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Object-Oriented Fixpoint Programming with Datalog

DAVID KLOPP, JGU Mainz, Germany
SEBASTIAN ERDWEG, JGU Mainz, Germany
ANDRE PACAK, JGU Mainz, Germany

Modern usages of Datalog exceed its original design purpose in scale and complexity. In particular, Datalog
lacks abstractions for code organization and reuse, making programs hard to maintain. Is it possible to exploit
abstractions and design patterns from object-oriented programming (OOP) while retaining a Datalog-like
fixpoint semantics? To answer this question, we design a new OOP language called OODL with common
OOP features: dynamic object allocation, object identity, dynamic dispatch, and mutation. However, OODL
has a Datalog-like fixpoint semantics, such that recursive computations iterate until their result becomes
stable. We develop two semantics for OODL: a fixpoint interpreter and a compiler that translates OODL to
Datalog. Although the side effects found in OOP (object allocation and mutation) conflict with Datalog’s
fixpoint semantics, we can mostly resolve these incompatibilities through extensions of OODL. Within fixpoint
computations, we employ immutable algebraic data structures (e.g. case classes in Scala), rather than relying
on object allocation, and we introduce monotonically mutable data types (mono types) to enable a relaxed
form of mutation. Our performance evaluation shows that the interpreter fails to solve fixpoint problems
efficiently, whereas the compiled code exploits Datalog’s semi-naive evaluation.

CCS Concepts: « Software and its engineering — Object oriented languages; Constraint and logic
languages; « Theory of computation — Program analysis.
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1 Introduction

Datalog has come a long way from its origin as a database query language [Maier et al. 2018].
What makes Datalog attractive is its fixpoint semantics, which has led to its use in a wide range of
applications. Modern usages of Datalog [Huang et al. 2011] include program analysis [Bravenboer
and Smaragdakis 2009; Szab¢ et al. 2021], network monitoring [Abiteboul et al. 2005], and distributed
computing [Alvaro et al. 2010, 2011a,b], all of which involve large and complex Datalog programs.
The original design of Datalog is unfit for the development and maintenance of these programs.
In recent years, quite a few attempts have been made to improve the programmability of Datalog.
Souffle [Jordan et al. 2016] extends Datalog with a module system in which components can encap-
sulate Datalog elements and inherit from each other to enable code reuse. Formulog [Bembenek
et al. 2020] extends Datalog with functional programming to enable inspection and manipulation
of complex terms. DataFun [Arntzenius and Krishnaswami 2016] and functional IncA [Pacak and
Erdweg 2022] extend a functional programming language with relational-programming constructs
to provide an alternative Datalog frontend. Flix [Madsen and Lhotak 2020] extends Datalog with a
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functional metalanguage to construct and solve Datalog programs at run-time. But only QL [Av-
gustinov et al. 2016] explores how object-oriented programming and Datalog can be integrated by
implementing a light-weight object-oriented yet pure and relational surface language for Datalog.

In this paper, we study how to integrate Datalog’s fixpoint semantics and object-oriented pro-
gramming (OOP). Specifically, we aim to support dynamic object allocation with unique identities,
inheritance with dynamic dispatch, and mutation. Our goal is to unleash the well-known advantages
of these OOP features for building and maintaining software and frameworks at scale, accom-
modating the growing complexity in current usage scenarios of Datalog. In particular, it should
become possible to employ OOP design patterns to organize programs, such as the visitor pattern
for separating data and computation. At the same time, we must retain Datalog’s characteristic
least fixpoint semantics, which assists developers in processing cyclic data by efficiently iterating a
computation until its result is stable. Unfortunately, the least fixpoint semantics and OOP are in
conflict. Consider the following Scala-like OOP example:

class DataAnalysis(var nodeCount: Int = 0):
def processNode(n: Node): Data =
nodeCount += 1
return new Data(n.info)

1
2
3
4
5
6 val analysis = new DataAnalysis

7 val graph = ... // a possibly cyclic graph to be analyzed

8 wval data = ... // relational code that iterates processNode(..) on graph until stable

The last line of this example illustrates an interaction between relational and OOP code: We want
to process graph using the least fixpoint semantics. The problem is that the iterated computation
has side effects: mutation and object allocation in lines 3 and 4. This computation does not have
a least fixpoint because the allocator and the mutable variable keep changing in each iteration.
Therefore, there exists no integration of OOP and Datalog without compromises.

We present OODL, an OOP language with least fixpoint semantics, which we define in two
different styles. First, we define a fixpoint interpreter by adopting recent fixpoint algorithms
from big-step abstract interpretation [Keidel et al. 2023]. The interpreter is correct and finds least
fixpoints, but has insufficient performance. Therefore, second, we also develop a compiler that
translates OODL to Datalog, to reuse existing efficient Datalog solvers. Our translation shows
how OOP concepts can be faithfully encoded in Datalog. We eliminate mutable local variables
with an SSA transformation but, interestingly, no ¢-nodes are necessary in the generated code.
However, there are limitations: No traditional allocation or field mutation may take place, during a
fixpoint subcomputation. Instead of traditional object allocation, developers must use immutable
algebraic data (e.g., case classes in Scala), which do not carry an object ID. To support mutable
fields, we describe a novel abstraction for monotonically mutable data types (mono types) that is
compatible with fixpoint semantics. Mono types are a OOP-inspired writable mutable collection
m += a, permitting only monotonically increasing observations m.result for a user-defined preorder.
Mono types generalize lattice-based aggregation [Madsen et al. 2016; Szabo et al. 2018].

We implemented the interpreter, compiler, and three case studies for OODL, including a perfor-
mance evaluation. The interpreter fails to solve fixpoint problems efficiently, whereas the compiled
code exploits Datalog’s semi-naive evaluation. In summary, we make the following contributions:

e We expose the tension between least fixpoint, object allocation, and mutation (Section 2).

e We develop a fixpoint interpreter for an OOP language, which is correct but slow (Section 3).
e We show how to compile OOP constructs to Datalog including object allocation (Section 4).
e We present an encoding of mutation in Datalog using SSA and timestamps (Section 5).
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e We propose alternatives to allocation and mutation for fixpoint computations (Section 6).
e We discuss case studies, the language design and performance comparison (Section 7).

2 Object-Oriented Programming in Datalog: Motivating Example

Our goal is to understand how OOP and Datalog can be deeply integrated to exploit Datalog’s
semi-naive fixpoint evaluation for OOP programs. In this section, we introduce a larger motivating
example to explain why such integration is desirable, both for OOP and for Datalog.

Our motivating example stems from the domain of program analysis, which is a common use
case for Datalog. Consider we want to analyze this simple language of inter-dependent definitions:

(programs) p u= d
(definitions) d :=defx=e
(expressions) e z=n|x|e+e

We want to perform a dependency analysis of this language in three steps:

(1) Given an abstract syntax tree (AST), compute the corresponding abstract syntax graph (ASG).
In an ASG, each variable reference carries a pointer to the referenced definition, as illustrated
using numeric subscripts in the following example program:

def a; = c3; def by, = 2; def c3 = a;; def dy = by; def mains = c3

(2) Given the ASG of a main definition, compute the dependency graph of all definitions reachable
from it. A definition depends on all definitions referenced in its body. The dependency graph
for mains is G = {(5, 3), (3, 1), (1, 3)}. Definitions d, and b, are unreachable from mains.

(3) Given a dependency graph and a definition, find all definitions it transitively depends on.
That is, aj, c3, and mains transitively depend on {1, 3}, while b, depends on @ and d, on b,.

Below, we discuss how this dependency analysis can be implemented in OOP and Datalog.

2.1 Dependency Analysis in OOP

Figure 1 shows a possible implementation of the dependency analysis in Scala3. We encode the
abstract syntax of our language as a corresponding class hierarchy. We can encode our example
program from above as follows:

val d1 = new Def("a", new Var("c")); val d2 = new Def("b", new Num(2));
val d3 = new Def("c", new Var("a")); val d4 = new Def("d", new Var("b"))

val main = new Def("main", new Var("c")); val prog = new Prog(List(d1, d2, d3, d4, main))

To process programs, we employ the visitor pattern: Each class accepts a visitor object and invokes
the appropriate visit method. The visitor pattern separates data definitions from their processing,
allowing us to add operations without changing the classes that define the abstract syntax.

We define two visitors to implement the dependency analysis. The first visitor NameAnalysis
resolves references to their definition by looking up the name in the list of definitions. For bound
variables, we store a pointer to the binding definition in field var. target of the reference, converting
the AST into an ASG. That is, after invoking prog.accept(new NameAnalysis(prog)), the target field
of all references is set. Since NameAnalysis traverses the AST, it always terminates. Datalog’s least
fixpoint semantics is only required when recursively processing cyclic data, as in the next steps.

