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ABSTRACT

State-of-the-art 3D computer vision algorithms continue to improve on sparse, unordered
image sets. Recently developed foundational models for 3D reconstruction, such as dense and
unconstrained stereo 3d reconstruction (DUSt3R), matching and stereo 3d reconstruction
(MASt3R), and visual geometry grounded transformer (VGGT), have attracted considerable
attention due to their ability to handle very sparse image overlaps, as well as their general-
ization capability. In light of this contribution, evaluating DUSt3R/MASt3R/VGGT on typical
aerial images is important, as these models may hold the potential to handle extremely low
image overlaps, stereo occlusions, and textureless regions. For highly redundant collections,
they can accelerate 3D reconstruction by using extremely sparsified image sets. Despite being
tested on various computer vision benchmarks, their potential on photogrammetric aerial
blocks remains unexplored. We present a comprehensive evaluation of the pre-trained
DUSt3R/MASt3R/VGGT models on the aerial blocks of the UseGeo dataset for pose estimation
and dense 3D reconstruction. The methods reconstruct dense point clouds from very sparse
inputs (fewer than ten images, resized to a maximum dimension of 518 pixels), achieving
reasonable accuracy and completeness gains up to 50% over COLMAP. VGGT further shows
superior computational efficiency, scalability, and more reliable camera pose estimation.
However, all three show limitations on high-resolution imagery and large image sets, with
the camera pose estimation reliability significantly declining as the number of images and the
geometric complexity of the scene increase. These findings indicate that while transformer-
based methods cannot replace traditional SfM and MVS methods entirely, they hold potential
as complementary approaches, especially in challenging, low-resolution, and extremely sparse
scenarios.
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1. Introduction ) ) )
robust bundle adjustment and dense image matching.

Image-based 3D reconstruction and mapping enable
diverse applications, such as environmental change
monitoring (Jassoom and Abdoon 2024; Purkis and
Klemas 2011), disaster response (Gonsoroski et al.
2023; Pi, Nath, and Behzadan 2020; Vetrivel et al.
2018), virtual and augmented reality (Noh, Sunar,
and Pan 2009), mobile 3D reconstruction (Bianco,
Ciocca, and Marelli 2018), computer graphics (Izadi
et al. 2011), video games (Brown and Hamilton 2016),
and common geomatics tasks (Albanwan, Qin, and
Tang 2024; Hamal and Ulvi 2024; Ruan et al. 2023).
Photogrammetric 3D reconstruction is a core techni-
que that leverages rigorous perspective geometry to
generate dense, accurate environmental models, often
from aerial imagery. Typically, photogrammetric ima-
gery is collected with generous overlaps (60-80%) and
high redundancy, ensuring sufficient observations for

However, this approach can require lengthy proces-
sing times, which limits its applicability for time-
sensitive applications such as real-time mapping and
disaster response planning. In addition, traditional
photogrammetric methods are vulnerable when
image overlap is limited, which can lead to suboptimal
camera networks, occlusions, and large parallax that
challenge dense surface reconstruction.

In recent years, learning-based approaches for 3D
reconstruction have gained significant attention.
These methods estimate an object’s or scene’s 3D
structure end-to-end, removing the need for tradi-
tional multi-stage steps such as keypoint detection
and matching. Because these models embed contex-
tual information in pre-trained weights, they can pro-
duce high-quality reconstructions from only a handful
of views (Liu et al. 2023; Pan et al. 2019; Sinha, Bai, and

CONTACT Rongjun Qin @ gin.324@osu.edu

Supplemental data for this article can be accessed online at https://doi.org/10.1080/10095020.2025.2597491

© 2025 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting

of the Accepted Manuscript in a repository by the author(s) or with their consent.


http://orcid.org/0009-0004-4437-7157
http://orcid.org/0000-0002-2056-567X
http://orcid.org/0000-0001-8457-5554
http://orcid.org/0000-0002-5896-1379
https://doi.org/10.1080/10095020.2025.2597491
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2025.2597491&domain=pdf&date_stamp=2025-12-10

2 (&) XWUETAL

Ramani 2016), and, in some cases, even from a single
image (Samavati and Soryani 2023). Such methods are
particularly effective for highly sparse and low-overlap
datasets, offering advantages such as rapid processing.
With their growing prominence, there is increasing
interest in evaluating their performance in aerial
photogrammetry.

The computer vision and photogrammetry com-
munities have proposed many deep learning-based
solutions for 3D reconstruction (Dame et al. 2013;
Mildenhall et al. 2021; Zhan et al. 2018; Zhu et al.
2022), demonstrating different levels of performance
across diverse datasets, including small indoor objects
and outdoor ground-perspective scenes (Farshian
et al. 2023). Among many of these preexisting meth-
ods, DUSt3R (Wang et al. 2024), its sibling MASt3R
(Leroy, Cabon, and Revaud 2025), and the subsequent
visual geometry grounded transformer (VGGT)
(Wang et al. 2025) generalize effectively across diverse
scenes. These models follow an end-to-end paradigm
that predicts point clouds directly from single or
stereo images, which bypasses the traditional two-
step process of sparse reconstruction followed by
dense reconstruction and enhances robustness to
occlusions. With global motion averaging as a post-
processing step, DUSt3R and MASt3R can integrate
multiple images using 3D point clouds predicted from
individual stereo pairs. VGGT further advances the
pipeline with a feed-forward neural network that elim-
inates costly iterative post-optimization used by
DUSt3R. As a result, VGGT may outperform
DUSt3R and MASt3R in both speed and quality.
Using learned priors and direct 3D registration,
DUSt3R, MASt3R, and VGGT can handle individual
stereo pairs and, by extension, multiple images with
very low overlap and large occlusions. This suggests
potential in challenging cases with only a sparse set of
images, whether because the data were passively col-
lected (for example, historical photos), resources to
acquire new data are limited (for example, aerial or
satellite imaging with infrequent collection), or the
goal is to reach real-time or near-real-time perfor-
mance with fewer images. Despite strong results on
computer vision benchmarks such as CO3Dv2
(Reizenstein et al. 2021), ETH3D (Schops et al.
2017), RealEstatelOk (Zhou et al. 2018), BONN
(Palazzolo et al. 2019), and the Map-free benchmark
(Arnold et al. 2022), DUSt3R, MASt3R, and VGGT
have not been extensively evaluated on aerial imagery.
Compared to computer vision benchmarks, photo-
grammetric aerial images consist of rather small base-
lines with mostly nadir views of relatively large scenes,
leading to fewer perspective variations that DUSt3R/
MASt3R/VGGT typically process. Therefore, under-
standing their effectiveness, capabilities, and accuracy
potential when dealing with aerial photogrammetric
images with varying density is pivotal for their

practical value in the context of 3D mapping.
Specifically, AerialMegaDepth (Vuong et al. 2025),
designed for air-to-ground matching, proposes
a scalable framework for generating pseudosynthetic
data that simulates a wide range of aerial viewpoints.
This framework was trained on several state-of-the-art
algorithms and has demonstrated superior perfor-
mance compared to the original version of DUSt3R.
However, to ensure a fair comparison, this enhanced
version was not included in our evaluation.

