
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3607863
.

.

RESEARCH-ARTICLE

Combinator-Based Fixpoint Algorithms for Big-Step
Abstract Interpreters

SVEN KEIDEL, Technical University of Darmstadt, Darmstadt, Hessen,
Germany
.

SEBASTIAN ERDWEG, Johannes Gutenberg University Mainz, Mainz,
Rheinland-Pfalz, Germany
.

TOBIAS HOMBÜCHER, Johannes Gutenberg University Mainz, Mainz,
Rheinland-Pfalz, Germany
.

.

.

Open Access Support provided by:
.

Technical University of Darmstadt
.

Johannes Gutenberg University Mainz
.

PDF Download
3607863.pdf
17 December 2025
Total Citations: 5
Total Downloads: 590
.

.

.

.

Published: 30 August 2023
.

.

Citation in BibTeX format
.

.

Proceedings of the ACM on Programming Languages, Volume 7, Issue ICFP (August 2023)
hps://doi.org/10.1145/3607863

EISSN: 2475-1421

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3607863
https://dl.acm.org/doi/10.1145/3607863
https://dl.acm.org/doi/10.1145/contrib-99659083114
https://dl.acm.org/doi/10.1145/institution-60011226
https://dl.acm.org/doi/10.1145/institution-60011226
https://dl.acm.org/doi/10.1145/contrib-81490684973
https://dl.acm.org/doi/10.1145/institution-60031216
https://dl.acm.org/doi/10.1145/institution-60031216
https://dl.acm.org/doi/10.1145/contrib-99660990475
https://dl.acm.org/doi/10.1145/institution-60031216
https://dl.acm.org/doi/10.1145/institution-60031216
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60011226
https://dl.acm.org/doi/10.1145/institution-60031216
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3607863&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607863&domain=pdf&date_stamp=2023-08-31

221

Combinator-Based Fixpoint Algorithms for

Big-Step Abstract Interpreters

SVEN KEIDEL, TU Darmstadt, Germany

SEBASTIAN ERDWEG and TOBIAS HOMBÜCHER, JGU Mainz, Germany

Big-step abstract interpreters are an approach to build static analyzers based on big-step interpretation.

While big-step interpretation provides a number of benefits for the definition of an analysis, it also requires

particularly complicated fixpoint algorithms because the analysis definition is a recursive function whose

termination is uncertain. This is in contrast to other analysis approaches, such as small-step reduction, abstract

machines, or graph reachability, where the analysis essentially forms a finite transition system between

widened analysis states.

We show how to systematically develop sophisticated fixpoint algorithms for big-step abstract interpreters

and how to ensure their soundness. Our approach is based on small and reusable fixpoint combinators that

can be composed to yield fixpoint algorithms. For example, these combinators describe the order in which the

program is analyzed, how deep recursive functions are unfolded and loops unrolled, or they record auxiliary

data such as a (context-sensitive) call graph. Importantly, each combinator can be developed separately,

reused across analyses, and can be verified sound independently. Consequently, analysis developers can freely

compose combinators to obtain sound fixpoint algorithms that work best for their use case. We provide a

formal metatheory that guarantees a fixpoint algorithm is sound if its composed from sound combinators only.

We experimentally validate our combinator-based approach by describing sophisticated fixpoint algorithms

for analyses of Stratego, Scheme, and WebAssembly.

CCS Concepts: • Software and its engineering→ Automated static analysis.

Additional Key Words and Phrases: Big-Step Abstract Interpretation, Static Analysis, Fixpoint Algorithm

ACM Reference Format:

Sven Keidel, Sebastian Erdweg, and Tobias Hombücher. 2023. Combinator-Based Fixpoint Algorithms for

Big-Step Abstract Interpreters. Proc. ACM Program. Lang. 7, ICFP, Article 221 (August 2023), 27 pages. https:

//doi.org/10.1145/3607863

1 INTRODUCTION

Abstract interpretation [Cousot and Cousot 1977] is a methodology for defining sound static
analyses. While in the past, many static analyses have been described as abstract interpreters in
small-step style [Darais et al. 2015; Horn and Might 2010; Might and Shivers 2006a,b; Schmidt
1996; Sergey et al. 2013], more recently big-step abstract interpreters have been investigated more
thoroughly [Bodin et al. 2019; Darais et al. 2017; Keidel and Erdweg 2019; Keidel et al. 2018; Wei
et al. 2019]. Such big-step abstract interpreters can be simply described as recursive functions in
any meta-language; we use Haskell as a meta-language throughout this paper.
Big-step abstract interpreters (sometimes called definitional abstract interpreters) look like the

corresponding concrete interpreter, except they compute with abstract data. For example, consider
the big-step abstract interpreter in Listing 1 that approximates values using intervals. Big-step

Authors’ addresses: Sven Keidel, TU Darmstadt, Germany; Sebastian Erdweg; Tobias Hombücher, JGU Mainz, Germany.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART221

https://doi.org/10.1145/3607863

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3607863
https://doi.org/10.1145/3607863
https://doi.org/10.1145/3607863

221:2 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

�eval :: Funs → Ênv → Expr → Maybe V̂al Expr = Var String

�eval funs env expr = case expr of | Num Int

Var x → lookup x env | Add Expr Expr

Num n → return (n,n) | Call String [Expr]

Add e1 e2 → do | ...

(i1,i2) ← �eval funs env e1 Funs = Map [String] (String, Expr)

(j1,j2) ← �eval funs env e2 Ênv = Map String V̂al

return (i1+j1,i2+j2) V̂al = Interval

Call funName args → do

let (params, body) = lookup funName funs

vs ← for args (�eval funs env)

�eval funs (Map.fromList (zip params vs)) body

Listing 1. A big-step abstract interpreter for a language with first-order functions. The abstract interpreter is
sound but fails to terminate for diverging recursive functions.

abstract interpreters like this are easy to understand [Darais et al. 2017] and reason about [Keidel
et al. 2018], while they seamlessly combine data-flow and control-flow information. However, our
abstract interpreter does not terminate on all inputs, since it calls itself unconditionally in the last
line of Listing 1. While non-termination is expected language behavior for concrete interpreters, it
is undesirable for abstract interpreters. But how can we ensure our big-step abstract interpreter
terminates?
In this work, we study fixpoint algorithms for big-step abstract interpreters (big-step fixpoint

algorithms for short) and how to describe and reason about them modularly. Like most fixpoint
algorithms, big-step fixpoint algorithms must apply the abstract interpreter repeatably until the
analysis result is stable. However, the recursive definition of big-step abstract interpreters makes it
difficult to ensure termination. In particular, it is insufficient to limit the number of call sites in the
object language, because abstract interpreters still end up in an infinite recursive loop when calls
recur. Schmidt [1995] was the first to propose a fixpoint algorithm for big-step abstract interpreters.
We reformulate his work and combine it with the chaotic iteration strategy of Bourdoncle [1993]
to derive a novel big-step fixpoint algorithm: a fixpoint algorithm based on chaotic iteration over
strongly-connected subgraphs of the dynamically discovered graph-shaped trace of an abstract
interpreter.
Our initial big-step fixpoint algorithm is sound and ensures termination, although its imple-

mentation and soundness proof are complex and monolithic. We argue that fixpoint algorithms
should be described and proven sound modularly because practical analyses require specialized
and fine-tuned fixpoint algorithms:

Specialized fixpoint algorithms. Different analyses and languages often require specialized fix-
point algorithms. For example, the Soot framework [Lam et al. 2011] describes 7 different
fixpoint algorithms for different types of analyses: Two algorithms1 for distributive analy-
sis problems [Reps et al. 1995; Sagiv et al. 1995], two algorithms2 for bidirectional analyses
problems such as taint analysis [Lerch et al. 2014], two algorithms3 for flow-sensitive analysis
problems [Späth et al. 2016], and one algorithm4 for context, flow and field-sensitive analysis
problems [Späth et al. 2019].

1https://github.com/Sable/heros/blob/develop/src/heros/solver/IFDSSolver.java and IDESolver.java
2https://github.com/Sable/heros/blob/develop/src/heros/solver/BiDiIFDSSolver.java and BiDiIDESolver.java
3https://github.com/Sable/heros/blob/develop/src/heros/fieldsens/FieldSensitiveIFDSSolver.java and FieldSensitiveBiDiIFDS-

Solver.java
4https://github.com/CodeShield-Security/SPDS/blob/master/WPDS/src/main/java/wpds/impl/WeightedPAutomaton.java

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

https://github.com/Sable/heros/blob/develop/src/heros/solver/IFDSSolver.java
https://github.com/Sable/heros/blob/develop/src/heros/solver/IDESolver.java
https://github.com/Sable/heros/blob/develop/src/heros/solver/BiDiIFDSSolver.java
https://github.com/Sable/heros/blob/develop/src/heros/solver/BiDiIDESolver.java
https://github.com/Sable/heros/blob/develop/src/heros/fieldsens/FieldSensitiveIFDSSolver.java
https://github.com/Sable/heros/blob/develop/src/heros/solver/FieldSensitiveBiDiIFDSSolver.java
https://github.com/Sable/heros/blob/develop/src/heros/solver/FieldSensitiveBiDiIFDSSolver.java
https://github.com/CodeShield-Security/SPDS/blob/master/WPDS/src/main/java/wpds/impl/WeightedPAutomaton.java

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:3
O
PA

L
T
A
JS

2013 2014 2015 2016 2017 2018 2019 2020

2018 2019 2020 2021

10

100

1000

10

100

L
in
es

o
f
co
d
e
ch
an
g
ed

(l
o
g
sc
al
e)

SequentialPropertyStore ParallelPropertyStore TAJS GenericSolver

Fig. 1. Monthly changes to fixpoint algorithms in the OPAL and TAJS analysis frameworks.

However, it takes effort to develop and maintain many different fixpoint algorithms and their
soundness proofs. Therefore many proofs become outdated over time and they become ineffec-
tive at guaranteeing soundness of the analysis.

Fine-tuning existing fixpoint algorithms. Fixpoint algorithms require continuous fine-tuning
to yield satisfactory performance and precision. In particular, no fixpoint algorithm works
best in all cases and configurability is key. For example, consider the continuous changes to
the fixpoint algorithms in the OPAL [Helm et al. 2020] and TAJS [Jensen et al. 2009] analysis
frameworks depicted in Figure 1.
Unfortunately, fine-tuning a single monolithic fixpoint algorithm has two problems. First, tuning
it for one analysis may lead to regressions for other analyses that use the same algorithm. Second,
every change to the fixpoint algorithm can introduce a soundness bug, yet reestablishing the
soundness proof for every single change is infeasible in practice. These two problems cause
framework developers either to avoid fine-tuning their fixpoint algorithms or to avoid proving
them sound rigorously.

To support such scenarios, we propose a novel approach for the implementation of big-step fixpoint
algorithms based on reusable and separately verifiable fixpoint combinators. Note that we mean
combinators in the sense of parser combinators, where complex functions can be constructed by
composing simpler functions.5 For example, fixpoint combinators describe the order in which the
program statements are analyzed, how deep recursive functions are unfolded or loops are unrolled,
or they record auxiliary data such as a control-flow graph. A complete fixpoint algorithm can then
be composed by choosing appropriate fixpoint combinators (each starting with i):

ifilter isFunBody (iunfold 3 istackWiden ◦ iinnermost)

This fixpoint algorithm only applies to function bodies (ifilter isFunBody) and unfolds the first 3
recursive function calls (iunfold) before it applies a widening operator on the stack (istackWiden). In
case of nested recursive function calls, the fixpoint algorithm stabilizes the analysis result of the
innermost calls first (iinnermost).

