

Proof. First, let t ≥ 1
log(σ−1

min)
. Then

t

t2 + σ2t
≤ 1

t
≤ log(σ−1

min).

If t < 1
log(σ−1

min)
, then

σ2tmin = exp(2 log(σmin)t) ≥ exp(−2)

and thus
t

t2 + σ2t
≤ t

t2 + exp(−2) ≤ exp(2).

Lemma 5.33. For p∗ of the form (5.20) and any Lipschitz 1 function f : Rd → R,∣∣∣ ∫ ∇f(z)p∗(x− z)dz − ∫ ∇f(z)p∗(y − z) dz∣∣∣ ≲ |x− y|. (5.59)

Proof. Using Hölders inequality we obtain∣∣∣ ∫ ∇f(z)p∗(x− z)dz − ∫ ∇f(z)p∗(y − z) dz∣∣∣ ≤ ∥∇f∥∞ ∫ |p∗(x− z)− p∗(y − z)| dz
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≤
√
d

∫ ∣∣∣ ∫ 1

0
⟨x− y,∇p∗(x+ t(y − x)− z)⟩ dt

∣∣∣ dz,
where the last inequality follows from the Lipschitz bound on f and a backwards-application of
the multivariate chain rule. The ∇-operator is used with respect to the Rd valued input of p∗.
Using the Cauchy-Schwarz inequality and changing the order of integration, we conclude∫ ∣∣∣ ∫ 1

0
⟨x− y,∇p∗(x+ t(y − x)− z)⟩

∣∣∣ dz ≤ |x− y|∫ ∫ 1

0
|∇p∗(x+ t(y − x)− z)| dt dz

= |x− y|
∫ 1

0

∫
|∇p∗(w)| dw dt.

We can bound the integral over the derivative via

∫
|∇p∗(w)| dw =

∫
| − w −∇a(w)| exp(−−|w|2

2 − a(w))∫
exp(−−|w|2

2 − a(w)) dw
dw

≤ EW∼p∗ [|W |] +
√
dL.

We can further bound

EW∼p∗ [|W |] ≤ e2LEW∼N (0,Id)[|X|] ≤ e2L
√

EW∼N (0,Id)[|X|2] = e2L
√
d.

Thus ∣∣∣ ∫ ∇f(z)p∗(x− z)dz − ∫ ∇f(z)p∗(y − z) dz∣∣∣ ≤ d(e2L + L)|x− y|.





Chapter 6

Conditional distribution estimation

In the previous chapters, we always estimated a distribution based on samples. In this chapter,
we are going to assume that we have some additional information. Based on a sample containing
pairs of observations and additional information, we want to estimate the conditional distribution.
We are going to assume that the target is a dY -dimensional random variable Y and the covariable
X is dX -dimensional. This notation is in line with the literature, especially in the context of
distributional regression. Note that the notation differs from the introduction, where we used X
for the target.
Our goal is to estimate the conditional distribution P∗

Y |X=x for x ∈ RdX based on an i.i.d.
sample (X1, Y1), ..., (Xn, Yn) of the joint distribution P∗

X,Y and evaluate this estimation using
proper scoring rules, which are well established in the forecasting literature and specifically in
the application in weather prediction, see for example Gneiting & Raftery (2007); Hersbach
(2000); Rasp & Lerch (2018).
A variety of methods exist to estimate a distribution. Just like in the unconditional case, the
superordinate question is which object should be estimated. In Section 4.1, we studied an
estimator of the density, Chapter 3 and Chapter 5 focused on the estimation of a pushforward
map that directly enables sampling from an estimated distribution. Another approach is to
estimate the distribution function. Of course, these methods are closely connected, the ability to
generate samples from an estimated distribution enables further estimates of either the density
of the distribution function.
One common approach to estimating a conditional distribution follows immediately from the
KDE discussed in Section 4.1. In case the joint distribution admits a density p with respect to
the dY + dX -dimensional Lebesgue measure, the conditional density is given by

p(y|x) = p(x, y)

pX(x)
.

where pX is the marginal density in X. Estimating both, the joint and the marginal density
using a KDE, with kernels Ky

hy
and Kx

hx
and bandwidths hy, hx > 0 respectively, we obtain the

following estimator of the conditional density

p̊(y|x) =
∑n

i=1K
y
hy
(y − Yi)Kx

hx
(x−Xi)∑n

i=1K
x
hx
(x−Xi)

, (6.1)



134 6. Conditional distribution estimation

which we call the Nadaraya–Watson conditional kernel density estimator (NW estimator), named
after Nadaraya (1964); Watson (1964), who themselves considered the mean regression problem.
A classical approach to model other characteristics than the mean is quantile regression (Koenker
& Bassett, 1978) and advancements thereof, see for example Chernozhukov et al. (2010). The
work of Yu & Jones (1998) motivated Hall et al. (1999), who proposed an estimator very close to
(6.1). Asymptotic properties of (6.1) have been studied by Hyndman et al. (1996) with respect to
the L2 distance. Efromovich (2007) obtained anisotropic minimax rates for conditional density
estimators in the L2 distance. Li et al. (2022) studied minimax properties of a histogram-typed
conditional density estimator in the total variation distance. The setting where for one set of
covariates several observations of the target are available has been investigated by Bott & Kohler
(2017).
One recent example for estimating the conditional distribution function in case of one-dimensional
targets is isotonic distributional regression (Henzi et al., 2021). An even more recent approach,
which also applies to dY > 1 is Engression (Shen & Meinshausen, 2025), who minimize the energy
score using a generative model that approximates the pushforward directly.

Own contribution We are going to combine the concepts of Flow Matching and conditional
distribution estimation. Initially, this results in a special case of a guided Flow Matching model
(Zheng et al., 2023). While this model suffers from theoretical drawbacks, we introduce a minor
adaptation that resolves this issue. Next, we demonstrate that this model is naturally connected
to the NW estimator. We also show that there is a vector field that generates the NW estimator
for fixed x ∈ RdX .
Then we consider the evaluation of the NW estimator in the Fourier score. As noted in
Section 2.3, the Fourier score is a scoring function that generalizes the energy score, which itself
is the multivariate extension of the CRPS. In the beginning, we connect the classical concept of
risk from statistical learning to proper scoring rules. Since there are, to the best of the author’s
knowledge, no comparable results besides for the one-dimensional case (Pic et al., 2023), we first
derive a lower bound to assess our results. Then we derive an anisotropic rate of convergence for
the NW estimator that matches the lower bound and is thus minimax optimal up to a logarithmic
factor. Subsequently, we use the rate of convergence obtained for the NW estimator to derive a
rate of convergence for the Flow Matching model in conditional distribution estimation. In the
end we apply the Flow Matching conditional distribution estimator to forecasting datasets and
weather prediction. Our results indicate that the estimator can keep up with state-of-the-art
methods.

6.1. Flow Matching as a conditional distribution estimator

On the population level, we can extend the Flow Matching model as introduced in Chapter 5
directly.
To estimate a conditional density, the covariates are employed as additional arguments to the
vector field and the density path. For fixed y ∈ RdY , let vt(·|y) be a vector field that generates
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pt(·|y). For fixed x ∈ RdX , define

pt,x(z) =

∫
pt(z|y)p∗(y|x) dy, and vt,x(z) =

∫
vt(z|y)

pt(z|y)p∗(y|x)
pt,x(z)

dy,

where p∗(·|x) is the density of P∗
Y |X=x. To avoid notation conflicts and simultaneously maintain

comparability with the previous chapter, we will use the lower case x to indicate the dependency
on x ∈ RdX . For fixed x the equivalence of

Et∼U [0,1]
Zt∼pt,x

[
|ṽt(Zt, x)− vt,x(Zt)|2

]
, and E t∼U [0,1]

Y∼p∗(·|x)
Zt∼pt(·|Y )

[
|ṽt(Zt, x)− vt (Zt|Y )|2

]

follows in exactly the same way as in Lipman et al. (2023, Theorem 2). This adaptation is also
shown in Zheng et al. (2023).
In practice, the true conditional density p∗(·|x) is unknown and hence inaccessible. Additionally,
training a new model for every x of interest is computationally expensive. To learn ṽ

simultaneously for the entire covariate space, the following empirical counterpart can be
implemented

1

n

n∑
i=1

E t∼U [0,1]
Zt∼pt(·|Yi)

[
|ṽt(Zt, Xi)− vt (Zt|Yi)|2

]
. (6.2)

This corresponds to the adaptation made in conditional diffusions, see Tang et al. (2025).
The following result shows that analogous to Lipman et al. (2023, Theorem 2), we still obtain an
equivalent optimization problem, however the random variable Zt has no density with respect
to the Lebesgue measure anymore and the vector field is only nonzero on a finite set. In slight
abuse of notation, we identify a point x ∈ RdX with the set containing only this point.

Lemma 6.1. Let p̄ : [0, 1]× RdY × RdX → R≥0, v̄t : [0, 1]× RdY × RdX → RdY such that

p̄t(z, x) :=
1

n

n∑
i=1

pt(z|Yi)δXi(x), v̄t(z, x) :=

∑n
i=1 vt(z|Yi)pt(z|Yi)δXi(x)∑n

i=1 pt(z|Yi)δXi(x)
,

where the functions are set to 0 in case of 0
0 . Then for a fixed, measurable function ṽ : [0, 1] ×

RdY × RdX → RdY

E t∼U [0,1]
Zt,X∼p̄t

[
|ṽt(Zt, X)− v̄t (Zt, X)|2

]
=

1

n

n∑
i=1

E t∼U [0,1]
Zt∼pt(·|Yi)

[
|ṽt(Zt, Xi)− vt (Zt|Yi)|2

]
+ C,

where C is a constant independent of ṽ.

The objective in (6.2) cannot capture any regularity in the influence of the covariates.
Nevertheless, optimal rates of convergence profit from higher regularity in the covariates. To
allow for rates exploiting this kind of smoothness, we adapt the objective function using a kernel
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function Kx
hx

: RdX → R≥0, where hx > 0 is the bandwidth,

1

n

n∑
i=1

E t∼U [0,1]
Zt∼pt(·|Yi)

X∼Kx
hx

(·−Xi)

[
|ṽt(Zt, X)− vt (Zt|Yi)|2

]
. (6.3)

Note that Kx
hx

does not depend on t. For hx → 0 we obtain the objective (6.2), hence (6.3)
generalizes (6.2). Analogously to Lemma 6.1 we obtain the following equivalence.

Lemma 6.2. Let p : [0, 1]× RdY × RdX → R≥0, v : [0, 1]× RdY × RdX → RdY such that

pt(z, x) :=
1

n

n∑
i=1

pt(z|Yi)Kx
hx(x−Xi), vt(z, x) :=

∑n
i=1 vt(z|Yi)pt(z|Yi)Kx

hx
(x−Xi)∑n

i=1 pt(z|Yi)Kx
hx
(x−Xi)

,

where the functions are set to 0 in case of 0
0 . Then for a fixed, measurable function ṽ : [0, 1] ×

RdY × RdX → RdY

E t∼U [0,1]
Zt,X∼pt

[
|ṽt(Zt, X)− vt (Zt, X)|2

]
=

1

n

n∑
i=1

E t∼U [0,1]
Zt∼pt(·|Yi)

X∼Kx
hx

(·−Xi)

[
|ṽt(Zt, X)− vt (Zt|Yi)|2

]
+ C,

where C is a constant independent of ṽ.

To obtain a generative estimator for the conditional distribution, we first fix a latent distribution
U on RdY that admits a density with respect to the Lebesgue measure.
Let M be some function class such that the following minimizing argument exists and all
corresponding ODEs have a unique solution. Then we choose

v̂ ∈ argmin
ṽ∈M

1

n

n∑
i=1

E t∼U [0,1]
Zt∼pt(·|Yi)

X∼Kx
hx

(·−Xi)

[
|ṽt(Zt, X)− vt (Zt|Yi)|2

]
. (6.4)

For fixed x ∈ RdX , we solve the ODE

∂ψt,x(y)

∂t
= v̂t(ψt,x(y), x), ψ0,x(y) = y.

Using the solution ψ̂ of this ODE to push forward a random variable ζ ∼ U we obtain for t ∈ [0, 1]

ψ̂t,x(ζ) ∼ p̂t,x. (6.5)

In line with Section 5.2, we now take a closer look at the functions that are approximated when
minimizing (6.4). In case the kernel Kx

hx
is a density, integration over z and x shows that pt

from Lemma 6.2 itself is a joint density. For the conditional density, we obtain

pt,x(z) =
pt(z, x)∫
pt(z, x) dz

=

∑n
i=1 pt(z|Yi)Kx

hx
(x−Xi)∑n

i=1K
x
hx
(x−Xi)

.

