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ABSTRACT
State-of-the-art 3D computer vision algorithms continue to improve on sparse, unordered 
image sets. Recently developed foundational models for 3D reconstruction, such as dense and 
unconstrained stereo 3d reconstruction (DUSt3R), matching and stereo 3d reconstruction 
(MASt3R), and visual geometry grounded transformer (VGGT), have attracted considerable 
attention due to their ability to handle very sparse image overlaps, as well as their general
ization capability. In light of this contribution, evaluating DUSt3R/MASt3R/VGGT on typical 
aerial images is important, as these models may hold the potential to handle extremely low 
image overlaps, stereo occlusions, and textureless regions. For highly redundant collections, 
they can accelerate 3D reconstruction by using extremely sparsified image sets. Despite being 
tested on various computer vision benchmarks, their potential on photogrammetric aerial 
blocks remains unexplored. We present a comprehensive evaluation of the pre-trained 
DUSt3R/MASt3R/VGGT models on the aerial blocks of the UseGeo dataset for pose estimation 
and dense 3D reconstruction. The methods reconstruct dense point clouds from very sparse 
inputs (fewer than ten images, resized to a maximum dimension of 518 pixels), achieving 
reasonable accuracy and completeness gains up to 50% over COLMAP. VGGT further shows 
superior computational efficiency, scalability, and more reliable camera pose estimation. 
However, all three show limitations on high-resolution imagery and large image sets, with 
the camera pose estimation reliability significantly declining as the number of images and the 
geometric complexity of the scene increase. These findings indicate that while transformer- 
based methods cannot replace traditional SfM and MVS methods entirely, they hold potential 
as complementary approaches, especially in challenging, low-resolution, and extremely sparse 
scenarios.
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1. Introduction

Image-based 3D reconstruction and mapping enable 
diverse applications, such as environmental change 
monitoring (Jassoom and Abdoon 2024; Purkis and 
Klemas 2011), disaster response (Gonsoroski et al.  
2023; Pi, Nath, and Behzadan 2020; Vetrivel et al.  
2018), virtual and augmented reality (Noh, Sunar, 
and Pan 2009), mobile 3D reconstruction (Bianco, 
Ciocca, and Marelli 2018), computer graphics (Izadi 
et al. 2011), video games (Brown and Hamilton 2016), 
and common geomatics tasks (Albanwan, Qin, and 
Tang 2024; Hamal and Ulvi 2024; Ruan et al. 2023). 
Photogrammetric 3D reconstruction is a core techni
que that leverages rigorous perspective geometry to 
generate dense, accurate environmental models, often 
from aerial imagery. Typically, photogrammetric ima
gery is collected with generous overlaps (60–80%) and 
high redundancy, ensuring sufficient observations for 

robust bundle adjustment and dense image matching. 
However, this approach can require lengthy proces
sing times, which limits its applicability for time- 
sensitive applications such as real-time mapping and 
disaster response planning. In addition, traditional 
photogrammetric methods are vulnerable when 
image overlap is limited, which can lead to suboptimal 
camera networks, occlusions, and large parallax that 
challenge dense surface reconstruction.

In recent years, learning-based approaches for 3D 
reconstruction have gained significant attention. 
These methods estimate an object’s or scene’s 3D 
structure end-to-end, removing the need for tradi
tional multi-stage steps such as keypoint detection 
and matching. Because these models embed contex
tual information in pre-trained weights, they can pro
duce high-quality reconstructions from only a handful 
of views (Liu et al. 2023; Pan et al. 2019; Sinha, Bai, and 
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Ramani 2016), and, in some cases, even from a single 
image (Samavati and Soryani 2023). Such methods are 
particularly effective for highly sparse and low-overlap 
datasets, offering advantages such as rapid processing. 
With their growing prominence, there is increasing 
interest in evaluating their performance in aerial 
photogrammetry.

The computer vision and photogrammetry com
munities have proposed many deep learning-based 
solutions for 3D reconstruction (Dame et al. 2013; 
Mildenhall et al. 2021; Zhan et al. 2018; Zhu et al.  
2022), demonstrating different levels of performance 
across diverse datasets, including small indoor objects 
and outdoor ground-perspective scenes (Farshian 
et al. 2023). Among many of these preexisting meth
ods, DUSt3R (Wang et al. 2024), its sibling MASt3R 
(Leroy, Cabon, and Revaud 2025), and the subsequent 
visual geometry grounded transformer (VGGT) 
(Wang et al. 2025) generalize effectively across diverse 
scenes. These models follow an end-to-end paradigm 
that predicts point clouds directly from single or 
stereo images, which bypasses the traditional two‐ 
step process of sparse reconstruction followed by 
dense reconstruction and enhances robustness to 
occlusions. With global motion averaging as a post- 
processing step, DUSt3R and MASt3R can integrate 
multiple images using 3D point clouds predicted from 
individual stereo pairs. VGGT further advances the 
pipeline with a feed-forward neural network that elim
inates costly iterative post-optimization used by 
DUSt3R. As a result, VGGT may outperform 
DUSt3R and MASt3R in both speed and quality. 
Using learned priors and direct 3D registration, 
DUSt3R, MASt3R, and VGGT can handle individual 
stereo pairs and, by extension, multiple images with 
very low overlap and large occlusions. This suggests 
potential in challenging cases with only a sparse set of 
images, whether because the data were passively col
lected (for example, historical photos), resources to 
acquire new data are limited (for example, aerial or 
satellite imaging with infrequent collection), or the 
goal is to reach real-time or near-real-time perfor
mance with fewer images. Despite strong results on 
computer vision benchmarks such as CO3Dv2 
(Reizenstein et al. 2021), ETH3D (Schops et al.  
2017), RealEstate10k (Zhou et al. 2018), BONN 
(Palazzolo et al. 2019), and the Map-free benchmark 
(Arnold et al. 2022), DUSt3R, MASt3R, and VGGT 
have not been extensively evaluated on aerial imagery. 
Compared to computer vision benchmarks, photo
grammetric aerial images consist of rather small base
lines with mostly nadir views of relatively large scenes, 
leading to fewer perspective variations that DUSt3R/ 
MASt3R/VGGT typically process. Therefore, under
standing their effectiveness, capabilities, and accuracy 
potential when dealing with aerial photogrammetric 
images with varying density is pivotal for their 

practical value in the context of 3D mapping. 
Specifically, AerialMegaDepth (Vuong et al. 2025), 
designed for air-to-ground matching, proposes 
a scalable framework for generating pseudosynthetic 
data that simulates a wide range of aerial viewpoints. 
This framework was trained on several state-of-the-art 
algorithms and has demonstrated superior perfor
mance compared to the original version of DUSt3R. 
However, to ensure a fair comparison, this enhanced 
version was not included in our evaluation.

In this work, we present the first comprehensive 
assessment of DUSt3R, MASt3R, and VGGT for 3D 
reconstruction on aerial photogrammetric image 
blocks. We feature their strengths and limitations for 
pose estimation and dense point cloud generation 
under varying image network configurations. We use 
the UseGeo dataset (Nex et al. 2024) and compare 
these methods with COLMAP (Schonberger and 
Frahm 2016; Schönberger et al. 2016), a general- 
purpose structure-from-motion (SfM) and multi- 
view stereo (MVS) pipeline. Figure 1 illustrates an 
example where we evaluate both dense point-cloud 
quality and estimated camera poses.

Our results show that classic methods remain the 
most effective choice for standard photogrammetric 
overlap rates between 60% and 80%. In contrast, 
VGGT serves as a valuable supplement in extremely 
sparse image scenarios where traditional methods fail, 
and it offers better scalability, efficiency, and pose 
estimation than DUSt3R and MASt3R.

The remainder of the paper is organized as follows. 
Section 2 reviews related work, covering state-of-the- 
art 3D modeling solutions and evaluation methods. 
Section 3 details the dataset configuration and evalua
tion metrics. Section 4 presents experimental results, 
analysis, and a brief case study that shows the potential 
of learning-based methods. Finally, Section 5 con
cludes our study.