5Technically, we mean non-standard fixpoint combinators i that do not necessarily satisfy the standard fixpoint property

i (5) = 5 (i (5)) , but rather i (5) ⊒ 5 (i (5)) , which is sufficient for soundness.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

https://github.com/opalj/opal/blob/develop/OPAL/si/src/main/scala/org/opalj/fpcf/seq/PKESequentialPropertyStore.scala
https://github.com/opalj/opal/blob/develop/OPAL/si/src/main/scala/org/opalj/fpcf/par/PKECPropertyStore.scala
https://github.com/cs-au-dk/TAJS/blob/master/src/dk/brics/tajs/solver/GenericSolver.java

221:4 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

This modular description allows analysis developers to specialize and fine-tune fixpoint algo-
rithms by reconfiguring individual combinators or adding specialized ones. For example, we can
extend the fixpoint algorithm from above to record the call graph (iCFG) and to handle while-loops:

ifilter isFunBody (iCFG ◦ iunfold 3 istackWiden ◦ iinnermost) ◦

ifilter isWhileLoop (iunroll 10 istackWiden ◦ ioutermost)

This fixpoint algorithm seamlessly interleaves the intra-procedural analysis of loops with the
inter-procedural analysis of recursive function calls. Both of these aspects can be individually
changed and fine-tuned by adding, replacing, and reordering fixpoint combinators. And of course
we can use standard function abstraction to make parts of the fixpoint algorithm reusable.

We also modularize the soundness proofs of big-step fixpoint algorithms by developing a formal
theory for fixpoint combinators. The modularization simplifies the effort and complexity of these
soundness proofs and makes them composable. In particular, we prove that a modular fixpoint
algorithm is sound if all of its combinators are sound. This not only simplifies the initial soundness
proof for a fixpoint algorithm but also makes it easier to reestablish soundness after a change.
We demonstrate that our approach is feasible and useful by implementing it in Haskell as part

of the Sturdy framework [Keidel and Erdweg 2019; Keidel et al. 2018]. We developed 12 fixpoint
combinators and composed them to obtain fixpoint algorithms for 3 analyses of 3 different languages:
WebAssembly, Stratego, and Scheme. We use these case studies to assess the language and analysis-
independence, the precision, and the performance of the fixpoint algorithms. We find that the
initial fixpoint algorithms perform poorly, but they can be easily specialized to the analysis without
changing the implementation of any of the fixpoint combinators. We conclude that configurable
fixpoint algorithms are necessary to allow analysis developers to fine-tune their analyses.
In summary, we make the following contributions:

• We combine prior work on big-step fixpoint algorithms [Schmidt 1995] and chaotic itera-
tion [Bourdoncle 1993] to develop a novel big-step fixpoint algorithm (Section 2).
• We propose an approach to modularize the description of big-step fixpoint algorithms through
sound and reusable fixpoint combinators (Section 3).
• We present a library of reusable fixpoint combinators that serve as building blocks for developing
fixpoint algorithms (Section 4).
• We develop a formal theory for these combinators that allows us to prove their soundness
separately and once and for all (Section 5).
• We demonstrate that our approach is feasible and useful by implementing it as part of the
Sturdy framework (Section 6).

2 DESIGNING BIG-STEP FIXPOINT ALGORITHMS

In this section, we first describe conditions that guarantee the termination of big-step fixpoint algo-
rithms. In the second half, we develop a big-step fixpoint algorithm that satisfies these conditions.

2.1 Enforcing Termination of Big-Step Fixpoint Algorithms

Schmidt [1995] introduced big-step abstract interpretation and showed how to compute its fixpoint.
We reformulate his findings as three conditions that guarantee the termination of big-step fixpoint
algorithms. Consider the analysis of the factorial function implemented in a language with first-
order functions. The following diagram shows a big-step reduction trace of an abstract interpreter
with unbounded recursion, where d ⊢ 4 ⇓ E evaluates an expression 4 under environment d to an
abstract value E . Such a trace looks similar to the trace of a concrete big-step interpreter, except
that the values are intervals.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:5

n ↦→ [0,0] ⊢ 1 ⇓ [1,1]

.

.

.

n ↦→ [0,∞] ⊢ if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ?

n ↦→ [1,∞] ⊢ fact(n − 1) ⇓ ?

n ↦→ [1,∞] ⊢ fact(n − 1) ∗ n ⇓ ?

n ↦→ [0,∞] ⊢ if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ?

n ↦→ [0,∞] ⊢ fact(n) ⇓ ?

fact(n) =

if(n==0) 1

else fact(n-1) ∗ n

The analysis starts at the call fact(n), where n is bound to the interval [0,∞] in the environment.
Because the interval [0,∞] contains 0 and other numbers, the abstract interpreter has to evaluate
both branches of the conditional if(n == 0) and join the results. Whereas the analysis of the first
branch terminates after only one step, the second branch diverges while recurrently calling the
factorial function with the same environment over and over again (see highlighted calls). We write
the question mark symbol to represent that the abstract interpreter diverged and did not produce a
result. This leads us to the first condition:

Condition 1 A big-step fixpoint algorithm has to detect recurrent recursive calls and cut off recursion

to avoid non-termination.

Detecting recurrent calls allows the fixpoint algorithm to iterate that part of the computation
that spans the initial call and the recurrent call. One way of detecting recurrent recursive calls
is to remember the calls of the abstract interpreter on each branch of the derivation tree. Each
call consists of the inputs of the abstract interpreter, e.g., an expression and an environment. By
remembering the calls, we can easily detect a diverging call, if the exact same call occured earlier,
further down the derivation branch.
However, this way of detecting recurrent recursive calls is insufficient. For example, consider

the analysis of the factorial function for negative arguments. Clearly, the factorial function does
not terminate for negative arguments, and we expect the abstract interpreter to return an analysis
result that represents non-termination. Instead, the abstract interpreter itself diverges:

.

.

.

n ↦→ [−∞,−2] ⊢ if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ?
.
.
.

n ↦→ [−∞,−1] ⊢ if(n == 0) 1 else fact(n − 1) ∗ n ⇓ ?

n ↦→ [−∞,−1] ⊢ fact(n) ⇓ ?

fact(n) =

if(n==0) 1

else fact(n-1) ∗ n

The abstract interpreter analyzes the factorial function with smaller and smaller intervals, because
factorial decrements its argument on every recursive call. Even though the intervals become smaller,
the chain of recursive calls is still infinite. Therefore, the fixpoint algorithm never encounters a
recurrent recursive call. This means that a fixpoint algorithm that satisfies the first condition still
may not terminate. This leads us to the second condition:

Condition 2 A big-step fixpoint algorithm has to ensure that all possibly infinite call chains have a

recurrent call.

In other words, all call chains are either finite or repeat themselves after finitely many calls. This
ensures that a fixpoint algorithm can find a recurrent call even in infinite call chains.
While the first and second condition concern the inputs of the abstract interpreter, the third

condition concerns its outputs. To illustrate this condition, consider an interval analysis of the
multiplication function on Peano numbers, where we initially bind m to [1,∞] and n to [1,1].

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:6 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

n ↦→ [1,1] ⊢ n ⇓ [1,1]

m ↦→ [1,∞], n ↦→ [1,1] ⊢ if(m == 1) n else mult(m − 1, n) + n ⇓ -

m ↦→ [2,∞], n ↦→ [1,1] ⊢ mult(m − 1, n) ⇓ -

m ↦→ [2,∞], n ↦→ [1,1] ⊢ mult(m − 1, n) + n ⇓ - + [1, 1]

m ↦→ [1,∞], n ↦→ [1,1] ⊢ if(m == 1) n else mult(m − 1, n) + n ⇓ [1,1] ⊔ (- + [1,1])

m ↦→ [1,∞], n ↦→ [1,1] ⊢ mult(m, n) ⇓ ?

mult(m,n) =

if(m==1) n

else mult(m-1,n) + n

The right-hand side branch of the derivation tree contains a recurrent call of mult. In this example,
we represent the result of the recurrent call with a symbolic variable - . By tracing back the result
to the initial call of mult, we obtain the recursive equation - = [1,1] ⊔ (- + [1,1]) . An established
technique for solving such an equation is to start with the empty interval ⊥ and then to proceed
iteratively until reaching a fixpoint [Cousot and Cousot 1992]. However, starting with ⊥, this
technique does not reach a fixpoint in a finite number of steps for our example:

-0 = ⊥ -1 = [1,1] ⊔ (-0 + [1,1]) = [1,1] -2 = [1,1] ⊔ (-1 + [1,1]) = [1, 2] . . .

This example shows that even if a big-step fixpoint algorithm ensures and detects recurrent calls, it
still might iterate on the analysis result indefinitely. This leads us to the third condition:

Condition 3 A big-step fixpoint algorithm may only iterate the results a finite number of times.

Our three conditions guarantee termination:

Theorem 2.1 (Termination). If a big-step fixpoint algorithm satisfies the three termination

conditions and all reduction rules have a finite branching factor, then the big-step fixpoint algorithm

terminates.

Proof. Condition 1 and 2 ensure that each infinite call chain is eventually cut off at a recurrent
call and hence is finite. Condition 3 ensures that the fixpoint algorithm iterates on the analysis
result for each node of the tree finitely many times. Finite call chains, finite iteration, and the finite
branching factor of the rules guarantee that the big-step derivation tree is finite. Therefore, the
fixpoint algorithm terminates. □

To summarize, a big-step fixpoint algorithm terminates if it satisfies the termination conditions.
In the following subsection, we describe a big-step fixpoint algorithm that satisfies the termination
conditions.

2.2 A Big-Step Fixpoint Algorithm that iterates on Strongly-Connected Subgraphs

In this section, we describe a novel fixpoint algorithm for big-step abstract interpreters that iterates
on the strongly-connected subgraph of the graph-shaped trace of the abstract interpreter. The
fixpoint algorithm targets the simple functional language from Section 2.1, but we generalize it in
Section 3 by making it language-independent and modular.

fib(n) = if(n==0) 0

else if(n==1) 1

else fib(n-1) + fib(n-2)

fib[1,∞] ⇓ . . .

fib[0,∞] ⇓ . . .

fib[0,∞] ⇓ . . .fib[1,∞] ⇓ . . .

fib[1,∞] ⇓ . . .

The fixpoint algorithm iterates on the
strongly-connected subgraphs (SCGs) of the
graph-shaped trace of the abstract inter-
preter [Bourdoncle 1993]. An SCG is a set of
calls from which it is possible to reach all other
calls in the same set. SCGs in the abstract in-
terpreter trace occur if the analyzed program
has cyclic dependencies, such as loops or re-
cursive functions. For example, consider the
graph-shaped trace to the right for the anal-
ysis of the Fibonacci function starting at call
fib[1,∞]. We write fib[8,9] as a shorthand for a call [n ↦→ [8,9]] ⊢ fib(n). The graph has an outer

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:7

SCG and an inner SCG indicated by the differently shaded areas. The solid arrows indicate calls
and returns in the order in which they are executed by the abstract interpreter. The dotted arrows
indicate recurrent calls. A call is recurrent when that same call is already on the call stack. In our
example, we have three recurrent calls and the dotted arrow indicates the outermost dominator.
We explain later in Figure 2 how this trace is computed in more detail.

To compute a fixpoint, the algorithm has to iterate on all calls in the body of an SCG. The order in
which the fixpoint algorithm iterates over the calls does not matter for soundness [Bourdoncle 1993],
but affects performance and precision of the analysis. In this section we present an algorithm that
prioritizes calls in the innermost SCGs, before iterating on the outer SCGs. The trace of the abstract
interpreter only becomes known while the analysis is running. Hence, the fixpoint algorithm cannot
compute SCGs a priori and instead it must discover SCGs on the fly while the analysis is running.
To detect SCGs, our algorithm tracks recurrent calls, because some recurrent calls are the entry
calls of SCGs. For example, in the trace of the Fibonacci function above the recurrent call fib[0,∞]
points to the entry call of the inner SCG (rightmost dotted arrow), whereas the recurrent calls of
fib[1,∞] point to the entry call of the outer SCG. To detect the innermost SCGs, the algorithm
looks for the first recurrent call that it encounters upon returning.

Listing 2 shows the adapted abstract interpreter�eval and themain fixpoint algorithm fixmonolithic.
Instead of calling itself recursively like in Listing 1, the abstract interpreter �eval calls fixmonolithic
to evaluate subexpressions, and fixmonolithic calls �evalmutual recursively. This allows us to encap-
sulate the fixpoint logic in fixmonolithic, whereas �eval captures the rest of the abstract language
semantics, which we do not show for brevity. Our fixpoint algorithm uses three data structures: A
map �Stack to detect recurrent calls, storing for each expression Expr the abstract environment Ênv
under which the expression is evaluated. A map �Cache to iterate on analysis results, storing for
each abstract �Call the abstract value V̂al to which the call evaluated. A set ŜCG to detect which
calls need to be iterated, containing recurrent recursive calls.