For suitable pt(·|Yi), p1,x(z) coincides with the estimator in (6.1). Thus in the following, we



6.2. Proper scoring rules and risk 137

set pt,x(·) = p̊t(·|x) for every x ∈ RdX . Specifically, we can use a standard notation for the
conditional density without causing a notation conflict. In case t = 1, we omit the subscript, if
this causes no confusion.
The next result shows that for fixed x ∈ RdX the vector field in Lemma 6.2 generates a probability
path p̊t(·|x) such that p̊1(·|x) is the NW estimator.

Lemma 6.3. For every y ∈ RdY , let vt(·|y) be such that it generates pt(·|y). Define

p̊t(z|x) =
∑n

i=1 pt(z|Yi)Kx
hx
(x−Xi)∑n

i=1K
x
hx
(x−Xi)

, v̊t(y|x) = vt(z, x).

Then for every x ∈ RdX the vector field v̊t(·|x) generates p̊t(·|x).

Thus, for fixed x ∈ Rp, the solution ψ̊t,x of the ODE

∂ψ̊t,x(z)

∂t
= v̊t(ψ̊t,x(z)|x), ψ̊0,x(z) = z

used as a pushforward leads to
ψ̊t,x(ζ) ∼ p̊t(·|x). (6.6)

Hence the Flow Matching estimator (6.5) is naturally connected to the NW estimator.

6.2. Proper scoring rules and risk

In this section, we shortly connect the concepts of risk and proper scoring rules. To this end,
we recall from Section 2.3 that a scoring rule is a function S : P ×RdY → R defined over a class
P of distributions that fulfills the further requirements of Section 2.3. We assume that the true
conditional distribution function PY |X=x is a member of P for every x ∈ RdX .
Based on a test sample (X̄j , Ȳj)j=1,...,m following the same distribution as (Xi, Yi), the
performance of an estimator P̂Y |X with respect to the scoring rule S can be evaluated via

Rm(P̂Y |X) :=
1

m

m∑
j=1

S(P̂Y |X̄j
, Ȳj).

If (X̄j , Ȳj)j=1,...,m are identically distributed, the population counterpart to Rm(P̂Y |X) is given
by

R(P̂Y |X) = E(X̄j ,Ȳj)
[Rm(P̂Y |X)]

= E(X̄j ,Ȳj)

[ 1
m

m∑
j=1

S(P̂Y |X̄j
, Ȳj)

]
= E(X̄1,Ȳ1)

[
S(P̂Y |X̄1

, Ȳ1)
]

= E(X̄1,Ȳ1)

[
S(P̂Y |X̄1

, Ȳ1)− S(PY |X̄1
, Ȳ1)

]
+ E(X̄1,Ȳ1)

[
S(PY |X̄1

, Ȳ1)
]

= EX̄1

[
EȲ1|X̄1

[
S(P̂Y |X̄1

, Ȳ1)− S(PY |X̄1
, Ȳ1)

]]
+ EX̄1

[
EȲ1|X̄1

[
S(PY |X̄1

, Ȳ1)
]]
. (6.7)
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This is exactly the decomposition into divergence and entropy function presented in Section 2.3
integrated over X̄1. The entropy function does not depend on the estimator P̂Y |X .
In case S is proper, we can now connect the excess risk to the divergence function: the target
of any estimation method P̂, where we suppress the dependency to indicate the integration over
the conditional variable, is

E(P̂) := R(P̂)−min
P∈P

R(P) = EX̄1

[
EȲ1|X̄1

[
S(P̂Y |X̄1

, Ȳ1)− S(PY |X̄1
, Ȳ1)

]]
(6.8)

where the minimum is taken over all P ∈ P. In case of a strictly proper scoring rule, the minimal
argument is unique.

6.3. Rate of convergence in Fourier score

In this section, we want to analyze both, the NW-estimator and the Flow Matching estimator
for conditional distribution estimation in the risk associated with the Fourier score.
Since the risk associated with the Fourier score has, to the best of the author’s knowledge,
not been studied before, a natural first step is to establish a lower bound on this rate for any
estimator. To this end, we introduce the smoothness class that is considered in the entire section.
To measure the smoothness of the conditional density, we first define the fractional Sobolev
ellipsoid on (0, 1)dY for some s ∈ R

Hs(Γ) :=
{
f : (0, 1)dY → R

∣∣∣ ∫
(0,1)d

(1 + |u|2)s|Ff(u)|2 du ≤ Γ
}
. (6.9)

Further, we define the fractional Sobolev norm by

∥f∥Hs(Rd) =
(∫

(0,1)d

(
1 + |u|2

)s |Ff(u)|2 du)1/2 (6.10)

for some Γ > 0. Note that for s ∈ N, this space coincides with the Sobolev space W s,2 defined in
Section 2.1. Using this, we define the set Ps,α as the set of all distributions PX,Y on (0, 1)dX+dY

that admit densities with respect to the Lebesgue measure, for the conditional densities it holds
that pY |X=x ∈ Hs(Γ) for all x ∈ RdX and for an α ∈ (0, 1]

sup
x,x′∈X ,x ̸=x′

∥φx − φx′∥γ
|x− x′|α ≤ L.

6.3.1. Lower bound

For this class Ps,α we obtain a lower bound for the estimation of the conditional distribution in
Fourier score.

Theorem 6.4. If the marginal density pX is lower bounded by some constant c > 0, then we
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have

inf
f̂n

sup
f∈Ps,α

E
[ ∫ ∫ |φ̂x(u)− φx(u)|2

|u|γ du pX(x) dx
]
≳


n
− 2

dX
α +2 , γ ≥ dY ,

n
− 2+

γ
s

2+
dY
s +

dY
α +

dXγ
2αs , γ < dY .

(6.11)

The proof follows the classical structure of Tsybakov (2009) for proving nonparametric lower
bounds.
We particularly observe that in case of γ > d, the lower bound coincides with the lower bounds for
the mean regression problem evaluated in the weighted L2 distance, see Györfi (2002, Theorem
3.2). In case of γ < d the lower bound on the rate is sensitive to smoothness in the target space
and the covariate space and is hence anisotropic. In case of dY = 1, we recover the same lower
bound as Pic et al. (2023), thus our result directly extends their work to higher dimensions and
other scales γ.

6.3.2. Upper bound for the NW estimator

Next, we want derive a rate of convergence for the NW estimator in the risk associated to the
Fourier score. We start from the definition of the NW estimator in (6.1) and denote the kernel
in the target variable by K, which will ease notation in the proof. In order to enable transfer to
the Flow Matching estimator, we denote the bandwidth of this kernel by σmin > 0. We denote
the characteristic function of the NW density estimator p̊(·|x) for x ∈ RdX with φ̊x.
Further, we impose an order assumption on the kernel K. To this end, we first define a kernel
of order ℓ.

Definition 6.5. Let ℓ ∈ N. A function K : Rd → R with ∥K∥1 <∞ is a kernel of order ℓ if the
functions u 7→ ujK(u), where j is a multiindex such that 1 ≤ |j| ≤ ℓ−1, are absolutely integrable
with respect to the Lebesgue measure and∫

K(u) du = 1,

∫
ujK(u) du = 0,

∫
|u|ℓ|K(u)| du <∞.

In the Fourier domain, this means that for a kernel of order ℓ ∈ N, we have that

|φK(ξ)− 1| ≲ |ξ|ℓ, for ξ → 0,

where φK is the Fourier transform of K. Then we can upper bound the risk of the Nadaraya-
Watson estimator (6.1).

Theorem 6.6. Assume that p∗ ∈ Ps,α and that p∗Y |X admits finite conditional moments up to
order 2. Let K be a symmetric kernel of order ⌈s+ γ/2⌉. Then for γ < dY +2 there are suitable
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choices of hx and σmin such that

E(X1,Y1),...,(Xn,Yn),X̄1

[ ∫ |φ̊X̄1
(u)− φX̄1

(u)|2
|u|γ du

]
≲


n
− 2

2+
dX
α , γ > dY ,

n
− 2

2+
dX
α log(n), γ = dY ,

n
− 2+

γ
s

2+
dY
s +

dX
α +

dXγ
2αs , γ < dY .

The bounds match the lower bounds of Theorem 6.4 up to the logarithmic factor in case γ = dY ,
thus we conclude that the rate is minimax optimal up to the logarithmic factor for the class Ps,α.
The logarithmic factor in case γ = d is typical for boundary cases between different convergence
regimes. This can also be seen in Corollary 3.8 and the subsequent results, when moving from
the squared parametric regime to the high-dimensional regime.
Notably, in case γ > dY the fast rate coincides with the rate that can be attained for the mean
regression problem. Further note that the energy score is in the upper, fast rate regime. Besides
the easy closed form, this is another indication why the energy score is a favorable score for the
evaluation of high-dimensional conditional distributions.

6.3.3. Upper bound for Flow Matching estimator

In order to evaluate the Flow Matching method based on the objective (6.3), we want to exploit
the connection to the NW estimator, which follows from Lemma 6.2 combined with Lemma 6.3. If
we condition the probability path corresponding to the vector field approximated in the smoothed
Flow Matching objective on x, then we obtain the density of the NW estimator. While this
holds in a general setting, the evaluation requires knowledge of the specific model construction.
Therefore, we need to choose the function v(·|·). We assume the following:

Assumption 6.7.

1. We consider the following choices of σ : [0, 1]× Rd → R>0 and µ : [0, 1]× Rd → Rd :

σt = 1− (1− σmin)t and µt(y) = ty.

2. We choose U = N (0, IdY ) for the latent distribution.

3. We use the Gaussian kernel for the smoothing in the covariates.

Further, we restrict the result to the risk corresponding to the energy score. This enables the
use of ReLU networks, which have been the focus of this thesis. The characteristic function at
time t = 1 of (6.5) conditioned on x ∈ RdX is denoted by φ̂x.

Theorem 6.8. Let γ = dY + β for β ∈ (0, 2) and γ
2 + s ≤ 2. Then under the assumptions of

Theorem 6.6 and pX(x) ≤ C for some C > 0, there is a finite ReLU network such that

E(X1,Y1),...,(Xn,Yn),X̄1

[ ∫ |φ̂X̄1
(u)− φX̄1

(u)|2
|u|γ du

]
≲ n

− 2

2+
dX
α .
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The proof combines Theorem 6.6 with the strategy from Section 5.4. Specifically, we can exploit
the properties of the energy score to apply Grönwall’s lemma.
In contrast to Theorem 6.6, we cannot use kernels of order greater than 2. This is due to the
fact that the kernel is the density of the latent distribution. Changing the proof of Lemma 6.2
slightly, we can loosen the assumption on γ.

Corollary 6.9. In the setting of Theorem 6.8, assume s ≥ γ
2 , s ≤ 2 instead of γ

2 + s ≤ 2. Then
we still obtain the rate

E(X1,Y1),...,(Xn,Yn),X̄1

[ ∫ |φ̊x(u)− φx(u)|2
|u|γ du

]
≲ n

− 2
2+dX .

Combined with the restriction to the energy score, the result of Theorem 6.8 and Corollary 6.9
is limited to very low dimensions. Results for smaller choices of γ, which in turn allow for higher
dimensions dY , are of course interesting. The next lemma shows that for γ < dY , we can bound
the risk corresponding to the Fourier score in a way that allows for the application for Grönwall’s
lemma.

Lemma 6.10. Assume that for two distributions P and Q on RdX there exists a τ ∈ (0, 2) such
that ∫

|u|τ |φP(u)|2−τ du < C,

∫
|u|τ |φQ(u)|2−τ du < C

for a constant C. Further assume that the β-th moment of P and Q is finite. Then for γ ≤ d+β

dFS(P,Q) ≲ dES(P,Q) + E[|X − Y |]τ .

In order to apply Lemma 6.10, we need to guarantee enough regularity of the distributions.
In case of P∗, this is just a further assumption on the conditional distribution. In case of
the Flow Matching estimator, this depends on the regularity of the network class used. Using
ReLU networks, the highest possible regularity is Lipschitz continuity. Therefore, we would
need to use smooth networks, such as ReQU networks, resulting from using the the activation
function max(0, x)2 in (2.22), which allow for higher order derivatives. Then, a combination of
Theorem 6.6, Corollary 6.9, Lemma 6.10 and a higher order approximation result such as the
result by Belomestny et al. (2023, Theorem 2) leads to rates of convergence that permit the case
γ < dY .