In this work, we present the first comprehensive
assessment of DUSt3R, MASt3R, and VGGT for 3D
reconstruction on aerial photogrammetric image
blocks. We feature their strengths and limitations for
pose estimation and dense point cloud generation
under varying image network configurations. We use
the UseGeo dataset (Nex et al. 2024) and compare
these methods with COLMAP (Schonberger and
Frahm 2016; Schonberger et al. 2016), a general-
purpose structure-from-motion (SfM) and multi-
view stereo (MVS) pipeline. Figure 1 illustrates an
example where we evaluate both dense point-cloud
quality and estimated camera poses.

Our results show that classic methods remain the
most effective choice for standard photogrammetric
overlap rates between 60% and 80%. In contrast,
VGGT serves as a valuable supplement in extremely
sparse image scenarios where traditional methods fail,
and it offers better scalability, efficiency, and pose
estimation than DUSt3R and MASt3R.

The remainder of the paper is organized as follows.
Section 2 reviews related work, covering state-of-the-
art 3D modeling solutions and evaluation methods.
Section 3 details the dataset configuration and evalua-
tion metrics. Section 4 presents experimental results,
analysis, and a brief case study that shows the potential
of learning-based methods. Finally, Section 5 con-
cludes our study.

2. Related work

Image-based 3D reconstruction has advanced rapidly
in photogrammetry and computer vision. In this sec-
tion, we review related work in 3D reconstruction,
comparing traditional SfM and MVS with more recent
learning-based approaches. We also examine existing
evaluation studies and highlight their limitations.
StM and MVS. Camera orientation and dense
image matching have been widely studied, leading
to the development of various algorithms and open-
source tools. SfM (Crandall et al. 2011; Hartley and
Zisserman 2003; Schonberger and Frahm 2016) pro-
cesses unordered images to recover camera para-
meters and produce a sparse point cloud. It uses
correspondences between overlapping images to
compute intrinsic and extrinsic parameters
(Koutsoudis et al. 2014), followed by bundle
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Figure 1. Results from DUSt3R (a), MASt3R (b), VGGT (c), and COLMAP® (d), where COLMAP"® denotes COLMAP results obtained
from high-resolution inputs. The top row presents the dense point cloud and the estimated camera poses (represented in gray),
while the bottom row displays the error map, comparing the results to ground truth LiDAR data. Camera poses are color-coded

based on their distance from the ground truth.

adjustment to refine camera poses. Bundler
(Snavely, Seitz, and Szeliski 2006) is one of the ear-
liest open-source systems for image-based 3D recon-
struction and point-cloud generation. It addresses
the SfM problem by estimating camera parameters.
Building on this foundation, later works extended
these techniques to large-scale scene reconstruction
(Agarwal et al. 2011). Further, patch-based multi-
view stereo (PMVYS), introduced by Furukawa and
Ponce (2010), performs for dense image matching to
produce detailed reconstructions. More broadly,
MVS reconstructs dense point clouds from a set of
images, and the final 3D model is obtained by fusing
per-view depth maps into a single coherent repre-
sentation. These tools have been widely adopted by
researchers and practitioners (Furukawa and
Herndndez 2015). Numerous frameworks and
libraries have since been released, extending these
techniques. Examples include the multi-view envir-
onment (MVE) (Furukawa and Herndndez 2015), an
end-to-end pipeline for image-based geometry
reconstruction, and open multiple view geometry
(OpenMVG) (Moulon et al. 2017), a library tailored
to the multiple-view geometry community. More
recently, full 3D reconstruction pipelines such as
COLMAP and OpenMVS (Cernea 2020) provide
comprehensive solutions for a broad audience. In
parallel, advances in deep learning for computer
vision and photogrammetry have increased the pro-
minence of learning-based approaches (Hartmann
et al. 2017; Kerbl et al. 2023; Wang et al. 2024),
particularly in areas such as self-supervised methods
for single-image depth estimation (Knobelreiter,

Vogel, and Pock 2018; Madhuanand, Nex, and
Yang 2021).

Direct RGB-to-3D. Unconstrained dense 3D recon-
struction from multiple RGB images remains a long-
standing research problem in 3D modeling (Charles
et al. 2017; Dame et al. 2013; Mildenhall et al. 2021). In
recent years, neural network-based methods that pre-
dict depth from a single image or a very small number
of images have gained significant attention. These
approaches, used not only for matching (Ji, Liu, and
Lu 2019), address many limitations of two-view and
multi-view stereo depth estimation. Notably, they
eliminate the sequential dependency of the StM pipe-
line, which tends to accumulate errors and noise at
each processing stage. Some methods use neural net-
works to learn robust geometric class-level priors or
diffusion models (Liu et al. 2023). However, these
approaches are primarily designed for object-centric
reconstruction rather than large-scale scene recon-
struction. Another line of research focuses on general
scene reconstruction by using monocular depth esti-
mation neural networks trained on large datasets.
These methods can produce pixel-aligned 3D point
clouds (Ranftl, Bochkovskiy, and Koltun 2021; Wiles
et al. 2020; Yin et al. 2021), although depth quality can
lack fidelity because of missing scale or out-of-
distribution prediction. To address this limitation,
multi-view neural networks for direct 3D reconstruc-
tion have been introduced, which enable end-to-end
training and resolving scale ambiguity (Ummenhofer
et al. 2017). More recently, DUSt3R has emerged as
a notable advance, eliminating the need for ground
truth camera intrinsics as input. This approach can
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directly generate point maps and global camera poses
rather than relying on depth maps and relative poses.
The promising results of DUSt3R and its sibling
MASt3R have driven further progress, inspiring the
development of more sophisticated methods such as
VGGT (Wang et al. 2025). VGGT is a feed-forward
neural network built on a standard large transformer
(Vaswani et al. 2017). It removes pairwise point cloud
generation and can process more than two images
simultaneously, enabling direct production of point
clouds without post-processing to fuse pairwise recon-
structions. This design can yield more consistent point
cloud results.

As interest grows, new models are appearing
rapidly. Fast3R (Yang et al. 2025) extends the
DUSt3R family to a single forward pass designed for
large N inputs, improving throughput from a handful
of views to hundreds or more. Along the VGGT line,
FastVGGT (Shen et al. 2025) and Faster VGGT (Wang
et al. 2025) identify global attention as the main bottle-
neck: the former uses token merging and the latter
uses optimized block sparse attention to accelerate
inference while keeping quality comparable. These
methods are promising for aerial applications because
they are efficient and can scale to hundreds or even
thousands of images. In quick tests against the learn-
ing-based methods used in this paper, the newest
models showed similar or slightly better point cloud
and pose quality. Metrics include point cloud accuracy
and completeness, as well as pose center and orienta-
tion errors. These findings do not change our conclu-
sions. Given the fast pace of the field and our scope, we
proceed without adding these models and instead cite
them because of their recent release.