The algorithm first checks in line 9, if the expression is a function body and hence a potentially
diverging call. If the expression is not a function body (e.g., a numeric operator), no iteration is
necessary to find a fixpoint and we can simply call �eval. This not only saves analysis time, but
also reduces the size of the stack and cache tremendously. If the expression is a function body, the
algorithm then checks if the cache contains a stable analysis result for the call and returns this result
to avoid redundant reanalysis (line 10). Analysis results are stable if they do not grow anymore
when reevaluated and if they solely depend on other stable analysis results. If the cache only
contains an unstable or no analysis result, the algorithm checks if the call (env,expr) is a recurrent
call by searching for it on the stack. In case of a recurrent call, the algorithm satisfies Condition
1 by either returning the unstable analysis result (line 11) or returning ⊥ (line 12). Furthermore,
since the analysis result needs to be iterated on, the algorithm adds its call to the SCG set. If the
call does not appear on the stack, the algorithm calls a recursive helper function iterate (line 13)
that iterates the analysis result until it stabilizes.
Function iterate is responsible for iterating on calls in SCGs. The first line of iterate applies

a widening operator [Cousot and Cousot 1992] ∇Stack to the stack and the call. This widening
operator ensures that all infinite non-repeating stacks eventually have a recurrent call (Condition 2).
We explain this operator in more detail below. In line 19, the algorithm calls the abstract interpreter
�evalwith the widened inputs. The algorithm then iterates on the call, in case the call is a head of an
SCG (line 20), or otherwise simply returns the result of �eval (line 28). In line 22, the algorithm uses
a widening operator for values ∇V̂al to ensure that the analysis result does not grow indefinitely
(Condition 3). If the widened value is strictly greater than the cached value, the algorithm keeps
iterating (line 26). Otherwise, if the widened value did not grow anymore, the algorithm terminates

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:8 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

1 �Stack = Map Expr Ênv �Cache = Map �Call (Stable,V̂al) ŜCG = Set �Call

2 �Call = (Ênv,Expr) Stable = Stable | Unstable

3

4 �eval :: �Call → �Stack → �Cache → (V̂al, �Cache, ŜCG)

5 �eval (env,expr) stack cache = case expr of ... fixmonolithic (env',expr') stack cache ...

6

7 fixmonolithic :: �Call → �Stack → �Cache → (V̂al, �Cache, ŜCG)

8 fixmonolithic call stack cache

9 | not (isFunctionBody call) = �eval call stack cache

10 | call ∈ cache && cachedValStable == Stable = (valcached, cache, ∅)

11 | call ∈ cache && cachedValStable == Unstable = (valcached, cache, {call})

12 | call ∉ cache && call ∈ stack = (⊥, cache, {call})

13 | call ∉ cache && call ∉ stack = iterate call stack cache

14 where (cachedValStable,valcached) = cache(call)

15

16 iterate :: �Call → �Stack → �Cache → (V̂al, �Cache, ŜCG)

17 iterate call stack cache1 =

18 let (stackwidened, callwidened) = stack ∇�Stack call

19 (valnew, cache2, scg) = �eval callwidened stackwidened cache1

20 if callwidened ∈ scg then

21 let valold = if callwidened ∈ cache2 then cache2(callwidened) else ⊥

22 valwidened = valold ∇V̂al valnew

23 stable = if valwidened ⊑ valold && size scg == 1 then Stable else Unstable

24 cache3 = cache2[callwidened ↦→ (stable,valwidened)]

25 if valold ⊏ valwidened

26 then iterate call stack cache3

27 else (valwidened, cache3, scg \ {callwidened})

28 else (valnew, cache2, scg)

29

30 ∇�Stack :: �Stack → �Call → (�Stack, �Call)

31 ∇�Stack stack (env1, expr)

32 | expr ∈ dom stack && env1 ⊑ env2 = (stack, (env2, expr))

33 | expr ∈ dom stack && env1 @ env2 = (stack[expr ↦→ envwidened], (envwidened, expr))

34 | expr ∉ dom stack = (stack[expr ↦→ env1], (env1, expr))

35 where env2 = stack(expr)

36 envwidened = env2 ∇Ênv env1

37

38 ∇Ênv :: Ênv → Ênv → Ênv

39 ∇V̂al :: V̂al → V̂al → V̂al

Listing 2. Big-step fixpoint algorithm iterating on the innermost strongly-connected subgraph. The code uses
common mathematical notation for operations on maps and sets for readability. In particular, the notation
cache(call) looks up the key call in the map cache and the notation cache[call ↦→ res] updates the map
entry call to res. Furthermore, {call} refers to the singleton set with the element call.

the iteration, returns the widened value, and removes the call from the SCG since it does not require
iteration anymore (line 27).
The widening operator ∇Stack ensures that all infinite non-repeating stacks eventually have a

recurrent call (Condition 2). If the expression appeared on the stack and the environment of the
call is smaller than the environment on the stack (line 32), the stack widening operator introduces
a recurrent call by reusing the environment on the stack. If the environment on the stack is not
an upper bound of the environment in the call (line 33), the stack widening operator applies a

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:9

1

↰

⟨fib[1,∞], d1, f1 ⟩

2

↰

⟨fib[1,∞], d2, f1 ⟩

↱

⟨ ⊥ , f1, \1 ⟩

3

↰

⟨fib[0,∞], d2, f1 ⟩

4

↰

⟨fib[1,∞], d3, f1 ⟩

↱

⟨ ⊥ , f1, \1 ⟩

5

↰

⟨fib[0,∞], d3, f1 ⟩

↱

⟨ ⊥ , f1, \2 ⟩

6

↱

⟨ [0,0]⊔[1,1]⊔ (⊥+⊥) , f1, \3 ⟩

7 ↫

⟨fib[0,∞], d2, f2 ⟩ -- iterate

8

↰

⟨fib[1,∞], d3, f2 ⟩

↱

⟨⊥, f2, \1 ⟩

9

↰

⟨fib[0,∞], d3, f2 ⟩

↱

⟨ [0,1] , f2, \2 ⟩

10

↱

⟨ [0,0]⊔[1,1]⊔ (⊥+ [0,1]), f2, \3 ⟩

11

↱

⟨ [1,1]⊔ (⊥+[0,1]) , f2, \1 ⟩

12 ↫

⟨fib[1,∞], d1, f3 ⟩ -- iterate

13

↰

⟨fib[1,∞], d2, f3 ⟩

↱

⟨ [1,1] , f3, \1 ⟩

14

↰

⟨fib[0,∞], d2, f3 ⟩4

15

↰

⟨fib[1,∞], d3, f3 ⟩

↱

⟨ [1,1] , f3, \1 ⟩

16

↰

⟨fib[0,∞], d3, f3 ⟩

↱

⟨ [0,1], f3, \2 ⟩

17

↱

⟨ [0,0]⊔[1,1]⊔ ([1,1] +[0,1]), f3, \3 ⟩

18 ↫

⟨fib[0,∞], d2, f4 ⟩ -- iterate

19

↰

⟨fib[1,∞], d3, f4 ⟩

↱

⟨ [1,1], f4, \1 ⟩

20

↰

⟨fib[0,∞], d3, f4 ⟩

↱

⟨ [0,∞] , f4, \2 ⟩

21

↱

⟨ [0,0]⊔[1,1]⊔ ([1,1]+[0,∞]), f4, \3 ⟩

22

↱

⟨ [1,1]⊔ ([1,1]+[0,∞]), f4, \1 ⟩

23 ↫

⟨fib[1,∞], d1, f5 ⟩ -- iterate

24 ...

25
↱

⟨ [1,1]⊔ ([1,∞] +[0,∞]), f6, \1 ⟩

Stacks:

d1 = ∅

d2 = {fib[1,∞]}

d3 = {fib[1,∞], fib[0,∞]}

Caches:

f1 = ∅

f2 = f1 [fib[0,∞] ↦→ (Unstable, [0, 1])]

f3 = f2 [fib[1,∞] ↦→ (Unstable, [1, 1])]

f4 = f3 [fib[0,∞] ↦→ (Unstable, [0,∞])]

f5 = f4 [fib[1,∞] ↦→ (Unstable, [1,∞])]

f6 = f5 [fib[1,∞] ↦→ (Stable, [1,∞])]

SCGs:

\1 = {fib[1,∞]}

\2 = {fib[0,∞]}

\3 = {fib[1,∞], fib[0,∞]}

fib[1,∞] ⇓ . . .

fib[0,∞] ⇓ . . .

fib[0,∞] ⇓ . . .fib[1,∞] ⇓ . . .

fib[1,∞] ⇓ . . .

Fig. 2. Example trace of the abstract interpreter analyzing the Fibonacci function. Arrow

↰

represents a
call, arrow

↱

a return, and arrow ↫an iteration. The highlighting indicates which results changed between
consecutive iteration. The indentation level indicates the depth of the stack.

widening operator ∇Ênv to both environments. Operator ∇Ênv computes an upper bound of both
environments and ensures that the environment under which an expression is evaluated cannot
grow infinitely. Lastly, in case the expression did not occur on the stack (line 34), the operator adds
the call to the stack without changing it.

We illustrate how this algorithm works at an example of the analysis of the Fibonacci function.
Figure 2 shows a trace of the abstract interpreter starting at fib[1,∞]. To make the internals of the
fixpoint algorithm visible, we write

↰

⟨4, d, f⟩ for a call 4 with stack d and cache f . Furthermore, we
write

↱

⟨E, f, \⟩ for a return from a call with result value E , output cache f , and SCG \ . Sometimes
we show intermediate steps in the abstract interpretation, where we allow E to be an expression
that evaluates to an interval. The highlighting indicates which analysis results changed between
consecutive iterations.

The algorithm alternatingly iterates the innermost and the outermost SCG shown in the bottom
right of Figure 2. In the beginning the algorithm explores the recursive calls of the fibonacci function
until it hits the recurrent calls (lines 2, 4, and 5 in Figure 2). In these cases the algorithm returns ⊥
to avoid non-termination and adds the call to the SCG set (line 12 in Listing 2). Later the algorithm
returns to the call of fib[0,∞] (line 6 in Figure 2) and iterates because the call is in SCG set \2 and
the result interval has grown from ⊥ to [0,1] (lines 20 and 25 in Listing 2). The following iteration
propagates the new analysis result fib[0,∞] ↦→ [0,1] throughout the inner SCG. After returning
to call fib[0,∞] (line 10 in Figure 2), the result did not grow and the algorithm returns to the

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:10 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

surrounding call fib[1,∞], removing call fib[0,∞] from the SCG set (line 27 in Listing 2). Since
the result for fib[1,∞] has grown from ⊥ to [1,1], the algorithm iterates again and propagates the
new analysis result fib[1,∞] ↦→ [1,1] throughout the outer SCG. After returning to call fib[0,∞]
(line 17 in Figure 2), the result has grown from [0,1] to [0,2] and hence the algorithm widens the
result to [0,1]∇V̂al [0,2] = [0,∞] (line 22 in Listing 2). Since the result is greater after widening, the
algorithm iterates the call fib[0,∞] again until it does not grow anymore. Finally, after one more
iteration of call fib[1,∞], the result [1,∞] does not grow anymore (line 25 in Figure 2) and the
algorithm sets the cache entry to stable (line 23 in Listing 2).

In summary, we developed a big-step fixpoint algorithm that iterates on the strongly-connected
subgraphs of the graph-shaped trace and satisfies the termination conditions. We prove soundness
of this algorithm in Section 5.

3 MODULAR DESCRIPTION OF BIG-STEP FIXPOINT ALGORITHMS

In the previous section, we discussed a big-step fixpoint algorithm that iterates on the strongly-
connected subgraphs of the graph-shaped trace. Even though the initial fixpoint algorithm works
and is sound, it is hard to specialize and fine-tune it. We can solve these problems by modularizing

the description of big-step fixpoint algorithms, which we discuss in this section. We illustrate
the modular description by refactoring the function fixmonolithic into smaller reusable fixpoint
combinators. Additionally, this modularization will enable us to prove soundness of the fixpoint
algorithm modularly, which we discuss in Section 5.