The second visitor DependencyAnalysis processes graph-shaped data with cycles. Figure 1 shows
an idealized version of Scala3, where we assume graph traversals magically terminate once their
result becomes stable. Later, when we compile OOP to Datalog, such idealized graph traversals
will indeed be supported and translate to terminating Datalog code. We implement Step (2) of
the dependency analysis through a visitor that adds a dependency Edge from current definition d
to the referenced definition v.target whenever it is defined. In addition, the visitor continues the
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abstract class Visitor:
class Prog(val defs: List[Def]):

class Def(val name: String, val exp: Exp):
val undef = new Def("undef", new Num(-1))

abstract class Exp:

class Num(val value: Int) extends Exp:

class Var(val name: String, var target: Def = undef) extends Exp:
def accept(v: Visitor, d: Def): Unit = v.visitVar(this, d)

// Step (1). Constructs ASG by setting Var.target field
class NameAnalysis(val prog: Prog) extends Visitor:
override def visitVar(v: Var, d: Def): Unit = prog.defs.find(_.name == v.name) match
case Some(d) => v.target = d
case None => // unbound variable

class Edge(val from: Def, val to: Def)
class DependencyAnalysis extends Visitor:
// Step (2). Constructs dependency graph by traversing ASG, may DIVERGE
var edges: Set[Edge] = Set.empty
override def visitVar(v: Var, d: Def): Unit =
if (v.target != undef) {
edges += new Edge(d, v.target)
v.target.accept(this)
}
// Step (3). Computes transitive closure by traversing edges, may DIVERGE
def dependencies(dl: Def): Set[Def] =
directDeps(d1) ++ (for (d2 <- directDeps(d1); d3 <- dependencies(d2)) yield d3)
def directDeps(d: Def): Set[Def] = edges.filter(_.from == d).map(_.to)

Fig. 1. Implementing the dependency analysis in OOP using the visitor pattern and idealized graph traversals.

traversal at the referenced definition, so that we effectively traverse the ASG. For example, consider
a run of the dependency analysis on the main definition main.accept(new DependencyAnalysis) after
NameAnalysis. The dependency analysis will visit mains, cs, a1, cs, a1, and so on. That is, the analysis is
in a loop because the ASG is cyclic. Moreover, the set of edges is not stable since we continuously
create new Edge objects that we compare by object identity. Had we used structural equality for
Edge objects, a least fixpoint would exist, but the OOP semantics does not find it.

Lastly, we compute the transitive dependencies of a given definition. We compute the transitive
closure in Datalog-style, but using for-comprehensions: The set of dependencies is the set of direct
dependencies plus the dependencies of all direct dependencies. This definition is recursive, but has
a least fixpoint for any finite graph. In our example, we traverse the dependency graph stored in
edges. Even if edges were finite, OOP cannot find the least fixpoint of dependencies for cyclic graphs.

To summarize, OOP allows us to use the visitor pattern, which is effective for implementing the
dependency analysis. However, OOP lacks a crucial linguistic feature for processing cyclic graphs:
a least fixpoint semantics. Without it, we need to manage the graph traversal ourselves, using a
worklist, a set of seen nodes, and a cache of prior results to detect when the computation is stable.
How can we integrate Datalog and OOP to retain the advantages of both?
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2.2 Dependency Analysis in Datalog

Before discussing our approach and the involved challenges, we should question: Why should we
use OOP in the first place? Why don’t we implement the dependency analysis in Datalog directly?
The problem is that Datalog is a simple logic programming language that lacks many features
programmers know from mainstream languages: Datalog does not support structured programming
(control flow), no mutable data, there is no data abstraction and no polymorphism of any kind.
We discussed various approaches to improve the programmability of Datalog in the introduction.
However, none of them support mutable data or dynamic object allocations.

To implement the dependency analysis in Datalog directly, we have to rewrite the program
completely to fit the logic programming paradigm. For Step (1), rather than traversing the AST and
updating a field, we must “search” the AST to find and associate variables with targeted definitions:

resolved(prog, e, trgDef) :-
parentProg(e, prog), // enumerate all expressions in prog
Var(x, e), // ensure e is a variable and retrieve its name x
Prog(prog, trgDef), // enumerate all trgDef in prog
Def (trgDef, x, _). // filter trgDef with name x

target(prog, e, trgDef) :- resolved(prog, e, trgDef). // either e resolves to trgDef, or ...
target(prog, e, trgDef) :-

parentProg(e, prog), Var(x, e), Prog(prog, trgbDef), // find candidates as above

- resolved(prog, e, trgDef), // if e is unresolved

Def (trgDef, "undef", _). // then use "undef" fallback

parentProg(e, prog) :- parentDef(e, def), Prog(prog, def).

parentDef (e, def) :- Def(def, _, e).
parentDef (e, def) :- Add(a, e, _), parentDef(a, def).
parentDef (e, def) :- Add(a, _, e), parentDef(a, def).

While resolved associates variables to their targets, we had to include another relation target to
simulate the mutable field var.target. Here we exploit domain knowledge: Either a variable is
resolved or its target is the default "undef" definition. It is not obvious how to generalize this code
to allow multiple updates of var. target.

To compute the dependency graph in Step (2), again we must reformulate our computation
significantly. Rather than traversing the ASG, we must “search” for edges using relational queries:

depGraph(prog, def, trgDef) :-

reachable(prog, def), // enumerate all definitions reachable in def
parentDef (e, def), // enumerate all expressions in each def
Var(_, e), // ensure e is a variable

target(prog, e, trgDef), // retrieve the variable's target

- Def(trgDef, "undef", _). // ensure trgDef is not "undef"

reachable(prog, def) :-

Prog(prog, def), // enumerate all definitions in prog
Def (def, "main", _). // the main def is reachable
reachable(prog, def) :-
target(prog, e, def), // enumerate all vars e that resolve to def
— Def(def, "undef", _), // ensure def is not "undef"
parentDef (e, otherDef), // find the containing definitions of those variables
reachable(otherDef). // def is reachable if any of the other definitions is reachable
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We use relation reachable to restrict the dependency graph to nodes reachable from the main
definition. Note how we again exploited domain knowledge: The mutable field edges is a set that
grows monotonically, which is why we’re able to encode it as a Datalog relation directly. It is not
obvious how to generalize this to support other mutable collections and non-monotonic updates.

To summarize, it is possible to implement the dependency analysis in Datalog, but we have to
change our approach drastically. Most importantly, we had to change our way of thinking about
the problem: Instead of control-flow driven traversals of structured data, we had to re-invent the
analysis in the style of a database query, loosing the visitor pattern along the way. Moreover, we
had to exploit domain knowledge twice to make the encoding tractable. In this paper, we propose
an approach that compiles OOP programs to Datalog automatically, such that developers can model
domain concerns in OOP while benefiting from Datalog’s least fixpoint semantics.

3 Least-Fixpoint Semantics for OOP

This paper studies how to integrate a least fixpoint semantics into object-oriented programming
(OOP). We can tackle this problem from two alternative directions: We can start with an OOP
language and modify its semantics to compute least fixpoints. Or, we can start with a language that
has least fixpoint semantics (e.g. Datalog) and embed an OOP language into it. This paper studies
and compares both approaches, starting with the first alternative in the present section.

Before we start our exploration, we clarify what it means to compute least fixpoints for OOP.

Definition 1 (OOP fixpoint). Given a big-step OOP semantics e, p, 0 = v, 0’ that evaluates an
expression e under environment p (binding local variables) and heap o (mapping object IDs to object
records) to a value v and an updated heap ¢’. The semantics computes a fixpoint if e, p, 0 = v, 0’
implies e, p, 0’ = v, 0’. That is, if we run the program a second time starting with the updated heap
o’, we obtain stable results v and ¢’. The semantics computes the least fixpoint if v and ¢’ are the
smallest results satisfying this definition, relative to some partial order on values discussed below.

In general, not all OOP programs have a least fixpoint. For example, consider the program
def loop1(x) = loopl(new Object()), which tries to allocate an infinite number of objects on the heap.
For this program, no heap ¢’ satisfies our fixpoint property. However, we may not confuse finding a
least fixpoint with program termination. For example, the program def loop2(x) = loop2(x + 1) does
have a least fixpoint: the empty value L (indicating abnormal execution) and the empty heap. In
loop1, object allocation triggers a side-effect that extends the heap in each recursive call, precluding
a stable result. In contrast, loop2 computes with primitive values that are not allocated on the heap,
so that the empty heap satisfies the fixpoint property.

Our fixpoint property is relative to a partial order on values. As illustrated in the previous
section, fixpoint computations typically collect results in a recursively defined set. For example,
the dependency analysis shown in Figure 1 recursively traverses the ASG to collect dependency
edges in a set, and it recursively traverses the dependency graph to collect transitive dependencies
in a set. Our fixpoint property is satisfied by any sufficiently large set of edges and dependencies,
for which no new edges or dependencies can be found. But we are interested in the least fixpoint:
the smallest set of edges and dependencies that is complete. Accordingly, we use a partial order on
values that compares set values using the subset relation, while comparing other values pointwise.

To keep the exposition short and simple, the fixpoint property from above does not actually
enforce termination. We only require that the semantics yields a fixpoint if it terminates at all.
According to this definition, the semantics could diverge even for programs that have a least
fixpoint. However, our intention is that the semantics should compute a least fixpoint whenever it
exists. We next present an approach for computing least fixpoints for OOP languages effectively.
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- Fix-Recurrent
fix (e,p,0,{c1---(e,0,0)p - cn)) Was (vr,0r) = 0y, 05, {c1 - (&P, O)true - * * Cn)

(e> Ps O-) & cs e p,o,Cs: (es P O')false =0v,0, ¢ - (es P> G)false .
Fix-Nonrecurrent

fix (e, p, 0, cs) was (v, 0,) = 0,07, s’

(e> P> O') ¢ cs €, p,0,CS- (ea P> G)false =0v,0,cs - (e» Ps O-)true (Z)’, OJ) = (Ura O'V)

- Fix-Stable
fix (e, p, 0, cs) was (v, 07) = 0y, 0, C8

(e,p,0) &cs e,p,0,cs- (e p,0)faise = 0,0, ¢s" - (€, p, 0)true

(v, 0") # (v, 00) fix (e, p, o', ¢s’) was (v’,0") = 0", 0", ¢s”

Fix-Iterate

fix (e, p, 0, cs) was (v,, 0r) = 0", 0", ¢s”

Fig. 2. A big-step fixpoint algorithm for OOP, iterating each recurrent configurations (e, p, o) until stable.