6.4. Numerical experiments

In this section, we want to give a first impression of how the proposed Flow Matching estimator
performs in practice. All implementations of the Flow Matching model in this section are based
on the implementation by Tong et al. (2024), which is available on github. Note that the code has
been significantly altered and adapted to the conditional setting. We also use Poli et al. (2025)
to solve the neural ODE. More precisely, we use the solver dopri5, the sensitivity adjoint and
set atol = rtol = 10−5.

https://github.com/
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6.4.1. Illustration

First, we want to illustrate the Flow Matching model for conditional distribution estimation in a
simple, one-dimensional setting. To this end, let X ∼ U [−3, 3] and Y ∼ N (sin(X), (τ(X))2), for
τ : [−3, 3] → (0,∞). We employ a network architecture with 3 hidden SeLU layers with width
64. For a definition of this activation function, we refer to Klambauer et al. (2017). Furthermore,
we conduct 10000 training iterations using a batch size of 128. For the optimization, we use the
Adam optimizer (Kingma & Ba, 2014) with the standard parameters lr = 0.001, β1 = 0.9 and
β2 = 0.999. For the kernel of the covariates, we employ the Gaussian kernel and a bandwidth of
hx = 0.1. We use the Epanechnikov kernel as the latent distribution and set σmin = 10−4.
Figure 6.1 shows the flow at distinct times t ∈ [0, 1] for a constant function τ , resulting in a
homoscedastic model, and a varying function τ , leading to a heteroscedastic model. We can see
that the Flow Matching model can adapt to both, the homo- and the heteroscedastic setting.

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

(f) t = 0 (g) t = 0.25 (h) t = 0.5 (i) t = 0.75 (j) t = 1

Figure 6.1.: Model based on 500 samples. Flow for distinct t ∈ [0, 1]. 200 latent samples are
chosen once and then put through the model for different values of x. The red
triangles are the observations. Top row τ ≡ 0.5, bottom row τ(x) = 0.5 ·

(
x
3 + 1

)2
).

Using fewer samples and refraining from calculating each iteration on a small batches reveals the
impact the smoothing in the covariates has. In Figure 6.2, we can see that the smoothing prevents
the model from overfitting. To this end, we increased the number of training iterations to 20000

while keeping all other setting as in the previous experiment. As expected, the smoothing shifts
the observations slightly from their actual position in each training iteration. Thus, the sharp
concentration of the estimated distribution’s mass around the observation gets flattened. The
same behavior is expected when using different batches in each training iteration.
We also observe this phenomenon when the true distribution is concentrated in specific regions
of the covariate space. While overfitting is undesirable, the smoothing of the covariates hinders
the model from improving the vector field in areas of sharp concentration in the latter case.

6.4.2. Regression datasets

To provide an initial indication of how the Flow Matching estimator compares to other methods,
we apply it to classical regression datasets, more precisely, the Boston Housing dataset (Harrison
& Rubinfeld, 1978), the Concrete Compressive Strength dataset (Yeh, 1998), the Energy
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Figure 6.2.: Model based on 50 samples. Left column with conditional smoothing (hx = 0.1),
right column without conditional smoothing. 200 latent samples are chosen once
and then put through the model for different values of x. The red triangles are the
observations. Top row τ ≡ 0.5, bottom row τ(x) = 0.5 ·

(
x
3 + 1

)2
).

Efficiency dataset (Tsanas & Xifara, 2012), and the Kin8nm dataset by the University of Toronto.
The Boston dataset contains 13 features that are expected to influence the median value of
owner-occupied homes in the Boston area. The Concrete dataset contains eight features that are
supposed to impact the compressive strength of concrete. The Energy dataset consists of eight
features and two targets that relate building properties to heating and cooling loads. We use
heating load as the target variable. The Kin8nm dataset uses eight settings of a robot arm to
estimate the distance between the robot and an external object.
For this first indication, we compare the performance of the Flow Matching estimator to Walz
et al. (2024) who performed their experiments on the same datasets. Note that their study also
incorporates additional datasets. Although the overall task is the same, some of the models in
Walz et al. (2024) require a separate neural network model to obtain a single-value output and
operate on this output. Other models learn the distribution directly. In Section 6.4.3 we apply
the Flow Matching estimator to single-value outputs of a preceding model. Hence in this section,
we focus on cases where the distribution is learned directly. Additionally, Flow Matching learns
an entire flow, which limits the explanatory power of directly comparing the number of training
iterations to the size of the networks. We keep the network size the same as in the largest case
of Walz et al. (2024), using networks with two hidden layers and a width of 50. In addition to
4000 training iterations, we also run our experiments for 20000 training iterations. In case of
4000 iterations, we use a learning rate of the Adam optimizer Kingma & Ba (2014) of 0.01 and

https://www.cs.toronto.edu/~delve/data/kin/desc.html
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in case of 20000 iterations, we decrease this rate to 0.001.
We use the SeLU activation function and a batch size of 455 for the Energy, the Boston and the
Kin8nm dataset and a batch size of 512 for the Concrete dataset. In all cases, we set hx = 0.001

and used the Gaussian kernel for the covariates. We employ N (0, 1) as latent distribution. For
the Boston and the Energy dataset, we used β1 = 0.95, β2 = 0.999 and a weight decay of
0.01. For the Concrete and the Kin8nm datasets, we used β1 = 0.9 and β2 = 0.999 and no
weight decay. For the Concrete dataset, we choose σmin = 0.0005, for the other datasets, we set
σmin = 0.0001.
Note that we do not fine-tune the hyperparameters, which are instead kept directly from the
first implementation. With this setup, we can compare the behavior of the objective value of
the Flow Matching algorithm, hereafter referred to as the loss, during training to that of the
CRPS. We use random training and test splits with a test sample size of 10% to perform ten
independent runs.
Interestingly, a decrease in loss does not correspond to a decrease in mean CRPS. Figure 6.3
illustrates this for the Boston dataset with 20000 iterations. While the additional training
iterations decreased the loss in all ten runs from 5000 to 20000, there was no such relation in the
CRPS. This effect was weaker in other datasets. It would be interesting to see whether using the
Hyvärinen score aligns the loss and the score. As we saw in Section 5.1.2, the Hyvärinen score is
directly connected to the objective of diffusion models, which, in turn, is closely related to the
Flow Matching objective in the case of the Gaussian probability path.
The results of our experiments are collected in Table 6.1 and Table 6.2. Since we did
not optimize anything in our model towards the CRPS, we report both, the mean CRPS
after the entire training and the minimal mean CRPS after {5000, 10000, 15000, 20000} or
{1000, 2000, 3000, 4000} training iterations. To calculate the mean CRPS, we use 100 draws
from the latent distribution N (0, 1) and apply the model to the sample for every observation of
the covariates in the test dataset. Using the true target observations, we calculate the empirical
CRPS and average it over all 100 draws.
To compensate for the fact that we did not optimize the Flow Matching estimator towards the
CRPS, we compare the minimal CRPS reported to the 2L models in Walz et al. (2024, Table 6),
which use networks of the same size. Looking at the minimal achievable CRPS in Table 6.1, we
see that the Flow Matching estimator running on 4000 training iterations is capable of beating
all 7 methods considered in Walz et al. (2024) on the Boston dataset and the Concrete dataset,
is in third place on the Energy dataset and in fourth place (shared with three other methods).
Taking the mean over the 10 runs, the minimal mean CRPS of the Flow Matching estimator
places second on the Boston dataset, last on the concrete dataset, sixth on the Energy dataset
and last on the Kin8nm dataset. Considering the longer training runs as a compensation for the
higher amount of information the Flow Matching estimator outputs, we see that the minimal
achievable CRPS in Table 6.2 beats all models on all dataset except for the Energy datasets,
where it places second with two other models. The minimal mean CRPS places second on the
Boston dataset, seventh on the Concrete dataset, fifth shared with one other model on the Energy
dataset, and second shared with two others on the Kin8nm dataset.
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Boston Concrete Energy Kin8nm
Minimal Mean 1.55 2.50 0.267 0.0473
Mean Min 1.16 2.13 0.237 0.0427
CRPS Max 1.79 3.15 0.320 0.0506

Mean CRPS Mean 1.73 2.54 0.286 0.0478
after 4000 Min 1.19 2.19 0.237 0.0427
iterations Max 2.16 3.31 0.380 0.0515

Table 6.1.: Mean CRPS values based on 100 draws from the latent distribution evaluated on the
test dataset. The top row reports the mean, the minimum and the maximum over
the minimal mean CRPS based on evaluations at {1000, 2000, 3000, 4000} training
iterations based on 10 independent runs. The bottom row uses only the mean CRPS
values after 4000 runs.

Boston Concrete Energy Kin8nm
Minimal Mean 1.54 2.57 0.256 0.0416
Mean Min 1.17 2.11 0.241 0.0385
CRPS Max 1.83 3.1 0.278 0.0428

Mean CRPS Mean 1.68 2.61 0.265 0.0419
after 20000 Min 1.28 2.13 2.11 0.0385
iterations Max 2.00 3.14 0.283 0.0439

Table 6.2.: Mean CRPS values based on 100 draws from the latent distribution evaluated on the
test dataset. The top row reports the mean, the minimum and the maximum over
the minimal mean CRPS based on evaluations at {5000, 10000, 15000, 20000} training
iterations based on 10 independent runs. The bottom row uses only the mean CRPS
values after 20000 runs.

Overall, our results suggest that the Flow Matching estimator is a promising approach for
distribution regression. Of course, an exact comparison should be conducted on the same
computer using the same network construction, optimizers, and hyperparameter tuning.

6.4.3. Probabilistic Weather forecasting using Flow Matching

In this section, we apply the Flow Matching estimator to point forecasts from the WeatherBench2
dataset (Rasp et al., 2024), which is a benchmark dataset for weather prediction. Our goal
is to learn a conditional predictive distribution from single-valued point forecasts and their
realizations. Walz et al. (2024) took the same approach, performing their evaluation on an
earlier version of the WeatherBench dataset.
We use the Integrated Forecast System (IFS) numerical prediction model in its High Resolution
Configuration (HRES) from the European Center for Medium-Range Weather Forecasts
(ECMWF). The forecast includes 16 variables and covers a 0.25 latitude-longitude grid from
January 2016 to January 2023. Forecasts are issued every 12 hours for lead times ranging from
0 to 240 hours in 6 hour intervals.
Our experiments are based on temperature at a height of two meters. We use data from 2016 to
2021 for training and data from 2022 for evaluation. Furthermore, we use forecasts for two, three,
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(a) Mean CRPS vs. number of training iterations.

5000 10000 15000 20000
1.5

2.0

2.5

3.0
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4.0

(b) Loss vs. number of training iterations.

Figure 6.3.: Behavior of the mean CRPS and the loss compared to the number of training
iterations when running the experiment for the Boston dataset with 20000 iterations.
The mean CRPS was calculated based on 100 draws from the latent distribution
evaluated on the test dataset. Note that the lines connect the points at
{5000, 10000, 15000, 20000}.

four, and five days ahead. These correspond to lead times of 48, 72, 96, and 120 hours. Due
to computational restrictions, we focus on locations in Europe between latitudes 42°N and 60°N
and longitudes 10°W and 30°E, selecting 10 places from a uniform distribution over a broader
5.625 latitude-longitude grid. The resulting locations are illustrated in Figure 6.4.

Figure 6.4.: 10 places drawn from a uniform distribution over a 5.625 latitude-longitude grid
covering Europe. The map was created using Met Office (2015) and made with free
vector and raster map data from Natural Earth.

As proposed by Rasp et al. (2024) and Lam et al. (2023), we use the IFS HRES forecast with a
lead time of 0 as the true realization.
First, we train and evaluate each location and lead time individually. Then, we use the Flow
Matching estimator to estimate the conditional distribution. The covariate kernel is a Gaussian
kernel with a bandwidth of 0.01. The latent distribution is N (0, 1) and we set σmin = 1. Note
that we scaled only the forecasts, not the true observations, which explains the large variance.
The network architecture consists of two hidden SeLU layers with a width of 50. We conduct
10000 training iterations. In each training iteration, we train the model with a batch size of 455
samples. For the optimization, we employ the Adam optimizer Kingma & Ba (2014) with the

https://www.naturalearthdata.com/
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parameters lr = 0.001, β1 = 0.95, β2 = 0.999 and a weight decay of 0.01. For every location,
we conduct 10 independent runs. After the training in each run, we draw 100 observations from
the latent distribution N (0, 1) and apply the model to every forecast for days in the year 2022.
Thus, we obtain a collection of 100 observations sampled from the estimated distribution for
every forecast. Using these observations and the true realization, we calculate the CRPS and
average over the test dataset.
The results can be seen in Figure 6.5. Compared to the state-of-the-art models based on
functional generative networks (Alet et al., 2025), the model GenCast (Price et al., 2025) and the
IFS ensemble version (ENS), our experiments indicate that the Flow Matching model performs
surprisingly well. While the other models are trained on a broad range of input data using
much larger and more sophisticated networks, the Flow Matching model is trained on simple
point forecasts. For an easy comparison for the year 2022, we refer to this1 illustration, which
can be set to Europe. However, note that we could not assess the exact alignment of the
region. Additionally, the only WeatherBench2 application we can access is the data from the
WeatherBench website linked above. The cited publications are based on an earlier version of
the WeatherBench database.