Surveys, reviews, and evaluations. With the rise of
open-source 3D reconstruction solutions, evaluating
these pipelines has become common in the research
community. Reviews have analyzed methods, datasets,
scenarios, and photogrammetric metrics (Alidoost
and Arefi 2017; Georgopoulos et al. 2016; Pepe,
Alfio, and Costantino 2022). Moreover, Remondino
et al. (2017) documented the development of diverse
MVS algorithms for reconstructing different scenes.
Stathopoulou, Welponer, and Remondino (2019)
examined widely used open-source image-based 3D
reconstruction pipelines, while Jarahizadeh and Salehi
(2024) presented a recent evaluation of popular photo-
grammetry software. However, these efforts are lim-
ited to traditional MVS solutions. Learning-based
methods have gained attention, and new evaluation
practices have appeared because these approaches
have the potential to surpass traditional methods in
multiple domains. Unlike conventional techniques,
they support end-to-end training, which removes the
need for manually designed multi-stage processes.
Several studies have surveyed key challenges, network
architectures, and evaluation methodologies in 3D

reconstruction (Fahim, Amin, and Zarif 2021; Fu
et al. 2021). However, their scope is limited to single-
image 3D object reconstruction. Han, Laga, and
Bennamoun (2021) extend the scope by covering
both single- and multi-image, but they do not include
research published after 2019 and thus miss recent
advances. Additionally, Samavati and Soryani (2023)
take a broader perspective by exploring studies where
3D reconstruction serves as a downstream task for
various objectives. Their survey mentions DUSt3R
but does not provide experimental data to support its
performance.

The rapid progress of the field calls for regular
reassessment of recent research. Evaluating new meth-
ods on updated benchmark datasets is essential to
keep pace with ongoing advances.

3. Material preparation and experiment setup

This section presents the benchmark dataset and our
data preparation workflow, then outlines the evaluated
approaches for 3D reconstruction. Finally, we define
the metrics used to assess the dense point clouds and
camera poses.

3.1. Dataset configuration

We use the UseGeo dataset (Nex et al. 2024), which
includes images and LiDAR collected at the same time
across diverse urban and peri-urban areas. The
UseGeo dataset is intended for rigorous benchmark-
ing in the context of photogrammetry applications.
A total of 829 high-resolution images were captured
at an average altitude of 80 m during three flights that
cover three distinct areas, which we refer to as Dataset-
1, Dataset-2, and Dataset-3. Each dataset contains
eight flight strips, with a typical image overlap of
60-80%. LiDAR was acquired simultaneously at
about 51 points per square meter, which corresponds
to a ground sample distance (GSD) of approximately
2 cm. Following image and LiDAR acquisition, the
hybrid adjustment (Glira, Pfeifer, and Mandlburger
2019) method was employed to jointly refine the
orientations of the LiDAR and camera, optimizing
image alignment, camera calibration, and distortion
correction. The adjusted LiDAR and camera data serve
as ground truth (GT) for both point cloud accuracy
and camera pose estimation. In the UseGeo dataset,
the mean cloud-to-cloud (C2C) residual error between
LiDAR and photogrammetric point clouds is 6.7-8.8
cm, which indicates strong internal alignment.
Additional preprocessing details are provided in data-
set paper (Nex et al. 2024). The dataset challenges
learning-based methods because of the limited num-
ber of images and their somewhat homogeneous
(nadir) perspectives. Although overlap is sufficient
for classic SfM, it can be relatively small for self-



supervised methods that rely on joint depth and rela-
tive motion estimation (Hermann et al. 2024).

To study performance across coverage levels, we
evaluated subsets of 1, 2, 5, 10, and 38 images from
Dataset-1, Dataset-2, and Dataset-3 for the main
experiments. Figure 2, top row shows examples of
the selected images in Dataset-1. The 38-image subset
is the largest that DUSt3R and MASt3R can handle on
our hardware because these models are computation-
ally intensive. For scalability analysis, we included an
experiment with 191 images, which is the maximum
we can process with VGGT on our device. For the 191-
image experiment, only VGGT and COLMAP were
evaluated, as they are capable of handling datasets of
this scale. In these experiments, images were typically
acquired along one to five flight strips, with the
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number of strips varying according to the number of
images selected and the specific area of interest. For
the scalability experiment, the 191-image subset com-
prised the first 191 images from each dataset. The full
list of the image IDs is provided in Appendix B. We
selected images from different datasets with varying
scene complexity; examples are shown in Table 1.
Furthermore, to test robustness under low-overlap
photogrammetric blocks, we conducted an experi-
ment, referred to as low-overlap reconstruction,
which reduced the original overlap rate from approxi-
mately 70% to 10% with 38 images. Figure 2, bottom
row shows low overlap experiments with 70%, 55%,
40%, 25%, and 10% overlap in Dataset-1. To system-
atically reduce image overlap in our experiments, we
primarily decreased the along-track overlap by

Figure 2. Spatial distribution of the selected cameras for dataset-1. Top row experiments with 1, 2, 5, 10, and 38 images. Bottom
row experiments with 70, 55, 40, 25, and 10% overlap. Each square marks a camera position. Green points are all ground truth
poses. Black points are the selected poses. The background is the ground truth LiDAR point cloud color-coded by elevation.

Table 1. An overview of the scenarios and datasets used in this evaluation, including example photogrammetric point clouds
generated for the test areas and the ground truth. The gt point cloud is color-coded by height, with gt camera poses overlaid.

Scale bars are included in the gt visualizations.

Type Images GT points Example point clouds GT
Dataset-1 224 105.9 M (million)

Dataset-2 327 146.3 M

Dataset-3 277 140.6 M
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selecting images at larger intervals along the flight
path, while keeping across-track coverage largely
unchanged (Torres-Sanchez et al. 2018). The areas of
interest were first identified, and images capturing
these regions were selected. When images were chosen
sequentially along different drone flight trajectories,
the overlap was around 70%. Selecting every other
image (i.e. skipping one) reduced the overlap to
approximately 55%. Similarly, skipping two images
resulted in a 40% overlap, skipping three images led
to 25%, and skipping four images reduced the overlap
to about 10%. This sampling strategy enabled us to
assess the sensitivity of each reconstruction method to
reduce along-track redundancy, which is relevant for
scenarios with limited acquisition resources or the
need for faster processing. Naturally, at higher overlap
rates, the selected images were concentrated in
a smaller region, whereas at lower overlap rates, the
images were more spatially distributed, potentially
covering a larger area.