2. Related work

Image-based 3D reconstruction has advanced rapidly 
in photogrammetry and computer vision. In this sec
tion, we review related work in 3D reconstruction, 
comparing traditional SfM and MVS with more recent 
learning-based approaches. We also examine existing 
evaluation studies and highlight their limitations.

SfM and MVS. Camera orientation and dense 
image matching have been widely studied, leading 
to the development of various algorithms and open- 
source tools. SfM (Crandall et al. 2011; Hartley and 
Zisserman 2003; Schonberger and Frahm 2016) pro
cesses unordered images to recover camera para
meters and produce a sparse point cloud. It uses 
correspondences between overlapping images to 
compute intrinsic and extrinsic parameters 
(Koutsoudis et al. 2014), followed by bundle 
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adjustment to refine camera poses. Bundler 
(Snavely, Seitz, and Szeliski 2006) is one of the ear
liest open-source systems for image-based 3D recon
struction and point-cloud generation. It addresses 
the SfM problem by estimating camera parameters. 
Building on this foundation, later works extended 
these techniques to large-scale scene reconstruction 
(Agarwal et al. 2011). Further, patch-based multi- 
view stereo (PMVS), introduced by Furukawa and 
Ponce (2010), performs for dense image matching to 
produce detailed reconstructions. More broadly, 
MVS reconstructs dense point clouds from a set of 
images, and the final 3D model is obtained by fusing 
per-view depth maps into a single coherent repre
sentation. These tools have been widely adopted by 
researchers and practitioners (Furukawa and 
Hernández 2015). Numerous frameworks and 
libraries have since been released, extending these 
techniques. Examples include the multi-view envir
onment (MVE) (Furukawa and Hernández 2015), an 
end-to-end pipeline for image-based geometry 
reconstruction, and open multiple view geometry 
(OpenMVG) (Moulon et al. 2017), a library tailored 
to the multiple-view geometry community. More 
recently, full 3D reconstruction pipelines such as 
COLMAP and OpenMVS (Cernea 2020) provide 
comprehensive solutions for a broad audience. In 
parallel, advances in deep learning for computer 
vision and photogrammetry have increased the pro
minence of learning-based approaches (Hartmann 
et al. 2017; Kerbl et al. 2023; Wang et al. 2024), 
particularly in areas such as self-supervised methods 
for single-image depth estimation (Knöbelreiter, 

Vogel, and Pock 2018; Madhuanand, Nex, and 
Yang 2021).

Direct RGB‐to‐3D. Unconstrained dense 3D recon
struction from multiple RGB images remains a long‐ 
standing research problem in 3D modeling (Charles 
et al. 2017; Dame et al. 2013; Mildenhall et al. 2021). In 
recent years, neural network‐based methods that pre
dict depth from a single image or a very small number 
of images have gained significant attention. These 
approaches, used not only for matching (Ji, Liu, and 
Lu 2019), address many limitations of two‐view and 
multi‐view stereo depth estimation. Notably, they 
eliminate the sequential dependency of the SfM pipe
line, which tends to accumulate errors and noise at 
each processing stage. Some methods use neural net
works to learn robust geometric class-level priors or 
diffusion models (Liu et al. 2023). However, these 
approaches are primarily designed for object-centric 
reconstruction rather than large-scale scene recon
struction. Another line of research focuses on general 
scene reconstruction by using monocular depth esti
mation neural networks trained on large datasets. 
These methods can produce pixel‐aligned 3D point 
clouds (Ranftl, Bochkovskiy, and Koltun 2021; Wiles 
et al. 2020; Yin et al. 2021), although depth quality can 
lack fidelity because of missing scale or out-of- 
distribution prediction. To address this limitation, 
multi-view neural networks for direct 3D reconstruc
tion have been introduced, which enable end-to-end 
training and resolving scale ambiguity (Ummenhofer 
et al. 2017). More recently, DUSt3R has emerged as 
a notable advance, eliminating the need for ground 
truth camera intrinsics as input. This approach can 

Figure 1. Results from DUSt3R (a), MASt3R (b), VGGT (c), and COLMAPHR (d), where COLMAPHR denotes COLMAP results obtained 
from high-resolution inputs. The top row presents the dense point cloud and the estimated camera poses (represented in gray), 
while the bottom row displays the error map, comparing the results to ground truth LiDAR data. Camera poses are color‐coded 
based on their distance from the ground truth.
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directly generate point maps and global camera poses 
rather than relying on depth maps and relative poses. 
The promising results of DUSt3R and its sibling 
MASt3R have driven further progress, inspiring the 
development of more sophisticated methods such as 
VGGT (Wang et al. 2025). VGGT is a feed-forward 
neural network built on a standard large transformer 
(Vaswani et al. 2017). It removes pairwise point cloud 
generation and can process more than two images 
simultaneously, enabling direct production of point 
clouds without post-processing to fuse pairwise recon
structions. This design can yield more consistent point 
cloud results.

As interest grows, new models are appearing 
rapidly. Fast3R (Yang et al. 2025) extends the 
DUSt3R family to a single forward pass designed for 
large N inputs, improving throughput from a handful 
of views to hundreds or more. Along the VGGT line, 
FastVGGT (Shen et al. 2025) and Faster VGGT (Wang 
et al. 2025) identify global attention as the main bottle
neck: the former uses token merging and the latter 
uses optimized block sparse attention to accelerate 
inference while keeping quality comparable. These 
methods are promising for aerial applications because 
they are efficient and can scale to hundreds or even 
thousands of images. In quick tests against the learn
ing-based methods used in this paper, the newest 
models showed similar or slightly better point cloud 
and pose quality. Metrics include point cloud accuracy 
and completeness, as well as pose center and orienta
tion errors. These findings do not change our conclu
sions. Given the fast pace of the field and our scope, we 
proceed without adding these models and instead cite 
them because of their recent release.

Surveys, reviews, and evaluations. With the rise of 
open‐source 3D reconstruction solutions, evaluating 
these pipelines has become common in the research 
community. Reviews have analyzed methods, datasets, 
scenarios, and photogrammetric metrics (Alidoost 
and Arefi 2017; Georgopoulos et al. 2016; Pepe, 
Alfio, and Costantino 2022). Moreover, Remondino 
et al. (2017) documented the development of diverse 
MVS algorithms for reconstructing different scenes. 
Stathopoulou, Welponer, and Remondino (2019) 
examined widely used open-source image-based 3D 
reconstruction pipelines, while Jarahizadeh and Salehi 
(2024) presented a recent evaluation of popular photo
grammetry software. However, these efforts are lim
ited to traditional MVS solutions. Learning-based 
methods have gained attention, and new evaluation 
practices have appeared because these approaches 
have the potential to surpass traditional methods in 
multiple domains. Unlike conventional techniques, 
they support end-to-end training, which removes the 
need for manually designed multi-stage processes. 
Several studies have surveyed key challenges, network 
architectures, and evaluation methodologies in 3D 

reconstruction (Fahim, Amin, and Zarif 2021; Fu 
et al. 2021). However, their scope is limited to single- 
image 3D object reconstruction. Han, Laga, and 
Bennamoun (2021) extend the scope by covering 
both single- and multi-image, but they do not include 
research published after 2019 and thus miss recent 
advances. Additionally, Samavati and Soryani (2023) 
take a broader perspective by exploring studies where 
3D reconstruction serves as a downstream task for 
various objectives. Their survey mentions DUSt3R 
but does not provide experimental data to support its 
performance.

The rapid progress of the field calls for regular 
reassessment of recent research. Evaluating new meth
ods on updated benchmark datasets is essential to 
keep pace with ongoing advances.

3. Material preparation and experiment setup

This section presents the benchmark dataset and our 
data preparation workflow, then outlines the evaluated 
approaches for 3D reconstruction. Finally, we define 
the metrics used to assess the dense point clouds and 
camera poses.