(a) Mean empirical CRPS over all runs at all
locations.

(b) Mean empirical CRPS for different locations.
The locations refer to the labels in Figure 6.4.

Figure 6.5.: Results of the Flow Matching estimator using separate models for different locations.

A comparison to Walz et al. (2024, Table 2), who also built their model based solely on
point forecasts, indicates that the Flow Matching estimator should be investigated more
comprehensively. Although our estimator’s mean CRPS is much lower for all lead times, an
exact comparison is hindered by the fact that the analysis in Walz et al. (2024) is based on an
earlier WeatherBench dataset.
As we saw in Section 6.4.2, the Flow Matching model is not restricted to the univariate case.
Therefore, we can conduct the same experiment using a single model for all locations rather
than separate models. The results are summarized in Figure 6.6. While keeping the network size
unmodified leads to inferior results, the predictions are still quite accurate considering the size of
the network. By increasing the network to four hidden SeLU layers with a width of 128 and the

1https://sites.research.google/gr/weatherbench/probabilistic-scores/

https://sites.research.google/gr/weatherbench/probabilistic-scores/
https://sites.research.google/gr/weatherbench/probabilistic-scores/
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number of training iterations to 20000, we can improve the mean CRPS again while drastically
reducing the overall size and computation time compared to the separate models. However, we
observe that this comes at the cost of more outliers.

(a) Mean empirical CRPS over all runs at all
locations, two layer network.

(b) Mean empirical CRPS for different locations,
two layer network.

(c) Mean empirical CRPS over all runs at all
locations, four layer network.

(d) Mean empirical CRPS for different locations,
four layer network.

Figure 6.6.: Results of the Flow Matching estimator using one joint model for all locations.

6.5. Proofs

6.5.1. Proof of Section 6.1

Proof of Lemma 6.1. For fixed t ∈ [0, 1] we have

|ṽt(z, x)− v̄t(z, x)|2 = |ṽt(z, x)|2 − 2⟨ṽt(z, x), v̄t(z, x)⟩+ |v̄t(z, x)|2,
|ṽt(z, x)− vt(z|Yi)|2 = |ṽt(z, x)|2 − 2⟨ṽt(z, x), vt(z|Yi)⟩+ |vt(z|Yi)|2.

The last term does not influence the minimal argument in ṽ. For the first two we have

EZt,X∼p̄t [|ṽt(Zt, X)|2] =
∫ ∫

|ṽt(z, x)|2
1

n

n∑
i=1

pt(z|Yi)δXi(x) dz dx
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=
1

n

n∑
i=1

∫ ∫
|ṽt(z, x)|2pt(z|Yi)δXi(x) dz dx

=
1

n

n∑
i=1

EZt∼pt(·|Yi)[|ṽt(z,Xi)|2]

and

EZt,X∼p̄t [⟨ṽt(Zt, X), v̄t(Zt, X)⟩]

=

∫ ∫
⟨ṽt(z, x), v̄t(z, x)⟩p̄(z, x) dz dx

=

∫ ∫ 〈
ṽt(z, x),

∑n
i=1 vt(z|Yi)pt(z|Yi)δXi(x)∑n

i=1 pt(z|Yi)δXi(x)

〉 1
n

n∑
i=1

pt(z|Yi)δXi(x) dz dx

=
1

n

n∑
i=1

∫ ∫
⟨ṽt(x), vt(z|Yi)⟩pt(z|Yi)δXi(x) dz dx

=
1

n

n∑
i=1

EZt∼pt(·|Yi)[⟨ṽt(Zt, Xi), vt(Zt|Yi)⟩].

Proof of Lemma 6.2. The proof is nearly identical to the proof of Lemma 6.1. For fixed t ∈ [0, 1]

we have

|ṽt(z, x)− vt(z, x)|2 = |ṽt(z, x)|2 − 2⟨ṽt(z, x), vt(z, x)⟩+ |vt(z, x)|2,
|ṽt(z, x)− vt(z|Yi)|2 = |ṽt(z, x)|2 − 2⟨ṽt(z, x), vt(z|Yi)⟩+ |vt(z|Yi)|2.

The last term does not influence the minimal argument in ṽ. For the first two we have

EZt,X∼pt [|ṽt(Zt, X)|2] =
∫ ∫

|ṽt(z, x)|2
1

n

n∑
i=1

pt(z|Yi)Kx
hx(x−Xi) dz dx

=
1

n

n∑
i=1

∫ ∫
|ṽt(z, x)|2pt(z|Yi)Kx

hx(x−Xi) dz dx

=
1

n

n∑
i=1

E Zt∼pt(·|Yi)
X∼Kx

hx
(·−Xi)

[|ṽt(z,X)|2]

and

EZt,X∼pt [⟨ṽt(Zt, X), vt(Zt, X)⟩] =
∫ ∫

⟨ṽt(z, x), vt(z, x)⟩p̄(z, x) dz dx

=

∫ ∫ 〈
ṽt(z, x),

∑n
i=1 vt(z|Yi)pt(z|Yi)Kx

hx
(x−Xi)∑n

i=1 pt(z|Yi)Kx
hx
(x−Xi)

〉
· 1
n

n∑
i=1

pt(z|Yi)Kx
hx(x−Xi) dz dx

=
1

n

n∑
i=1

∫ ∫
⟨ṽt(x), vt(z|Yi)⟩pt(z|Yi)Kx

hx(x−Xi) dz dx
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=
1

n

n∑
i=1

E Zt∼pt(·|Yi)
X∼Kx

hx
(·−Xi)

[⟨ṽt(Zt, X), vt(Zt|Yi)⟩].

Proof of Lemma 6.3. The proof follows along the same lines as the proof of Lemma 5.2. We have
that

d

dt
p̊t(y|x) =

∑n
i=1

d
dtpt(y|Yi)Kx

hx
(x−Xi)∑n

i=1K
x
hx
(x−Xi)

=
−∑n

i=1 div(pt(y|Yi)vt(y|Yi))Kx
hx
(x−Xi)∑n

i=1K
x
hx
(x−Xi)

= −div
(∑n

i=1 pt(y|Yi)vt(y|Yi)Kx
hx
(x−Xi)∑n

i=1K
x
hx
(x−Xi)

)
= −div

(∑n
i=1 pt(z|Yi)Kx

hx
(x−Xi)∑n

i=1K
x
hx
(x−Xi)

·
∑n

i=1 pt(y|Yi)vt(y|Yi)Kx
hx
(x−Xi)∑n

i=1 pt(z|Yi)Kx
hx
(x−Xi)

)
= −div(p̊t(z|x)̊vt(z, x)).

6.5.2. Proofs of Section 6.3

Proof of Theorem 6.4. Our proof is similar to Li et al. (2022, Theorem 4.1), who use the classical
approach of a nonparametric lower bound as in Tsybakov (2009). We first construct the following
set of densities. Choose a function h ∈ C∞([0, 1]) such that

∫
h(x) dx = 0,

∫
h2(x) dx = 1,

∥h∥∞ < ∞, and ∥φh∥γ < ∞, where φh is the Fourier transform of h. Let r,m ∈ N and define
the density of a disturbed uniform distribution via

p∆Y |X(y|x) = 1 +
∑
ī

∑
j̄

∆ī,j̄

∏
k∈[dY ]

hik,r(yk)
∏

k∈[dX ]

hjk,m(xk),

where ī is short for ī ∈ {1, ..., r}dY and j̄ is short for j̄ ∈ {1, ...,m}dX , ∆ī,j̄ ∈ {±1} and for a
ρ > 0

hik,r (yk) = ρ
√
rh (ryk − ik + 1) ,

hjk,m (xk) = ρh (mxk − jk + 1) .
(6.12)

First, we show that the functions p∆Y |X belong to the class Ps,α.

Lemma 6.11.

1. Let
ρrdY /2 ≲

1

2
.

Then p∆Y |X is a density and p∆Y |X(y|x) ≥ 1
2 for all y ∈ RdY and x ∈ RdX .

2. Let r ≥ 1. Then p∆Y |X ∈ Hs(Γ) where

Γ ≍ 1 + ρrs+dY /2.
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3. Let φ∆
x be the characteristic function of p∆Y |X . Then

sup
x,x′∈X ,x ̸=x′

∥∥φ∆
x − φ∆

x′

∥∥
γ

|x− x′|α ≤ L

for
L ≍ ρmαrdY /2−γ/2.

Next, we are going to bound the Kullback-Leibler divergence between p∆Y |X and p∆′

Y |X .

Lemma 6.12. Under the condition of Lemma 6.11 No. 1, then we have that

KL(p∆ | p∆′
) ≲ ρ2rdY .

Next, we show that there is a set of hypotheses large enough, that for two elements out of this set
our distance is lower bounded. For ease of notation, we identify a distribution with its density.

Lemma 6.13. There is a set T of densities p∆Y |X such that |T | ≥ 2r
dY mdX /8 with dH (∆,∆′) ≥

rdY mdX/8, where dH is the Hamming distance, and∫ ∫ |φ∆
x (u)− φ∆′

x (u)|2
|u|γ du pX(x) dx ≳ rdY −γρ2

for every p∆Y |X , p
∆′

Y |X ∈ T with ∆ ̸= ∆′.

In the following, let T be a set as constructed in Lemma 6.13. To apply Tsybakov (2009, Theorem
2.7), we need to ensure

KL((p∆)⊗n
∣∣(p∆′

)⊗n) = nKL(p∆, p∆
′
) ≲ nρ2rdY ≲ log(|T |), (6.13)

where (p∆)⊗n is the product measure corresponding to the n i.i.d. samples based on the density
p∆. The condition (6.13) holds true if

nρ2rdY ≲ rdY mdX or equivalently ρ ≲ n−
1
2mdX/2. (6.14)

Now we can combine (6.14) with Lemma 6.12 and Lemma 6.11. We obtain using Tsybakov (2009,
Theorem 2.7) and r ≥ 1

inf
f̂n

sup
f∈Ps,α

E
[ ∫ ∫ |φ̂x(u)− φx(u)|2

|u|γ du pX(x) dx
]

≳ rdY −γ min
(
n−1mdX , r−dY , r−dY −2s,m−2αr−dY +γ

)
≥ min

(
rdY −γn−1mdX , r−γ , r−γ−2s,m−2α

)
= min

(
rdY −γn−1mdX , r−γ−2s,m−2α

)
.
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If γ ≥ dY , then we can fix r = 1. Then we can choose m ≍ n
1

2α+dX , which yields the rate

inf
f̂n

sup
f∈Ps,α

E
[ ∫ ∫ |φ̂x(u)− φx(u)|2

|u|γ du pX(x) dx
]
≳ n

− 2

2+
dX
α .

In case γ < dY , we choose m ≍ r γ+2s
2α and r ≍ n

− 1

2s+dY +dX
γ+2s
2α . In this case

inf
f̂n

sup
f∈Ps,α

E
[ ∫ ∫ |φ̂x(u)− φx(u)|2

|u|γ du pX(x) dx
]
≳ n

− 2+
γ
s

2+
dY
s +

dY
α +

dXγ
2αs .

This concludes the proof.