DUSt3R and MASt3R use transformer architecture
and, on mainstream GPUs as of 2025, are limited to
images with a maximum lateral dimension of 512
pixels. VGGT requires input images with a maximal
dimension of 518 pixels. Consequently, we rescaled all
images to 512 pixels to fit these limits while preserving
aspect ratios. For COLMAP, we report results on both
the rescaled images, where the largest dimension is
512 pixels for fair comparison, and the original-
resolution images to assess real-world performance.
Here, COLMAP"® refers to high-resolution inputs
and COLMAP™® to the low-resolution setting.

Beyond the benchmark datasets, we include
a practical case study on a self-collected aerial dataset
to show how learning-based solutions reduce coverage
gaps. The data were collected on The Ohio State
University (OSU) campus with a high-quality
unmanned aerial vehicle (UAV). The dataset contains
190 images with approximately 80% overlap. Each
image has GPS with about 0.25 m positional accuracy.
The camera is a DJI FC6310S with a 9 mm focal length
and an image size of 5472 by 3648 pixels. The scene is
complex, with tall and low buildings and detailed
facades. Fixed pattern flights leave sparse views near
vertical surfaces, which often produce incomplete
meshes. This dataset is a good example of when learn-
ing-based methods help. The case study uses the same
pipeline and is reported in Section 4.5.

3.2. Evaluated methods

DUSt3R is a transformer-based method that works
without prior knowledge of camera calibration or
viewpoint poses. It treats pairwise reconstruction as
a regression from image to point maps, which
bypasses the strict constraints of traditional projective
camera models (Wang et al. 2024). MASt3R extends

DUSt3R by adding a second network head to generate
dense local features that are trained with a newly
introduced matching loss. Although MASt3R shows
strong overall performance across a range of matching
tasks, including those in which it outperforms
DUSt3R, it is restricted to the binocular case and
lacks an implementation for multiple images (Leroy,
Cabon, and Revaud 2025). To compare multi-image
reconstructions, we applied the global alignment strat-
egy from the DUSt3R paper to MASt3R’s pairwise
outputs, aligning point maps into a single reference
frame. Specifically, AerialMegaDepth provides
a scalable framework for generating pseudosynthetic
data that simulates diverse aerial viewpoints. State-of-
the-art algorithms, such as DUSt3R finetuned on this
dataset, have shown stronger performance than the
original version of DUSt3R. However, this enhanced
version was not included in our evaluation to ensure
a fair comparison.

VGGT introduces a feed-forward neural network
that performs 3D reconstruction directly from as few
as one view and up to hundreds of views, which
removes the need for post-processing geometry opti-
mization. This approach offers more consistent point
clouds, reduces the computational cost of iterative
optimization, and has the potential to outperform
DUSt3R and MASt3R by a substantial margin.

COLMAP (Schonberger and Frahm 2016;
Schoénberger et al. 2016) is a general-purpose SftM
and MVS pipeline. It uses scale-invariant feature
transform (SIFT) (Lowe 2004), for feature extraction
and matching, followed by geometric validation,
incremental SfM, and bundle adjustment to refine
camera and point estimates (Stathopoulou,
Welponer, and Remondino 2019). Further,
a probabilistic patch-based stereo framework was
used for MVS reconstruction. Except for setting the
minimum number of reconstructed images for an
accepted model to two, all COLMAP parameters
were left at default settings to ensure consistency and
provide a baseline for comparison. We used the
defaults because we did not find existing literature
reporting any aerial-specific settings. The defaults are
also a well-known, general-purpose baseline that sup-
ports transparency and comparability. To address
concerns about tuning, we include a small preliminary
experiment in Appendix A. We vary the matching
ratio and the bundle adjustment iteration budget and
find that these changes do not materially affect the
conclusions when compared with the learning-based
methods.

In this study, we evaluated DUSt3R, MASt3R,
VGGT, and COLMAP on our datasets in terms of
reconstruction accuracy and robustness. The main
settings are recorded in Table 2. Meanwhile, pre-
trained models were used. DUSt3R employed
a model trained on the rescaled images in which the
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Table 2. Overview of key modules in traditional (COLMAP) and learning-based (DUSt3R/MASt3R/VGGT) 3D reconstruction

pipelines.
Feature Feature Geometric Image Robust Dense point cloud
extraction matching verification registration Triangulation estimation generation
Traditional methods
COLMAP SIFT Lowe  Exhaustive  7-Point F-matrix P3P Gao et al. Sampling-based direct RANSAC Patch-based stereo
(2004) search Hartley and (2003) linear transformation Schénberger et al.
Zisserman (2003) (2016)
Learning-based methods
Encoder Decoder Heads Network loss
DUSt3R/MASt3R ViT-Large ViT-Base DPT Ranftl, Bochkovskiy, and Koltun (2021)/ Simple regression loss
Dosovitskiy Dosovitskiy et al. CatMLP+DPT
et al. (2021) (2021)
VGGT ViT-Large - Task-specific heads Multi-task loss
Dosovitskiy
et al. (2021)

largest dimension is 512 pixels, with the dense predic-
tion transformer (DPT) head (Ranftl, Bochkovskiy,
and Koltun 2021), while MASt3R utilized a model
trained on similar rescaled images with a mixed multi-
layer perceptron (MLP) and DPT architecture (termed
CatMLP+DPT). This architecture combines an MLP
and a DPT head, where the MLP outputs 3D points
and local features. Both heads receive input from
a concatenation of the encoder and decoder outputs.
VGGT rescales input images to a width of 518 pixels
while maintaining the aspect ratio. It utilizes a unified
architecture with a ViT-Large transformer encoder
and no separate decoder, employing multiple task-
specific heads for outputs such as camera parameters,
depth, and point clouds. We performed end-to-end
training with a multi-task loss and used mixed preci-
sion to reduce runtime and memory use. DUSt3R and
MASt3R ran with a batch size of 1 and a maximum
input dimension of 512 pixels, and VGGT ran with
a batch size of 1 and an input width of 518 pixels.

We align the reconstructed point clouds and camera
poses to the ground truth model independently. Point
cloud alignment involved an initial manual alignment,
followed by refinement using the iterative closest point
(ICP) algorithm (Besl and McKay 1992) implemented in
CloudCompare (Girardeau-Montaut 2016). For camera
poses, we align the estimated positions to the ground
truth by solving two rigid transformations in sequence
that model scale, rotation, and translation with a least-
squares approach. The transformations were first applied
to the camera centers, followed by the orientations, and
then combined to produce the final alignment.

3.3. Evaluation on dense point clouds generation

3.3.1. Accuracy

Accuracy is measured using the quadratic height func-
tion in CloudCompare, which computes the vertical
distance between each estimated point and the corre-
sponding reference surface derived from the ground
truth point cloud. This method provides a more reli-
able accuracy assessment by considering local surface

variations rather than simple point-to-point Euclidean
distances. The mean accuracy represents the average
vertical deviation between the reconstructed point
cloud and the ground truth LiDAR data. We follow
existing works (Ahmad Fuad et al. 2018; Xu, Qin, and
Song 2023) and use the mean C2C distance, opmpaN, as
shown in Equation (1).