3.1. Dataset configuration

We use the UseGeo dataset (Nex et al. 2024), which 
includes images and LiDAR collected at the same time 
across diverse urban and peri-urban areas. The 
UseGeo dataset is intended for rigorous benchmark
ing in the context of photogrammetry applications. 
A total of 829 high‐resolution images were captured 
at an average altitude of 80 m during three flights that 
cover three distinct areas, which we refer to as Dataset- 
1, Dataset-2, and Dataset-3. Each dataset contains 
eight flight strips, with a typical image overlap of 
60–80%. LiDAR was acquired simultaneously at 
about 51 points per square meter, which corresponds 
to a ground sample distance (GSD) of approximately 
2 cm. Following image and LiDAR acquisition, the 
hybrid adjustment (Glira, Pfeifer, and Mandlburger  
2019) method was employed to jointly refine the 
orientations of the LiDAR and camera, optimizing 
image alignment, camera calibration, and distortion 
correction. The adjusted LiDAR and camera data serve 
as ground truth (GT) for both point cloud accuracy 
and camera pose estimation. In the UseGeo dataset, 
the mean cloud-to-cloud (C2C) residual error between 
LiDAR and photogrammetric point clouds is 6.7–8.8  
cm, which indicates strong internal alignment. 
Additional preprocessing details are provided in data
set paper (Nex et al. 2024). The dataset challenges 
learning‐based methods because of the limited num
ber of images and their somewhat homogeneous 
(nadir) perspectives. Although overlap is sufficient 
for classic SfM, it can be relatively small for self- 
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supervised methods that rely on joint depth and rela
tive motion estimation (Hermann et al. 2024).

To study performance across coverage levels, we 
evaluated subsets of 1, 2, 5, 10, and 38 images from 
Dataset-1, Dataset-2, and Dataset-3 for the main 
experiments. Figure 2, top row shows examples of 
the selected images in Dataset-1. The 38-image subset 
is the largest that DUSt3R and MASt3R can handle on 
our hardware because these models are computation
ally intensive. For scalability analysis, we included an 
experiment with 191 images, which is the maximum 
we can process with VGGT on our device. For the 191- 
image experiment, only VGGT and COLMAP were 
evaluated, as they are capable of handling datasets of 
this scale. In these experiments, images were typically 
acquired along one to five flight strips, with the 

number of strips varying according to the number of 
images selected and the specific area of interest. For 
the scalability experiment, the 191-image subset com
prised the first 191 images from each dataset. The full 
list of the image IDs is provided in Appendix B. We 
selected images from different datasets with varying 
scene complexity; examples are shown in Table 1.

Furthermore, to test robustness under low-overlap 
photogrammetric blocks, we conducted an experi
ment, referred to as low‐overlap reconstruction, 
which reduced the original overlap rate from approxi
mately 70% to 10% with 38 images. Figure 2, bottom 
row shows low overlap experiments with 70%, 55%, 
40%, 25%, and 10% overlap in Dataset-1. To system
atically reduce image overlap in our experiments, we 
primarily decreased the along-track overlap by 

Figure 2. Spatial distribution of the selected cameras for dataset-1. Top row experiments with 1, 2, 5, 10, and 38 images. Bottom 
row experiments with 70, 55, 40, 25, and 10% overlap. Each square marks a camera position. Green points are all ground truth 
poses. Black points are the selected poses. The background is the ground truth LiDAR point cloud color-coded by elevation.

Table 1. An overview of the scenarios and datasets used in this evaluation, including example photogrammetric point clouds 
generated for the test areas and the ground truth. The gt point cloud is color-coded by height, with gt camera poses overlaid. 
Scale bars are included in the gt visualizations.

Type Images GT points Example point clouds GT

Dataset‐1 224 105.9 M (million)

Dataset‐2 327 146.3 M

Dataset‐3 277 140.6 M

GEO-SPATIAL INFORMATION SCIENCE 5



selecting images at larger intervals along the flight 
path, while keeping across-track coverage largely 
unchanged (Torres-Sánchez et al. 2018). The areas of 
interest were first identified, and images capturing 
these regions were selected. When images were chosen 
sequentially along different drone flight trajectories, 
the overlap was around 70%. Selecting every other 
image (i.e. skipping one) reduced the overlap to 
approximately 55%. Similarly, skipping two images 
resulted in a 40% overlap, skipping three images led 
to 25%, and skipping four images reduced the overlap 
to about 10%. This sampling strategy enabled us to 
assess the sensitivity of each reconstruction method to 
reduce along-track redundancy, which is relevant for 
scenarios with limited acquisition resources or the 
need for faster processing. Naturally, at higher overlap 
rates, the selected images were concentrated in 
a smaller region, whereas at lower overlap rates, the 
images were more spatially distributed, potentially 
covering a larger area.

DUSt3R and MASt3R use transformer architecture 
and, on mainstream GPUs as of 2025, are limited to 
images with a maximum lateral dimension of 512 
pixels. VGGT requires input images with a maximal 
dimension of 518 pixels. Consequently, we rescaled all 
images to 512 pixels to fit these limits while preserving 
aspect ratios. For COLMAP, we report results on both 
the rescaled images, where the largest dimension is 
512 pixels for fair comparison, and the original- 
resolution images to assess real-world performance. 
Here, COLMAPHR refers to high-resolution inputs 
and COLMAPLR to the low-resolution setting.

Beyond the benchmark datasets, we include 
a practical case study on a self-collected aerial dataset 
to show how learning-based solutions reduce coverage 
gaps. The data were collected on The Ohio State 
University (OSU) campus with a high-quality 
unmanned aerial vehicle (UAV). The dataset contains 
190 images with approximately 80% overlap. Each 
image has GPS with about 0.25 m positional accuracy. 
The camera is a DJI FC6310S with a 9 mm focal length 
and an image size of 5472 by 3648 pixels. The scene is 
complex, with tall and low buildings and detailed 
facades. Fixed pattern flights leave sparse views near 
vertical surfaces, which often produce incomplete 
meshes. This dataset is a good example of when learn
ing-based methods help. The case study uses the same 
pipeline and is reported in Section 4.5.

3.2. Evaluated methods

DUSt3R is a transformer‐based method that works 
without prior knowledge of camera calibration or 
viewpoint poses. It treats pairwise reconstruction as 
a regression from image to point maps, which 
bypasses the strict constraints of traditional projective 
camera models (Wang et al. 2024). MASt3R extends 

DUSt3R by adding a second network head to generate 
dense local features that are trained with a newly 
introduced matching loss. Although MASt3R shows 
strong overall performance across a range of matching 
tasks, including those in which it outperforms 
DUSt3R, it is restricted to the binocular case and 
lacks an implementation for multiple images (Leroy, 
Cabon, and Revaud 2025). To compare multi-image 
reconstructions, we applied the global alignment strat
egy from the DUSt3R paper to MASt3R’s pairwise 
outputs, aligning point maps into a single reference 
frame. Specifically, AerialMegaDepth provides 
a scalable framework for generating pseudosynthetic 
data that simulates diverse aerial viewpoints. State-of- 
the-art algorithms, such as DUSt3R finetuned on this 
dataset, have shown stronger performance than the 
original version of DUSt3R. However, this enhanced 
version was not included in our evaluation to ensure 
a fair comparison.

VGGT introduces a feed-forward neural network 
that performs 3D reconstruction directly from as few 
as one view and up to hundreds of views, which 
removes the need for post-processing geometry opti
mization. This approach offers more consistent point 
clouds, reduces the computational cost of iterative 
optimization, and has the potential to outperform 
DUSt3R and MASt3R by a substantial margin.