3.1 A Fixpoint Interpreter for OOP Languages

To compute least fixpoints for OOP programs, we start with a standard big-step OOP semantics
e, p,0 = v,0’, implemented as a recursive interpreter. Our key idea is to draw inspiration from
abstract interpretation: Abstract interpreters compute the fixpoint of a transfer function over an
abstract domain. In particular, we build on recent fixpoint algorithms [Keidel et al. 2023] developed
for big-step abstract interpreters, whose implementation resembles a recursive interpreter [Darais
et al. 2017]. Essentially, a big-step abstract interpreter repeats each recursive sub-computation until
a fixpoint is reached, so that the final analysis result is a sound over-approximation of the program
behavior. We adopt this idea to compute fixpoints in the concrete semantics of an OOP interpreter.
We formalize a fixpoint algorithm for OOP in Figure 2 as an auxiliary reduction relation fix:

fix (e, p, 0, cs) was (v,,0,) = v’, 0, cs’

The fix reduction relation takes an interpreter configuration ¢ = (e, p, o) and a configuration stack
cs = {c1 - - - ¢p) as input, together with a previous intermediate fix result v, and o,. The configuration
stack traces recursive calls of the OOP program to detect and prevent infinite loops. When an input
configuration c reoccurs on the stack, the computation would go into a loop. Rule Fix-Recurrent
aborts such computations, marks the configuration as recurrent cirye, and yields the previous fix
result. If ¢ does not occur on the stack, we push cg,se 0n the stack and distinguish three cases.

(1) Fix-Nonrecurrent. If the computation does not revisit c, yield the computation’s result.

(2) Fix-Stable. If the computation revisits ¢ but its result coincides with the previous fix result
(v, 0y), we have found a fixpoint and yield its result.

(3) Fix-Iterate. The computation does revisit ¢ but its result differs from the previous fix result.
We have not found a fixpoint yet and must iterate the computation further, updating the
intermediate fix result to the current result.

This fixpoint algorithm is essentially a specialized version of the family of fixpoint algorithms
described by Keidel et al. [2023], and we inherit the algorithm’s correctness from them. However,
our algorithm does not guarantee termination since we do not join the previous fix result (v, oy)
and new fix result (v’, 0”) in rule Fix-Iterate. Consequently, the fixpoint algorithm may diverge,
for example, when an entry in the heap oscillates and no fixpoint exists. On the other hand, if a
computation’s result stabilizes eventually, our algorithm will find and yield its fixpoint correctly.
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Our fixpoint algorithm must be plugged into the OOP semantics for each rule that handles a
possibly non-terminating construct. For example, the reduction rule for method invocations must
evaluate the method’s body using the fix relation, as to detect and prevent recurrent method calls.
The OOP semantics must also thread the configuration stack cs in store-passing style. We have
implemented an interpreter for a standard OOP language with mutable variables and fields that uses
our fixpoint algorithm this way. While yielding correct results, the performance is unsatisfactory.

3.2 Fixpoint Interpreters Are Naive

Our fixpoint algorithm is computationally expensive since it resembles what is known as naive
evaluation in Datalog literature [Green et al. 2013]. A fixpoint algorithm is naive if it repeats
the computation using the combined result of all prior iterations. When the fixed computation
is monotone, the fixpoint algorithm is bound to rederive the results of iteration k in all later
iterations i > k. State of the art Datalog systems use semi-naive evaluation, which only considers
results first found in iteration k when deriving results in iteration k + 1, eliminating redundant
derivations. Unfortunately, it is not clear how we could adopt semi-naive evaluation. First, there
are no guarantees that the user-defined OOP computations are monotone. Second, semi-naive
evaluation has so far exclusively been applied to pure programming languages, such as Datalog or
Datafun [Arntzenius and Krishnaswami 2020]. In contrast, OOP languages involve object allocation
on the heap and subsequent modifications of those objects. It is not clear how to make such
computations incremental, as required for semi-naive evaluation.

We conducted performance measurements
to show that the performance penalty for naive
evaluation is significant. Specifically, we bench-
marked our interpreter on the standard path
program, which computes the transitive closure
over small strongly connected graphs that we
generate. The graph on the right compares the
interpreter’s performance to a Datalog solver
that uses semi-naive evaluation. While semi-
naive evaluation computes the transitive clo-
sure instantaneously, the naive evaluation of
the fixpoint interpreter fails to scale. Even
worse, when representing the graph’s nodes
as objects rather than primitive integers, the
performance of the fixpoint interpreter deterio-
rates even further. This is because the fixpoint 19 ‘ ‘ ‘ ‘ ‘ ‘ ;
algorithm checks the stability of the heap in 10 30 50 70 90 110 130 150
each fixpoint iteration, which takes time lin- Number of nodes
ear in the size of the heap. In the remainder of
this paper, we develop an alternative fixpoint
semantics for OOP by translation to Datalog.

—— Datalog
Interpreter
Interpreter, nodes as objects

250

200
|

Running time (s)
150
Il
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Fig. 3. Running times of the naive interpreter vs semi-
naive Datalog for the standard path program

4 Compiling Immutable OOP to Datalog

As shown in the previous section a Datalog solver using semi-naive evaluation outperforms a
fixpoint-based interpreter significantly. To utilize the performance of semi-naive evaluation for
fixpoint computation, we aim to deeply integrate OOP and Datalog, by compiling OODL to Datalog.
We start with an immutable OODL variant with unmodifiable local variables and fields.
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(programs) p u=c
(classes) ¢ u==class C(x) extends D {f, m}
(methods) m :=def m(x) = {5; e}

(statements) s ==valx=e| if(e==c¢) {s} else {5}
(expressions) e u==v|x|ef |newC(e) | eem(e) | basefun(e)
(values) v == base

Fig. 4. Syntax of immutable OODL with base values and base functions.

Figure 4 shows the Scala-like syntax of immutable OODL. A program consists of classes. Each
class has a single super class, a list of constructor parameters x, fields ?, and methods m. As usual,
we omit the superclass for classes that extend the root class (e.g., object in Java). The number of
constructor parameters must match the number of transitively inherited fields, which are initialized
to constructor arguments by the implicit default constructor. A method contains a sequence of
statements followed by a single expression, which yields the returned value. For now, we only
consider a single statement that binds an immutable local variable for the remainder of the method,
and a test for object equality. We extend OODL with more statements in Section 5 when introducing
mutation. Besides standard OOP expressions, we also include base functions for convenience. We
will use Scala3-like syntax when presenting OODL programs in the remainder of this paper.

For a simple example OODL program, consider the following encoding of Peano numbers:

class Nat:
def add(that: Nat): Nat = that

class Zero extends Nat

class Succ(p: Nat) extends Nat:
val pred: Nat = p // field initialization is implicit in OODL, but explicit in examples
def add(that: Nat): Nat = { val newPred = this.pred.add(that); new Succ(newPred) }

Although we omitted types in the grammar, OODL is statically typed and we annotate types in our
examples. We do not formalize the type system of OODL because it is completely standard. Our
translation to Datalog relies on typing information for resolving field and method lookups.

4.1 Compilation Strategy for Inmutable OODL

We propose to integrate OOP and Datalog by compiling OOP features to Datalog. To this end, we
must find encodings for objects, fields, constructors, and methods in Datalog. The most important
question is how to encode dynamically allocated objects at run-time. Prior work supported statically
declared objects [Abiteboul et al. 1993] or enumerates all objects of a class centrally [Avgustinov
et al. 2016]. In contrast, OODL supports full OOP with dynamic, conditional, and decentralized
object creation. We represent objects with unique identities created at run-time:

Principle 1: Objects as Unique Identities. An object identity OID(C, w) consists of the run-
time class C of the object and a numeric value w. As usual for OOP languages, we require the
run-time class C of an object for dynamic dispatch. The allocation count w uniquely identifies
objects and can be used for testing object equality. When compiling OODL programs to Datalog,
we thread and increment w to guarantee OIDs are truly unique, and methods take an allocation
count as input and produce an updated allocation count output. Consequently, our targeted Datalog
language must support arithmetics or algebraic data types, as is standard in many modern Datalog
systems including Souffle [Jordan et al. 2016] and IncA [Szabo et al. 2018]. Note that our interpreter
does not use an allocation count, but instead relies on the meta-interpreter to generate unique
objects.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 273. Publication date: October 2024.



273:10 David Klopp, Sebastian Erdweg, and André Pacak

Principle 2: Fields as Binary Relations. Objects are records that associate values to fields.
Rather than storing field values in the object representation, we store field values in dedicated
relations. For each field f of class C, we define a relation C#f C OID X v, where a Datalog value v
is either an OID or a base value. Since an object can only carry one value per field, relation C#f
has a functional dependency OID — v, meaning OID uniquely determines v. Note that we will
have to revise our encoding of fields once we consider mutability in Section 5.