OMEAN = Mean (D point_to_local_surface) ( 1)

3.3.2. Completeness

Completeness is measured by reversing the process:
the vertical distance between each ground truth point
and the corresponding reference surface derived from
the estimated point cloud is calculated, with an
empirical threshold of 1 m applied. Completeness is
defined as the ratio of ground truth points within this
threshold (Nyimin) to the total number of ground truth
points (Ngr), where Nyimin is the number of ground
truth points within the threshold, and Ngr is the total
number of ground truth points.

Nyithin = Z]N:Gll 8(d(pjcr, Pe) <7) (2)

where d(pijT,PE) is the vertical distance from the
ground truth point p;gr to the corresponding refer-
ence surface derived from the estimated point cloud
Pg; 7 is the threshold (e.g. 1 m); 8(-) is an indicator
function that equals 1 if the condition inside is true,
and 0 otherwise. The evaluation employs both accu-
racy and completeness to provide a comprehensive
analysis of the results.

3.4. Evaluation on camera poses estimation

The pose of each camera is compared against its cor-
responding ground truth, evaluating both position
and orientation.

3.4.1. Evaluation of camera position/translation
The camera position is assessed by calculating the
Euclidean distance between the reconstructed position
and the ground truth position, as shown below:
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AC = [|Cyrea — Gl ©)

where AC is the camera center difference (in m), Cpreq
is the predicted camera center, Cy; is the ground truth
camera center, and [|.|| denotes the Euclidean norm
(distance).

3.4.2. Evaluation of camera rotation/orientation
Orientation differences are assessed by determining
the angle of the rotation required to align the recon-
structed camera’s orientation with the ground truth
(Bianco, Ciocca, and Marelli 2018; Xu et al. 2024). We
represent orientations with unit quaternions and com-
pute the error from the relative quaternion. The rela-
tive quaternion is calculated as follows:

qr = 4x 'dor (4)

where gy represents the quaternion describing the
rotational transformation needed to align the esti-
mated camera orientation (qg) with the ground truth
orientation (qgy), where gz ! denotes the inverse of
the estimated orientation. The orientation error of
camera poses is measured in terms of angle difference
(@), and can be computed from the scalar part w of the
quaternion, as shown in Equation (5).

a = cos”" (qg,) (5)

4, Experiment results

First, we assess the reconstructed point clouds, focus-
ing on accuracy and completeness as key metrics, as
shown in Section 4.1. Next, we compare methods by
camera-center differences and camera-angle distances,
as shown in Section 4.2.. The scalability study on 191
images using VGGT and COLMAP appears in
Section 4.3., and Section 4.4. reports runtime and
computational resources. Finally, Section 4.5. reviews
the practical implications of learning-based recon-
struction for aerial data.

We use COLMAP"™® for results from high-
resolution inputs and COLMAP'™® for results from
low-resolution inputs. COLMARP refers to the method
family regardless of resolution. All experiments were
conducted on a system running Ubuntu 22.04.5 LTS,
equipped with an AMD Ryzen Threadripper PRO
5955WX CPU (16 cores, 1.8-4.0 GHz), 512 GB RAM,
and an NVIDIA RTX 6000 Ada Generation GPU
(52 GB VRAM).

4.1. Accuracy of dense point clouds

As Figure 3 illustrates, for the single-image case,
DUSt3R, MASt3R, and VGGT reconstruct dense
urban point clouds, whereas COLMAP fails because
the viewing angles are insufficient for triangulation.
However, the reconstructed models still have flaws,
exhibiting holes around buildings and failures on
small towers, likely due to limited model understand-
ing of tall structures in top-down views and insuffi-
cient resolution. Similarly, when using two images
with a large viewpoint difference, COLMAP often
fails or produces low-quality models with sparse
points, achieving an accuracy of up to 2.3 m. In con-
trast, DUSt3R, MASt3R, and VGGT produce reason-
able point clouds, with MASt3R and VGGT showing
similar performance and generally outperforming the
others. These methods achieve the higher accuracy (up
to 0.4 m) and greater completeness (an increase of
+10%), as shown in Table 3.

MASt3R and VGGT outperform COLMAP in com-
pleteness in 87% of instances, achieving up to an
additional 19% completeness in most scenarios. This
is due to their ability to generate more points without
geometric constraints, unlike COLMAP, which prior-
itizes higher accuracy by producing fewer points.
Learning-based methods such as MASt3R employ
a coarse-to-fine, one-versus-all strategy for point tri-
angulation, while VGGT directly predicts near-

(a) (b)

0.0 25

(c) (d)

>5.0(m)

Figure 3. Reconstruction results using a single image. (a) Input image; (b), (c), and (d) Show the reconstruction results of DUSt3R,
MASt3R, and VGGT, respectively. The upper row presents the dense point cloud, and the bottom row displays the error map. The
color bar encodes absolute error in m: 0.0 to 2.5 m is blue through green, 2.5 to 5.0 m is green through yellow-orange, and values
greater than 5.0 m are red. White denotes no data or invalid depth.
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Table 3. Quantitative evaluation of dense point cloud reconstruction across three datasets using 1, 2, 5, 10, and 38 images with
different methods. “Accu.” denotes accuracy, “comp.” denotes completeness, and “-" indicates no results. The best results are in

bold.
1 Image 2 Images 5 Images 10 Images 38 Images

Comp. Comp. Comp. Comp. Comp.

Dataset Method Accu. (m) (%) Accu. (m) (%) Accu. (m) (%) Accu. (m) (%) Accu. (m) (%)
Dataset-1 DUSt3R 0.697 8.780 0.625 11.81 0.523 19.52 0.689 33.56 0.709 66.52
MASt3R 0.364 14.85 0.432 14.18 0.343 24.60 0.390 38.82 0.436 78.90

VGGT 0.629 10.61 0.422 15.98 0.353 25.80 0.491 38.58 1.122 74.96

COLMAP“® - - - - 2,625 2.130 0.535 6.310 4161 17.50

COLMAPHR - - - - 0.070 20.64 0.085 36.85 0.064 59.74

Dataset-2  DUSt3R 2.401 6.230 0.616 13.16 0.699 16.17 0.860 20.51 1.452 36.42
MASt3R 2.175 7.660 0.735 13.45 0.540 22.22 0.590 27.16 0.925 49.71

VGGT 1.389 7.27 0.596 14.60 0.649 20.41 0.909 31.54 1.090 62.64

COLMAPR - - - - 0.590 12.58 0.859 20.51 0.325 61.09
COLMAP™® - - 2.349 4300 0.122 17.11 0.150 27.60 0.127 74.36

Dataset-3  DUSt3R 1.039 6.720 0.925 6.980 0.786 11.92 0.807 21.82 2.041 45.78
MASt3R 0.889 5.710 0.774 8.300 0.627 13.48 0.574 29.81 1.583 4176