Proof of Theorem 6.6. First, we define

φ̊x(u) := FK(σminu)
n∑
i=1

ei⟨u,Yi⟩wi(x), wi(x) :=
Kx
hx
(x−Xi)∑n

i=1K
x
hx
(x−Xi)

,

where FK is the Fourier transformation of K as defined in (2.10). Here and in the following,
i is the complex unit, while i is the index. Further, let φx(u) := EY |X=x[e

i⟨u,Y ⟩] be the true
characteristic function of the conditional distribution. Then

φ̊x(u)− φx(u) =
n∑
i=1

wi(x)(FK(σminu)e
i⟨u,Yi⟩ − 1)

= FK(σminu)
n∑
i=1

wi(x)(e
i⟨u,Yi⟩ − φXi(u)) (6.15)

+ FK(σminu)
n∑
i=1

wi(x)(φXi(u)− φx(u)) (6.16)

+
n∑
i=1

wi(x)(FK(σminu)φx(u)− φx(u)). (6.17)

For the first term (6.15), we obtain integrating over 1
|u|γ and taking the expectation with respect

to (Xi, Yi) and (X̄1)

E(Xi,Yi),X̄1

[ ∫ |FK(σminu)
∑n

i=1wi(X̄1)(e
i⟨u,Yi⟩ − φXi(u))|2

|u|γ du
]

=

∫ |FK(σminu)|2
|u|γ E(Xi,Yi),X̄1

[∣∣∣ n∑
i=1

wi(X̄1)(e
i⟨u,Yi⟩ − φXi(u))

∣∣∣2] du
≤
∫ |FK(σminu)|2

|u|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)]EYi|Xi

[
|ei⟨u,Yi⟩ − φXi(u)|2

]]
du

=

∫ |FK(σminu)|2
|u|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)](1− |φXi(u)|2)

]
du
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= σγ−dYmin

∫ |FK(t)|2
|t|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)](1− |φXi(

t

σmin
)|2)
]
du

= σγ−dYmin

∫
|t|<1

|FK(t)|2
|t|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)](1− |φXi(

t

σmin
)|2)
]
du

+ σγ−dYmin

∫
|t|≥1

|FK(t)|2
|t|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)](1− |φXi(

t

σmin
)|2)
]
du.

For the last term, we obtain using the standard observation from Nadaraya-Watson estimation
EX̄1

[w2
i (X̄1)] ≲ 1

nh
dX
x

c.f. Tsybakov (2009, Lemma 1.3)

σγ−dYmin

∫
|t|≥1

|FK(t)|2
|t|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)](1− |φXi(

t

σmin
)|2)
]
du

≤ σγ−dYmin

∫
|t|≥1
|FK(t)|2EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)]

]
du

≲ σγ−dYmin n−1h−dXx .

For the first term, we start with the case γ < dY . Then, analogously to the last term, we obtain

σγ−dYmin

∫
|t|<1

|FK(t)|2
|t|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)](1− |φXi(

t

σmin
)|2)
]
du ≲ σγ−dYmin n−1h−dXx .

If γ ∈ (dY , dY + 2), we can use the following result.

Lemma 6.14. (Székely et al., 2005, Lemma 1) For 0 < α < 2 and all y ∈ RdY∫
1− cos(t, y)

|t|d+α dt = C(d, α)|y|α,

where t ∈ RdY , and C(d, α) > 0 is a constant depending only on d and α.

Additionally,
|φXi(u)|2 = EYi|Xi

[cos(u, Y − Y ′)],

where Y, Y ′ are conditionally independent. Then

σγ−dYmin

∫
|t|<1

|FK(t)|2
|t|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)]

(
1−

∣∣∣φXi

( t

σmin

)∣∣∣2)] du
= σγ−dYmin EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)]EYi|Xi

[ ∫
|t|<1

1− cos(⟨ t
σmin

, Yi − Y ′
i ⟩)

|t|γ dt
]]

≤ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)]EYi|Xi

[ ∫ 1− cos(⟨u, Yi − Y ′
i ⟩)

|u|γ du
]]

≲ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)]EYi|Xi

[
|Yi − Y ′

i |γ−dY
]]

≲ n−1h−dXx .
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In the last inequality we used the assumption that the conditional expectation is bounded.
Finally, if γ = dY , we use that for y ∈ RdY

∫
|t|<1

1− cos(⟨ t
σmin

, y⟩)
|t|γ dt = σdY −γ

min

∫
|u|<σ−1

min

1− cos(⟨u, y⟩)
|u|γ du

= σdY −γ
min

∫
|u|<|y|−1

1− cos(⟨u, y⟩)
|u|γ du

+ σdY −γ
min

∫
|y|−1≤|u|<σ−1

min

1− cos(⟨u, y⟩)
|u|γ du.

If either of the domains is empty, we set the integral to 0. Further, if y = 0, then both integrals are
0. Thus let y ̸= 0. Then for the first integral, we can use that 1− cos(⟨u, y⟩) ≤ ⟨u,y⟩2

2 ≤ 1
2 |u|2|y|2.

Thus, using dY -dimensional polar coordinates∫
|u|<|y|−1

1− cos(⟨u, y⟩)
|u|γ du ≲ |y|2

∫ |y|−1

0
r2−drd−1 dr =

1

4
.

For the second integral, we obtain again by dY -dimensional polar coordinates∫
|y|−1≤|u|<σ−1

min

1− cos(⟨u, y⟩)
|u|γ du ≤ 2

∫
|y|−1≤|u|<σ−1

min

1

|u|γ du

≲
∫ σ−1

min

|y|−1

rd−1r−d dr

= log
( |y|
σmin

)
.

Using the concavity of the logarithm and Jensen’s inequality, we obtain the following bound in
case γ = dY

σγ−dYmin

∫
|t|<1

|FK(t)|2
|t|γ EXi

[ n∑
i=1

EX̄1
[w2
i (X̄1)]

(
1−

∣∣∣φXi

( t

σmin

)∣∣∣2)] du ≲ n−1h−dXx (1 + log(σ−1
min)).

Thus, the bound for the first term is given by

E(Xi,Yi),X̄1

[ ∫ FK(σminu)
∑n

i=1wi(X̄1)(e
i⟨u,Yi⟩ − φXi(u))

|u|γ du ≲


σγ−dYmin n−1h−dXX , γ < dY ,

n−1h−dXX log(σ−1
min), γ = dY ,

n−1h−dXX , γ > dY .

For the second term (6.16), we obtain using Jensen’s inequality for every x ∈ RdX

∫ |∑n
i=1wi(x)FK(σminu)(φXi(u)− φx(u))|2

|u|γ du ≤
n∑
i=1

wi(x)

∫ |φXi(u)− φx(u)|2
|u|γ du

≤
n∑
i=1

wi(x)L
2|Xi − x|2α

≲ h2αx ,
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where the last inequality used the compact support of the kernel Kx.
For the third term (6.17), we obtain for every x ∈ RdX∫ |F(K(σminu)− 1)φx(u)|2

|u|γ du =

∫ |F(K(σminu)− 1)|2
|u|γ

|φx(u)|2(1 + |u|2)s
(1 + |u|2)s du

≤ Γ sup
u∈R\{0}

|F(K(σminu)− 1)|2|u|−γ(1 + |u|2)−s

= Γσγ+2s
min sup

z
σmin

∈R\{0}
|F(K(z)− 1)|2|z|−γ(σsmin + |z|2)−s

≤ Γσγ+2s
min sup

z
σmin

∈R\{0}
|F(K(z)− 1)|2|z|−γ−2s.

If K is of order ⌈s+ γ/2⌉, then∫ |F(K(σminu)− 1)φx(u)|2
|u|γ du ≲ Γσγ+2s

min+γ .

Collecting all terms leads to the bound

E(Xi,Yi),X̄1

[ ∫ |φ̊x(u)− φx(u)|2
|u|γ du

]
≲ σ2s+γmin + h2αx +


σγ−dYmin n−1h−dXX , γ < dY ,

n−1h−dXX log(σ−1
min), γ = dY ,

n−1h−dXX , γ > dY .

In case γ < d, we choose σmin ≍ h2αx and hx ≍ n
− γ+2s

2(dXs+dY α)+dXγ+2αs . In case γ > d, we set
σmin > 0 arbitrarily small and hx ≍ n

− 1
2α+dX . In case γ = d, we set σmin ≍ n

− 1
2d+γ and

hx ≍ n−
1

2α+dX . Then

E(Xi,Yi),X̄1

[ ∫ |φ̊x(u)− φx(u)|2
|u|γ du

]
≲


n
− 2

2+
dX
α , γ > dY ,

n
− 2

2+
dX
α log(n), γ = dY ,

n
− 2+

γ
s

2+
dY
s +

dX
α +

dXγ
2αs , γ < dY .

This concludes the proof.

Proof of Theorem 6.8. In order to avoid confusion with the conditional probability path pt(·|·),
we will denote the time depended conditional density of the Flow Matching estimator by p̂t,x

and the NW estimator by p̊t,x for x ∈ RdX . These are the densities of (6.5) and (6.6). For t = 1

we obtain the density whose characteristic functions are φ̂x and φ̊x, respectively.
We start using the triangle inequality

E(Xi,Yi)

[
EX̄1

[ ∫ |φ̂X̄1
(u)− φX̄1

(u)|2
|u|γ du

]]
≲ E(Xi,Yi)

[
EX̄1

[ ∫ |φ̂X̄1
(u)− φ̊X̄1

(u)|2
|u|γ du

]]
+ E(Xi,Yi)

[
EX̄1

[ ∫ |φ̊X̄1
(u)− φX̄1

(u)|2
|u|γ du

]]
.

The first term corresponds to the difference between the Flow Matching model and the Nadaraya-



156 6. Conditional distribution estimation

Watson estimator, making it an approximation error. The second term is the risk of the
Nadaraya-Watson estimator itself. For the second term, we can use Theorem 6.6. However,
we need to take into account that the Gaussian kernel, which corresponds to the choice of
U = N (0, IdY ) for the latent distribution, is only a kernel of order 2. We will come back to this
issue in Corollary 6.9.
In order to bound the approximation error by the term minimized in (6.4), we first need to derive
a bound which is accessible to Grönwalls lemma. In case of the energy score, we have that

E(Xi,Yi)

[
EX̄1

[ ∫ |φ̂X̄1
(u)− φ̊X̄1

(u)|2
|u|γ du

]]
= E(Xi,Yi)

[
EX̄1

[
EY∼p̂ ¯1,X1
Z∼p̊1,X̄1

[|Y − Z|β]− 1

2
E
Y,Y ′iid∼ p̂1,X̄1

[|Y − Y ′|β]

− 1

2
E
Z,Z′iid∼ p̊1,X̄1

[|Z − Z ′|β]
]]

≤ E(Xi,Yi)

[
EX̄1

[
EY∼p̂1,X̄1
Z∼p̊ ¯1,X1

[|Y − Z|β]
]]
.

As β ∈ (0, 2), we can use Jensen’s inequality to obtain

EY∼p̂1,X̄1
Z∼p̊1,X̄1

[|Y − Z|β] ≤ EY∼p̂1,X̄1
Z∼p̊1,X̄1

[|Y − Z|2]β2 .

If the functions in the setM are Lipschitz continuous in the dY -dimensional component for fixed
t ∈ [0, 1] and x ∈ RdX with Lipschitz constant Γ̂t, we can proceed analogously to the proof of
Theorem 5.8 and get

EY∼p̂1,X̄1
Z∼p̊1,X̄1

[|Y − Z|2]β2 ≤
(
2e

∫ 1
0 1+2Γ̂tdt

∫ 1

0

∫ ∣∣v̂ (z, X̄1

)
− v̊t

(
z, X̄1

)∣∣2 p̊t,X̄1
(z) dz dt

)β
2
.

Further,

EX̄1

[( ∫ 1

0

∫ ∣∣v̂ (z, X̄1

)
− v̊t

(
z, X̄1

)∣∣2 p̊t,X̄1
(z) dz dt

)β
2
]

≤
(
EX̄1

[ ∫ 1

0

∫ ∣∣v̂ (z, X̄1

)
− v̊t

(
z, X̄1

)∣∣2 p̊t(z, X̄1)
1
n

∑n
i=1K

x
hx
(X̄1 −Xi)

dz dt
])β

2

=
(∫ ∫ 1

0

∫
|v̂ (z, x)− v̊t (z, x)|2

p̊t(z, x)
1
n

∑n
i=1K

x
hx
(x−Xi)

dz dt pX(x) dx
)β

2
.

Since we chose the Gaussian kernel for the covariates, the previous expression is well-defined.
Then due to the support of

1

n

n∑
i=1

Kx
hx(x−Xi) ≥ Kx

hx (⃗1) = exp
(
− d2

2h2x

)
,
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where 1⃗ is the Rp-valued vector with entry 1 in every component. Thus,

(∫ ∫ 1

0

∫
|v̂ (z, x)− v̊t (z, x)|2

p̊t(z, x)∑n
i=1K

x
hx
(x−Xi)

dz dt pX(x) dx
)β

2

≲ exp
( d2
2h2x
· β
2

)(∫ ∫ 1

0

∫
|v̂ (z, x)− v̊t (z, x)|2 p̊t(z, x) dz dt dx

)β
2
.