Principle 3: Constructors Allocate Objects. Constructors create new objects, assign them
an OID, and initialize their fields. For example, new Succ(new Succ(new Zero())) evaluates to an ob-
ject 0ID(Succ, 2), where the Succ#pred relation contains two entries: (0ID(Succ,2), 0ID(Succ,1)) and
(0ID(Succ,1), 0ID(Zero,®)).In our design, we generate the required fresh OIDs at the call site of the
constructor and provide the OID to the constructor as an input alongside all constructor arguments.
That is, for each class C we generate a relation C € OID X v X - -+ X v, where the OID uniquely
determines the other columns. These constructor relations are responsible for associating the
constructor arguments with the appropriate field relations for the given OID. Moreover, we can
use the constructor relation to enumerate all objects of a given class that have been created so far.

Principle 4: Methods with Dispatch Tables. While it is well-known that we can encode
functions f : (Ty,...,T,) — T asrelations f C Ty X- - -XT, XT, it is not clear how to encode dynamic
dispatch over dynamically allocated objects in a logic programming language. Datalog itself does
not support any form of higher-order control flow, so that we have to eliminate dynamic dispatch
during compilation. We might be tempted to generate a relation C#m for each method m defined
in C as done in prior work, but this strategy will fail. Abiteboul et al. [1993] follow this approach
and translate (overriding) methods to mutually exclusive relations: relation Succ#add is applicable
if this has run-time type Succ and Nat#add is applicable if this does not have run-time type Succ.
QL [Avgustinov et al. 2016] uses similar guards to exclude receiver objects that have more specific
implementations. Unfortunately, the required negative predicate calls conflict with dynamically
allocated objects, since we obtain unstratified dependency graphs. In our example, Succ.add invokes
Nat.add, which we would need to guard by not Succ(this,_). However, the constructor relation Succ
depends cyclically on its invocation in Succ.add with a negative call, which is invalid in Datalog.

We propose a different strategy for supporting dynamic dispatch based on a simple observation:
Since the run-time class of a receiver object is only known during execution, we must treat it as a
run-time value in Datalog and use it to dynamically resolve a call’s target. This allows us to select
the single most-specific invocation target rather than querying all candidates and filtering out
inapplicable ones. Specifically, for each method m in the program, we generate a dispatch table
dispatch,,, C C x D with functional dependency C — D . Given the run-time class C of a receiver
object, we can query dispatch,, to obtain the class D with the most-specific implementation of m for
C. We can populate the dispatch tables at compile time, similar to virtual method tables in standard
OOP compilers. For dispatch,,;; we obtain three entries: (Nat,Nat), (Zero, Nat), and (Succ, Succ).

Principle 5: Demanded Control Flow. The execution of Datalog programs is solely driven
by data flow, but does not have a notion of control flow. Therefore, we must encode OODL’s
control flow using data flow in Datalog. Like prior work that compiled functional programs to
Datalog [Pacak and Erdweg 2022], we employ the demand transformation [Tekle and Liu 2010] to
achieve this. The demand transformation is a magic set transformation [Beeri and Ramakrishnan
1991] that computes the demanded inputs of a relation, that is, how a relation is being queried in
other parts of the program. The demand transformation then adds guards to the relations to ensure
it only computes results when demanded. Effectively, this enforces a derivation order on Datalog
that corresponds to the control flow of OOP.
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(Datalog programs) D :

(rules) rous R(t)

(atoms) a —t—tlt;tth(t)
(terms) t ==v|x | basefun(t)
(values) v == O0ID(C,n) | base
(derived atom forms) a ==... |®|aVa

Fig. 5. An intermediate representation for Datalog with base values and demand markers .

4.2 Formal Translation of Immutable OODL to Datalog

We are now ready to translate immutable OODL to Datalog. Technically, we target a variant of
Datalog as defined in Figure 5. Our targeted Datalog is negation-free but supports base functions
and values as well as the construction of OID terms. To simplify the translation, we extend Datalog
with two derived forms that can be eliminated in a subsequent step. First, we introduce a demand
marker ¢, which signifies that the containing rule may have unbound variables. These variables
will be bound as inputs by the demand transformation in a later step. Second, we introduce a
conditional construct a; V a3, which combines the result from a; (if any) with those from a; (if any).
We subsequently eliminate such disjunctions by converting rules to disjunctive normal forms.

We define the translation of OODL to Datalog in Figure 6, providing different translation func-
tions for the various syntactic constructs of OODL. For expressions and statements, we thread
allocation counts w through the translation to ensure unique OIDs for constructor calls. We translate
expressions using function E[ e]| ,, which yields ¢ -, @, that is: A term ¢ representing the value e
evaluates to, a sequence of atoms a required for computing ¢, and an update allocation count «’.

OODL values and variables translate to Datalog values and variables directly. For field lookups
e.f, we first compile e to obtain its Datalog representation t. Based on the static type C of e, we find
the class D that defines field f. We then query D#f to obtain the field’s value. To assist the reader,
we use a blue font to mark terms that signify inputs in the sense of the demand transformation. For
fields, the receiver ¢t is an input whereas the field value y is an output.

We handle constructor calls as described in Principle 3 above. After translating all constructor
arguments ey, . . ., e,, we use the final allocation count w, to create a fresh OID(C, w,). We then
query the constructor relation C to initialize the fields of the object. Note that the rule for constructor
calls is the only place where w is incremented, yielding w, + 1.

For method invocations, we query the OID rather than constructing a new one. That is, we
obtain the run-time class C of t; and use it to query the dispatch table of m to obtain the dispatch
target D. We then query relation m to trigger the implementation of D, given the receiver object
to and the arguments t4, . . ., t,. We also pass the latest allocation count w, as input to m, so that
objects created within m get fresh OIDs. The query of m provides a return value y and an updated
allocation count w’. Calls to base functions are handled straight forwardly.

We compile statements using S[[s]],, which only yields a sequence of atoms and an updated
allocation count, but no term. For immutable local variables val x = e, we introduce a corresponding
binding x = ¢ in Datalog. For conditionals, we generate a Datalog conditional over the appropriate
atoms, carefully making sure to thread the allocation count through all recursive translations.

The remaining translation functions handle fields, methods, and classes, for which we generate
Datalog rules. The translation of fields is maybe most mysterious: For an immutable field f in class
C, function F[[ f] .. yields a rule C#f (this, v) whose body only contains a demand marker. Indeed,
the demand transformation will make sure to bind these parameters in accordance with the queries
that occur in the constructor relation C. Likewise, we generate a demand marker when translating
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m(Da th tl’ cee s tns y, Wn, (A),)
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where riyy = C(this,xy,...,x;) :- ®,C#fi(this, x1), .

.., C#fi (this, xi.), D(this, Xg41, - . ., X1).

r = (dispatch,,(C,D) :- ¢. | m € methodsTrans(C),D = findMethodDef (C, m))

C[[class Object { }] = Object(this) :- #.

Fig. 6. Generating Datalog terms and atoms for OODL expressions and statements, and generating Datalog

rules for OODL fields, methods, and classes.
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a method, because the implementing class, receiver object, argument values, and allocation count
depend on the calls that occur in the program. The demand transformation will make sure to bind
the corresponding logic variables appropriately.

Finally, the translation of classes ties everything together. Moreover, we add a rule for the implicit
default constructor: We use the first k constructor arguments to initialize the local fields of C, and
pass all subsequent constructor arguments to the constructor of the superclass D. We add dispatch
rules for receiver objects of run-time type C for each invocable method m, dispatching to the closest
definition in D. Finally, we define the root class Object with no arguments, fields or methods.

This completes our translation of OODL to Datalog. For example, we compile method Succ. add
from above to the following Datalog code.

// OOP code: def add(that: Nat): Nat = { val newPred = this.pred.add(that); new Succ(newPred) }
add("Succ", this, that, out, wy, wz) :- &, // demand inputs this, that, and wg

Succ#pred(this, v), // read v = this.pred

v = 0ID(C,_), dispatch,y(C, D), // dispatch this.pred.add(..)

add(D, v, that, newPred, wg, wi1), // invoke this.pred.add(..)

out = 0ID("Succ",w1), wy =w1+1, // create fresh 0ID, increment allocation counter
Succ(out, newPred) // invoke Succ constructor

Note that our translation enjoys separate compilation: Each class can be translated to Datalog
separately given the interface of their superclasses. The superclass interfaces are required by
findFieldDef and findMethodDef to find the appropriate field and method definitions. The demand
markers 4 can be eliminated after linking by the demand transformation.

4.3 Eliminating Demand Markers

Our translation uses demand markers to encode the control-flow of OOP. For example, encoded
methods are only executed once there is demand for this, X, and », which happens when the
execution reaches a call of the method. However, demand markers are not essential to Datalog,
they can be eliminated using the demand transformation.

The demand transformation [Tekle and Liu 2010] rewrites a Datalog program in a way that
enforces a demand-driven execution even when the underlying Datalog engine uses a bottom-
up evaluation strategy, which is data-driven. The key idea is to generate auxiliary relations to
communicate information from relation call-sites to their definition. To this end, the demand
transformation proceeds in three steps.

(1) Demand analysis identifies demanded columns. For add, these are this, that, and wy.

(2) Generate an input relation input_R(C) for each relation R with demanded columns C. For
each call-site of R, input_R has one rule to record the arguments at the call-site.