COLMAP (Schonberger and Frahm 2016; 
Schönberger et al. 2016) is a general‐purpose SfM 
and MVS pipeline. It uses scale‐invariant feature 
transform (SIFT) (Lowe 2004), for feature extraction 
and matching, followed by geometric validation, 
incremental SfM, and bundle adjustment to refine 
camera and point estimates (Stathopoulou, 
Welponer, and Remondino 2019). Further, 
a probabilistic patch‐based stereo framework was 
used for MVS reconstruction. Except for setting the 
minimum number of reconstructed images for an 
accepted model to two, all COLMAP parameters 
were left at default settings to ensure consistency and 
provide a baseline for comparison. We used the 
defaults because we did not find existing literature 
reporting any aerial-specific settings. The defaults are 
also a well-known, general-purpose baseline that sup
ports transparency and comparability. To address 
concerns about tuning, we include a small preliminary 
experiment in Appendix A. We vary the matching 
ratio and the bundle adjustment iteration budget and 
find that these changes do not materially affect the 
conclusions when compared with the learning-based 
methods.

In this study, we evaluated DUSt3R, MASt3R, 
VGGT, and COLMAP on our datasets in terms of 
reconstruction accuracy and robustness. The main 
settings are recorded in Table 2. Meanwhile, pre- 
trained models were used. DUSt3R employed 
a model trained on the rescaled images in which the 
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largest dimension is 512 pixels, with the dense predic
tion transformer (DPT) head (Ranftl, Bochkovskiy, 
and Koltun 2021), while MASt3R utilized a model 
trained on similar rescaled images with a mixed multi- 
layer perceptron (MLP) and DPT architecture (termed 
CatMLP+DPT). This architecture combines an MLP 
and a DPT head, where the MLP outputs 3D points 
and local features. Both heads receive input from 
a concatenation of the encoder and decoder outputs. 
VGGT rescales input images to a width of 518 pixels 
while maintaining the aspect ratio. It utilizes a unified 
architecture with a ViT-Large transformer encoder 
and no separate decoder, employing multiple task- 
specific heads for outputs such as camera parameters, 
depth, and point clouds. We performed end-to-end 
training with a multi-task loss and used mixed preci
sion to reduce runtime and memory use. DUSt3R and 
MASt3R ran with a batch size of 1 and a maximum 
input dimension of 512 pixels, and VGGT ran with 
a batch size of 1 and an input width of 518 pixels.

We align the reconstructed point clouds and camera 
poses to the ground truth model independently. Point 
cloud alignment involved an initial manual alignment, 
followed by refinement using the iterative closest point 
(ICP) algorithm (Besl and McKay 1992) implemented in 
CloudCompare (Girardeau-Montaut 2016). For camera 
poses, we align the estimated positions to the ground 
truth by solving two rigid transformations in sequence 
that model scale, rotation, and translation with a least- 
squares approach. The transformations were first applied 
to the camera centers, followed by the orientations, and 
then combined to produce the final alignment.

3.3. Evaluation on dense point clouds generation

3.3.1. Accuracy
Accuracy is measured using the quadratic height func
tion in CloudCompare, which computes the vertical 
distance between each estimated point and the corre
sponding reference surface derived from the ground 
truth point cloud. This method provides a more reli
able accuracy assessment by considering local surface 

variations rather than simple point‐to‐point Euclidean 
distances. The mean accuracy represents the average 
vertical deviation between the reconstructed point 
cloud and the ground truth LiDAR data. We follow 
existing works (Ahmad Fuad et al. 2018; Xu, Qin, and 
Song 2023) and use the mean C2C distance, σMEAN, as 
shown in Equation (1). 

3.3.2. Completeness
Completeness is measured by reversing the process: 
the vertical distance between each ground truth point 
and the corresponding reference surface derived from 
the estimated point cloud is calculated, with an 
empirical threshold of 1 m applied. Completeness is 
defined as the ratio of ground truth points within this 
threshold (Nwithin) to the total number of ground truth 
points (NGT), where Nwithin is the number of ground 
truth points within the threshold, and NGT is the total 
number of ground truth points. 

where d pj;GT; PE
� �

is the vertical distance from the 
ground truth point pj;GT to the corresponding refer
ence surface derived from the estimated point cloud 
PE; τ is the threshold (e.g. 1 m); δ(·) is an indicator 
function that equals 1 if the condition inside is true, 
and 0 otherwise. The evaluation employs both accu
racy and completeness to provide a comprehensive 
analysis of the results.

3.4. Evaluation on camera poses estimation

The pose of each camera is compared against its cor
responding ground truth, evaluating both position 
and orientation.

3.4.1. Evaluation of camera position/translation
The camera position is assessed by calculating the 
Euclidean distance between the reconstructed position 
and the ground truth position, as shown below: 

Table 2. Overview of key modules in traditional (COLMAP) and learning-based (DUSt3R/MASt3R/VGGT) 3D reconstruction 
pipelines.

Feature 
extraction

Feature 
matching

Geometric 
verification

Image 
registration Triangulation

Robust 
estimation

Dense point cloud 
generation

Traditional methods
COLMAP SIFT Lowe 

(2004)
Exhaustive 

search
7‐Point F‐matrix 

Hartley and 
Zisserman (2003)

P3P Gao et al. 
(2003)

Sampling‐based direct 
linear transformation

RANSAC Patch-based stereo 
Schönberger et al. 
(2016)

Learning-based methods
Encoder Decoder Heads Network loss

DUSt3R/MASt3R ViT-Large 
Dosovitskiy 
et al. (2021)

ViT-Base 
Dosovitskiy et al. 
(2021)

DPT Ranftl, Bochkovskiy, and Koltun (2021)/ 
CatMLP+DPT

Simple regression loss

VGGT ViT-Large 
Dosovitskiy 
et al. (2021)

– Task-specific heads Multi-task loss
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where ΔC is the camera center difference (in m), Cpred 
is the predicted camera center, Cgt is the ground truth 
camera center, and ||.|| denotes the Euclidean norm 
(distance).

3.4.2. Evaluation of camera rotation/orientation
Orientation differences are assessed by determining 
the angle of the rotation required to align the recon
structed camera’s orientation with the ground truth 
(Bianco, Ciocca, and Marelli 2018; Xu et al. 2024). We 
represent orientations with unit quaternions and com
pute the error from the relative quaternion. The rela
tive quaternion is calculated as follows: 

where qR represents the quaternion describing the 
rotational transformation needed to align the esti
mated camera orientation (qE) with the ground truth 
orientation (qGT), where qE

� 1 denotes the inverse of 
the estimated orientation. The orientation error of 
camera poses is measured in terms of angle difference 
(α), and can be computed from the scalar part w of the 
quaternion, as shown in Equation (5). 

4. Experiment results

First, we assess the reconstructed point clouds, focus
ing on accuracy and completeness as key metrics, as 
shown in Section 4.1. Next, we compare methods by 
camera-center differences and camera-angle distances, 
as shown in Section 4.2.. The scalability study on 191 
images using VGGT and COLMAP appears in 
Section 4.3., and Section 4.4. reports runtime and 
computational resources. Finally, Section 4.5. reviews 
the practical implications of learning-based recon
struction for aerial data.

We use COLMAPHR for results from high- 
resolution inputs and COLMAPLR for results from 
low-resolution inputs. COLMAP refers to the method 
family regardless of resolution. All experiments were 
conducted on a system running Ubuntu 22.04.5 LTS, 
equipped with an AMD Ryzen Threadripper PRO 
5955WX CPU (16 cores, 1.8–4.0 GHz), 512 GB RAM, 
and an NVIDIA RTX 6000 Ada Generation GPU 
(52 GB VRAM).

4.1. Accuracy of dense point clouds

As Figure 3 illustrates, for the single-image case, 
DUSt3R, MASt3R, and VGGT reconstruct dense 
urban point clouds, whereas COLMAP fails because 
the viewing angles are insufficient for triangulation. 
However, the reconstructed models still have flaws, 
exhibiting holes around buildings and failures on 
small towers, likely due to limited model understand
ing of tall structures in top‐down views and insuffi
cient resolution. Similarly, when using two images 
with a large viewpoint difference, COLMAP often 
fails or produces low-quality models with sparse 
points, achieving an accuracy of up to 2.3 m. In con
trast, DUSt3R, MASt3R, and VGGT produce reason
able point clouds, with MASt3R and VGGT showing 
similar performance and generally outperforming the 
others. These methods achieve the higher accuracy (up 
to 0.4 m) and greater completeness (an increase of 
+10%), as shown in Table 3.