By the choice of v̂ via (6.4) and Lemma 6.2, we know that for every ṽ ∈M and any a > 0∫ ∫ 1

0

∫
|v̂ (z, x)− v̊t (z, x)|2 p̊t(z, x) dz dt dx ≤

∫ ∫ 1

0

∫
|ṽ (z, x)− v̊t (z, x)|2 p̊t(z, x) dz dt dx

≤ |ṽ − v̊|∞,[0,1]×[−a,a]dY +dX +

∫ 1

0

∫
Rd\[−a,a]dY +dX

|ṽ (z, x)− v̊t (z, x)|2 p̊t(z, x) d(z, x) dt.

(6.18)

For the set M we only consider functions whose Lipschitz constants are not too far from the
Lipschitz constant of v̊ on [−a, a]dY +dX . Outside of this area, we cut the network at the maximal
absolute value of v̊ on [−a, a]dY +dX . To bound the first term and to show that there are ReLU
functions satisfying this assumption, we are going to use Theorem 2.6. For the second term we
are going to exploit the tail-behavior of p̊t combined with the boundedness of ṽ and v̊.
For both, we first need to evaluate the corresponding properties of v̊.

Lemma 6.15. For every z ∈ (−a, a)dY and x ∈ RdX we have that

|̊vt(z, x)| ≤
√
dY (1 + a)

1− (1− σmin)t
≤
√
dY (1 + a)

σmin
.

Further, for every x ∈ RdX and every t ∈ [0, 1]

Lip(̊vt(·, x)) ≤
1

σt
+

2d

σ3t
.

Now we can determine the value of a needed for the second term in (6.18). Using the first bound
in Lemma 6.15 for a supremum norm bound of both vector fields, we obtain∫ 1

0

∫
Rd\[−a,a]dY +dX

|ṽ (z, x)− v̊t (z, x)|2 p̊t(z, x)d(z, x)dt

≲
∫ 1

0

∫
Rd\[−a,a]dY +dX

|z|2 + t2d

σ2t
ft(z, x)d(z, x)dt.

For the integral, we first note that for general b, c > 0 by the change of variables formula∫
|z|≥b

exp
(
− |z|

2

c

)
dz =

2πd/2

Γ(d/2)

∫ ∞

b
rd−1 exp

(
− r2

c

)
dr

=
2πd/2

Γ(d/2)

cd/2

2

∫ ∞

b2/c
u

d
2
−1e−u du

=
πd/2

Γ(d/2)
cd/2Γ

(
d

2
,
b2

c

)
,
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where Γ is the upper incomplete Gamma function as defined in Gabcke (1979, Satz 4.4.3). Due
to the universal notation of the Gamma function, we accept this double usage of Γ for both the
Lipschitz constant and the Gamma function. Similarly∫

|z|≥b
|z|2 exp

(
− |z|

2

c

)
dz =

πd/2

Γ(d/2)
· c d+2

2 Γ
(d
2
+ 1,

b2

c

)
.

For i ∈ {1, ..., n}, we obtain for the integration over x

∫
|x|∞>a

Kx
hx(x−Xi) dx =

∫
|x|∞>a

exp
(
− |x−Xi|2

2h2x

)
(2πh2x)

dX/2
dx

≤
∫
|x|∞>a−1

exp
(
− |x|2

2h2x

)
(2πh2x)

dX/2
dx

≤ 1

(2πh2x)
dX/2

∫
|x|>a−1

exp
(
− |x|

2

2h2x

)
dx

≤ 1

Γ(dX/2)
Γ
(dX

2
,
(a− 1)2

2h2x

)
.

For the integration over z, we get

∫
|z|∞>a

|z|2 + t2d

σ2t

exp
(
− |z−Yi|2

2σ2
t

)
(2πσ2t )

dY /2
dz =

∫
|u+Yi|∞>a

|u+ Yi|2 + t2d

σ2t

exp
(
− |u|2

2σ2
t

)
(2πσ2t )

dY /2
du

≤ 2

∫
|u|∞>a−1

|u|2 + 1 + t2d

σ2t

exp
(
− |u|2

2σ2
t

)
(2πσ2t )

dY /2
du

≤ 4

Γ(dY /2)
Γ
(dY

2
+ 1,

(a− 1)2

2σ2t

)
+ 2

t2d

σ2t

1

Γ(dY /2)
Γ
(dY

2
,
(a− 1)2

2σ2t

)
.

If min( (a−1)2

2σ2
t
, (a−1)2

2h2x
) ≥ max(dX2 ,

dY
2 + 1) we can use Gabcke (1979, Satz 4.4.3), to bound

Γ
(dX

2
,
(a− 1)2

2h2x

)
≤ dX

2
e
− (a−1)2

2h2x

((a− 1)2

2h2x

) dX
2

−1
,

Γ
(dY

2
,
(a− 1)2

2σ2t

)
≤ dY

2
e
− (a−1)2

2σ2
t

((a− 1)2

2σ2t

) dY
2

−1
,

Γ
(dY

2
+ 1,

(a− 1)2

2σ2t

)
≤
(dY

2
+ 1
)
e
− (a−1)2

2σ2
t

((a− 1)2

2σ2t

) dY
2
.

Hence we obtain for a > 1

exp
( d2
2h2x
· β
2

)(∫ 1

0

∫
Rd\[−a,a]dY +dX

|ṽ (z, x)− v̊t (z, x)|2 p̊t(z, x) d(z, x) dt
)β/2

≲ exp
( d2
2h2x
· β
2

)(∫ 1

0
e
− (a−1)2

2h2x

((a− 1)2

2h2x

) dX
2

−1
e
− (a−1)2

2σ2
t

((a− 1)2

2σ2t

) dY
2

−1
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+ e
− (a−1)2

2h2x

((a− 1)2

2h2x

) dX
2

−1 1

σ2t
e
− (a−1)2

2σ2
t

((a− 1)2

2σ2t

) dY
2

dt
)β/2

≲ exp
( d2
2h2x
· β
2

)(∫ 1

0
e
− (a−1)2

2h2x
− (a−1)2

2σ2
t

(a− 1)dX+dY −2

hdX−2
x σdYt

dt
)β/2

.

Since ∫ 1

0
e
− (a−1)2

2σ2
t

1

σdYt
dt =

∫ 1
σmin

1
exp

(
− (a− 1)2u

2

) udY −2

1− σmin
du

≤
∫ 1

σmin

1
exp

(
− (a− 1)2u2

2

)
udY /2−2 du

≲ (a− 1)−
dY −2

2 Γ
(dY − 2

4
,
(a− 1)2

2

)
≲ (a− 1)−

dY −2

2 e−
(a−1)2

2

≤ e−
(a−1)2

2 ,

we can further bound for d ≤ a− 1

exp
( d2
2h2x
· β
2

)(∫ 1

0
e
− (a−1)2

2h2x
− (a−1)2

2σ2
t

(a− 1)dX+dY −2

hdX−2
x σdYt

dt
)β/2

≲ exp
(d2 − (a− 1)2

2h2x
· β
2

)
e−

(a−1)2β
4

((a− 1)dX+dY −2

hdX−2
x

)β/2
≤ e−

(a−1)2β
4

((a− 1)dX+dY −2

hdX−2
x

)β/2
.

For the approximation error, we thus obtain

EX̄1

[ ∫
|φ̂X̄1

(u)− φ̊X̄1
(u)|2 du

|u|γ
]

≲ e
β
2

∫ 1
0 2Γ̂tdt

(
exp

( d2
2h2x
· β
2

)
|ṽ − v̊|β/2∞,[0,1]×[−a,a]dY +dX

+ e−
(a−1)2β

4

((a− 1)dX+dY −2

hdX−2
x

)β/2)
.

From Lemma 6.15 we know that the Lipschitz constant of v̊ in the dY -dimensional component
is bounded by 2d+1

σ3
t

. Then

∫ 1

0

1

σ3t
dt =

∫ 1

0

1

(1− (1− σmin) t)
3 dt ≤ 1

2 (1− σmin)σ2min

− 1

2 (1− σmin)
≤ 1

σ2min

.

To bound the tail aiming for a rate n−C , we need to assure that

e
β(4d+2)

2σ2
min

− (a−1)2β
4

((a− 1)dX+dY −2

hdX−2
x

)β/2
≤ n−C ,

which is the case if

4d+ 2

2σ2min

+
2

β
C log(n)− (dX − 2) log(hx) ≤

(a− 1)2

2
− (dX + dY − 2) log(a− 1).
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For large a and small σmin we can choose

a ≳ max(log(n) + σ−1
min − log(hx), d− 1).

Now we need to find a neural network such that |ṽ− v|∞,[0,1]×[−a,a]dY +dX ≤ n−C , which is cut off
at the boundaries of [−a, a]d and which approximates the Lipschitz constant of v simultaneously
with the same error. We proceed like in the proof of Theorem 5.8 but need to bound the second
partial derivatives of v̊ in z, x and t. In view of Lemma 6.15, all of them are bounded σ−m1

min h
−m2
x ,

where m1,m2 ∈ N independent of n. Thus we need to choose the approximation error of the
network such that

e
β(4d+2)

2σ2
min

+ d2

2h2x
·β
2
εβ/2 ≤ n−C · σm1

minh
m2
x equivalent to ε ≤ n−

2C
β σ

2m1
β

min h
2m2
β

x e
− 4d+2

σ2
min

− d2

2h2x .

We choose σmin and hx as in Theorem 6.6. Hence, setting log(σmin) ≍ log(n) and log(hx) ≍
log(n), by Theorem 2.6, there is a ReLU network with

L ≳ poly(n) · (log2(n) + 1),

M ≳ poly(n) · epoly(n) · (log2(n) + 1),

where poly(n) is a polynomial in n. Combined with Theorem 6.6, we obtain the result.

Proof of Corollary 6.9. In order to maintain coherence when comparing to the proof of
Theorem 6.6, we go back to the notation of the kernel K instead of pt(·|·). First we note
that for ℓ ∈ [0, 1] and z ∈ RdY

|FK(z)− 1| =
∣∣∣ ∫ (ei⟨t,z⟩ − 1)K(t) dt

∣∣∣
≤
∫
|ei⟨t,z⟩ − 1|K(t) dt

≤
∫

2
∣∣ sin(⟨t, z⟩

2
)
∣∣K(t) dt

≤ 2|z|ℓ
∫
|t|ℓK(t) dt.

The integral is finite since we chose the Gaussian kernel for K. Then for w ∈ R by Taylor

eiw = 1 + iw +

∫ w

0
(w − t)(−eit) dt,

which implies ∣∣eiw − 1− iw
∣∣ ≤ ∫ |w|

0
(|w| − t) dt = |w|

2

2
.

Additionally ∣∣eiw − 1− iw
∣∣ ≤ 2 + |w|.
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Thus, for ℓ ∈ (1, 2], using
∫
uK(t) du = 0,

|FK(z)− 1| =
∣∣∣ ∫ (ei⟨t,z⟩ − 1)K(t) dt

∣∣∣
=
∣∣∣ ∫ (ei⟨t,z⟩ − 1− it⊤u)K(t) dt

∣∣∣
≤ 3

∫
|⟨t, z⟩|ℓK(t) dt

≤ 3|z|ℓ
∫
|t|ℓK(t) dt.

If s− γ
2 ≥ 0 and s ≤ 2, then∫ |(FK(σminu)− 1)φx(u)|2

|u|γ du ≲ σ2smin

∫
|u|2s−γ |φx(u)|2 du

≤ σ2smin

∫
(1 + |u|2)s− γ

2 |φx(u)|2 du

≤ σ2smin

∫
(1 + |u|2)s|φx(u)|2 du

≲ σ2smin.

The rest of the proof follows analogously to Theorem 6.6 and Theorem 6.8.

6.5.3. Additional proofs of Section 6.5

Proof of Lemma 6.11.

1. Since
∫
h(x) dx = 0, we only need to ensure that the supremum norm of the perturbations

are bounded by 1. However, it will be useful to bound pY |X from below, hence we bound
the supremum norm of the perturbations by 1

2 . In fact, by the disjoint support of the
bumps, we can bound∣∣∣ρ∑

ī

∑
j̄

∆īj̄

∏
k∈[dY ]

hik,r(yk)
∏

k∈[dX ]

hjk,m(xk)
∣∣∣
∞
≤ ρrdY /2∥h∥dY +dX

∞ .