(3) Replace demand markers by calls to the newly generated input relations.

For example, the demand transformation inserts a call input_add(this, that,w) in place of 4 in add.
input_add has one rule for the recursive call-site within add and one rule for each external call-site.

5 Compiling Mutable OOP to Datalog

In Section 2, we used mutation to construct abstract syntax graphs and to accumulate dependency
edges in a visitor. Indeed, many OOP programs and design patterns rely on mutation, including the
observer, iterator, and lazy initialization patterns. The OODL interpreter supports mutation via
meta-interpretation. However, it is not obvious how to support mutation in Datalog, since it has a
monotonic semantics: The set of facts continuously grows during execution, but facts are never
revoked. Thus, how can we invalidate the old state and continue with an updated state? In this
section, we extend OODL with mutation and show how to translate mutable OODL to Datalog.
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We support two forms of mutation in OODL, namely mutable local variables and mutable fields:
(statements) s uz=...|varx=e|x=¢el|ef=¢

While locals can be declared immutable (val) or mutable (var), we consider all fields to be mutable
by default. Below, we explain how to encode mutable variables and fields in Datalog.

5.1 Mutable Local Variables Using SSA

We handle mutable local variables using the Static Single Assignment (SSA) method [Cytron et al.
1991; Rosen et al. 1988]. A program is in SSA when each variable is assigned exactly once and, thus,
no mutation occurs. Effectively, an SSA transformation eliminates mutable variables and uses a
family of immutable variables instead, one for each assignment. Consider the following OODL
program before and after the SSA transformation:

var a: Int = 3; a = 4; var b: Int = a val ap: Int = 3; val a;: Int = 4; val by: Int = a;

The program declares two integer variables a and b, reassigns the value of a, and assigns the final
value to b. By transforming the program to SSA form, we distinguish two versions of variable a
and only assign the final version of a to b. We can compile the resulting immutable program using
the translation from Section 4. But for languages with conditional control flow like ours, an SSA
transform also generates ¢-nodes to select a variable version. In the following example, we count

the number of edges where e1 == e2. The ¢-node for c$3 selects one of the versions of c:
def count(el: Edge, e2: Edge): Int = def count(el: Edge, e2: Edge): Int =
var c: Int =0 val cp: Int = 0
if (e1 ==e2) { c=11} if (el ==e2) { val ¢c;: Int =1}
else { c =21} else { val c,: Int =2 }
c val c3: Int = ¢(el == e2, cy, c2); C3

Thus, the SSA transformation eliminates mutable variables but introduces ¢-nodes. But, interest-
ingly, it is not necessary to support ¢-nodes in Datalog directly. This is because each branch of a
conditional construct translates to its own Datalog rule, allowing us to eliminate ¢-nodes on-the-fly.
For our example, we get two rules, where the last atom selects the appropriate version of c:

count(el, e2, c3) :- c9p =0, el =e2, c; =1, c, =2, c3 = Cy.
count(el, e2, c3) :-cp =0, el # €2, c; =1, c; =2, c3 = Cz.

5.2 Mutable Fields Using Timestamps

We used SSA to distinguish different versions of local variables. SSA is applicable to local variables
since we can determine precise use-def chains for each variable statically. In contrast, use-def chains
are (largely) intractable for fields, because we need to precisely predict the control and data flow
for invocations of setter and getter methods. Therefore, we use a dynamic approach for handling
mutable fields: timestamps (u). Consider the following example with a mutable field Num.value:

class Num(n: Int): Ob]ect 7. value
var value: Int =n

val n1 = new Num(10) n1 = 0ID(Num, @) 0 10

n1.value = 20 n1l = OID(Num, @) 1 20

val n2 = new Num(10) n2 = OID(Num, 1) 0 10

n2.value = 50 n2 = OID(Num, 1) 2 50

n1.value = 30 n1 = 0ID(Num, @) 3 30
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Fl.lc:f—T7
FIf]e = C#f (this p,0) :- @.
C#foo (this, pr, max(y')) :- &, C#f (this, 1/, ), )’ < p.
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Fig. 7. Compiling fields, field reads, and field writes to Datalog.

On creation, we initialize mutable fields at timestamp 0. But when updating a field, we use the
current timestamp to tag the new value. We collect all timestamped values in a singe table per
field. This way, the above program induces the Datalog table Num#value on the right. That is, each
field store adds a row to the table and increments the timestamp. Over time, we monotonically
accumulate all values of a field at different timestamps. Note that we use a single global mutation
counter shared by all fields and objects as timestamp. Other, more structured timestamps can be
used as long as OID and timestamp uniquely determine the field’s value.

We conducted microbenchmarks on the Peano number example, comparing both approaches.
This involved two aspects: (1) scaling the number of mutations per object and (2) scaling the number
of object allocations. A per-object timestamp is best suited when repeatedly modifying the same
object. In such cases, the size of the counter remains unaffected. However, multiple allocations
increase the counter’s size, thereby affecting performance. Conversely, our global counter performs
best when the number of mutations per object is small, since we only need to consider a few entries
per object. Object allocations do not impact performance, since we can filter based on the object.

One downside of the global timestamp is that reading a field is more complicated. When reading
a field, we need to find the most recently written value for the given object. But our timestamp
represents the last time any field has been written. For example, when reading n2.value after
executing all five statements from above, we need to read the field at timestamp 2, even though the
current timestamp has moved on. Therefore, we generate an additional relation C#fs, to compute
the most recently used timestamp for an object.

Figure 7 shows the translation semantics for mutable fields. Indeed we generate two relations
per field: One relation C#f (this, p1,v) to collect all values v with their timestamp p written to field
C.f of object this. And one relation C#f,, to compute the most recently written timestamp for an
object: Given the current timestamp p, we find all timestamps p’ at which this. f was written before.
We then select the maximal p’ using aggregation in Datalog. With these relations in place, we can
read a field e.f by fetching the most recently written timestamp po, from C#f,, and then reading
the value v at that timestamp from C#f.

Note that we modified the translation functions for expressions and statements to thread the
timestamp p alongside the allocation count w. The only place the timestamp changes is during field
assignment e;.f = ep: After inserting a row into C#f at the current timestamp p;, the translation
yields an incremented timestamp pi; + 1. Besides that, the translation handles y analogously to w.
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We extend our example from above with an increment method to illustrate the translation:

class Num(n: Int): Num(this, x) :- &, Num#fvalue(this, @, x), Object(this).
var value: Int = n Num#value(this, p, v) - &.
def inc(): Int = Numitvaluee (this, p, max(y’)) :- &, Numi#value(this,y’, ), p/ < pu.
val old = this.value inc("Num", this, old, w, w, p, ') :-
this.value = old + 1 Num#valuew (this, g, peg), Num#value(this, pgq, old),
old Num#value(this, p, old + 1), p/ = pu + 1.

We can see here that the constructor initializes Num.value at timestamp 0. Method inc takes the
current timestamp p as input, finds the most recently written timestamp p,j4 for this.value and
reads it. It then writes a new value old + 1 and increments the timestamp. Of course, our translation
works for arbitrary mutable OODL programs with many mutable fields and where field assignments
do not necessarily respect encapsulation. We impose no restrictions on the use of mutable fields.

6 Object-Oriented Fixpoint Computations

We want to deeply integrate Datalog and OOP, to exploit the advantages of OOP and the efficient
fixpoint computations of Datalog. To this end, we first need to understand the design space regarding
what operations are allowed within fixpoint computations and how these translate to Datalog.

6.1 Fixpoint Computations in OODL

In general, a lot of programs in OOP that freely mutate the heap have no unique least fixpoint. For
example, consider a simple OOP program that continuously modifies the field of an object. There
exists no unique least fixpoint, unless the field’s value becomes stable eventually. Indeed, if such a
fixpoint exists, our OODL interpreter will find it, since it iterates until the heap stabilizes.! However,
the same fixpoint guarantees do not hold for our compiled OODL code. To find a fixpoint, we
implicitly rely on the semi-naive evaluation of the generated Datalog code, not on the stabilzation
of the heap. Accordingly, the existence of a fixpoint depends on the Datalog encodings we choose
for translating OODL. In particular, our encodings of allocation and mutation rely on counters
threaded through the Datalog program. These counters increase whenever an object is created or a
field is mutated, even if they have no observable impact on the heap. In our example, where a field
eventually stabilizes in OODL, the mutation counter in the Datalog translation still diverges and
no fixpoint exists. The same applies to allocation.

It is not obvious how to encode allocation or mutation differently in Datalog to prevent these
problems. Instead, we introduce abstractions in OODL that avoid these issues while largely retaining
expressiveness. Specifically, we add algebraic data types (case classes) to OODL, whose instances
do not have object identity and thus can be created during fixpoint computations. And we define
a form of monotonic mutation that does not inhibit finding a fixpoint. Before we describe these
abstractions in detail, we extend OODL with recursively defined sets to mirror Datalog’s relations.

6.2 Fixpoint Computation with Sets

Figure 8 introduces standard OOP constructs for working with immutable sets: set literals, union,
and set comprehensions. As usual in imperative languages, we also permit iteration on sets as a
statement; a guard is not necessary here since we already support if-statements. Figure 8 also shows
how to translate set expressions and iterators to Datalog. For set literals, we generate a Datalog
term y whose binding is non-deterministically set to any t;. Similarly, for set union, y propagates

ITechnically, the interpreter does not always find a fixpoint, since we do not perform any garbage collection to remove
unreachable objects from the heap. This is a limitation of our implementation only.
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Fig. 8. Set constructs and their translation to Datalog.

all t; or t; non-deterministically. Unfortunately, the non-deterministic set semantics of Datalog are
problematic when processing sets in a language with side-effects.