MASt3R and VGGT outperform COLMAP in com
pleteness in 87% of instances, achieving up to an 
additional 19% completeness in most scenarios. This 
is due to their ability to generate more points without 
geometric constraints, unlike COLMAP, which prior
itizes higher accuracy by producing fewer points. 
Learning-based methods such as MASt3R employ 
a coarse-to-fine, one-versus-all strategy for point tri
angulation, while VGGT directly predicts near- 

Figure 3. Reconstruction results using a single image. (a) Input image; (b), (c), and (d) Show the reconstruction results of DUSt3R, 
MASt3R, and VGGT, respectively. The upper row presents the dense point cloud, and the bottom row displays the error map. The 
color bar encodes absolute error in m: 0.0 to 2.5 m is blue through green, 2.5 to 5.0 m is green through yellow-orange, and values 
greater than 5.0 m are red. White denotes no data or invalid depth.
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accurate point or depth maps. Both approaches lack 
epipolar constraints and multi-view consistency, 
which leads to the denser and more efficient, but less 
accurate point clouds. This trade-off yields higher 
completeness but lower accuracy in reconstructions.

As the number of images increases, COLMAP 
leverages good viewing angle differences to recon
struct a model, with high-resolution input achieving 
significantly higher accuracy. The qualitative results 
for Dataset-3 using 38 images are presented in 
Figure 4. In this case, COLMAPHR achieves an accu
racy of 0.2 m, corresponding to a 92% reduction in 
error compared to the other methods, which have 
errors around 2.0 m. One potential factor contributing 

to COLMAPHR’s superior accuracy is that it processes 
images at higher resolutions, allowing for more precise 
feature extraction and matching. However, when ana
lyzing scenarios using rescaled images with 
a maximum dimension of 512 pixels, COLMAPLR’s 
accuracy fluctuates substantially, sometimes resulting 
in errors of 4 m in contrast to MASt3R’s 0.4 m, and 
COLMAPLR suffers from very low completeness due 
to the limited number of 3D points detected.

Overall, COLMAPHR consistently achieves the 
highest accuracy when results are available and gen
erally maintains acceptable completeness. Although its 
completeness is sometimes lower than that of VGGT, 
the difference is not substantial. Its performance is 

Table 3. Quantitative evaluation of dense point cloud reconstruction across three datasets using 1, 2, 5, 10, and 38 images with 
different methods. “Accu.” denotes accuracy, “comp.” denotes completeness, and “‐” indicates no results. The best results are in 
bold.

Dataset Method

1 Image 2 Images 5 Images 10 Images 38 Images

Accu. (m)
Comp. 

(%) Accu. (m)
Comp. 

(%) Accu. (m)
Comp. 

(%) Accu. (m)
Comp. 

(%) Accu. (m)
Comp. 

(%)

Dataset‐1 DUSt3R 0.697 8.780 0.625 11.81 0.523 19.52 0.689 33.56 0.709 66.52
MASt3R 0.364 14.85 0.432 14.18 0.343 24.60 0.390 38.82 0.436 78.90
VGGT 0.629 10.61 0.422 15.98 0.353 25.80 0.491 38.58 1.122 74.96
COLMAPLR – – – – 2.625 2.130 0.535 6.310 4.161 17.50
COLMAPHR – – – – 0.070 20.64 0.085 36.85 0.064 59.74

Dataset‐2 DUSt3R 2.401 6.230 0.616 13.16 0.699 16.17 0.860 20.51 1.452 36.42
MASt3R 2.175 7.660 0.735 13.45 0.540 22.22 0.590 27.16 0.925 49.71
VGGT 1.389 7.27 0.596 14.60 0.649 20.41 0.909 31.54 1.090 62.64
COLMAPLR – – – – 0.590 12.58 0.859 20.51 0.325 61.09
COLMAPHR – – 2.349 4.300 0.122 17.11 0.150 27.60 0.127 74.36

Dataset‐3 DUSt3R 1.039 6.720 0.925 6.980 0.786 11.92 0.807 21.82 2.041 45.78
MASt3R 0.889 5.710 0.774 8.300 0.627 13.48 0.574 29.81 1.583 41.76
VGGT 0.871 6.955 1.014 6.662 0.658 15.35 0.514 30.68 1.158 30.67
COLMAPLR – – – – – – – – 0.288 55.69
COLMAPHR – – – – 0.134 12.58 0.106 28.58 0.163 69.73

Figure 4. Reconstruction results using 38 images. (a), (b), (c), and (d) Show the reconstruction results of DUSt3R, MASt3R, VGGT, 
and COLMAPHR, respectively. The first row presents detailed views of the dense colored point clouds; the second row shows the 
overall dense point clouds; the third row depicts the error maps of the dense point clouds; and the bottom row highlights 
zoomed-in details of the error maps. The color bar encodes absolute error in m: 0.0 to 2.5 m is blue through green, 2.5 to 5.0 m is 
green through yellow-orange, and values greater than 5.0 m are red. White denotes no data or invalid depth.
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stable, especially as the number of images increases. 
However, MASt3R and VGGT demonstrate clear 
advantages in challenging scenarios with very limited 
images, where COLMAP often fails or cannot be 
applied. This suggests that, although MASt3R and 
VGGT are not yet a complete replacement for tradi
tional methods in standard SfM and MVS pipelines, 
they can serve as a valuable supplement, particularly 
for improving completeness in sparse or difficult 
cases.

The results of the low‐overlap reconstruction experi
ment using 38 images are presented in Table 4. Overall, 
these findings are consistent with previous observa
tions: COLMAP achieves higher accuracy, whereas 
MASt3R and VGGT demonstrate comparable perfor
mance and superior completeness. Specifically, 
COLMAP achieves higher accuracy in 93% of cases, 
with accuracy up to 80% better than that of the others. 
In contrast, MASt3R and VGGT outperform both 
COLMAP variants in completeness in 80% of cases, 
with gains of up to +50%. Further, as the overlap 
decreases, the learning‐based methods maintain both 
accuracy and completeness, exhibiting robustness in 
extremely low‐overlap scenarios, whereas COLMAP 
experiences a significant performance drop in comple
teness (e.g. 8%), which is insufficient for practical real- 
world applications. Although COLMAP can generate 
highly accurate point clouds, its performance degrades 
significantly when the image overlap is reduced to 10%, 
which is expected since this overlap rate is outside the 
typical operational range for which COLMAP was 
designed. With limited overlap, COLMAP struggles to 
find correct feature matches, leading to fewer accurately 
matched 2D points and, consequently, fewer recon
structed 3D points. In contrast, transformer‐based 
methods like VGGT can generate more 3D points 
even in low‐overlap conditions, giving them a clear 
advantage in point cloud completeness and density.

To sum up, MASt3R and VGGT outperform 
COLMAP in extremely sparse views across both 

resolution settings, such as one or two images or 
approximately 10% overlap, achieving higher accuracy 
(up to 0.4 m) or up to +50% completeness. In contrast, 
COLMAP often fails in these settings or yields larger 
errors (up to 2.3 m) and much lower completeness (as 
low as 8%). Although MASt3R and VGGT demon
strate robust performance in extremely low-overlap 
cases, maintaining high completeness and comparable 
accuracy, their advantage diminishes in high- 
resolution photogrammetry datasets with typical over
laps (i.e. 70%). In these cases, they exhibit either simi
lar or moderately higher completeness, with an 
advantage of up to 20%, while COLMAP achieves 
substantially greater accuracy, reducing errors by up 
to 9%. This comparison shows that, although trans
former-based methods can provide value in special 
cases with limited images, COLMAP is better suited 
for routine photogrammetric workflows.