2. First, we calculate the absolute value of the Fourier transform φī,r of
∏
k∈[dY ] hik,r(yk) for

fixed r and fixed ī ∈ {1, ..., r}dY ,

|φī,r(u)| =
∣∣∣ ∫ ei⟨u,y⟩

∏
k∈[dY ]

hik,r(yk) dy
∣∣∣

= rdY /2
∣∣∣ ∏
k∈[dY ]

∫
eiuk,ykhik,r(yk) dyk

∣∣∣
= r−dY /2

∣∣Φ(u
r

)∣∣,
where Φ(v) :=

∏
k∈[dY ] φh(vk) for v ∈ RdY .
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Since for r ≥ 1 ∫
(1 + |u|2)s|φī,r(u)|2 du = r−dY

∫
(1 + |u|2)s

∣∣Φ(u
r

)∣∣2 du
=

∫
(1 + |zr|2)s

∣∣Φ(z)∣∣2 dz
≤ r2s

∫
(1 + |z|2)s

∣∣Φ(z)∣∣2 dz,
where the last term is bounded by a constant by assumption on h. Then for fixed x ∈ RdX

∥p∆Y |X(·|x)∥2Hs =
∥∥1[0,1]dY + ρ

∑
ī

∑
j̄

∆ī,j̄

∏
k∈[dX ]

hjk,m(xk)
∏

k∈[dY ]

hik,r
∥∥2
Hs

≤
∥∥1[0,1]dY ∥∥2Hs + ∥ρ

∑
ī

∑
j̄

∆ī,j̄

∏
k∈[dX ]

hjk,m(xk)
∏

k∈[dY ]

hik,r
∥∥2
Hs

≲ 1 + ρ2
∑
ī

∑
j̄

∥∥ ∏
k∈[dX ]

hjk,m(xk)
∥∥2
Hsr

2s

≲ 1 + ρ2r2s+dY .

where the penultimate and the last inequality follow from the disjoint support.

3. Again, due to the disjoint support and the bound on |φī,r| from the previous part of the
proof, we have for x, x′ ∈ RdX

∥φ∆
x − φ∆

x′∥2γ =

∫
ρ2

|u|γ
∑
ī

∑
j̄

∣∣ ∏
k∈[dx]

hjk,m(xk)−
∏
k∈[dx]

hjk,m(x
′
k)
∣∣2r−dY ∣∣Φ(u

r

)∣∣2 du.
Due to the disjoint support, we know that there are only two indices j̄ such that the
summands are nonzero. Let j∗ be one of those indices. Then∣∣∣ ∏

k∈[dX ]

hj∗k ,m(xk)−
∏

k∈[dX ]

hj∗k ,m(x
′
k)
∣∣∣

=

dX∑
k=1

( k−1∏
i=1

hj∗i ,m(xi)
)
(hj∗k ,m(xk)− hj∗k ,m(x

′
k))
( dX∏
i=k+1

hj∗i ,m(x
′
i)
)

≤ ∥h∥dX−1
∞

dX∑
k=1

(hj∗k ,m(xk)− hj∗k ,m(x
′
k))

≤ ∥h∥dX−1
∞

dX∑
k=1

(2∥h∥∞ ∧ ∥h′∥∞m|xk − x′k|)

≤ ∥h∥dX−1
∞

dX∑
k=1

(2∥h∥∞ ∨ ∥h′∥∞)(1 ∧m|xk − x′k|)

≤ ∥h∥dX−1
∞

dX∑
k=1

(2∥h∥∞ ∨ ∥h′∥∞)mα|xk − x′k|α

≲ mα|x− x′|α.
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The bound for the other index follows analogously. Thus we can further bound

∥φ∆
x − φ∆

x′∥2γ ≲ ρ2m2α|x− x′|2α
∫ ∣∣Φ(ur )∣∣2

|u|γ du

= ρ2m2α|x− x′|2αrdY −γ
∫ ∣∣Φ(z)∣∣2

|z|γ dz.

The last integral is finite by construction. Thus

∥φ∆
x − φ∆

x′∥γ ≲ ρmαrdY /2−γ/2|x− x′|α.

Proof of Lemma 6.12. For the Kullback-Leibler divergence between the conditional densities
p∆X|Y and p∆

′

X|Y , we can use the fact that the χ2-divergence bounds the Kullback-Leibler
divergence. For a definition of the χ2-divergence see Tsybakov (2009, p. 86) and for the relation
to the Kullback-Leibler divergence see Tsybakov (2009, Lemma 2.7). This leads to

KL(p∆X|Y |p∆
′

X|Y ) ≤
∫
[0,1]dY

(p∆X|Y (y|x)− p∆
′

X|Y (y|x))2

p∆
′

X|Y (y|x)
dy

≤ 2

∫
[0,1]dY

(p∆X|Y (y|x)− p∆
′

X|Y (y|x))2 dy

≤ 2ρ2
∑
ī

∑
j̄

(∆ī,j̄ −∆′
ī,j̄)

∏
k∈[dX ]

h2jk,m(xk)

∫ ∏
k∈dY

h2jk,r(yk) dy,

where the last inequality follows from the assumption of Lemma 6.11 No. 1 and the disjoint
support of the disturbance functions. Furthermore∫ ∏

k∈dY

h2jk,r(yk) dy =
∏
k∈dY

∫
h2jk,r(yk) dyk

= rdY
∏
k∈dY

∫
h2(ryk − ik + 1) dyk

=
∏
k∈dY

∫
h2(z) dzk

= 1.

Thus
KL(p∆X|Y |p∆

′

X|Y ) ≤ 8ρ2rdY
∑
j̄

∏
k∈[dX ]

h2jk,m(xk).

Integration yields

KL(p∆|p∆′
) ≤ 8ρ2rdY

∫ ∑
j̄

∏
k∈[dX ]

h2jk,m(xk)pX(x) dx

≲ ρ2rdY ,

where the last inequality follows from the support of the functions jjk,m and the assumption that
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∥h∥∞ <∞.

Proof of Lemma 6.13. By the Varshamov-Gilbert construction (Tsybakov, 2009, Lemma 2.9) we
know that there exists a set T of densities p∆Y |X with ∆ ∈ {±1}dY +dX such that |T | ≥ 2r

dY mdX /8

and dH(∆,∆′) ≥ rdymdz

8 for p∆Y |X , p
∆′

Y |X ∈ T .
For the difference between the two densities p∆Y |X , p

∆′

Y |X ∈ T we obtain

p∆Y |X(y|x)− p∆
′

Y |X(x|y) = ρ
∑
ī

∑
j̄

(∆ī,j̄ −∆′
ī,j̄)

∏
k∈[dY ]

hik,r(yk)
∏

k∈[dX ]

hjk,m(xk),

where ∆ī,j̄ − ∆′
ī,j̄
∈ {±2, 0}. We abbreviate bj̄(x) :=

∏
k∈[dX ] hjk,m(xk) and aī(y) :=∏

k∈[dY ] hik,r(yk). Then

|φx(u)∆ − φx(u)∆
′ |2

= ρ2
(∑

ī

∑
j̄

(∆ī,j̄ −∆′
ī,j̄)F(aī)(u)bj̄(x)

)
·
(∑

ī

∑
j̄

(∆ī,j̄ −∆′
ī,j̄)F(aī)(u)bj̄(x)

)
.

In each sum, only the terms with indices in S are nonzero. Additionally, due to the disjoint
support of the different bumps, only the product of the (̄i, j̄) term with itself can be nonzero.
Thus we obtain∫ ∫ |φ∆

x (u)− φ∆′
x (u)|2

|u|γ du pX(x) dx

= ρ2
∑

(̄i,j̄)∈S

(∆ī,j̄ −∆′
ī,j̄)

2

∫
(bj̄(x))

2

∫ |F−1(aī)(u)|2
|u|γ du pX(x) dx.

For the integral in x,∫
(bj̄(x))

2pX(x) dx =

∫ ∏
k∈[dx]

h2(mxk − ik + 1)pX(x) dx

≥ 1

c

∫ ∏
k∈[dx]

h2(mxk − ik + 1) dx

= m−dX c−1

∫ ∏
k∈[dx]

h2(wk) dw

= m−dX c−1.

For the integral in u, we first note that∫
ei⟨u,y⟩

∏
y∈[dY ]

hik,r(yk) dy = r
dY
2

∏
k∈[dY ]

∫
eiukykh(ryk − ik + 1) dyk

= r
dY
2 ei⟨

u
r
,i−1⃗⟩

∏
k∈[dY ]

φh
(uk
r

)
.
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Then ∫ |F(aī)(u)|2
|u|γ du = r−dY

∫ |∏k∈[dY ] φh(
uk
r )|2

|u|γ du

= r−γ
∫ |∏k∈[dY ] φh(wk)|2

|w|γ dw.

The last term is again a constant. Thus, we obtain∫ ∫ |φ∆
x (u)− φ∆′

x (u)|2
|u|γ du pX(x) dx ≳ |S|ρ2r−γm−dX ≳ rdY −γρ2.

Proof of Lemma 6.10. By Székely (2003, Proposition 2) we have that in case EP[|Y |β] <∞ and
EQ[|Z|β] <∞ for 0 < β ≤ 2,

EY∼P,Z∼Q[|Y − Z|β]−
1

2
E
Y,Y ′iid∼P

[|Y − Y ′|β]− 1

2
E
Z,Z′iid∼Q

[|Z − Z ′|β]

=
α2βΓ

(
d+β
2

)
4πd/2Γ(1− β/2)

∫ |φP(u)− φQ(u)|2
|u|d+β du.

We can separate the integral∫ |φP(u)− φQ(u)|2
|u|γ du =

∫
|u|≤1

|φP(u)− φQ(u)|2
|u|γ du+

∫
|u|>1

|φP(u)− φQ(u)|2
|u|γ du.

For the first term we can use the condition γ < d+ β to see that∫
|u|≤1

|φP(u)− φQ(u)|2
|u|γ du ≤

∫
|u|≤1

|φP(u)− φQ(u)|2
|u|d+β du.

For the second term, we have for every τ ∈ (0, 2)∫
|u|>1

|φP(u)− φQ(u)|2
|u|γ du

≤
∫
|u|>1

|φP(u)− φQ(u)|2 du

=

∫
|u|>1

|E[ei⟨u,X⟩ − ei⟨u,Y ⟩]|τ |φP(u)− φQ(u)|2−τ du

=

∫
|u|>1

|E[cos(uX)− cos(uY ) + i(sin(uX)− sin(uY ))]|τ |φP(u)− φQ(u)|2−τ du

≤
∫
|u|>1

E[| cos(uX)− cos(uY )|+ | sin(uX)− sin(uY )|]τ |φP(u)− φQ(u)|2−τ du

≤ 2τE[|X − Y |]τ
∫
|u|>1

|u|τ (|φP(u)|+ |φQ(u)|)2−τ du.
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By assumption, the integral is finite. Hence we conclude∫ |φP(u)− φQ(u)|2
|u|γ du ≲ EY∼P,Z∼Q[|Y − Z|β]−

1

2
E
Y,Y ′iid∼P

[|Y − Y ′|β]

− 1

2
E
Z,Z′iid∼Q

[|Z − Z ′|β] + E[|X − Y |]τ .

Proof of Lemma 6.15. For the supremum norm bound, observe that for every z ∈ RdY and
x ∈ RdX

|̊vt(z, x)| =
∣∣∣ n∑
i=1

vt(z|Yi)
pt(z|Yi)Kx

hx
(x−Xi)∑n

i=1 pt(z|Yi)Kx
hx
(x−Xi)

∣∣∣
≤

n∑
i=1

|vt(z|Yi)|
pt(z|Yi)Kx

hx
(x−Xi)∑n

i=1 pt(z|Yi)Kx
hx
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For the Lipschitz bound, note that
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.

Now for the partial derivative of the ℓ-st coordinate function with respect to zk, ℓ, k ∈ {1, . . . , d},
we get
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Since supp(p∗) ⊂ [0, 1]dY ×dX , we can bound

∂

∂zk
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i=1 Yi,ℓpt(z|Yi)Kx

hx
(x−Xi)∑n

j=1 pt(z|Yj)Kx
hx
(x−Xi)

≤ 2t

σ2t
.

Using t ∈ [0, 1], σmin ≤ 1, we get for (6.19)

|∇zv(z, x)| ≤
1

σt
Id +

2

σ3t
Jd,

where Id denotes the d × d identity matrix, Jd denotes the d × d matrix consisting of ones and
≤ denotes entry wise inequality. Using the mean value theorem, we obtain for z, w ∈ Rd and
x ∈ Rp

|v(z, x)− v(w, x)| ≤
∥∥∥ 1

σt
Id +

2

σ3t
Jd

∥∥∥|z − w|.
As ∣∣∣ 1
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2
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∥∥∥ 1

σt
Id

∥∥∥+ ∥∥∥ 2
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=

1

σt
+

2d

σ3t
,

we get the desired bound.