Language-Independence. The problem that makes function fixmonolithic language-dependent
is that it refers to the abstract interpreter �eval, environments, expressions, and values from
the analyzed language directly. To make the algorithm language-independent, we first remove
references to language-specific types. As first step, we replace the inputs (Ênv,Expr) and outputs
V̂al of the abstract interpreter with the type variables a and b.
�Stack a = Set a �Cache a b = Map a b ŜCG a = Set a

As second step, we remove the reference to �eval by turning it into an open-recursive style
and passing its body as an argument to fixmonolithic. This allows us to implement fixmonolithic
independently of the analyzed language.

�eval :: (Ênv,Expr) ⇓ V̂al

�eval = fixmonolithic (_�evalrec ((env,expr),stack,cache) →

case expr of ... �evalrec ((env',expr'),stack,cache) ...)

fixmonolithic :: (a ⇓ b → a ⇓ b) → a ⇓ b

To this end, we introduced a type (⇓) to represent the type of fixpoint computation:

a ⇓ b = (a, �Stack a, �Cache a b) → (�Cache a b, ŜCG a, b)

We refrain from showing the new code of fixmonolithic until after the second refactoring.

Reusable Fixpoint Combinators. To make the fixpoint algorithm easier to specialize to a new
analysis, we make two more changes. First, instead of implementing one single monolithic fixpoint
algorithm, we split its functionality across multiple smaller fixpoint combinators i1, . . . i= . These
combinators are then called by a function fix in a round-robin fashion, such that each combinator
has the chance to affect the fixpoint computation:

�eval = fixi (_�evalrec ...)

fixi :: (a ⇓ b → a ⇓ b) → a ⇓ b i :: a ⇓ b → a ⇓ b

fixi f = i (f (fixi f)) i f (call, stack, cache) = i1 (i2 (. . . i= (f) . . .)) (call,stack,cache)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:11

In particular, fixi (_�evalrec . . .) invokes combinator i . Combinator i first invokes combinator i1,
which then may invoke i2, and so on, until eventually i= calls (_�evalrec . . .) (fixi (_�evalrec . . .))
and the cycle repeats.

Even though this design of fixpoint combinators allows us to separate concerns, their type a ⇓ b
is not fully extensible, as some combinators may need some extra data not present in the stack or
the cache. Therefore, as second change, we generalize the type a ⇓ b to an arrow type c a b [Hughes
2000]. The arrow type reads as “some effectful computation c that takes values of type a as input
and produces values of type b as output.” Arrows allow us to implement fixpoint combinators
without having to refer to a specific type of fixpoint computation. They are particularly useful for
implementing big-step fixpoint algorithms, because they cleanly separate the inputs of an effectful
computation from the outputs. Moreover, they have proven useful for modularizing other parts of
the abstract interpreter [Keidel and Erdweg 2019, 2020; Keidel et al. 2018].

Refactoring the fixpoint algorithm. Based on these principles, we now refactor the fixpoint
algorithm fixmonolithic into three reusable combinators iinnermost, ifilter, and istackWiden.
The combinator iinnermost is a stripped down version of the fixmonolithic algorithm and only

satisfies Condition 1 and 3.

1 iinnermost :: ... ⇒ c a b → c a b

2 iinnermost f = proc call → do

3 (stable,resultcached) ←Cache.lookup� call

4 if stable

5 then return � resultcached

6 else do

7 recurrentCall ← Stack.elem � call

8 if recurrentCall then do

9 SCG.add � call

10 return � resultcached

11 else iterate f � call

12

13

14

15

16

17 iterate :: ... ⇒ c a b → c a b

18 iterate f = proc call → do

19 resultnew ← Stack.push f � call

20 callInSCG ← SCG.elem � call

21 if callInSCG then do

22 (grown,resultwidened)

23 ← Cache.update � (call,resultnew)

24 if grown then iterate f � call

25 else do

26 sizeSCG ← SCG.size � ()

27 if sizeSCG == 1

28 then Cache.setStable � call

29 else return � ()

30 SCG.remove � call

31 return � resultwidened

32 else return � resultnew

The combinator is parameterized by operations to access and modify the stack, cache and SCG
contained in the effectful arrow computation. Furthermore, the code uses the following arrow
notation: The keyword proc x introduces a new arrow computation that binds its argument to the
variable x. The syntax y←f � x calls an arrow computation f with the argument x and binds the
result to the variable y. Lastly, the keyword return � x returns x as result of the arrow computation,
but does not exit the surrounding proc like regular returns.
The combinator iinnermost first looks up the call in the cache. If the cached result is stable, the

combinator simply returns the cached entry (line 5). Otherwise, the combinator looks up the call
on the stack (line 7). In case of a recurrent call (line 8), the algorithm adds the call to the SCG and
returns the cached entry. Otherwise, if the call did not appear on the stack (line 11), the algorithm
calls the recursive helper function iterate that updates the analysis result until it does not grow
anymore. The function iterate first calls the computation fwhile adding the current call to the
stack (line 19). Afterwards, it checks if the call occurred in the SCG (line 20) and hence needs to
be iterated on. If the call occurred in the SCG, function iterate updates the cache with the new
result (line 23). The operation Cache.update simultaneously updates the cache, widens the new

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:12 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

result against an existing entry and checks if the result is stable or has grown. If the analysis result
has grown the function iterates again (line 24). Otherwise, it removes the call from the SCG and
returns the widened result (line 31). If the SCG consist of only a single element, i.e. the current call,
then the current result only depends on other stable analysis results.

To address Condition 2, we implement a fixpoint combinator that applies a widening operator to
the current stack and call:

istackWiden :: ... ⇒ (stack → a → (stack,a)) → c a b → c a b

istackWiden ∇�Stack f = proc call → do

stack ← Stack.ask � ()

let (stackwidened,callwidened) = stack ∇�Stack call

Stack.local f � (stackwidened, callwidened)

Combinator istackWiden first accesses the stack contained in the arrow computation. It then applies
the stack widening operator (∇�Stack) to this stack and current call. Afterwards, it passes the widened
call to the computation f and sets the new stack.
Lastly, the higher-order fixpoint combinator ifilter, inspired by Wei et al. [2019] fix_select,

filters out calls not relevant to the rest of the fixpoint algorithm:

ifilter :: ... ⇒ (a → Boolean) → (c a b → c a b) → (c a b → c a b)

ifilter predicate i f = proc call →

if predicate call

then i f � call

else f � call

The combinator ifilter either calls the combinator i whenever the predicate holds, or skips the
combinator i when the predicate does not hold.

With these three fixpoint combinators, we can recreate the fixpoint algorithm fixmonolithic from
the previous section:

fixmonolithic = fixi (_�evalrec . . .) i = ifilter isFunctionBody (istackWiden ∇�Stack ◦ iinnermost)

The execution order of the combinators is from outside inwards: First ifilter gets control, then
istackWiden, then iinnermost, and finally (_�evalrec . . .) before the cycle repeats.

To summarize, in this section we proposed a modular description of fixpoint algorithms. In par-
ticular, we describe fixpoint algorithms with reusable fixpoint combinators, where each combinator
captures a certain aspect of the fixpoint algorithm.

4 A LIBRARY OF REUSABLE FIXPOINT COMBINATORS

In the previous section, we described a framework for developing modular fixpoint algorithms
by the means of fixpoint combinators. Based on this framework, we develop a library of reusable
fixpoint combinators in this section, which serve as building blocks for fixpoint algorithms.

4.1 Iteration Strategy Combinators

An iteration strategy determines the order in which statements are analyzed. For example, the
combinator iinnermost of Section 3 iterates on the innermost SCGs of the graph-shaped trace.
Furthermore, an iteration strategy cuts off recurrent recursive calls to enforce termination, at the
cost of precision.

Iterating on the outermost SCGs. For some programs, it can be faster to iterate on the outer
SCGs first. For example, consider the analysis of the follow program:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:13

for(i = 0; i < m; i++) {

x = f(i);

for(j = 0; j < n; j++) {

g(x + j);

}

} for(i = 0 . . .) . . .

for(i = 0 . . .) . . .for(j = 0 . . .) . . .

for(j = 0 . . .) . . .g(x + j)

x = f(i)

If f(i) yields the analysis result ⊤ after the second iteration of the outer loop, then we waste
analysis time trying to analyze g(x + j) precisely in the first iteration of the inner loop.

We implement this iteration strategy with the fixpoint combinator ioutermost:

1 ioutermost :: ... ⇒ c a b → c a b

2 ioutermost = ... iterate ...

3

4 iterate = proc call → do

5 resultnew ← Stack.push f � call

6 callInSCG ← SCG.elem � call

7 sizeSCG ← SCG.size � ()

8

9 if callInSCG && sizeSCG == 1 then do

10 (grown,resultwidened)

11 ← Cache.update � (call,resultnew)

12 if grown then iterate f � call

13 else do

14 SCG.remove � call

15 return � resultwidened

16 else return � resultnew

The combinator ioutermost is similar to iinnermost, except that it returns to the head of the outermost
subgraph before iterating. The combinator identifies heads of the outermost subgraph by checking
that the size of the SCG set is 1 (line 9). This check works because the combinator removes each
call from the SCG set when returning (line 14) and if this set has only a single call left, this call
must be the head of an outermost SCG.

Iterating on the topmost call. The combinators iinnermost and ioutermost iterate on the SCGs
of the graph-shaped trace of the abstract interpreter. However, calculating the SCGs induces an
overhead, which slows down the analysis especially for programs, that only consists of a single large
SCG. In these cases, it can be faster to only iterate on the topmost call of the abstract interpreter.
We implement this iteration strategy with the following fixpoint combinator, which is inspired by
an existing big-step fixpoint algorithm [Darais et al. 2017]:

1 itopmost f = proc call → do

2 callInCache ← Cache.elem � call

3 if callInCache then do

4 (_,result) ← Cache.lookup � call

5 return � result

6 else do

7 Cache.initialize � call

8 iterate f � call

9

10

11

12

13 iterate f = proc call → do

14 resnew ← f � call

15 reswidened ← Cache.update � (call,resnew)

16 topmost ← isTopmostCall � call

17 if topmost then do

18 stable ← Cache.isStable � ()

19 if stable then return � reswidened

20 else do

21 callwidened ←

22 Cache.nextIteration � call

23 iterate � callwidened

24 else return � resultwidened

The combinator itopmost neither requires a stack nor SCGs. Instead, it uses the cache to detect
recurrent calls (line 2). On the topmost call of the abstract interpreter, the combinator compares
the cache of the current iteration to the cache of the previous iteration (line 18). If the cache of the
current iteration has grown, the combinator keeps iterating with a new empty cache (line 22). The

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:14 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

nextIteration operation additionally widens the call, which allows data like a monotone store to
be passed along between iterations.

Mixing iteration strategies. Our case studies show that it is difficult to find a single iteration
strategy that works best for all programs (Section 6.3). To this end, the following combinator mixes
two iteration strategies i1 and i2 on a case-by-case basis:

ialternative :: ... ⇒ c a Boolean → (c a b→ c a b) → (c a b→ c a b) → (c a b→ c a b)

ialternative predicate i1 i2 f = proc call → do

b ← predicate � call

if b

then i1 f � call

else i2 f � call

The predicate is an effectful computation, which allows it to dynamically adapt the iteration strategy.
For example, the predicate may first try both strategies i1 and i2 once to decide afterwards based
on collected performance metrics.

4.2 Recursion Depth Combinators

Recursion depth operators control how deep an abstract interpreter recurses on a program. For
example, the combinator istackWiden of Section 3 limits the recursion depth to be finite by widening
calls on the stack.

Call-site context sensitivity. A popular technique to limit the recursion depth of the abstract
interpreter is to join all calls with the same :-truncated call string at the cost of precision [Shivers
1991]. We implement this technique with the following combinator:

1 icallsiteSensitive :: ...⇒ Int→ c a b→ c a b

2 icallsiteSensitive k f = proc call → do

3 stack ← Stack.ask � ()

4 let ctx = truncate k (getLabels stack)

5 callcached ← Context.lookup � ctx

6 if call ⊑ callcached then

7 f � callcached

8 else do

9 callwidenend← Context.update� (ctx,call)

10 f � callwidenend

The combinator icallsiteSensitive uses a context cache that remembers the call for the current
context (line 5). If the context cache contains a larger call than the current call, the combinator
calls computation fwith the cached call (line 7). Otherwise, the operation Cache.updatewidens the
current and cached call and calls computation fwith the widened call (line 10). Note that we do not
need to change the analysis itself to integrate call-site sensitivity, unlike Shivers [1991]. Instead,
we simply add this combinator to the fixpoint algorithm.