4.2. Accuracy of camera poses

The qualitative results in Figure 5 demonstrate that the 
classic method produces the most accurate outcomes 
on large, high-overlap datasets: the estimated camera 
positions and orientations show the smallest deviation 
from the ground truth poses in terms of spatial align
ment and orientation consistency. In addition, VGGT 
demonstrates visually acceptable performance, with 
a higher proportion of estimated poses closely match
ing the ground truth. VGGT also reconstructs 100% of 
poses, whereas COLMAPHR achieves this in only 67% 
of cases. DUSt3R and MASt3R face challenges, with 
the global alignment process resulting in approxi
mately 20% of the estimated poses deviating signifi
cantly from the ground truth, with some discrepancies 
exceeding several hundred meters.

Based on all evaluated cases, COLMAPHR achieves 
better camera pose center positions in all cases, as 
shown in Table 5. Note that single‐image cases are 
excluded, as pose comparison is not meaningful due 

Table 4. Quantitative evaluation of dense point cloud reconstruction across three datasets with different image overlaps and 
methods. “Accu.” denotes accuracy, “comp.” denotes completeness, and “”– indicates no results. The best results are in bold.

Dataset Method

Overlap: 70% Overlap: 55% Overlap: 40% Overlap: 25% Overlap: 10%

Accu. (m)
Comp. 

(%) Accu. (m)
Comp. 

(%) Accu. (m)
Comp. 

(%) Accu. (m)
Comp. 

(%) Accu. (m)
Comp. 

(%)

Dataset‐1 DUSt3R 0.656 26.41 0.732 30.41 0.918 30.25 0.791 59.60 1.029 47.72
MASt3R 0.433 30.09 0.533 34.97 0.707 36.98 0.612 59.60 0.919 52.97
VGGT 0.542 31.71 0.507 37.66 0.862 39.91 1.087 58.56 1.589 58.59
COLMAPLR 0.484 11.73 2.546 14.41 1.389 4.010 7.642 0.440 – –
COLMAPHR 0.086 24.10 0.106 17.81 0.432 20.02 0.945 17.23 0.917 8.12

Dataset‐2 DUSt3R 2.085 11.88 1.389 16.79 1.954 15.98 2.532 19.81 6.717 19.83
MASt3R 0.898 28.89 0.924 23.08 1.682 24.49 1.432 30.65 2.518 26.76
VGGT 0.708 21.52 1.412 25.47 2.331 14.97 4.413 21.33 5.810 35.37
COLMAPLR 0.278 13.92 0.428 14.52 2.980 3.580 – – – –
COLMAPHR 0.088 20.43 0.118 26.16 0.141 28.24 0.254 17.90 0.371 10.71

Dataset‐3 DUSt3R 1.829 40.29 1.073 33.89 1.702 37.40 1.872 35.59 1.944 34.04
MASt3R 1.158 49.65 0.687 41.41 1.052 41.26 1.108 41.72 1.180 50.15
VGGT 0.722 36.95 1.393 45.30 1.647 46.67 1.637 46.59 2.172 44.84
COLMAPLR 0.573 25.47 0.443 35.88 0.453 18.72 0.592 7.420 0.648 9.830
COLMAPHR 0.114 36.57 0.149 46.13 0.953 30.25 0.169 25.63 0.357 17.47

10 X. WU ET AL.



to perfect alignment. Interestingly, DUSt3R, MASt3R, 
and VGGT achieve superior orientation estimation in 
75% of the evaluated cases, likely due to their learning‐ 
based methods, which leverage global scene context 
and robust feature matching to better handle orienta
tion estimation.

It is also notable that many estimated poses exhibit 
large deviations from the ground truth, with errors 
reaching hundreds of meters or degrees. This prompts 
the question of how the results change when consider
ing only inlier data points that meet established quality 
thresholds. An empirical threshold of 10 degrees for 
orientation error and 1 m for position error was 
applied to distinguish inliers from outliers, in line 

with thresholds commonly used in 3D reconstruction 
benchmarks (Sattler et al. 2018). Updated values after 
outlier filtering are shown in parentheses in Table 5. 
The absence of parentheses denotes either no valid 
data (white background) or that all data points were 
valid and results are unchanged (red background). 
DUSt3R, MASt3R, and VGGT produce meaningful 
results primarily in scenarios with 2 or 5 input images, 
successfully reconstructing all poses and frequently 
generating a sufficient number of accurate estimates, 
although large errors occasionally occur. The limita
tions of DUSt3R and MASt3R stem from their pair
wise matching and localization strategy, which is 
prone to cumulative errors as the number of input 

Figure 5. Estimated camera poses from 38 images in dataset-3. (a), (b), (c), and (d) Show the estimated camera poses from DUSt3R, 
MASt3R, VGGT, and COLMAPHR, respectively; (e) shows the ground truth camera poses. The first row presents top‐down views, and 
the second row shows front views.

Table 5. Quantitative evaluation of camera pose estimation across three datasets using 2, 5, 10, and 38 images. Cen. D. (center 
distance) represents the distance between the estimated camera center and the ground truth. Ang. D. (angle difference) measures 
the orientation error. Succ. R. (success rate) indicates the percentage of successfully reconstructed camera poses relative to the 
total number of poses. For each method and overlap, the main value uses all reconstructed poses. Values in parentheses use only 
inliers (center distance <1 m and angle difference < 10°). If no parentheses appear, no inliers were found. The best results are in 
bold.

2 Images 5 Images 10 Images 38 Images

Dataset method
Ang. D. 

(°)
Succ. 
R. (%)

Cen. 
D. (m)

Ang. D. 
(°)

Succ. 
R. (%)

Cen. 
D. (m)

Ang. D. 
(°)

Succ. 
R. (%)

Cen. 
D. (m)

Ang. D. 
(°)

Succ. 
R. (%)

Dataset‐1 DUSt3R 4.390 
(4.390)

100 
(100)

3.688 36.76 100 4.149 5.695 100 63.68 16.41 100

MASt3R 24.24 100 6.772 1.216 100 34.86 41.42 100 62.14 8.220 100
VGGT 47.68 100 0.432 19.54 100 0.390 19.74 100 2.803 19.87 100
COLMAPLR – 0 0.462 76.56 100 0.862 14.79 100 1.204 

(0.537)
14.45 

(8.274)
100 (21)

COLMAPHR – 0 0.115 15.15 100 0.160 
(0.159)

10.49 
(9.293)

100 (80) 0.113 2.506 100

Dataset‐2 DUSt3R 0.837 
(0.837)

100 
(100)

0.377 
(0.377)

1.687 
(1.687)

100 
(100)

0.813 
(0.578)

3.325 
(3.285)

100 (60) 66.24 2.108 100

MASt3R 1.738 
(1.738)

100 
(100)

11.251 5.041 100 58.82 49.73 100 180.3 56.18 100

VGGT 17.11 100 0.391 6.435 100 0.657 
(0.494)

3.977 
(3.925)

100 (80) 4.582 19.64 100

COLMAPLR – 0 0.368 48.45 100 0.702 
(0.625)

6.730 
(6.667)

100 (90) 0.894 
(0.686)

11.51 
(4.204)

100 (34)

COLMAPHR 70.02 100 0.120 50.42 100 0.190 24.70 100 0.196 
(0.196)

6.212 
(6.212)

100 
(100)

Dataset‐3 DUSt3R 69.49 100 7.560 64.361 100 30.83 76.14 100 104.8 33.50 100
MASt3R 28.56 100 4.362 8.408 100 94.78 36.12 100 122.6 69.60 100
VGGT 26.32 100 0.499 102.8 100 0.573 120.6 100 3.318 21.10 100
COLMAPLR – 0 – – 0 – – 0 0.724 17.89 0
COLMAPHR – 0 0.089 30.03 80 0.180 18.32 90 0.823 

(0.475)
14.19 

(9.595)
90 (47)
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images increases. VGGT directly predicts point and 
depth maps with reasonable accuracy, but there 
remains significant potential for improvement, parti
cularly by incorporating traditional strategies such as 
bundle adjustment. As expected, COLMAP fails in 
extremely small datasets due to fundamental limita
tions of the traditional SfM and MVS pipelines, which 
require sufficient image overlap and redundancy. 
Conversely, COLMAP provides accurate camera 
poses predominantly with larger datasets, achieving 
orientation errors below 24 degrees and position 
errors within 0.8 m.