Chapter 7

Conclusion and Outlook

In this thesis, we studied different generative machine models in a distribution estimation
setting. We started with GANs, showing the first rate of convergence that is also applicable in
dimension reduction settings. As a byproduct, we showed that we can theoretically approximate
a Lipschitz function using a Hölder network. Then we investigated the kernel density estimator
in Wasserstein distance. For a suitable choice of kernels, we showed that this classical method
achieves optimal rates. Our results specifically apply to the Gaussian kernel, which was not
the case in previous results. Afterwards, we studied the recent model Flow Matching, where
previous work is rather scarce. We connected the intrinsic smoothing of this model to the kernel
density estimator. This connection allowed us to study the over-parameterized setting, where we
showed that Flow Matching can achieve optimal rates. After a profound study of the Lipschitz
constant of the underlying vector field for arbitrary variance functions, we also derived rates of
convergence using smaller networks. Lastly, we investigated Flow Matching and a Nadaraya-
Watson-type estimator in a conditional distribution estimation setting. We showed that the
Nadaraya-Watson-type estimator achieves minimax optimal rates with respect to the Fourier
score and transferred this result to Flow Matching in certain cases. Furthermore, an empirical
study revealed the promising possibilities of Flow Matching in a forecasting setting.
There are several possible avenues for further research. These include specific questions about the
models studied in this thesis, and overarching questions. The former will be presented, grouped
by the model, followed by the latter.

Generative adversarial networks Our analysis demonstrates that GANs originally
built on too sensitive distribution distances, such as the Jensen-Shannon distance, can be
improved by a Lipschitz constraint in the discriminator class. This insight might also be
applicable to other GANs, e.g. f -GANs of Nowozin et al. (2016), which rely on a divergence
that cannot discriminate between different singular distributions and thus is not suitable for a
dimension reduction setting. Overall, we conclude that the choice of the discriminator class is
much more important for the data generation capabilities than the choice of the loss function,
which is typically dictated by some distance. Moreover, our analysis of the discriminator
approximation error is not limited to Vanilla GANs, but is also applicable to optimal transport
based GANs as demonstrated for the Wasserstein-type GAN.
While our analysis was limited to feedforward ReLU networks, one advancement in neural
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network research is the use of more sophisticated network architectures whose statistical analysis
is not yet settled. In the context of Wasserstein GANs, see for example Radford et al. (2015).
Furthermore, the inclusion of a bound on the Lipschitz constant, and not only the Hölder
constant, would enable a direct application of Theorem 3.10, thereby eliminating the need to
include the parameter α and thus improving the rates. Additionally, it would be interesting
whether there are conditions that allow for a faster rate of convergence for the Vanilla GAN,
excluding scenarios as in Example 3.6.
The experiments also demonstrated that the GAN is capable of detecting data from a lower
dimensional manifold if the latent space is of the same dimension as the ambient space. The
proof of Theorem 3.9 is contingent upon the dimension of the latent space. If the dimension
of the latent space is chosen to be too small, then infG∗∈Lip(M,Z)W1(P∗,PG∗(Z)) will be large.
If the dimension of the latent space is chosen too large, infG∗∈Lip(M,Z)W1(P∗,PG∗(Z)) does not
deteriorate, but the corresponding rate depends on the higher latent dimension. Therefore rates
that are adaptive to the unknown intrinsic dimension, potentially benefiting from results like
Berenfeld & Hoffmann (2021), would be interesting.

Flow Matching for unconditional distribution estimation While the
networks used for Theorem 5.8 are very large and do not correspond to the networks used
in practice, the rate in Theorem 5.21 is inferior. Although the results apply to different unknown
distributions, a blending is desirable.
The inferior rate in Theorem 5.21 is partly due to the general approximation result used. While
this leads to better comparability to other works, a more tailored approach could lead to optimal
rates. In addition, the size of the network and the overall result of both settings could again
benefit from the theoretical use of more sophisticated networks, like the U-Net (Ronneberger
et al., 2015) construction in Lipman et al. (2023).
Section 5.5.1 paves the way for further research into broader classes of distributions whose vector
fields have a bounded Lipschitz constant. The class of functions of form (5.20) served as a
toy example and is an interesting starting point for generalization. A very natural extension
is the extension to all distributions satisfying Assumption 5.16. Thus, characterizations of
Assumption 5.16 would be of high interest. Conversely, the lower bound on the Lipschitz
constant could be used to identify distributions that cannot be mimicked with a "good" rate
of convergence and realistic networks. While Assumption 5.16 holds for a very broad range of
variance functions, proofs based on concentration inequalities, such as Theorem 5.21, depend
on the specific choice of the variance function. Given optimal pushforward mappings, Tsimpos
et al. (2025) have investigated optimal noise schedules. Interestingly, their optimal schedule
connects to the choice in Assumption 5.19. Exploring optimal choices of variance functions from
a statistical perspective would thus be very interesting.
Another promising direction is the introduction and consequences of an artificial Lipschitz control
of the vector field. In this setting, the network size in Theorem 5.8 could decline drastically.
This influences the equivalence of gradients between (5.3) and (5.6) as well as their empirical
counterparts. Controlling this effect could extend convergence results to larger classes of unknown
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distributions.

Flow Matching for conditional distribution estimation As already indicated
in Section 6.3.3, the use of smooth networks could extend our theoretical results for the Flow
Matching estimator beyond the energy score and to higher dimensions.
Further, Gneiting & Raftery (2007) show that the energy score can be generalized to the kernel
score, using positive definite kernels. Straightforward calculations reveal that for a fixed kernel,
the corresponding divergence function recovers the squared maximum mean discrepancy (MMD)
in form of Gretton et al. (2012, Lemma 6). Thus, moving from the Fourier score to the kernel
score would further generalize the results obtained in this thesis.
In practice, guided diffusions (Dhariwal & Nichol, 2021; Ho & Salimans, 2021) and the adaptation
to Flow Matching (Zheng et al., 2023) have recently gained attention. Guided generative
modeling inter- and extrapolates between the conditional and the unconditional distribution
to enhance the emphasis on the covariates. This leads to impressive results in conditional image
generation. Our study of the conditional distribution estimator, which is a special instance of
the guided model, could serve as a starting point.
Interestingly, Flow Matching behaves quite well in extrapolation too, as Figure 7.1 shows. The
exact model configurations can be found in Appendix A. Extrapolation properties of other
conditional generative models have been studied by Shen & Meinshausen (2025). It would be
interesting to study the extrapolation properties of Flow Matching from a theoretical point of
view.
On the simulation side, the next step is to study the conditional Flow Matching model in a
comparable way on large scale datasets. Moving from a standard personal computer to a cluster
computer would enable a reliable comparison to the results of Walz et al. (2024) and further
state-of-the-art methods. Furthermore an interesting question is whether the conditional Flow
Matching model can also work in a setting where the target space is high-dimensional.

Figure 7.1.: Extrapolation capability of Flow Matching. Model trained on observations (red
triangles) from X ∼ U [−3, 3], Y ∼ N (sin(X), 0.12), 200 latent samples are chosen
once and then put through the model for different values of x ∈ [−5, 5].

Overall conclusion and outlook An overall conclusion is that in order to profit from
smoothness in data, a model that intrinsically smooths is beneficial. This way, even nonsmooth
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networks can profit from larger smoothness in the unknown distribution. While in GANs, all
attempts in the literature use either smooth networks (Puchkin et al., 2024; Stéphanovitch et al.,
2024) or a smoothed version of the empirical measure (Liang, 2021), smoothing is natural to Flow
Matching. This enabled the use of a different reference function, which leads to error bounds
independent of complexity bounds on the network class.
Throughout this thesis, the objective of was to examine statistical perspectives, and thus,
optimization problems were not addressed. In the proofs, we frequently employed global
minimizers and maximizers. Since we often faced non-convex optimization problems, gradient
based methods may suffer from a considerable optimization error, especially for high-dimensional
parameter spaces. Incorporating this optimization error would be more consistent with real-world
scenarios.
Additionally, all rates of convergence presented in this thesis are upper or lower bounds that
quantify how close an estimator is to the true target distribution. Since the model is trained on
observations, overfitting could cause it to mimic the empirical distribution rather than the true
distribution. In statistical terms, this results in a convergence rate that deteriorates to that of
the empirical distribution, at worst. While in a nonsmooth model, this is sometimes all that can
be expected, the reproduction of the training data is undesirable in practice (Li et al., 2024).
This has already sparked theoretical interest: For Wasserstein GANs, Vardanyan et al. (2024)
are using a Lp type penalty to maximize the deviation form the empirical distribution. First of
all, extensions to Flow Matching would be interesting. Secondly, penalties adaptive to human
cognition would be very interesting to study. This could be essential when considering questions
about intellectual property regarding outputs of generative models.
In this thesis, we have always studied one model in a given setting. In practice, concatenation of
models, for example, latent diffusions (Rombach et al., 2022), which concatenate an autoencoder
to a diffusion model, can reduce computational effort by enforcing dimension reduction. The
extension of theoretical results to such concatenated models would therefore be of high interest.
Such an analysis requires handling the dependencies induced by training with data that has been
processed through another learned model and is thus an interesting but far from trivial possible
avenue for further research.
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Appendix

Model of Figure 1.1 The model uses the Vanilla GAN construction as introduced in
Chapter 3. The unknown distribution are the handwritten 3s from the MNIST dataset Lecun
et al. (1998). The total dataset consists of 60000 observations, 6131 of which are classified as an
image of the number 3.
The network architecture of the generator class consists of two hidden LeakyReLU layers with
a negative slope of 0.2 and a width of 256 in the first hidden layer and a width of 512 in the
second hidden layer. After the last linear transformation, we apply the tanh activation function.
The network architecture of the generator class consists of three hidden LeakyReLU layers with
a negative slope of 0.2 and a width of 512, 512 and 256. The sigmoid function is implemented in
the loss function BCEWithLogitsLoss from the torch library directly.
We do 30 training iterations, in each training iteration we train the model with a batch size of
128 samples. For the optimization, we employ the Adam optimizer (Kingma & Ba, 2014) for
both the discriminator and the generator function with learning rate lr = 0.0002 and β1 = 0.5

and β2 = 0.999. As latent distribution, we employ the standard normal distribution in R784 for
the training of G1 and in R25 for the training of G2.

Model of Figure 1.3 The model uses the Flow Matching construction as introduced in
Chapter 5. The unknown distribution is a Camelback distribution based on N (−1, 0.12) and
N (1, 0.12) with a mixing probability of 1

2 . We draw 50 samples from this distribution. As latent
distribution we employ N (0, 1). We set σmin = 0.01.
The network architecture consists of 3 hidden SeLU layers with width 64. We do 5000 training
iterations and use the full 50 samples in each training iteration. For the optimization, we employ
the Adam optimizer (Kingma & Ba, 2014) with the standard parameters lr = 0.001, β1 = 0.9

and β2 = 0.999).
The implementation includes parts of the code of Tong et al. (2024), which is available on
github. Specifically, the network architecture and the optimization scheme was maintained on
purpose and no further parameter tuning was conducted. We also use Poli et al. (2025) to
solve the neural ODE. More precisely, we use the solver dopri5, the sensitivity adjoint and set
atol = rtol = 10−5.

https://github.com/
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Model of Figure 1.4 This model uses the conditional Flow Matching model as introduced
in Chapter 6 with the objective function (6.3). The covariate kernel is a gaussian kernel with
bandwidth hx = 0.2. The latent distribution is the distribution of the Epanechnikov kernel with
σmin = 0.0001.
The unknown conditional distribution is the distribution of X ∼ N (sin(X), 0.52) where W ∼
U [−3, 3]. We draw 500 samples from the true distribution. The network architecture consists of
3 hidden SeLU layers with width 64, which again corresponds to the architecture of Tong et al.
(2024). We do 10000 training iterations, in each training iteration we train the model with a
batch size of 100 samples. For the optimization, we employ the Adam optimizer (Kingma & Ba,
2014) with the standard parameters lr = 0.001, β1 = 0.9 and β2 = 0.999). The implementation
is also based on the code of Tong et al. (2024) and we used the same settings of the neural ODE
solver as in the model of Figure 1.3.
For the image, we draw 200 latent samples once and then put them through the model for
different values of x.

Model of Figure 7.1 The architecture of the network and the specifications of the Adam
optimizer is exactly the same as in the model of Figure 1.4. The covariate kernel is a gaussian
kernel with bandwidth hx = 0.1. The latent distribution is the distribution of the Epanechnikov
kernel with σmin = 0.0001.
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