Stack unfolding. The following combinator improves precision by unfolding the first few calls
on the stack to prevent joining:

iunfold :: ... ⇒ Int → (c a b → c a b) → (c a b → c a b)

iunfold limit i f = proc call → do

n ← Stack.size � ()

if n ≤ limit then f � call

else i f � call -- Stack size exceeds limit

The combinator iunfold recursively calls computation f as long as the stack size is below a cer-
tain limit and falls back to the combinator i if the stack size exceeds the limit. We can inte-
grate this combinator into a fixpoint algorithm by applying it to a stack widening combinator
(iunfold 10 (istackWiden ∇Stack)). This prevents joining of the stack for the first 10 recursive calls.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:15

Loop unrolling. Another common technique to improve precision is to unroll the first few
iterations of a loop to prevent joining [Mauborgne and Rival 2005]. Big-step abstract interpreters
analyze the same loop statement multiple times recursively:

�eval = fixi (_�evalrec → proc statement → case statement of

WhileLoop condition body → �evalrec � If condition (Sequence body (WhileLoop condition body))

...)

With this observation, we implement a combinator that only joins after the same call appeared a
certain number of times on the stack:

iunroll :: ... ⇒ Int → (c a b → c a b) → (c a b → c a b)

iunroll limit i f = proc call → do

n ← Stack.getCallCount � call

if n ≤ limit then do

Stack.incrementCallCount � call

f � call

else i f � call -- Call count exceeds limit

Similar to the previous combinator, we can integrate this combinator by applying it to a stack
widening combinator: iunroll 10 (istackWiden ∇Stack)

4.3 Tracing Combinators

Tracing combinators run alongside the main fixpoint algorithm to record auxiliary data like a trace,
without affecting precision.

Recording a control-flow graph. The following tracing combinator records a control-flow
graph (CFG) of the program, which describes the order in which statements are evaluated:

iCFG f = proc call → do

predecessor ← getPredecessor � ()

CFG.addEdge � (predecessor, call)

withNewPredecessor f � call

Since the control-flow of a program is encoded implicitly in the big-step abstract interpreter, all
the combinator needs to do is to add an edge to the CFG between the most recently evaluated
call predecessor and the active call. Afterwards, the combinator passes control to computation f,
remembering the active call as new predecessor.
We can integrate this combinator into an existing fixpoint algorithm by adding it to the front

(iCFG ◦ ifilter isFunctionBody (. . . iinnermost . . .)). In this case, the CFG contains all statements as
nodes. We can control the granularity of the CFG by changing the position of the iCFG combinator
(ifilter isFunctionBody (iCFG ◦ . . . iinnermost . . .)). In this case, the CFG only contains function
calls, in other words, the CFG is an interprodcedural call graph.

Debugging static analyses. The following tracing combinator allows debugging of analyses
with a graphical debugger [Pree 2020]:

1 idebug isBreakpoint f = proc call → do

2 if isBreakpoint call then do

3 cfg ← CFG.get � ()

4 stack ← Stack.elems � ()

5 command← Client.send � (call,cfg,stack)

6 case command of

7 Step → breakAtNextStatement � ()

8 ...

9 f � call

The fixpoint combinator runs as a server within the fixpoint algorithm and sends information to a
graphical debugging client in a browser. On a break point the combinator sends the current stack

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:16 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

and the CFG to the debugging client (line 5). After the client returned a debugging command, the
combinator executes the command and calls computation f. This resumes the analysis until the
combinator hits the next break point.

5 MODULAR SOUNDNESS PROOFS OF BIG-STEP FIXPOINT ALGORITHMS

In this section, we develop a formal theory to prove soundness of big-step fixpoint algorithms that
consist of fixpoint combinators. In particular, we prove that a modular fixpoint algorithm is sound
if all of its combinators are sound.

To this end, we first review a soundness proof of monolithic fixpoint algorithms, which we later
extend for modular algorithms:

Proposition 5.1 (Soundness of Monolithic Fixpoint Algorithms [Cousot and Cousot

1992]). Let �eval : �̂ → �̂ be an abstract interpreter and eval : � → � be the monotone collecting

semantics of the concrete interpreter over two complete lattices (�̂, ⊑,⊔) and (�, ⊑,⊔). Furthermore, let

W : �̂ → � be a monotone concretization function such that∀G ∈ �. Ĝ ∈ �̂ . G ⊑ W (Ĝ) =⇒ eval(G) ⊑

W (�eval(Ĝ)). A fixpoint algorithm for the abstract interpreter is sound if it yields a post-fixpoint of
�eval, i.e. an element ?̂ ∈ �̂ with �eval(?̂) ⊑ ?̂ .

Proof.

�eval(?̂) ⊑ ?̂ (?̂ is a post-fixpoint of �eval)

=⇒ W (�eval(?̂)) ⊑ W (?̂) (W is monotone)

=⇒ eval(W (�eval(?̂))) ⊑ W (�eval(?̂)) (�eval sound w.r.t. eval)

=⇒ lfp(eval) ⊑ W (�eval(?̂)) (Tarski’s fixpoint theorem [Tarski 1955]) □

This proposition requires that the collecting semantics of the concrete interpreter is monotone,
such that the least fixpoint lfp(eval) exists. Monotonicity of the collecting semantics follows
directly by Scott-continuity of the denotational semantics of the concrete interpreter [Streicher
2006].

We build on this idea to develop a soundness composition theorem for modular big-step fixpoint
algorithms. Let us first assume that themodular fixpoint algorithm is built from fixpoint combinators
over the following grammar:

i F i atomic (atomic combinators)

| i ◦ i (combinator composition)

| i (i . . . i) (higher-order combinators)

This grammar allows us to formulate the following soundness lemmas for each type of combinator:

atomic i sound if ∀monotone 5̂ . ∀Ĝ . i (5̂ (Ĝ)) ⊑ Ĝ =⇒ 5̂ (Ĝ) ⊑ Ĝ

i1 ◦ i2 sound if i1 sound ∧ i2 sound

higher-order i sound if ∀i1 . . . i= . i1 sound ∧ . . . i= sound

=⇒ i (i1 . . . i=) sound

That is, an atomic fixpoint combinator i is sound if all post-fixpoints of i ◦ 5̂ are also post-fixpoints
of 5̂ , for any 5̂ . All other types of combinator preserve this post-fixpoint property.

These soundness lemmas allow us to prove soundness of modular fixpoint algorithms once and
for all with the following theorem:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:17

Theorem 5.2 (Soundness of Modular Fixpoint Algorithms). A modular fixpoint algorithm

fixi (�eval) is sound, if all of its combinators i are sound.

Proof. We prove by structural induction over i that ∀5̂ , Ĝ . i (5̂ (Ĝ)) ⊑ Ĝ =⇒ 5̂ (Ĝ) ⊑ Ĝ . By
definition of fix, we get i (�eval(fixi (�eval))) = fixi (�eval), which satisfies the precondition
above. We conclude �eval(fixi (�eval)) ⊑ fixi (�eval), which shows that fixi (�eval) is a post-
fixpoint of �eval. Thus the fixpoint algorithm fixi (�eval) is sound by Proposition 5.1. □

This way of proving soundness of modular fixpoint algorithms is more flexible than a monolithic
proof because it allows us to reorder and add new combinators without invalidating the soundness
proof.

5.1 Soundness Proof Strategies for Fixpoint Combinators

In this subsection, we prove three theorems that guarantee soundness of three classes of combinators.
The soundness proofs are split into two parts: One part proves soundness of classes of combinators
that satisfy certain properties (Theorem 5.3 and 5.4) and one part shows combinator implementations
actually satisfy these properties (Corollary 5.4 and 5.6).

Extensive Fixpoint Combinators. A fixpoint combinator i is extensive iff for all monotone 5̂
and for all Ĝ , it holds 5̂ (Ĝ) ⊑ i (5̂ (Ĝ)). This is the case if i (5̂ (Ĝ)) � 0 calls 5̂ (Ĝ) � 0′ with a greater
argument 0′ ⊒ 0 such that 5̂ (Ĝ) � 0 ⊑ 5̂ (Ĝ) � 0′ ⊑ i (5̂ (Ĝ)) � 0.

Theorem 5.3. An extensive fixpoint combinator i is sound.

Proof. We assume i (5̂ (Ĝ)) ⊑ Ĝ for all monotone 5̂ and for all Ĝ . By extensivity, we conclude
5̂ (Ĝ) ⊑ i (5̂ (Ĝ)) ⊑ Ĝ . □

Corollary 5.4. Combinators istackWiden and iCFG are sound.

Proof. By Theorem 5.3 it suffices to show that the combinators are extensive. Combinator
istackWiden (∇�Stack) (5̂) is extensive because it calls 5̂ with an upper bound of the current input.
Calling istackWiden (∇�Stack) (5̂) is greater than just calling 5̂ by monotonicity of 5̂ . Hence it follows
5̂ ⊑ istackWiden (∇�Stack) (5̂). Combinator iCFG (5̂) is extensive because it calls function 5̂ with the
same argument it was supplied with. □

Interleaving Fixpoint Combinators. A higher-order fixpoint combinator i (i1, i2) (5̂ (Ĝ)) is
interleaving iff i1 (5̂ (Ĝ)) ⊑ i (i1, i2) (5̂ (Ĝ)) or i2 (5̂ (Ĝ)) ⊑ i (i1, i2) (5̂ (Ĝ)). This is the case if i
either calls combinator i1 or calls combinator i2. This observation leads us to our second theorem:

Theorem 5.5 (Soundness of Interleaving Fixpoint Combinators). Let i be a higher-order

fixpoint combinator, such that for all i1, i2, it holds ∀G .i1 (G) ⊑ i (i1, i2) (G) ∨ i2 (G) ⊑ i (i1, i2) (G),

then i is sound.

Proof. We assume i (i1, i2) (5̂ (Ĝ)) ⊑ Ĝ for a given 5̂ , Ĝ . We assume that both i1 and i2 are
sound by the soundness definition of the higher-order combinator i . If i1 (5̂ (Ĝ)) ⊑ i (i1, i2) (5̂ (Ĝ)),
then 5̂ (Ĝ) ⊑ Ĝ follows immediately by soundness of i1. The other case is analogous. □

Corollary 5.6. The combinators ialternative, ifilter and iunroll are sound by Theorem 5.5.

Proof. By Theorem 5.5, it suffices to show that the combinators are interleaving. The com-
binator ialternative (%, i1, i2) (5̂ (Ĝ)) either calls i1 (5̂ (Ĝ)) or i2 (5̂ (Ĝ)) depending on the predi-
cate % . Hence i1 (5̂ (Ĝ)) ⊑ ialternative (%, i1, i2) (5̂ (Ĝ)) or i2 (5̂ (Ĝ)) ⊑ ialternative (%, i1, i2) (5̂ (Ĝ)).
Furthermore, combinator ifilter is interleaving because ifilter (%, i1) = ialternative (%, i1, iid),

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:18 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

where iid (5̂ (Ĝ)) � 0 = 5̂ (Ĝ) � 0 is the identity combinator. Finally, iunroll is interleaving because
iunroll (=, i2) = ialternative (%=, iid, i2), where predicate %= is true after = recursive calls. □

Cache-Based Fixpoint Combinators. Lastly, we prove soundness of the cache-based fixpoint
combinators like iinnermost:

Theorem 5.7. The fixpoint combinator iinnermost is sound.

Proof. We assume iinnermost (5̂ (Ĝ)) ⊑ Ĝ for all monotone 5̂ and for all Ĝ and call.
The key insight is that unstable intermediate results only occur within SCGs and iinnermost does

not return until all calls within the SCG have reached a post-fixpoint. To this end, we first prove
that either 5̂ (Ĝ) � call ⊑ Ĝ � call or that the call appears on the stack and in the resulting SCG
set.