In the low-overlap reconstruction experiment using 
38 images, with or without thresholds applied 
(Table 6), COLMAPHR demonstrates a clear advan
tage in camera pose estimation across all scenarios, 
consistently achieving higher accuracy in both camera 
center localization and orientation. Even with minimal 
overlap, COLMAPHR maintains high accuracy, with 
position errors below 3 m and angular errors under 21 
degrees. VGGT also produces accurate pose estimates 

in high-overlap cases, with center differences within 4  
m. Additionally, it generates poses that meet the 
threshold requirements and can be identified as 
inliers, whereas all poses from DUSt3R and MASt3R 
are too scattered to qualify as inliers. MASt3R exhibits 
substantially larger errors, with position deviations 
exceeding 100 m and angular errors greater than 48 
degrees. Overall, COLMAPHR provides substantial 
improvements, reducing camera center error by up 
to 99.77% and orientation error by up to 94.59%.

With thresholding applied, COLMAPHR achieves 
reconstruction success rates from 11% to 64% 
(Table 7). Considering the learning-based methods, 
only VGGT produces a limited number of valid poses 
for comparison, while the other methods do not yield 
any valid poses. Even under minimal overlap conditions, 
COLMAPHR successfully reconstructs a subset of images 
with acceptable accuracy, maintaining position errors 
below 0.7 m and angular errors under 10 degrees. 
However, despite the high accuracy of COLMAPHR 

reconstructed poses, the number of successfully 

Table 6. Quantitative evaluation of camera pose estimation across three datasets with varying image overlaps. Cen. D. (center 
distance) represents the distance between the estimated camera center and the ground truth. Ang. D. (angle difference) measures 
the orientation error. For each method and overlap, the main value uses all reconstructed poses. Values in parentheses use only 
inliers (center distance <1 m and angle difference <10°). If no parentheses appear, no inliers were found. The best results are in 
bold.

Dataset Method

Overlap: 70% Overlap: 55% Overlap: 40% Overlap: 25% Overlap: 10%

Cen.D. (m)
Ang. D. 

(°) Cen.D. (m)
Ang. D. 

(°) Cen.D. (m)
Ang. D. 

(°) Cen.D. (m)
Ang. D. 

(°) Cen.D. (m)
Ang. D. 

(°)

Dataset‐1 DUSt3R 47.21 141.3 61.15 92.15 74.63 78.91 97.64 47.41 111.5 48.11
MASt3R 50.57 58.08 58.79 19.78 66.03 172.2 92.46 42.63 109.4 47.37
VGGT 1.534 

(0.683)
92.07 
(7.790)

1.600 
(0.742)

92.95 
(7.033)

2.532 90.87 4.427 88.23 7.639 86.92

COLMAPLR 1.221 
(0.487)

8.097 
(8.203)

2.675 
(0.909)

15.16 
(2.403)

10.91 
(0.844)

41.10 
(0.225)

41.10 37.59 – –

COLMAPHR 0.152 
(0.125)

17.62 
(1.946)

0.182 
(0.194)

8.609 
(8.244)

2.907 
(0.378)

100.2 
(7.572)

30.25 
(0.661)

29.96 
(9.928)

1.140 
(0.607)

15.49 
(9.278)

Dataset‐2 DUSt3R 60.17 120.7 87.84 166.5 121.0 58.79 155.7 116.6 143.4 38.89
MASt3R 60.81 113.8 96.72 92.30 144.3 141.0 157.0 155.6 149.3 130.1
VGGT 1.886 

(0.750)
6.905 
(3.556)

3.592 
(0.863)

8.920 
(4.413)

86.15 20.93 48.45 18.25 74.07 83.29

COLMAPLR 0.938 
(0.576)

7.249 
(1.280)

1.295 
(0.749)

9.014 
(0.184)

23.60 30.33 – – – –

COLMAPHR 0.140 
(0.114)

7.966 
(2.025)

0.266 
(0.268)

10.54 
(2.076)

0.450 
(0.456)

7.527 
(1.506)

1.043 
(0.565)

7.627 
(7.003)

0.734 
(0.475)

12.21 
(8.581)

Dataset‐3 DUSt3R 56.95 128.4 90.43 140.5 105.4 45.53 100.0 172.7 101.2 161.4
MASt3R 59.08 175.3 89.33 157.2 106.1 95.84 101.1 101.2 101.1 166.8
VGGT 1.896 

(0.631)
8.025 
(3.936)

4.497 
(0.706)

7.924 
(8.438)

4.750 143.4 5.708 96.48 6.391 91.06

COLMAPLR 1.594 
(0.631)

29.27 
(1.895)

2.146 
(0.776)

15.16 
(3.434)

3.884 
(0.999)

14.49 
(9.183)

62.90 82.23 97.55 123.4

COLMAPHR 0.219 
(0.160)

14.90 
(1.728)

0.373 
(0.349)

9.340 
(2.396)

1.022 
(0.538)

8.770 
(6.465)

3.335 
(0.653)

9.356 
(9.136)

2.737 
(0.500)

20.65 
(3.906)

Table 7. Success rate (%) of reconstructed images across different overlap levels. The success 
rate is computed as the number of successfully reconstructed images divided by the total 
number of images. The best results are in bold.

Method

Success rate at different overlap levels (%)

70% 55% 40% 25% 10%

DUSt3R 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
MASt3R 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
VGGT 100 (10) 100 (6) 100 (0) 100 (0) 100 (0)
COLMAPLR 75 (27) 84 (11) 60 (2) 20 (0) 13 (0)
COLMAPHR 85 (64) 61 (53) 85 (35) 85 (22) 51 (11)
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reconstructed images is significantly limited. When the 
overlap rate falls below 40%, which is lower than 
COLMAP’s typical operational range, COLMAPLR fails 
to reconstruct any valid poses within the defined thresh
olds, and COLMAPHR reconstructs 51% of poses under 
these low-overlap conditions. The limitation results from 
a combination of low overlap and a relatively small image 
set of only 38 images, which is unusual for photogram
metry applications that generally use larger datasets.

In contrast, DUSt3R, MASt3R, and VGGT recover 
all camera poses even at 10% overlap, but DUSt3R and 
MASt3R produce significant errors, with the position 
deviations exceeding 100 m and angular errors over 48 
degrees, yielding no valid estimates after thresholding. 
VGGT generates comparatively better pose estimates, 
maintaining some valid results after thresholding, 
though still falling short of COLMAP’s performance. 
These methods infer 3D structures and estimate camera 
parameters without requiring prior information about 
camera calibration or poses, offering greater flexibility 
but also introducing higher uncertainty in their perfor
mance. In real-world scenarios where ground truth is 
unavailable, VGGT offers an advantage by consistently 
providing pose estimates even when COLMAP fails. 
These estimates can serve as initial guesses and be 
further refined using traditional photogrammetric tech
niques such as bundle adjustment.

4.3. Scalability evaluation

All four methods were evaluated on the standard 
38-image dataset, but only VGGT and COLMAP 

can process larger image sets. Therefore, we con
ducted an additional scalability experiment with 
191 images.

Visualization results for Dataset-2 are presented 
in Figure 6. The VGGT reconstructions exhibit 
pronounced inconsistencies in point cloud align
ment, such as overlapping buildings, repeated 
occurrences of the same structures at multiple loca
tions, and road segments that are interpolated in 
ways inconsistent with the actual scene geometry. In 
comparison, COLMAP generates three separate 
models, but each reconstructed point cloud is 
internally consistent and does not display signifi
cant misalignment. Table 8 presents the quantitative 
results for dense point cloud and camera pose accu
racy. VGGT demonstrates higher point cloud 
errors, reaching up to 6 m, which represents 
approximately an 85% increase compared to 
COLMAPHR’s. Additionally, camera pose estimates 
produced by VGGT may exhibit drift of up to 42 m. 
Substantial errors in both point cloud and camera 
pose estimation mean VGGT cannot yet deliver 
reliable or usable previews for the areas of interest, 
and it is still not suitable as a standalone solution 
for large-scale aerial photogrammetry, although 
VGGT demonstrates better scalability than the 
other end-to-end approaches.