For example, consider the program for (x <- Set(1,2,3)) yield new Num(x), which creates three
Num objects. Our translation would need to guarantee that each Num object is assigned a unique
OID. This requires deterministic threading: Process the elements of the set one by one in some
deterministic order and thread the allocation counter between iterations. However, as illustrated in
Section 2, this strategy would still fail for recursive fixpoint computations, since allocation and
mutation counter are unbounded and the fixpoint computation diverges.

Therefore, we use a simplified translation that prohibits side-effects in non-deterministic com-
putations. When translating set comprehensions or iterators, only e; may induce side effects
that manipulate the allocation counter w or mutation counter p. All other computations non-
deterministically depend on the set elements of e; and therefore may not induce side effects: Their
translation takes and yields »’ and p’ unchanged. In the remainder of this section, we adapt our
language translation to introduce alternatives for operation that induce side effects.

6.3 Allocating Algebraic Objects in Fixpoint Computations

A deep integration of OOP and Datalog requires allocating new objects inside fixpoint computations.
When interpreting OODL, allocating objects might expand the heap, thereby preventing a fixpoint
from being found. In our Datalog translation, allocating a new object causes a different problem:
We increase the allocation counter. Our translation function from Figure 8 precludes such code
(and fixpoint computations would diverge otherwise). To support object allocation in fixpoint
computations, we resort to a side-effect free allocation scheme that does not require OIDs.

To this end, we extend OODL with algebraic data types in the form of Scala-like case classes.
Case classes are immutable and their equality is structural: Objects that instantiate the same case
class are equal if and only if their fields have equal values. Our Datalog translation can allocate
instances of case classes without using the allocation counter, since they do not require an OID.
For example, we support code that constructs Path objects in a non-deterministic order:

case class Path(start: Node, end: Node)
def directPaths(start: Node, edges: Set[Edgel): Set[Path] =
for (e <- edges if e.from == start) yield new Path(start, e.to)
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Fig. 9. Instances of case classes can be allocated without side-effect using a structural ID (SID).

def paths(start: Node, edges: Set[Edgel): Set[Path] = directPaths(start, edges) ++
for (p1 <- directPaths(start, edges)) yield
for (p2 <- paths(pl.end, edges)) yield new Path(start, p2.end)

This program complies with our translation function from Figure 8, since we only instantiate case
classes. The exact semantics of case classes follows below. But also note the unbounded recursion
in paths, which would not normally terminate in an OOP language without least fixpoint semantics.
The interpreted version of this OODL program terminates, since we preclude case classes from the
fixpoint computation by not storing them in the heap. The Datalog translation also terminates and
computes the transitive closure of edges because the allocation and mutation counter are stable.

Figure 9 adds two new translation rules for creating instances and reading fields from case classes.
The key ingredient for encoding case classes are structural identities (SID), which we use instead of
OIDs here. An SID consists of the name of a case class and a tuple of values, one for each field of
the case class. We use SIDs to identify and to compare case-class objects, since structurally equal
objects have equivalent SIDs. We also use SIDs to lookup fields from a case-class object as also
shown in Figure 9. That is, for case classes, we do not store fields in relations, since that would
duplicate the SID. In this subsection, we showed that case classes enable object allocation within
fixpoint computations while still supporting inheritance, field reading, and dynamic dispatch. Next,
we propose a technique for reintroducing mutation within fixpoint computations.

6.4 Relaxed Mutation Using Mono Types — Monotonically Mutable Data Types

A Datalog fixpoint computation only yields a result when no new tuples are derivable. Since we use
and increment a mutation counter when writing to a field, mutation precludes fixpoint computations.
To compute fixpoints in Datalog despite mutation, we propose using relaxed mutation in a novel
abstraction of monotonically mutable data types, or mono types for short.

A mono type is a mutable container to which values can be added, but never removed. However,
mono types are not collections: They can process the added values and provide derived results.
Technically, a mono type implements the following interface:

package mono
trait Type[V, R]: V m: mono.Typel[V,R], v: V.

def +=(v: V): Unit m.result C (m += v; m.result)

def result: R
Operation += accepts values of type v and processes them internally. Operation result provides the
result of the internal processing. However, the operations of a mono type are restricted in one
important way: Observations made through result must be monotonically increasing according
to some partial order E on type R. This means, previous observations are subsumed by later
observations after additional elements have been added to the mono type. We deliberately refrain
from specifying any other properties about the memory ordering for mono types. For example, we
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do not specify that operation += commutes (the order in which elements are added is irrelevant).
The monotonicity property suffices to support integration into Datalog.

We integrate mono types into Datalog without using a mutation counter. Instead, the insertion of
elements to a mono type is asynchronous. However, the monotonicity of mono types ensures that
the final result is consistent eventually. Since Datalog computes a fixpoint, it is this final result that
other parts of the computation observe in the end, making them eventually consistent themselves.

To ensure termination of fixpoint computations, OODL developers must use mono types in a
way that prevents infinite ascending chains of observations r; C r, C --- derived by m.result.
Developers can prevent such chains by either (i) only adding finitely many elements to a mono
type or (ii) by using a mono type that satisfies the ascending chain condition. In particular, we
allow computations to recursively feed mono-type results back into the mono type as input, but the
mono-type result has to become stable after finitely many iterations. That is, mono types generalize
lattice-based recursive aggregation as explored by prior work [Madsen et al. 2016; Szabo et al. 2018].

6.5 Examples of Mono Types

We specified mono types algebraically through the signatures of += and result and their monotonicity
property. While the mono type interface is predefined in OODL, concrete mono type definitions
are user-defined. Here, we provide various examples to illustrate the flexibility of our design.

Primitive Mono Types. We start with a few simple mono types that usually can be found as
built-in aggregations in Datalog systems. Indeed, we do not compile these mono types to Datalog,
but use them as aggregators in the underlying Datalog system (here: in Scala).

class Count extends mono.Typel[Int, Int]: class Sum extends mono.Type[Int, Int]:
var count: Int = @ // Scala mutation var sum: Int = @ // Scala mutation
def +=(v: Int): Unit = this.count += 1 def +=(v: Int): Unit = this.sum += Math.abs(v)
def result: Int = this.count def result: Int = this.sum

The count mono type increments an internal counter for each element added, and the sum mono
type adds the element to compute the sum of all elements. Both mono types internally rely on a
mutable Scala field. This mutation is justified since we do not rely on a strong ordering for reads or
writes, but only require monotonicity, which is given here. We can also combine mono types to
form more complex mono types. For example, we could introduce an Average mono that tracks both
the sum and count of elements. Note however, that computing the mean by dividing the sum result
by the count does not grow monotonically and as such, must not be part of the mono type.

Lattice Mono Types. Due to the popularity of using  class L extends mono.Type[L, L]:

Datalog for program analysis, lattice-based aggregation var state: L = L
is of particular interest [Madsen et al. 2016; Szab¢ et al. def +=(v: L): Unit = this.state
2018]. Each bounded semilattice (L, L, L1) forms a mono = this.state U v

type as the generic construction on the right illustrates. def result: L = this.state

That is, we compute the join over all added elements, which is monotonic by definition.

Relational Mono Types. So far, all mono types we showed were defined by implementing the
+= and result operations and translated to (recursive) aggregation in Datalog. However, there is a
special class of mono types that does not require aggregation, but can be encoded through regular
Datalog relations. We call these mono types relational.

The simplest relational mono type is mono.Set, which simply collects all added elements. That is,
mono.Set[V] is @ mono.Type[V, Set[V]] where we can add values of type v and observe the collected
values of type set[v]. While it is possible to define mono.Set through += and result, it is more efficient
and convenient to reuse Datalog’s relations. In particular, if field C.f has type mono.Set[V1, then the
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corresponding field relation has type C#f c OID X V, which can accommodate any number of
v € V per object. Reading result for a mono.Set then yields all v € V associated with this. All mono.Set
types are monotonic by construction, because Datalog relations are monotonic under set inclusion.

Another relational mono type is mono.Map[K, V1, which associates a value of type V for each key
of type K in the map. That is, mono.Map[K,V] is a mono.Type[(K,V), Map[K,Vv1], which accepts (K, V)
pairs and yields the entire map. We can lower a mono.Map to Datalog relation with a functional
dependency. Given field C.f has type mono.Map[K, V], then the corresponding field relation has type
C#f c OID x K x V with functional dependency (OID, K) + V. That is, if (0, k,0;) € C#f and
(0, k,v2) € C#f, then v; = vy, exactly as expected for a map.

However, is each mono.Map monotonic, and under which ordering? Consider the following program:

val m = new mono.Map[String, Int](); m += ("foo", 1); m += ("foo", 2); m.result

What happens when we add a second value for key "foo" in m? To resolve this situation, we
require that v itself must be a mono type. That is, given M <: mono.Type[V,R], we can provide
mono.Map[K, M] <: mono.Type[(K,V), Map[K,R1]. Here, M is a mono type that accepts values of type
v and provides observations of type R. Then, a mono.Map[K, M] accepts key-value pairs of type (,V)
as input and provides observations of type Map[K,R]: One M observation for each key. For exam-
ple, mono.Map[String, mono.Sum] iS a mono.Type[(String,Int), Map[String,Int]] that sums up all values
associated with same key. For this mono type, the example program associates "foo" with value 3.