• If resultcached is unstable and the call does not occur on the stack, combinator iinnermost iter-
ates until resultnew does not grow anymore (line 24 iniinnermost) and resultnew ⊑ resultcached.
In this case, combinatoriinnermost removes the call from the SCG set and returns resultwidened
(line 31). By the assumption, it follows that return � resultwidened ⊑ Ĝ � call. By transitivity
we conclude 5̂ (Ĝ) � call ⊑ return � resultnew ⊑ return � resultwidened ⊑ Ĝ � call.

• If resultcached is unstable and the call occurs on the stack, combinator iinnermost adds the call
to the SCG (line 9).
• If resultcached is stable, combinator iinnermost simply returns the cached result (line 5). By the
assumption, it follows that return � resultcached ⊑ Ĝ � call. Furthermore, the Cache.update
operation only marks a result as stable if 5̂ (Ĝ) � call ⊑ return� resultcached, as explained in
the previous case. By transitivity we conclude 5̂ (Ĝ)�call ⊑ return�resultcached ⊑ Ĝ �call.

When we run a fixpoint algorithm including iinnermost, we initialize the stack to be empty. This
means that call cannot appear on the stack and hence 5̂ (Ĝ) � call ⊑ Ĝ � call has to be true. □

Theorem 5.8. The fixpoint combinator ioutermost is sound.

Proof. The argument for ioutermost is similar to iinnermost. The only difference is that ioutermost

waits until the SCG contains only a single element. But this does not change that it only returns
from an SCG until all calls within reached a post-fixpoint. □

To summarize, in this section we presented a way to prove soundness of fixpoint algorithms that
consist of fixpoint combinators. In particular, a fixpoint algorithm is sound, if all of its combinators
are sound. This simplifies the soundness proof, as it suffices to prove each combinator sound
individually. Furthermore, we proved soundness of three classes of fixpoint combinators.

6 CASE STUDIES

In this section, we evaluate the feasibility of our framework for modular fixpoint algorithms. In
particular, we integrated the combinators of Section 4 into the Sturdy library [Keidel and Erdweg
2019; Keidel et al. 2018] and used them to develop fixpoint algorithms for the following analyses:

• A static type analysis [Keidel and Erdweg 2020] for Stratego [Visser et al. 1998], a domain-specific
dynamically-typed language for program transformations,
• a dead-code constant-propagation analysis for WebAssembly, a low-level bytecode that runs in
the browser [Haas et al. 2017],
• a :-CFA [Shivers 1991] for Scheme [Abelson et al. 1998], a dynamically-typed programming
language with first-class functions and mutable state.

The goal of these case studies is to asses the language and analysis-independence, the precision,
and the performance of the fixpoint combinators.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:19

6.1 Static Type Analysis for Stratego

In our first case study, we implemented a fixpoint algorithm for a static type analysis [Keidel and
Erdweg 2020] for Stratego [Visser et al. 1998], a domain-specific dynamically-typed language for
developing program transformations. Stratego is difficult to type statically because of features like
generic program traversals that temporarily produce ill-typed programs.
The abstract interpreter takes a Stratego program called a strategy, a strategy environment, a

term environment, and a program term that is transformed. Furthermore, the abstract interpreter
returns as output a list of errors, an updated term environment and resulting term.

�eval :: ... ⇒ c (Strategy, �StratEnv, �TermEnv, �Term) (�Errors, �Either () (�TermEnv, �Term))

�eval = fix(ifilter isStrategyBody (istackWiden ∇�Stack ◦ ioutermost)) ...

If the strategy fails to match a term pattern, the abstract interpreter returns the empty tuple instead.
Type-checking Stragego program transformations is not trivial since generic program traversals
may produce intermediate terms that are ill-sorted. To solve this, the analysis uses an abstract
domain that is able to represent ill-sorted terms:

�Term = Sorted Sort | MaybeSorted (Powerset (Constructor,�Term))

This abstract domain is infinite since abstract terms can grow infinitely deep. To this end, a widening
operator cuts-off terms at a specified depth, trying to type check deeper terms to determine their
sort.
The fixpoint algorithm uses the outermost iteration strategy and applies a stack widening

operator because the abstract term domain and term environment are infinite. The stack widening
operator replaces the current call with the topmost call on the stack that is greater. To debug the
analysis during development we added a tracing combinator itrace within the ifilter expression to
print a trace of analyzed strategies and their abstract term arguments. Furthermore, we occasionally
moved the tracing combinator to the outside of the ifilter expression for a more fine grained trace
that contains all substrategies as well.
We tested the abstract interpreter and its fixpoint algorithm on a test suite with 61 test cases

including 3 existing program transformations: an desugaring of arrows (665 lines of code)6 [Paterson
2001], a normalization of arrows to causal commutative normal form (490 loc) [Liu et al. 2009], and
an interpreter for PCF (61 loc) [Plotkin 1977]. We found that in all of these test cases the abstract
interpreter terminates with a sound analysis result. Furthermore, the results where precise enough
to validate the well-typedness of the 3 program transformations.
This case study shows that the modular fixpoint algorithm is precise enough to yield usable

analysis results.

6.2 Dead-Code Constant-Propagation Analysis for WebAssembly

In our second case study, we implemented a fixpoint algorithm for a dead-code constant-propagation
analysis for WebAssembly (Wasm), a low-level bytecode that runs in the browser [Haas et al. 2017].
This analysis can be used to reduce the size of the executables that are sent to the browser.

The abstract interpreter takes as input a list of instructions, a list of return types, a module
instance, an operand stack, a frame of local variables, function tables, module memories, a global
state and a set of errors:

�eval :: ... ⇒ c ([Instr],[Type],ModuleInst, �OperandStack,�Frame,�Tables, �Memories, �GlobalState,�Errors)

(�OperandStack,�Frame, �Memories, �GlobalState,�Errors)

�eval = fix(iCFG ◦ ifilter isLoopOrCall iinnermost)
...

6Counted with wc -l because the standard tool cloc does not support Stratego code.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:20 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

The abstract interpreter abstracts values with a finite constant abstract domain, i.e., abstract values
are either 32 or 64-bit integers, 32 or 64-bit floating point numbers, or ⊤. Furthermore, operand
stack and call frame are abstracted with lists of abstract values, because their shape is statically
known [Haas et al. 2017]. Moreover, the linear memory is abstracted with a byte-indexed vector of
abstract values.

The fixpoint algorithm uses the iinnermost iteration strategy and applies it to loops and function
calls. The combinator iCFG records an inter-procedural control-flow graph (CFG) which allows us to
find dead-code, i.e., code that will never be executed. In particular, we remove all instructions that
do not appear in the CFG because they cannot be executed. This works because the control-flow
of the abstract interpreter overapproximates the control-flow of the concrete interpreter and an
instruction not analyzed by the abstract interpreter cannot be executed by the concrete interpreter.

Our Wasm analysis and the fixpoint combinators have been reimplemented in Scala [Brandl et al.
2023]. The analysis has been evaluated on 1458 binaries of the WasmBench benchmark suite [Hilbig
et al. 2021]. With a timeout of 60 seconds, the dead-code constant-propagation analysis terminates
on average in 5s and eliminates 20% of the program code. In contrast, the industry-standard Binaryen
terminates on average in 0.1s, but only eliminates 9% of the program code.
This case study demonstrates two points:

• Our fixpoint combinators are meta-language, object-language, and analysis independent.
• Our fixpoint combinators scale to develop fixpoint algorithms for real-world languages.

6.3 :-CFA for Scheme

For our third case study, we implemented an inter-procedural control-flow analysis (:-CFA) [Shivers
1991] and static type analysis for Scheme [Abelson et al. 1998], a dynamically-typed real-world
programming language with first-class functions and mutable state. The abstract interpreter takes
as input a list of expression, an environment, store and errors and returns as output an abstract
value, store and errors:

Ênv = Map String �Addr �Store = Map �Addr V̂al �Errors = P(String)

�eval :: ... ⇒ c ([Expr], Ênv, �Store, �Errors) (V̂al, �Store, �Errors)

�eval = fix(ifilter isApplication (irecordCallSite :) ◦ ifilter isFunctionBody itopmost) ...

The abstract domain includes a set-based abstraction for closures and quoted symbols, a shape
abstraction for lists, a constant abstraction for booleans, and type-based abstraction for all other
datatypes:

V̂al = ⊤ | ClosureVal (Powerset (Expr,Ênv)) | ListVal �List | BoolVal �Bool | NumVal N̂um | ...

�List = Nil | Cons (Powerset �Addr) (Powerset �Addr) | NilOrCons (Powerset �Addr) (Powerset �Addr)

�Bool = ⊤ | True | False

N̂um = ⊤ | IntVal | FloatVal

Even though Scheme is a dynamically-typed language, the abstract domain above typically used
for statically-typed languages. Specifically, two abstract values of different types join to ⊤. This
choice of abstract domain is precise enough to soundly compute the control-flow of all but one
benchmark programs we discuss below, but performs better than a set-based abstraction.

As fixpoint algorithm, we first developed an initial algorithm that we later specialize. The initial
fixpoint algorithm uses itopmost as a baseline iteration strategy because it does not compute SCGs
similar to Shivers’s :-CFA. Furthermore, the algorithm uses the combinator irecordCallSite to record
the : most recent call sites, which we use as abstract addresses.
While the initial fixpoint algorithm terminates and is sound, it converges to a fixpoint very

slowly. The reason is that the algorithm “forgets” about recent store and error updates when it

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:21

returns a cached result. To address this problem, we specialize the fixpoint algorithm to use a
different cache that respects the part of the input and output that only ever grows. The following
code shows the lookup operation of the cache:

Cache.lookup :: ... ⇒ c (a,s) (Stable,(b,s)) �MonotoneCache a b m =

Cache.lookup = proc (call,monotonenew) → do Map a (Stable,b,m)

cache ← getCache � ()

if call ∈ cache then do

let (stableold,result,monotoneold) = cache(call)

let stable = if monotoneold ⊏ monotonenew then stableold else Unstable

return � (stable, (result, monotonenew))

else return � (Unstable, (⊥, monotonenew))

The lookup operation of �MonotoneCache always returns the new and greater element monotonenew.
The cached element monotoneold is only kept to determine if the result is stable. Returning the old
cached element monotoneold would forget about the store and error updates.

We integrate this improvement into the initial fixpoint algorithm by replacing the cache that is
contained in the arrow computation. Furthermore, we use the combinator itransform to group the
parts of the input and output that grow monotonically:

itransform [([Expr], Ênv,�Store,�Errors) ≃ (([Expr], Ênv), (�Store,�Errors))]

[(V̂al,�Store,�Error) ≃ (V̂al, (�Store,�Error))]

(ifilter isApplication (irecordCallSite :) ◦ ifilter isFunctionBody itopmost)

The combinator itransform applies two isomorphisms to the inputs and outputs of the abstract
interpreter such that variable call has type ([Expr], Ênv) and variable monotonenew has type
(�Store,�Error) within the Cache.lookup operation above.
While the monotone cache improves the performance of the fixpoint algorithm, there is still

room for fine-tuning the iteration strategy. In particular, we evaluate 3 different iteration strategies
by analyzing Scheme programs of the Gabriel [Gabriel 1985] and Scala-AM benchmark suite [Es
et al. 2019]. The Gabriel benchmark suite contains 9 Scheme files from 17 up to 562 lines of code
(loc) with an average of 137 loc.7 The Scala-AM benchmark suite contains 5 Scheme files from
10 up to 40 loc with an average of 26 loc. The analysis is precise enough to soundly analyze the
control-flow of all benchmark programs, except for dderiv where the analysis tries to call a closure
which is ⊤.

Figure 3 shows the speedups over the baseline iteration strategy itopmost of our initial fixpoint
algorithm. Benchmarks like cpstak and diviter have an SCG at the very top of the program. This
means there is no significant difference between the iteration orders and the overhead of computing
the SCGs slows down the iteration strategies iinnermost and ioutermost. On other benchmarks like
destruc, takl, and rsa the SCGs are smaller and do not span the entire program. In these cases the
iteration strategies iinnermost and ioutermost get an considerable speedup. The results show that no
single iteration strategy performs best for all analyzed programs and further fine-tuning is needed.