VGGT 0.871 6.955 1.014 6.662 0.658 15.35 0.514 30.68 1.158 30.67

COLMAP“® - - - - - - - - 0.288 55.69
COLMAPHR - - - - 0.134 12.58 0.106 28.58 0.163 69.73

accurate point or depth maps. Both approaches lack
epipolar constraints and multi-view consistency,
which leads to the denser and more efficient, but less
accurate point clouds. This trade-off yields higher
completeness but lower accuracy in reconstructions.
As the number of images increases, COLMAP
leverages good viewing angle differences to recon-
struct a model, with high-resolution input achieving
significantly higher accuracy. The qualitative results
for Dataset-3 using 38 images are presented in
Figure 4. In this case, COLMAP"® achieves an accu-
racy of 0.2m, corresponding to a 92% reduction in
error compared to the other methods, which have
errors around 2.0 m. One potential factor contributing

to COLMAP"™s superior accuracy is that it processes
images at higher resolutions, allowing for more precise
feature extraction and matching. However, when ana-
lyzing scenarios wusing rescaled images with
a maximum dimension of 512 pixels, COLMAP""’s
accuracy fluctuates substantially, sometimes resulting
in errors of 4m in contrast to MASt3R’s 0.4 m, and
COLMAP™® suffers from very low completeness due
to the limited number of 3D points detected.

Overall, COLMAP™® consistently achieves the
highest accuracy when results are available and gen-
erally maintains acceptable completeness. Although its
completeness is sometimes lower than that of VGGT,
the difference is not substantial. Its performance is

(c)

Figure 4. Reconstruction results using 38 images. (a), (b), (c), and (d) Show the reconstruction results of DUSt3R, MASt3R, VGGT,
and COLMAP"®, respectively. The first row presents detailed views of the dense colored point clouds; the second row shows the
overall dense point clouds; the third row depicts the error maps of the dense point clouds; and the bottom row highlights
zoomed-in details of the error maps. The color bar encodes absolute error in m: 0.0 to 2.5 m is blue through green, 2.5 to 5.0 m is
green through yellow-orange, and values greater than 5.0 m are red. White denotes no data or invalid depth.



10 &) X WUETAL

stable, especially as the number of images increases.
However, MASt3R and VGGT demonstrate clear
advantages in challenging scenarios with very limited
images, where COLMAP often fails or cannot be
applied. This suggests that, although MASt3R and
VGGT are not yet a complete replacement for tradi-
tional methods in standard SfM and MVS pipelines,
they can serve as a valuable supplement, particularly
for improving completeness in sparse or difficult
cases.

The results of the low-overlap reconstruction experi-
ment using 38 images are presented in Table 4. Overall,
these findings are consistent with previous observa-
tions: COLMAP achieves higher accuracy, whereas
MASt3R and VGGT demonstrate comparable perfor-
mance and superior completeness. Specifically,
COLMAP achieves higher accuracy in 93% of cases,
with accuracy up to 80% better than that of the others.
In contrast, MASt3R and VGGT outperform both
COLMAP variants in completeness in 80% of cases,
with gains of up to +50%. Further, as the overlap
decreases, the learning-based methods maintain both
accuracy and completeness, exhibiting robustness in
extremely low-overlap scenarios, whereas COLMAP
experiences a significant performance drop in comple-
teness (e.g. 8%), which is insufficient for practical real-
world applications. Although COLMAP can generate
highly accurate point clouds, its performance degrades
significantly when the image overlap is reduced to 10%,
which is expected since this overlap rate is outside the
typical operational range for which COLMAP was
designed. With limited overlap, COLMAP struggles to
find correct feature matches, leading to fewer accurately
matched 2D points and, consequently, fewer recon-
structed 3D points. In contrast, transformer-based
methods like VGGT can generate more 3D points
even in low-overlap conditions, giving them a clear
advantage in point cloud completeness and density.

To sum up, MASt3R and VGGT outperform
COLMAP in extremely sparse views across both

resolution settings, such as one or two images or
approximately 10% overlap, achieving higher accuracy
(up to 0.4 m) or up to +50% completeness. In contrast,
COLMAP often fails in these settings or yields larger
errors (up to 2.3 m) and much lower completeness (as
low as 8%). Although MASt3R and VGGT demon-
strate robust performance in extremely low-overlap
cases, maintaining high completeness and comparable
accuracy, their advantage diminishes in high-
resolution photogrammetry datasets with typical over-
laps (i.e. 70%). In these cases, they exhibit either simi-
lar or moderately higher completeness, with an
advantage of up to 20%, while COLMAP achieves
substantially greater accuracy, reducing errors by up
to 9%. This comparison shows that, although trans-
former-based methods can provide value in special
cases with limited images, COLMAP is better suited
for routine photogrammetric workflows.

4.2. Accuracy of camera poses

The qualitative results in Figure 5 demonstrate that the
classic method produces the most accurate outcomes
on large, high-overlap datasets: the estimated camera
positions and orientations show the smallest deviation
from the ground truth poses in terms of spatial align-
ment and orientation consistency. In addition, VGGT
demonstrates visually acceptable performance, with
a higher proportion of estimated poses closely match-
ing the ground truth. VGGT also reconstructs 100% of
poses, whereas COLMAPHR achieves this in only 67%
of cases. DUSt3R and MASt3R face challenges, with
the global alignment process resulting in approxi-
mately 20% of the estimated poses deviating signifi-
cantly from the ground truth, with some discrepancies
exceeding several hundred meters.

Based on all evaluated cases, COLMAP!® achieves
better camera pose center positions in all cases, as
shown in Table 5. Note that single-image cases are
excluded, as pose comparison is not meaningful due

Table 4. Quantitative evaluation of dense point cloud reconstruction across three datasets with different image overlaps and
methods. “Accu.” denotes accuracy, “comp.” denotes completeness, and “"— indicates no results. The best results are in bold.