There are many more interesting relational mono types, such as mono.Map[K, mono.Set[V1] to
encode multimaps. The lowering of relational mono types to Datalog is not always easy, preserving
monotonicity and functional dependencies correctly. In our implementation, we currently only
support mono. Set and mono.Map[K, M] for non-relational (i.e., primitive and lattice) mono types M. We
leave a detailed study of the theory and implementation of mono types as future work.

7 Implementation and Evaluation

We have implemented an interpreter for OODL that relies on naive fixpoint iteration. We also
implemented a compiler that translates OODL programs to Datalog code, which we can run using
the IncA framework [Pacak et al. 2022]. Our compiler generates Datalog code as described in this
paper but supports some additional features. For example, we encode the inheritance hierarchy
of classes as facts in the extensional database to support instance-of tests and casting. The code
of the implementation and case studies are available at https://gitlab.rlp.net/plmz/inca-scala/-
/tree/objectoriented-interp.

In the remainder of this section, we present four case studies that demonstrate the usability
of OODL. We use two of the case studies for a performance evaluation, where we measure the
running time of (i) the compiled OODL code, (ii) the interpreted OODL code, and (iii) a handwritten
Datalog solution (for one of the case studies). Even though our compiler only applies the most basic
optimizations, the generated Datalog code is significantly faster than both: handwritten Datalog
and interpreted OODL. Additionally, we discuss the effort of porting the case studies to traditional
OOP by implementing them in Scala.

7.1 Case Studies
We implement four program analyses in OODL using the visitor pattern. The visitor pattern not
only provides reusable traversal rules, but also allows us to modularly add analyses.

Dependency Analysis. We implement the dependency analysis from Figure 1 in OODL. Step (1)
and (3) are unchanged: constructing an abstract syntax graph (ASG) and computing the transitive
closure over a set of edges. But in Step (2), we modified the code to keep the allocation and mutation
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counters stable in the fixpoint computation and to guarantee termination. Specifically, we change
class Edge into a case class to keep the allocation counter stable, and we collect edges in a mono. Set
during the fixpoint computation.

case class Edge(val from: Def, val to: Def)
class DependencyAnalysis extends Visitor:
val edges: mono.Set[Edge] = new mono.Set[Edge]()
override def visitVar(v: Var, d: Def): Unit =
if (v.target != noDef) { edges += new Edge(d, v.target); v.target.accept(this) }

Under normal OOP-semantics, such fixpoint computation would not terminate. For OODL pro-
grammers, fixpoint computations are declarative.

Control-flow Analysis. Next, we implement a simple control-flow analysis for a while language
with arithmetic expressions, assignments, conditionals, and while-loops. We write a visitor to
collect control-flow edges in a mono. Set:

class CfgVisitor extends Visitor:
val cfg: mono.Set[(Stm, Stm)] = new mono.Set()
override def visitSequence(s: Seq): Unit = for (1 <- s.sl.last) this.cfg += (1, s.s2.first)
override def visitIf(s: If): Unit = this.cfg ++= Set((s, s.thn.first), (s, s.els.first))
override def visitWhile(s: While): Unit =
this.cfg += (s, s.body.first); for (last <- s.body.last) this.cfg += (last, s)

We use inheritance and rely on the visitor pattern to visit each node in the AST, but only overwrite
the behavior for the three control statements. We use a mono. Set to store pairs that represent a flow
from one statement to another. Each time we visit a control statement, we add edges to our set.
Compared to traditional Datalog, the OODL implementation has two advantages. First, we reuse
the code for the AST traversal through the visitor superclass, allowing us to focus on control
statements. Second, we encapsulate the cfg field, which is intended to be only used by the methods
of cfgvisitor. In particular, all visit methods write to the same field without requiring state passing.
It is not obvious how to obtain similar advantages in plain Datalog unless relying on our encodings.

Constant Propagation Analysis. Finally, we implemented two flow-sensitive data-flow analysis
for the while language: a constant analysis and a sign analysis. For the constant analysis, we define a
lattice ConstantLat as an abstract class with three concrete subclasses: Bottom, SomeConstant (i) for any
integer i, and Top. The ordering and join operations are defined as usual. As described in Section 6.5,
we wrap this lattice in a mono type called mono.Constant:

class mono.Constant extends mono.Type[ConstantlLat, ConstantlLat]:
var state: ConstantLat = new Bottom()
def +=(c: ConstantLat): Unit = this.state.join(c)
def result: ConstantlLat = this.state

Next, we provide an abstract interpreter aevalConst for expressions of the while language. Numeric
literals evaluate to constants, and arithmetic operators are lifted to the constant lattice as usual.
The abstract interpreter takes the current statement and valueManager as input to support variable
lookup. The ValueManager maintains the abstract value of variables. Finally, each stm implements a
transfer method that updates variable values in the valueManager.

class Num(num: Int) extends Exp:

override def aevalConst(p: ValueManager, s: Stm): ConstantLat = new SomeConstant(this.num)
class Var(name: String) extends Exp:

override def aevalConst(p: ValueManager, s: Stm): ConstantLat = p.getValue(s, this.name)
class ValDef(name: String, val rhs: Exp) extends Stm(...):
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override def transfer(pred: Stm, p: ValueManager): Unit =
for (v <- allvars if v != this.name) p.put(this, v, p.getValue(pred))
p.put(this, this.name, this.rhs.aevalConst(p, s))

Using this setup, we can describe data-flow analyses modularly by implementation of the valueManager
abstract class. For the flow-sensitive constant analysis, we track a variable’s abstract value at each
statement using a nested mono.Map. To initialize the analysis, we insert bottom values for each
variable at the program’s initial statement (not shown). We can then run the analysis by visiting
each relevant transfer function once. The fixpoint semantics takes care of the rest: iterating the
transfer functions until the mono.Map becomes stable.

class FSConstantPropagation extends ValueManager:
var vars: mono.Map[Stm, mono.Map[String, mono.Constant]] = new mono.Map()
override def getValue(s: Stm, v: String): ConstantLat = this.vars.get(s).get(v).result
override def put(s: Stm, v: String, m: ConstantLat): Unit = this.vars(s) += (v, m)
def run(): Unit = for ((from, to) <- this.cfg) to.transfer(from, this)

Sign Analysis. We also implemented a flow-sensitive sign analysis based on a mono.Sign type.
To this end, we only had to implement a different valueManager, but could reuse all other code.?
These case studies show how the design of OODL enables OOP-style program organization and
maintainability while leveraging Datalog’s fixpoint semantics.

7.2 Comparison to Traditional OOP

We ported all case studies to traditional OOP by implementing them in Scala. However, OOP has
no built-in support for fixpoint computations. That is, we need to introduce explicit data structures
and logic to handle fixpoints. In the remainder of this section, we describe these changes in detail.

Dependency Analysis. The dependency analysis requires explicit fixpoint handling at multiple
places. In step (3), the dependencies method automatically terminates upon reaching a fixpoint. To
achieve the same in OOP, we need to introduce a worklist and track the visited dependencies.
However, this alone doesn’t guarantee termination of the entire analysis. In step (2), we collect
all dependency edges in a mono.Set each time we visit a variable. This computation also involves a
fixpoint, albeit less apparent. When visiting a variable, the accept method is called on its target
definition. The target definition in turn invokes accept on its expression, potentially leading to
an infinite loop if the expression is a variable. To circumvent this loop, we also track all visited
definitions in visitvar and only process target definitions that have not been visited before.

Control-flow Analysis. Porting the control-flow analysis to Scala is almost verbatim. This is
because computing the control-flow doesn’t require a fixpoint computation. We only replace the
mono.Set with an immutable Scala set. This shows how closely OODL captures OOP.

Constant and Sign Analysis. For our data-flow analyses, OODL iterates the transfer function
until a fixpoint is reached. This iteration has to be made explicit when translating the case study
to Scala: Whenever the abstract value of a variable changes, we process the control-flow graph
once more. Moreover, we must also replace all mono types. In particular, instead of representing
vars with a mono.Map, we use an immutable Map and instead of mono.Constant we use a normal class.
However, this also means we now need to manually join the values before adding them to vars,
whereas in OODL this is implicitly defined by mono.Constant.

2Technically, we changed their type signatures since OODL lacks generics currently, but the implementation did not change.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 273. Publication date: October 2024.



Object-Oriented Fixpoint Programming with Datalog 273:23

Summary. In conclusion, porting our case studies to traditional OOP necessitates explicit algo-
rithms and data structures for handling fixpoint computations. This process entails a careful analysis
of each program to correctly identify fixpoints, followed by implementing changes throughout the
whole programs to guarantee termination. While the amount of changed code is small (~50 LOC
each), the code for fixpoint computations is complex and requires non-local reasoning. In OODL,
all of this reasoning is implicit, since fixpoints are computed declaratively.