Lastly, we assess the potential performance overhead caused by the modularization of the fixpoint
algorithm. In particular, we inspected the low-level code of the fixpoint algorithm generated by the
Haskell compiler GHC. The GHC compiler first inlines the definitions of the fixpoint combinators
and arrow computation and then optimizes the residual code. The result is a pure function close to
a hand-written monolithic fixpoint algorithm, meaning that modularization has no performance
penalty.

7Counted with cloc (https://github.com/AlDanial/cloc).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

https://github.com/AlDanial/cloc

221:22 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

Gabriel Scala-AM

bo
ye
r

br
ow
se

cp
st
ak

de
riv

de
st
ru
c

di
vi
te
r

di
vr
ec

ta
kl

co
lla
tz

gc
ip
d

nq
ue
en
s

pr
im
te
st

rs
a

0

1

2

3

4

sp
ee
d
u
p
o
v
er

i
t
o
p
m
o
s
t

itopmost iinnermost ioutermost

Fig. 3. Normalized running times of different iteration strategies for a 0CFA analysis for Scheme. The plot
shows the speedup of each iteration strategy over the baseline itopmost (higher is be�er). The error bars show
the standard deviation of the ratio distribution for the normalized running time.

To summarize, the :-CFA case study demonstrates three points:

• We were able to specialize the initial fixpoint algorithm without changing code of existing
fixpoint combinators.
• We compared the performance of 3 different iteration strategies and concluded that no iteration
strategy performs best for all programs. This shows that further fine-tuning of the iteration
strategy is needed.
• The Haskell compiler optimizes the modularized fixpoint algorithm by inlining and produces
code close to hand-written monolithic fixpoint algorithm. Thus, modularization does not inflict
a performance penalty.

7 RELATED WORK

The focus of this work is the modular description of fixpoint algorithms for big-step abstract
interpreters. In this section, we discuss work related to our approach presented in this paper.

Modularizing the Definition and Soundness Proofs of Big-Step Abstract Interpreters.

There have been several works that modularized different parts of the definition and soundness
proofs of big-step abstract interpreters. Keidel et al. [2018] describe an approach that modularizes
the concrete and abstract language semantics and its soundness proof with arrows [Hughes 2000].
In particular, the concrete and abstract semantics is derived from the same generic interpreter that
is composed of a number of primitive operations over values, stores, exceptions, etc. The benefit
of this approach is that it guarantees that an entire analysis is sound, as long as each operation is
sound. However, Keidel et al. [2018] do not show a fixpoint algorithm nor do they describe how a
fixpoint algorithm should be implemented.
Bodin et al. [2019] describe a similar approach that derives both the concrete and abstract

semantics from the same skeletal semantics. However, compared to arrows used by Keidel et al.
[2018], they use amore liberal algebra called skeletons, which consists of hooks, filters, and branching
operations. Yet, they provide similar soundness guarantees: an entire analysis derived from a skeletal
semantics is sound, as long as all of its operations are sound. Bodin et al. [2019, Section 5.4] define
the abstract semantics as the greatest fixpoint of the abstract collecting semantics. However, they

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:23

do not show an algorithm that computes this fixpoint, nor do they explain how such an algorithm
can be described modularly.
Keidel and Erdweg [2019] describe an approach that modularizes the effects of the analyzed

language, such as exceptions and store mutations. More specifically, the approach captures the
analysis of each effect with an analysis component which consists of a concrete and abstract arrow
transformer. This approach simplifies the analysis of languages with multiple effects that interact
with each other. Keidel and Erdweg define a single analysis for the fixpoint algorithm. However, they
do not describe the fixpoint algorithm itself, nor do they describe how it can be decomposed further.
In the present work, we make use of arrows and arrow transformers to modularize the description
of fixpoint algorithms by the means of sound and reusable fixpoint combinators. We use arrows to
describe fixpoint combinators that are independent of the type of the fixpoint computation. This
allows us to change the type of the fixpoint computation, without needing to change the definition
of the fixpoint combinators.

Darais et al. [2017] describe an approach that derives several collecting semantics from the same
generic semantics with different combinators. These combinators, for example, collect a trace of the
abstract interpreter, they collect expressions that are dead code, or they compute a fixpoint. These
combinators inspired the style of fixpoint combinators we present in this paper, in that our fixpoint
combinators have the same type as Darais et al. combinators. However, Darais et al. do not describe
a formal theory for these combinators which makes it hard to reason about their soundness. In
this work, we developed a framework for modular fixpoint algorithms that is based on fixpoint
combinators. This framework allows us to describe a family of fixpoint algorithms that can be
configured and fine-tuned more easily, as we show in our evaluation. Furthermore, we developed a
formal theory about these algorithms which allows us to prove their soundness compositionally.

Fixpoint Algorithms for Big-Step Abstract Interpreters. The space of fixpoint algorithms for
big-step abstract interpreters has not been extensively studied yet. Schmidt [1995, 1998] describes
one of the first fixpoint algorithms for big-step abstract interpreters that operates on the derivation
tree. The fixpoint algorithm unfolds the abstract derivation tree until each branch either terminates
or repeats itself. The algorithm detects recurrent calls of the abstract interpreter by memoizing
parts of the abstract derivation tree. If the algorithm finds a recurrent node in a branch, it cuts off
recursion to avoid non-termination which satisfies Condition 1. Furthermore, the fixpoint algorithm
satisfies Condition 2 by joining the environments of repeating expressions with a widening operator
that ensures that infinite recursive call chains have a recurrent call. However, many details about
how this algorithm actual could be implemented are missing. Specifically, Schmidt does not explain
how SCGs are calculated and on which calls the algorithm iterates. Instead, the algorithm generates
a number of recursive equations, which then can be solved with an arbitrary iteration order to
calculate the fixpoint. We combine Schmidt’s solutions to the termination conditions to implement
our initial fixpoint algorithm fixmonolithic in Section 2, which we later modularize. However, instead
of generating recursive equations, our algorithm fixmonolithic specifies an iteration order, i.e., the
algorithm iterates on the innermost SCGs of the trace of the abstract interpreter [Bourdoncle 1993].

Darais et al. [2017] present another fixpoint algorithm for big-step abstract interpreters, similar
to parallel fixpoint iteration. We implemented this algorithm in Section 4 with the combinator
itopmost. The algorithm uses two caches to remember the analysis result of two consecutive fixpoint
iterations. The algorithm then iterates over the entire program, updating the cache of the most
recent iteration. If none of the caches change anymore, the algorithm has reached a fixpoint and
terminates. The algorithm satisfies Condition 1 by detecting recurrent calls if they have an existing
cache entry. However, the algorithm does not satisfy the other two conditions which means that it
does not terminate for infinite abstract domains.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

221:24 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

Chaotic Fixpoint Iteration. We focus on chaotic fixpoint iteration because it is the most
popular algorithm to solve a set of recursive equations in abstract interpretation [Amato et al.
2016; Bourdoncle 1993; Geser et al. 1994; Kim et al. 2020]. Chaotic iteration strategies iterate on
small parts of the analyzed program and hence are typically more efficient than parallel iteration
strategies [Darais et al. 2017], which iterate on the entire analyzed program. On the downside,
chaotic iteration strategies are more complicated to implement, because they need to keep track of
SCGs. However, we were able to encapsulate this complexity within reusable combinators, which
are easier to use.

Bourdoncle [1993] presents a chaotic iteration order that is based on a weak topological ordering
of the control-flow graph. The iteration order is computed before running the analysis, which
requires knowing the control-flow graph ahead of time. The iteration order improves the precision
as it reduces the number of widening points to the heads of SCGs. Bourdoncle [1993]’s work inspired
the design of the fixpoint combinators iinnermost and ioutermost that we developed in this paper, as
they use the same widening points. However, in contrast, our fixpoint combinators compute the
iteration order dynamically while the analysis is running. This means our fixpoint algorithms do
not need to know the control-flow graph ahead of time and can dynamically fine-tune and adapt
the iteration order if needed.

Fixpoint Algorithms for Small-Step Abstract Interpreters. In contrast to big-step abstract in-
terpreters, static analyses in small-step style have a longer history of research [Horn andMight 2010;
Might and Shivers 2006a; Sergey et al. 2013; Shivers 1991]. Similar to big-step abstract interpreters,
small-step abstract interpreters also seamlessly combine data-flow and control-flow information.
However, they describe the abstract semantics as a small-step relation. A fixpoint algorithm for such
interpreters explores the finite state space of the small-step relation. Unfortunately, it is unclear
how small-step fixpoint algorithms apply to big-step abstract interpreters, because of differences
in the style of semantics: While small-step abstract interpreters use continuations to explicitly
model control of the interpreter as part of the state space, big-step abstract interpreters leverage the
control of the meta-language (e.g., Haskell). This means that big-step abstract interpreters cannot
ensure termination simply by making the state space finite, because their interpreter function may
diverge nonetheless. To this end, big-step fixpoint algorithms must detect recurrent recursive calls
and iterate on them which is not necessary for small-step algorithms.

8 CONCLUSION

In this paper, we studied the modular description of fixpoint algorithms for big-step abstract
interpreters. We identified three conditions that guarantee the termination of big-step fixpoint
algorithms. Based on these conditions, we developed a fixpoint algorithm for big-step abstract
interpreters that iterates on the strongly-connected subgraphs of the graph-shaped trace. However,
since the algorithm consists of a single monolithic function, it is hard to extend, configure and
adapt the fixpoint algorithm. To this end, we refactored the algorithm into small reusable fixpoint
combinators which allow us to change the algorithm by rearranging and adding new combinators.
Furthermore, the combinators simplify the soundness proof, as each combinator can be proved
sound individually once and for all. Moreover, our evaluation demonstrates that our approach
describes an entire family of fixpoint algorithms for different languages and analyses that can be
easily extended, adapted and configured. Lastly, the fixpoint combinators have been reimplemented
in Scala and used to develop fixpoint algorithms that scale to analyze real-world WebAssembly
programs.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:25

9 DATA AVAILABILITY STATEMENT

The artifact accompanying this paper is publicly available at Zenodo and includes the code of the
fixpoint combinators and the case studies [Keidel et al. 2023].

ACKNOWLEDGEMENTS

We thank Raphaël Monat whose encouragement was decisive to resubmit this work. We thank
Katharine Brandl for developing an analysis for WebAssembly in the Sturdy framework, whose
fixpoint algorithm we present as a case study in this paper. Furthermore, we thank Dominik Helm
for testing our artifact and Daniel Jünger, Marie Liebig, André Pacak, David Richter, Jeff Smits,
Tamás Szabó, and anonymous reviewers for helpful discussions and feedback.

This work was funded in part by the national research center for applied cybersecurity ATHENE
(research areas SeDiTraH and AVSV) and by the German Research Foundation (DFG)–451545561.

REFERENCES

Harold Abelson, R. Kent Dybvig, Christopher T. Haynes, Guillermo Juan Rozas, N. I. Adams IV, Daniel P. Friedman, Eugene E.

Kohlbecker, Guy L. Steele Jr., David H. Bartley, Robert H. Halstead Jr., Don Oxley, Gerald J. Sussman, G. Brooks, Chris

Hanson, Kent M. Pitman, and Mitchell Wand. 1998. Revised Report on the Algorithmic Language Scheme. High. Order

Symb. Comput. 11, 1 (1998), 7–105. https://doi.org/10.1023/A:1010051815785

Gianluca Amato, Francesca Scozzari, Helmut Seidl, Kalmer Apinis, and Vesal Vojdani. 2016. Efficiently intertwining widening

and narrowing. Sci. Comput. Program. 120 (2016), 1–24. https://doi.org/10.1016/j.scico.2015.12.005

Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan Schmitt. 2019. Skeletal semantics and their interpretations.