4.4. Computation time

DUSt3R/MASt3R are significantly faster than 
COLMAP, and VGGT can be remarkably faster than 

Figure 6. Reconstruction models for 191-image experiment on dataset-2: (a) VGGT, (b) COLMAPHR.
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DUSt3R/MASt3R as well. For instance, in the 38- 
image case (Table 9), MASt3R requires only 9% of 
COLMAPHR’s processing time, while VGGT operates 
at just 12% of MASt3R’s processing time, making 
VGGT particularly suitable for compute-constrained 
environments. The substantial reduction in processing 
time is likely due to VGGT’s multi-image training 
paradigm, which enables the network to natively per
form multiview triangulation. In contrast, DUSt3R 
relies on separate pairwise triangulations that are 
later averaged, resulting in less efficient alignment 
procedures.

4.5. A case study in mesh completion of regions 
with low image overlap

We apply learning-based methods as a mesh comple
tion step to repair missing parts in an imperfect 3D 
model. As an example, Figure 7(a) shows a model 

reconstructed from UAV images in our self-collected 
dataset with nadir and near oblique views. The dataset is 
described in Section 3. In the COLMAP reconstruction, 
coverage is sparse near the edge of the area of interest, 
and a tall building has an incomplete facade. This pat
tern is common with fixed flight plans over complex 
sites, where low and simple areas receive many images 
while tall and complex structures receive few. In the 
baseline COLMAP run, the facade fails to reconstruct 
because nearby views do not form tracks long enough 
for triangulation, even though one view contains rich 
facade texture. With a learning-based method, we pro
duce a single image 3D point map for that view, align it 
to the scene, and fuse it with the model, as shown in 
Figure 7(b). This recovers the facade structure, reduces 
the gap, and improves completeness.

Learning-based methods work well in many practical 
cases. They are especially helpful in mission critical 
settings where recollection is impossible, and overlap 

Table 8. Point cloud and camera pose evaluation of VGGT and COLMAPHR on three benchmark datasets. For camera poses, the 
values in parentheses are for inliers (center distance <1 m, angle difference <10°). If no parentheses appear, no inliers were found. 
The best results are in bold.

Dataset Method

Point clouds Camera poses

Accu. (m) Comp. (%) Cen.D. (m) Ang. D. (°) Succ. R. (%)

Dataset‐1 VGGT 2.936 35.44 10.41 101.6 100
COLMAPHR 0.123 75.06 0.524 (0.352) 34.501 (7.192) 96 (69)

Dataset‐2 VGGT 5.991 45.40 42.22 81.97 100
COLMAPHR 0.876 42.77 0.765 (0.4551) 13.84 (5.352) 96 (48)

Dataset‐3 VGGT 2.988 38.83 31.48 80.82 100
COLMAPHR 0.197 64.70 0.526 (0.351) 15.01 (9.898) 94 (75)

Table 9. Average processing time (in seconds) for image sets of varying sizes across 
different methods. The best results are in bold.

Method

Time cost (s)

1 2 5 10 38 191

DUSt3R 9 9 11 20 191 –
MASt3R 9 9 12 22 208 –
VGGT 9 9 10 12 24 103
COLMAPLR – – 41 87 370 –
COLMAPHR – – 271 568 2349 5280

Figure 7. Filling a facade gap with a learned monocular point map. (a) COLMAP reconstruction with a missing facade due to sparse 
overlap. (b) The model after adding a single image 3D point map from DUSt3R, aligned and fused with the COLMAP result, which 
closes the gap and improves completeness.
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is weak. In multi date aerial collections, seasonal and 
radiometric changes reduce classical keypoint matches 
and limit triangulation, and deep models have been 
proposed to handle illumination and appearance differ
ences (Albanwan and Qin 2022; Huang, Hu, and Zhu  
2024). Moreover, prior work in satellite settings reports 
that deep models can yield better results on specific 
regions such as flat ground (Sadeq 2025). In one-time 
collections, many frames may be missing, and view 
angles can vary widely. There are also studies that 
apply learning-based methods directly to heritage 3D 
reconstruction (Ge et al. 2024; Mazzacca et al. 2023). 
Learned methods also enable single-image 3D point 
maps that can be aligned to a scene, which gives 
a practical way to add structure in places where pairwise 
matching is unreliable. Therefore, these results justify 
the use of learning-based matching for sparse coverage, 
multi-date collections, and historical archives where 
traditional pipelines struggle.

5. Conclusions

This study critically assesses state-of-the-art learning- 
based direct 3D reconstruction methods (DUSt3R, 
MASt3R, and VGGT) against the classic COLMAP 
pipeline on the UseGeo photogrammetry dataset. We 
evaluate the scenarios that reflect both typical and 
challenging conditions in aerial photogrammetry, 
with the input image counts from 1 to 191 and overlap 
levels from approximately 10% to 70%. Unlike general 
computer vision datasets, aerial photogrammetry 
involves large-scale outdoor scenes, highly regular 
acquisition geometry, and industry-standard require
ments for geometric accuracy and completeness.

VGGT and MASt3R perform impressively in sce
narios characterized by minimal image counts or low 
overlap, producing dense point clouds with accuracy 
up to 0.4 m and completeness as high as +50%, sub
stantially outperforming COLMAP, which either fails 
or yields extremely poor results (as low as 8% com
pleteness). However, COLMAP performs best in stan
dard photogrammetric scenarios involving larger 
image sets and higher overlaps, with errors as low as 
0.06 m (compared to more than 1 m for VGGT) and 
completeness of up to 74% (versus 36% for DUSt3R). 
For camera pose estimation, COLMAP surpasses 
others in nearly all standard scenarios, with the excep
tion of cases involving only two input images. 
However, VGGT‘s advantage is its ability to recover 
image poses where other methods fail.

Among these learning-based solutions, VGGT 
uniquely extends processing capability from dozens to 
hundreds of images and can produce camera poses that 
meet inlier criteria. Nevertheless, VGGT cannot serve as 
a replacement for traditional SfM and MVS pipelines in 
typical photogrammetric applications, as its strongest 
performance is restricted to narrow cases, mainly one or 

two images, and its flexibility is lower than COLMAP. 
Instead, VGGT is most valuable as a supplement, for 
example, to fill model gaps or to recover initial poses in 
sparse-image situations. Although VGGT achieves sig
nificant time savings, requiring only 1% of COLMAP’s 
processing time for the 38-image case, its scalability is 
currently limited to the hundreds range.

Overall, our findings indicate that COLMAP 
remains the most robust and versatile solution for 
aerial photogrammetry datasets, particularly in stan
dard, high-overlap scenarios. Nevertheless, VGGT 
exhibits distinct advantages when inputs are extremely 
limited and when computational efficiency is a priority. 
These attributes position VGGT as a promising sup
plementary approach for challenging or resource- 
constrained photogrammetric applications.

To enhance VGGT’s accuracy and its capacity to 
process higher-resolution imagery, several strategic 
improvements are recommended. Although VGGT cur
rently exhibits limitations in camera pose accuracy, its 
estimated poses can serve as effective initial approxima
tions that enable further refinement through traditional 
SfM and MVS pipelines, such as by applying subsequent 
bundle adjustment. In addition, fine-tuning on specia
lized aerial or aerial-ground datasets, such as 
AerialMegaDepth, may significantly boost performance. 
Together, these improvements are expected to collec
tively strengthen the robustness, accuracy, and practical 
applicability of VGGT in photogrammetric workflows.
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