7.3 Performance Evaluation

We developed a compiler for OODL to outperform our
fixpoint interpreter from Section 3. By targeting Datalog,
the compiled code should benefit from Datalog’s semi- —— plain Datalog
naive evaluation. For the dependency analysis we also OODL compiled
measured the execution time of a handwritten Datalog OODL interpreted
version that we implemented as idiomatically as possible
in pure Datalog without relying on our encodings. For
sufficiently complex input programs, the compiled code
clearly outperforms the interpreter and the handwritten
Datalog program. While outperforming the interpreter is
expected, outperforming the handwritten Datalog code
seems surprising. This performance difference stems from
the fact, that the handwritten analysis computes 5.5x o4~
more tuples than the OODL implementation. OODL uses 10 " 110 210 " 3io ' 410 510
a mono type to collect all edges in a single place, while Number of nodes

the handwritten Datalog program propagates all edges (a) Dependency analysis
throughout the program. This shows, that better abstrac-
tions can improve performance.

We also measured the performance for the constant
and sign analysis, but did not develop a handwritten solu-
tion in plain Datalog. We show the results for the constant
analysis on the right; the sign analysis yielded similar
results. It is clear that the compiled code outperforms the
interpreted version of OODL. We also compared these
running times to the handwritten Scala code with ex-
plicit fixpoint handling: The Scala code only required one
second to execute the analysis. However, we know from
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the literature that optimized static analyses written in — ; ;
Datalog have competitive performance [Bravenboer and 2 4 6 8 10 14 18
g p p Number of nested while—loops
Smaragdakis 2009; Szabd et al. 2021]. Our Datalog com-
piler currently only applies rudimentary optimizations.
We expect significantly performance improvements of
the compiled code through inter-relational optimizations,
which we will explore in future work.

(b) Constant analysis

Fig. 10. Running times of dependency and
constant analysis

8 Related Work

We study the deep integration of Datalog and OOP to enable fixpoint computations in OOP and
OOQP abstractions in Datalog. To this end, we propose the design of OODL. Our design improves
over prior work in unique ways: (i) dynamic allocation of objects at runtime, (ii) dynamic dispatch
of virtual method calls based on the object’s run-time type, (iii) mutation of local variables and
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fields, (iv) Datalog-style fixpoint computations over case classes, and (v) mono types to support
relaxed mutation in fixpoint computations. We discuss related work in the remainder of this section.

Abiteboul et al. [1993] extend Datalog with OOP features such as classes, inheritance, objects,
and methods. They translate their extension to Datalog with stratified negation, but do not provide
an implementation. In contrast, OODL is a useable, Turing-complete object-oriented language that
is compiled to Datalog, without negation but with constructors and aggregation. Abiteboul et al.
have a notion of object identity, but all objects must be known at compile time. Their approach also
supports dynamic dispatching, but uses class guards to find the most specific implementation at
run-time. This requires negation, which is problematic when simulating control flow, because the
demand transformation introduces additional cycles, which makes the program unstratified [Tekle
and Liu 2019]. We follow a different approach, namely creating a dispatch table at compile time.

QL [Avgustinov et al. 2016] is an object-oriented frontend for Datalog with classes, inheritance,
and methods, but without mutation. Classes provide a characteristic predicate to enumerate all
their “objects”, which are immutable values. In fact, any value that satisfies the characteristic
predicate is an instance of said class. QL does not have dynamic allocation with unique object
identities. Technically, QL operates on primitive values, algebraic data and objects already stored
in the extensional database. Objects in OODL are always dynamically created, without relying on
preexisting data from the extensional database. QL supports member predicates defined inside a
class, which behave similar to methods in OOP. At runtime, a member predicate call dispatches
to all most-applicable targets, potentially more than one for a single object. This is in contrast
to most OOP semantics as implemented in OODL, where each method call executes exactly one
concrete implementation, that depends on the state of an object. Similar to case classes, QL also
supports algebraic data types (ADTs) represented by a structural identity and created at run-time
[Schifer et al. 2017]. However, ADTs do not directly exhibit class-like behavior, as they lack support
for member predicates. Yet, a class can extend branches of an algebraic data type to add member
predicates to it. Thus, users bear the responsibility of introducing class-like behavior to ADTs. In
OODL, case classes behave like normal classes; they support field reads, dynamic dispatch, and
inheritance out of the box. In summary, the distinct flavor of “objects” in QL and the missing
mutation differ from most OOP languages. It is therefore not clear which OOP design patterns
carry over to QL.

Dedalus [Alvaro et al. 2011b] extends Datalog to reason about distributed systems by introducing
a notion of time to Datalog. A tuple is only valid at a specific point in time, marked by a timestamp.
To persist a tuple over time, it must be re-derived for each following timestamp. To invalidate a
tuple, they introduce rules that prevent re-deriving the tuple for all following timestamp. OODL’s
implementation of mutability has some similarities to Dedalus. In contrast to our concept of time,
Dedalus’ persistent strategy is more complicated and requires more memory. Dedalus re-derives a
tuple in every iteration, even if it has not changed. We only store a new value for a field when the
field is written to, which makes writing more efficient. As a downside, our strategy complicates
and slows down field reads, since we need an aggregation to find the latest timestamp.

JastAdd [Magnusson et al. 2007] is a meta-compilation system that enables extensible compiler
implementations through a combination of object-orientation and declarative computations. In
particular, fixpoint computations are declaratively defined using circular attributes. A circular
attribute is given by an initial value and an equation, which may reference the attribute itself.
JastAdd iteratively applies this equation until the result stabilizes. Stability occurs when the equation
is monotonic and all possible values of the attribute form a lattice of finite height, where every
value has a well-defined notion of equality. In OODL, fixpoint computations are implicitly defined
and computed by evaluating the corresponding Datalog program. Our mono types serve a similar
purpose to circular attributes but operate differently. Mono types are first-class values that can be
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passed around and manipulated across various locations. Their use does not mandate a fixpoint
computation unless observations of mono types influence subsequent mono type inputs. Mono
types do not need to implement a lattice and the partial order does not need to guarantee finite
height, as long as the sequence of observed values satisfies the ascending chain condition.

Functional IncA [Pacak and Erdweg 2022] is a functional frontend for Datalog with first-class
functions, algebraic data types, and sets. While we focus on OOP features, dynamic allocation,
dynamic dispatch, and mutation, we import some ideas from this work. In particular, we borrow
their encoding of control flow using the demand transformation and their encoding of sets. They
translate sets to first-order Datalog relations, but use a defunctionalization transformation to also
support first-class sets. OODL’s case classes are also somewhat similar to algebraic data in functional
IncA, but encoded differently. Other than that, the two languages have few similarities.

Flix [Madsen and Lhotak 2020; Madsen et al. 2016] is a functional metaprogramming language
for Datalog with support for user-defined lattices to solve fixpoint problems. In Flix, Datalog
programs are first-class values, meaning sets of rules can be instantiated, combined, and solved
at run-time. This allows for interesting reuse patterns for Datalog programs. In contrast, we rely
on object-oriented features to enable code reuse. In particular, OODL enables expressing fixpoint
computations by using recursive methods and sets, using (relaxed) mutation to realize OOP-style
programming. Flix also supports user-defined lattices, which are a special case of our mono types.

Kuper and Newton [2013] propose the concept of LVars (lattice vars), which are an abstraction
for mutable variables intended for deterministic concurrent programming. LVars have join-on-
write semantics and served as inspiration for the encoding of lattices as mono types. However, to
guarantee deterministic read behaviour, LVars implement a so called threshold read. A threshold
read blocks and thereby synchronizes all threads until the LVar crosses a certain threshold value.
Since OODL is not designed with parallelism in mind, mono types serve a different purpose in
our design, namely to enable mutation inside fixpoint computations. Therefore, we do not need to
guarantee deterministic reads, but can rely on the eventual consistency of the fixpoint computation.

Datalog® is a datalog-like language enabling recursive computations over general semirings
[Abo Khamis et al. 2022]. It operates on a partially ordered, pre-semiring (POPS) where both
ring operations are monotone. To compute the least fixpoint of a Datalog’® program, they adapt
the semi-naive evaluation algorithm for a general POPS. This means all relations operate on the
same pre-semiring. Decoupling the partial order from the semiring structure allows support for
semirings that are not naturally ordered. In contrast, mono types are first-class containers, each
implementing distinct behavior. Mono types can be passed around in a Datalog program, exposing
different behaviors to different relations. Each bounded semi-lattice gives rise to a mono type that
can be expressed through lattice-based, recursive aggregation in a Datalog system. Thus, mono
types inherit their fixpoint guarantees from the underlying aggregation algorithms, such as DRedy,
[Szabo et al. 2018] or LADDDER [Szabd et al. 2021]. We also decouple the partial order from the
underlying data type, with the user defining the partial order by adhering to the mono interface.

The frontend language of the Soufflé Datalog system [Jordan et al. 2016] provides a component
system on top of Datalog to promote code reuse. A component can contain relation or type declara-
tions, rules, facts, and nested components. While components can be instantiated, instantiation is
static and Soufllé creates distinct namespaces for each instantiation at compile time.

9 Conclusion

We propose OODL, an object-oriented language that deeply integrates OOP and Datalog. In
particular, OODL allows object-oriented programs to express fixpoint computations. We carefully
translate OODL programs to Datalog in a way that preserves key OOP features: dynamic allocation,
object identity, dynamic dispatch, and mutation. However, the side effects of allocation and mutation
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conflict with Datalog’s fixpoint semantics. To this end, we design extensions of OODL that permit
object creation and mutation in a limited form, namely through algebraic case classes and our novel
abstraction of mono types. We have implemented OODL and shown in case studies how it allows
developers to combine OOP design patterns with fixpoint computations.
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