Proc. ACM Program. Lang. 3, POPL (2019), 44:1–44:31. https://doi.org/10.1145/3290357

François Bourdoncle. 1993. Efficient chaotic iteration strategies with widenings. In Formal Methods in Programming and

Their Applications, International Conference, Akademgorodok, Novosibirsk, Russia, June 28 - July 2, 1993, Proceedings

(Lecture Notes in Computer Science, Vol. 735), Dines Bjørner, Manfred Broy, and Igor V. Pottosin (Eds.). Springer, 128–141.

https://doi.org/10.1007/BFb0039704

Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen. 2023. Modular Abstract Definitional Interpreters

for WebAssembly. In 37th European Conference on Object-Oriented Programming (ECOOP 2023), Karim Ali and Guido

Salvaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 388–400. https://doi.org/10.4230/LIPIcs.ECOOP.

2023.19

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of

Programming Languages, Los Angeles, California, USA, January 1977, Robert M. Graham, Michael A. Harrison, and Ravi

Sethi (Eds.). ACM, 238–252. https://doi.org/10.1145/512950.512973

Patrick Cousot and Radhia Cousot. 1992. Comparing the Galois Connection andWidening/NarrowingApproaches to Abstract

Interpretation. In Programming Language Implementation and Logic Programming, 4th International Symposium, PLILP’92,

Leuven, Belgium, August 26-28, 1992, Proceedings (Lecture Notes in Computer Science, Vol. 631), Maurice Bruynooghe and

Martin Wirsing (Eds.). Springer, 269–295. https://doi.org/10.1007/3-540-55844-6_142

David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. 2017. Abstracting definitional interpreters (functional

pearl). Proc. ACM Program. Lang. 1, ICFP (2017), 12:1–12:25. https://doi.org/10.1145/3110256

David Darais, Matthew Might, and David Van Horn. 2015. Galois transformers and modular abstract interpreters: reusable

metatheory for program analysis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October

25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 552–571. https://doi.org/10.1145/2814270.2814308

Noah Van Es, Quentin Stiévenart, and Coen De Roover. 2019. Garbage-Free Abstract Interpretation Through Abstract

Reference Counting. In 33rd European Conference on Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London,

United Kingdom (LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

10:1–10:33. https://doi.org/10.4230/LIPIcs.ECOOP.2019.10

Richard P. Gabriel. 1985. Performance and Evaluation of LISP Systems. Massachusetts Institute of Technology, USA.

Alfons Geser, Jens Knoop, Gerald Lüttgen, Bernhard Steffen, and Oliver Ruthing. 1994. Chaotic fixed point iterations.

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai,

and J. F. Bastien. 2017. Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert

Cohen and Martin T. Vechev (Eds.). ACM, 185–200. https://doi.org/10.1145/3062341.3062363

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

https://doi.org/10.1023/A:1010051815785
https://doi.org/10.1016/j.scico.2015.12.005
https://doi.org/10.1145/3290357
https://doi.org/10.1007/BFb0039704
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1145/3110256
https://doi.org/10.1145/2814270.2814308
https://doi.org/10.4230/LIPIcs.ECOOP.2019.10
https://doi.org/10.1145/3062341.3062363

221:26 Sven Keidel, Sebastian Erdweg, and Tobias Hombücher

Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira Mezini. 2020. Modular collaborative program

analysis in OPAL. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas

Zimmermann (Eds.). ACM, 184–196. https://doi.org/10.1145/3368089.3409765

Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of Real-World WebAssembly Binaries:

Security, Languages, Use Cases. In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-

23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.). ACM / IW3C2, 2696–2708.

https://doi.org/10.1145/3442381.3450138

David Van Horn and Matthew Might. 2010. Abstracting abstract machines. In Proceeding of the 15th ACM SIGPLAN

international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010, Paul

Hudak and Stephanie Weirich (Eds.). ACM, 51–62. https://doi.org/10.1145/1863543.1863553

John Hughes. 2000. Generalising monads to arrows. Sci. Comput. Program. 37, 1-3 (2000), 67–111. https://doi.org/10.1016/

S0167-6423(99)00023-4

Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for JavaScript. In Static Analysis, 16th

International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings (Lecture Notes in Computer

Science, Vol. 5673), Jens Palsberg and Zhendong Su (Eds.). Springer, 238–255. https://doi.org/10.1007/978-3-642-03237-0_17

Sven Keidel and Sebastian Erdweg. 2019. Sound and reusable components for abstract interpretation. Proc. ACM Program.

Lang. 3, OOPSLA (2019), 176:1–176:28. https://doi.org/10.1145/3360602

Sven Keidel and Sebastian Erdweg. 2020. A Systematic Approach to Abstract Interpretation of Program Transformations. In

Verification, Model Checking, and Abstract Interpretation - 21st International Conference, VMCAI 2020, New Orleans, LA,

USA, January 16-21, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 11990), Dirk Beyer and Damien Zufferey

(Eds.). Springer, 136–157. https://doi.org/10.1007/978-3-030-39322-9_7

Sven Keidel, Sebastian Erdweg, and Tobias Hombücher. 2023. Artifact for paper "Combinator-Based Fixpoint Algorithms for

Big-Step Abstract Interpreters". https://doi.org/10.5281/zenodo.7986916

Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. 2018. Compositional soundness proofs of abstract interpreters.

Proc. ACM Program. Lang. 2, ICFP (2018), 72:1–72:26. https://doi.org/10.1145/3236767

Sung Kook Kim, Arnaud J. Venet, and Aditya V. Thakur. 2020. Deterministic parallel fixpoint computation. Proc. ACM

Program. Lang. 4, POPL (2020), 14:1–14:33. https://doi.org/10.1145/3371082

Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot framework for Java program analysis: a

retrospective. In Cetus Users and Compiler Infastructure Workshop (CETUS 2011), Vol. 15.

Johannes Lerch, Ben Hermann, Eric Bodden, and Mira Mezini. 2014. FlowTwist: efficient context-sensitive inside-out

taint analysis for large codebases. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, Shing-Chi Cheung, Alessandro Orso, and

Margaret-Anne D. Storey (Eds.). ACM, 98–108. https://doi.org/10.1145/2635868.2635878

Hai Liu, Eric Cheng, and Paul Hudak. 2009. Causal commutative arrows and their optimization. In Proceeding of the 14th

ACM SIGPLAN international conference on Functional programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 -

September 2, 2009, Graham Hutton and Andrew P. Tolmach (Eds.). ACM, 35–46. https://doi.org/10.1145/1596550.1596559

Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in Abstract Interpretation Based Static Analyzers. In

Programming Languages and Systems, 14th European Symposium on Programming,ESOP 2005, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture

Notes in Computer Science, Vol. 3444), Shmuel Sagiv (Ed.). Springer, 5–20. https://doi.org/10.1007/978-3-540-31987-0_2

Matthew Might and Olin Shivers. 2006a. Environment analysis via Delta CFA. In Proceedings of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13,

2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM, 127–140. https://doi.org/10.1145/1111037.1111049

Matthew Might and Olin Shivers. 2006b. Improving flow analyses via GammaCFA: abstract garbage collection and counting.

In Proceedings of the 11th ACM SIGPLAN International Conference on Functional Programming, ICFP 2006, Portland, Oregon,

USA, September 16-21, 2006, John H. Reppy and Julia Lawall (Eds.). ACM, 13–25. https://doi.org/10.1145/1159803.1159807

Ross Paterson. 2001. A New Notation for Arrows. In Proceedings of the Sixth ACM SIGPLAN International Conference on

Functional Programming (ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001, Benjamin C. Pierce (Ed.). ACM, 229–240.

https://doi.org/10.1145/507635.507664

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223–255. https:

//doi.org/10.1016/0304-3975(77)90044-5

Tomislav Pree. 2020. Debugging Static Analyses in Sturdy. Master’s thesis. Johannes Gutenberg University. https:

//svenkeidel.de/assets/theses/tomislav_pree.pdf

Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability.

In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

San Francisco, California, USA, January 23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 49–61. https:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1145/3360602
https://doi.org/10.1007/978-3-030-39322-9_7
https://doi.org/10.5281/zenodo.7986916
https://doi.org/10.1145/3236767
https://doi.org/10.1145/3371082
https://doi.org/10.1145/2635868.2635878
https://doi.org/10.1145/1596550.1596559
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1145/1111037.1111049
https://doi.org/10.1145/1159803.1159807
https://doi.org/10.1145/507635.507664
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
https://svenkeidel.de/assets/theses/tomislav_pree.pdf
https://svenkeidel.de/assets/theses/tomislav_pree.pdf
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462

Combinator-Based Fixpoint Algorithms for Big-Step Abstract Interpreters 221:27

//doi.org/10.1145/199448.199462

Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. 1995. Precise Interprocedural Dataflow Analysis with Applications to

Constant Propagation. In TAPSOFT’95: Theory and Practice of Software Development, 6th International Joint Conference

CAAP/FASE, Aarhus, Denmark, May 22-26, 1995, Proceedings (Lecture Notes in Computer Science, Vol. 915), Peter D. Mosses,

Mogens Nielsen, and Michael I. Schwartzbach (Eds.). Springer, 651–665. https://doi.org/10.1007/3-540-59293-8_226

David A. Schmidt. 1995. Natural-Semantics-Based Abstract Interpretation (Preliminary Version). In Static Analysis, Second

International Symposium, SAS’95, Glasgow, UK, September 25-27, 1995, Proceedings (Lecture Notes in Computer Science,

Vol. 983), Alan Mycroft (Ed.). Springer, 1–18. https://doi.org/10.1007/3-540-60360-3_28

David A. Schmidt. 1996. Abstract Interpretation of Small-Step Semantics. In Analysis and Verification of Multiple-Agent

Languages, 5th LOMAPS Workshop, Stockholm, Sweden, June 24-26, 1996, Selected Papers (Lecture Notes in Computer Science,

Vol. 1192), Mads Dam (Ed.). Springer, 76–99. https://doi.org/10.1007/3-540-62503-8_4

David A. Schmidt. 1998. Trace-Based Abstract Interpretation of Operational Semantics. LISP Symb. Comput. 10, 3 (1998),

237–271.

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and Frank Piessens. 2013.

Monadic abstract interpreters. In ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 399–410. https:

//doi.org/10.1145/2491956.2491979

Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph. D. Dissertation. Carnegie Mellon University.

Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-sensitive data-flow analysis using synchronized

Pushdown systems. Proc. ACM Program. Lang. 3, POPL (2019), 48:1–48:29. https://doi.org/10.1145/3290361

Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and

Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming, ECOOP 2016,

July 18-22, 2016, Rome, Italy (LIPIcs, Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 22:1–22:26. https://doi.org/10.4230/LIPIcs.ECOOP.2016.22

Thomas Streicher. 2006. Domain-theoretic foundations of functional programming. World Scientific.

Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 2 (1955), 285–309.

Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Building Program Optimizers with Rewriting

Strategies. In Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP ’98),

Baltimore, Maryland, USA, September 27-29, 1998, Matthias Felleisen, Paul Hudak, and Christian Queinnec (Eds.). ACM,

13–26. https://doi.org/10.1145/289423.289425

Guannan Wei, Yuxuan Chen, and Tiark Rompf. 2019. Staged abstract interpreters: fast and modular whole-program analysis

via meta-programming. Proc. ACM Program. Lang. 3, OOPSLA (2019), 126:1–126:32. https://doi.org/10.1145/3360552

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 221. Publication date: August 2023.

https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/3-540-59293-8_226
https://doi.org/10.1007/3-540-60360-3_28
https://doi.org/10.1007/3-540-62503-8_4
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1145/2491956.2491979
https://doi.org/10.1145/3290361
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/3360552

	Abstract
	1 Introduction
	2 Designing Big-Step Fixpoint Algorithms
	2.1 Enforcing Termination of Big-Step Fixpoint Algorithms
	2.2 A Big-Step Fixpoint Algorithm that iterates on Strongly-Connected Subgraphs

	3 Modular Description of Big-Step Fixpoint Algorithms
	4 A Library of Reusable Fixpoint Combinators
	4.1 Iteration Strategy Combinators
	4.2 Recursion Depth Combinators
	4.3 Tracing Combinators

	5 Modular Soundness Proofs of Big-Step Fixpoint Algorithms
	5.1 Soundness Proof Strategies for Fixpoint Combinators

	6 Case Studies
	6.1 Static Type Analysis for Stratego
	6.2 Dead-Code Constant-Propagation Analysis for WebAssembly
	6.3 k-CFA for Scheme

	7 Related Work
	8 Conclusion
	9 Data Availability Statement
	References