Overlap: 70% Overlap: 55%

Overlap: 40% Overlap: 25% Overlap: 10%

Comp. Comp. Comp. Comp. Comp.
Dataset Method Accu. (m) (%) Accu. (m) (%) Accu. (m) (%) Accu. (m) (%) Accu. (m) (%)
Dataset-1 DUSt3R 0.656 26.41 0.732 30.41 0.918 30.25 0.791 59.60 1.029 47.72
MASt3R 0.433 30.09 0.533 34.97 0.707 36.98 0.612 59.60 0.919 52.97
VGGT 0.542 31.71 0.507 37.66 0.862 39.91 1.087 58.56 1.589 58.59
COLMAP® 0.484 11.73 2.546 14.41 1.389 4.010 7.642 0.440 - -
COLMAPHR 0.086 24.10 0.106 17.81 0.432 20.02 0.945 17.23 0.917 8.12
Dataset-2 DUSt3R 2.085 11.88 1.389 16.79 1.954 15.98 2.532 19.81 6.717 19.83
MASt3R 0.898 28.89 0.924 23.08 1.682 24.49 1.432 30.65 2.518 26.76
VGGT 0.708 21.52 1.412 25.47 2.331 14.97 4413 21.33 5.810 35.37
COLMAP-? 0.278 13.92 0.428 14.52 2.980 3.580 - - - -
COLMAPHR 0.088 2043 0.118 26.16 0.141 28.24 0.254 17.90 0.371 10.71
Dataset-3 DUSt3R 1.829 40.29 1.073 33.89 1.702 37.40 1.872 35.59 1.944 34.04
MASt3R 1.158 49.65 0.687 41.41 1.052 41.26 1.108 41.72 1.180 50.15
VGGT 0.722 36.95 1.393 45.30 1.647 46.67 1.637 46.59 2.172 44.84
COLMAP® 0.573 25.47 0.443 35.88 0.453 18.72 0.592 7.420 0.648 9.830
COLMAP® 0.114 36.57 0.149 46.13 0.953 30.25 0.169 25.63 0.357 17.47
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Figure 5. Estimated camera poses from 38 images in dataset-3. (a), (b), (c), and (d) Show the estimated camera poses from DUSt3R,
MASt3R, VGGT, and COLMAPR, respectively; (e) shows the ground truth camera poses. The first row presents top-down views, and

the second row shows front views.

to perfect alignment. Interestingly, DUSt3R, MASt3R,
and VGGT achieve superior orientation estimation in
75% of the evaluated cases, likely due to their learning-
based methods, which leverage global scene context
and robust feature matching to better handle orienta-
tion estimation.

It is also notable that many estimated poses exhibit
large deviations from the ground truth, with errors
reaching hundreds of meters or degrees. This prompts
the question of how the results change when consider-
ing only inlier data points that meet established quality
thresholds. An empirical threshold of 10 degrees for
orientation error and 1m for position error was
applied to distinguish inliers from outliers, in line

with thresholds commonly used in 3D reconstruction
benchmarks (Sattler et al. 2018). Updated values after
outlier filtering are shown in parentheses in Table 5.
The absence of parentheses denotes either no valid
data (white background) or that all data points were
valid and results are unchanged (red background).
DUSt3R, MASt3R, and VGGT produce meaningful
results primarily in scenarios with 2 or 5 input images,
successfully reconstructing all poses and frequently
generating a sufficient number of accurate estimates,
although large errors occasionally occur. The limita-
tions of DUSt3R and MASt3R stem from their pair-
wise matching and localization strategy, which is
prone to cumulative errors as the number of input

Table 5. Quantitative evaluation of camera pose estimation across three datasets using 2, 5, 10, and 38 images. Cen. D. (center
distance) represents the distance between the estimated camera center and the ground truth. Ang. D. (angle difference) measures
the orientation error. Succ. R. (success rate) indicates the percentage of successfully reconstructed camera poses relative to the
total number of poses. For each method and overlap, the main value uses all reconstructed poses. Values in parentheses use only
inliers (center distance <1 m and angle difference < 10°). If no parentheses appear, no inliers were found. The best results are in

bold.
2 Images 5 Images 10 Images 38 Images
Ang. D. Succ. Cen. Ang. D. Succ. Cen. Ang. D. Succ. Cen. Ang. D. Succ.
Dataset method (°) R. (%) D. (m) (°) R. (%) D. (m) (°) R. (%) D. (m) °) R. (%)
Dataset-1 DUSt3R 4.390 100 3.688 36.76 100 4.149 5.695 100 63.68 16.41 100
(4.390) (100)
MASt3R 24.24 100 6.772 1.216 100 34.86 41.42 100 62.14 8.220 100
VGGT 47.68 100 0.432 19.54 100 0.390 19.74 100 2.803 19.87 100
COLMAP'® - 0 0.462 76.56 100 0.862 14.79 100 1.204 14.45 100 (21)
(0.537) (8.274)
COLMAPHR - 0 0.115 15.15 100 0.160 1049 100(80) 0.113 2.506 100
(0.159) (9.293)
Dataset-2 DUSt3R 0.837 100 0.377 1.687 100 0.813 3.325 100 (60) 66.24 2.108 100
(0.837) (100) (0.377) (1.687) (100) (0.578) (3.285)
MASt3R 1.738 100 11.251 5.041 100 58.82 49.73 100 180.3 56.18 100
(1.738) (100)
VGGT 17.11 100 0.391 6.435 100 0.657 3.977 100 (80)  4.582 19.64 100
(0.494) (3.925)
COLMAP'® - 0 0.368 48.45 100 0.702 6.730 100 (90) 0.894 11.51 100 (34)
(0.625) (6.667) (0.686) (4.204)
COLMAPHR  70.02 100 0.120 50.42 100 0.190 24.70 100 0.196 6.212 100
(0.196) (6.212) (100)
Dataset-3  DUSt3R 69.49 100 7.560 64.361 100 30.83 76.14 100 104.8 33.50 100
MASt3R 28.56 100 4362 8.408 100 94.78 36.12 100 122.6 69.60 100
VGGT 26.32 100 0.499 102.8 100 0.573 120.6 100 3.318 21.10 100
COLMAP*® - 0 - - 0 - - 0 0.724 17.89 0
COLMAPHR - 0 0.089 30.03 80 0.180 18.32 90 0.823 14.19 90 (47)
(0.475) (9.595)
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images increases. VGGT directly predicts point and
depth maps with reasonable accuracy, but there
remains significant potential for improvement, parti-
cularly by incorporating traditional strategies such as
bundle adjustment. As expected, COLMAP fails in
extremely small datasets due to fundamental limita-
tions of the traditional SfM and MVS pipelines, which
require sufficient image overlap and redundancy.
Conversely, COLMAP provides accurate camera
poses predominantly with larger datasets, achieving
orientation errors below 24 degrees and position
errors within 0.8 m.

In the low-overlap reconstruction experiment using
38 images, with or without thresholds applied
(Table 6), COLMAP"™® demonstrates a clear advan-
tage in camera pose estimation across all scenarios,
consistently achieving higher accuracy in both camera
center localization and orientation. Even with minimal
overlap, COLMAP"™® maintains high accuracy, with
position errors below 3 m and angular errors under 21
degrees. VGGT also produces accurate pose estimates

in high-overlap cases, with center differences within 4
m. Additionally, it generates poses that meet the
threshold requirements and can be identified as
inliers, whereas all poses from DUSt3R and MASt3R
are too scattered to qualify as inliers. MASt3R exhibits
substantially larger errors, with position deviations
exceeding 100 m and angular errors greater than 48
degrees. Overall, COLMAPHR provides substantial
improvements, reducing camera center error by up
to 99.77% and orientation error by up to 94.59%.
With thresholding applied, COLMAP™® achieves
reconstruction success rates from 11% to 64%
(Table 7). Considering the learning-based methods,
only VGGT produces a limited number of valid poses
for comparison, while the other methods do not yield
any valid poses. Even under minimal overlap conditions,
COLMAP"™® successfully reconstructs a subset of images
with acceptable accuracy, maintaining position errors
below 0.7m and angular errors under 10 degrees.
However, despite the high accuracy of COLMAP"®
reconstructed poses, the number of successfully

Table 6. Quantitative evaluation of camera pose estimation across three datasets with varying image overlaps. Cen. D. (center
distance) represents the distance between the estimated camera center and the ground truth. Ang. D. (angle difference) measures
the orientation error. For each method and overlap, the main value uses all reconstructed poses. Values in parentheses use only
inliers (center distance <1 m and angle difference <10°). If no parentheses appear, no inliers were found. The best results are in

bold.
Overlap: 70% Overlap: 55% Overlap: 40% Overlap: 25% Overlap: 10%
Ang. D. Ang. D. Ang. D. Ang. D. Ang. D.
Dataset Method  Cen.D. (m) ©) Cen.D. (m) ©) Cen.D. (m) ) Cen.D. (m) °) Cen.D. (m) °)
Dataset-1 DUSt3R 47.21 141.3 61.15 92.15 74.63 78.91 97.64 47.41 1115 48.11
MASt3R 50.57 58.08 58.79 19.78 66.03 172.2 92.46 42,63 109.4 47.37
VGGT 1.534 92.07 1.600 92.95 2,532 90.87 4.427 88.23 7.639 86.92
(0.683) (7.790) (0.742) (7.033)
COLMAP'® 1.221 8.097 2.675 15.16 10.91 41.10 41.10 37.59 - -
(0.487)  (8.203)  (0.909) (2.403) (0.844) (0.225)
COLMAPHR 0.152 17.62 0.182 8.609 2.907 100.2 30.25 29.96 1.140 15.49
(0.125) (1.946) (0.194) (8.244) (0.378) (7.572) (0.661) (9.928) (0.607) (9.278)
Dataset-2 DUSt3R 60.17 120.7 87.84 166.5 121.0 58.79 155.7 116.6 143.4 38.89
MASt3R 60.81 113.8 96.72 9230 1443 141.0 157.0 155.6 149.3 130.1
VGGT 1.886 6.905 3.592 8.920 86.15 20.93 48.45 18.25 74.07 83.29
(0.750) (3.556) (0.863) (4.413)
COLMAP*® 0938 7.249 1.295 9.014 23.60 30.33 - - - -
(0.576)  (1.280)  (0.749) (0.184)
COLMAPHR 0.140 7.966 0.266 10.54 0.450 7.527 1.043 7.627 0.734 12.21
(0.114) (2.025) (0.268) (2.076) (0.456) (1.506) (0.565) (7.003) (0.475) (8.581)
Dataset-3 DUSt3R 56.95 128.4 90.43 140.5 105.4 45.53 100.0 172.7 101.2 161.4
MASt3R 59.08 1753 89.33 157.2 106.1 95.84 101.1 101.2 101.1 166.8
VGGT 1.896 8.025 4.497 7.924 4.750 1434 5.708 96.48 6.391 91.06
(0.631) (3.936) (0.706) (8.438)
COLMAP'® 1.594 29.27 2.146 15.16 3.884 14.49 62.90 82.23 97.55 1234
(0.631)  (1.895)  (0.776) (3.434) (0.999) (9.183)
COLMAPHR 0.219 14.90 0.373 9.340 1.022 8.770 3.335 9.356 2,737 20.65
(0.160) (1.728) (0.349) (2.396) (0.538) (6.465) (0.653) (9.136) (0.500) (3.906)

Table 7. Success rate (%) of reconstructed images across different overlap levels. The success
rate is computed as the number of successfully reconstructed images divided by the total
number of images. The best results are in bold.

Success rate at different overlap levels (%)

Method 70% 55% 40% 25% 10%

DUSt3R 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
MASt3R 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
VGGT 100 (10) 100 (6) 100 (0) 100 (0) 100 (0)
COLMAP'® 75 (27) 84 (11) 60 (2) 20 (0) 13 (0)
COLMAPHR 85 (64) 61 (53) 85 (35) 85 (22) 51 (11)




reconstructed images is significantly limited. When the
overlap rate falls below 40%, which is lower than
COLMAP’s typical operational range, COLMAP™ fails
to reconstruct any valid poses within the defined thresh-
olds, and COLMAP"™ reconstructs 51% of poses under
these low-overlap conditions. The limitation results from
a combination of low overlap and a relatively small image
set of only 38 images, which is unusual for photogram-
metry applications that generally use larger datasets.

In contrast, DUSt3R, MASt3R, and VGGT recover
all camera poses even at 10% overlap, but DUSt3R and
MASt3R produce significant errors, with the position
deviations exceeding 100 m and angular errors over 48
degrees, yielding no valid estimates after thresholding.
VGGT generates comparatively better pose estimates,
maintaining some valid results after thresholding,
though still falling short of COLMAP’s performance.
These methods infer 3D structures and estimate camera
parameters without requiring prior information about
camera calibration or poses, offering greater flexibility
but also introducing higher uncertainty in their perfor-
mance. In real-world scenarios where ground truth is
unavailable, VGGT offers an advantage by consistently
providing pose estimates even when COLMAP fails.
These estimates can serve as initial guesses and be
further refined using traditional photogrammetric tech-
niques such as bundle adjustment.

4.3. Scalability evaluation

All four methods were evaluated on the standard
38-image dataset, but only VGGT and COLMAP
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can process larger image sets. Therefore, we con-
ducted an additional scalability experiment with
191 images.

Visualization results for Dataset-2 are presented
in Figure 6. The VGGT reconstructions exhibit
pronounced inconsistencies in point cloud align-
ment, such as overlapping buildings, repeated
occurrences of the same structures at multiple loca-
tions, and road segments that are interpolated in
ways inconsistent with the actual scene geometry. In
comparison, COLMAP generates three separate
models, but each reconstructed point cloud is
internally consistent and does not display signifi-
cant misalignment. Table 8 presents the quantitative
results for dense point cloud and camera pose accu-
racy. VGGT demonstrates higher point cloud
errors, reaching up to 6m, which represents
approximately an 85% increase compared to
COLMAP"™s. Additionally, camera pose estimates
produced by VGGT may exhibit drift of up to 42 m.
Substantial errors in both point cloud and camera
pose estimation mean VGGT cannot yet deliver
reliable or usable previews for the areas of interest,
and it is still not suitable as a standalone solution
for large-scale aerial photogrammetry, although
VGGT demonstrates better scalability than the
other end-to-end approaches.

4.4. Computation time

DUSt3R/MASt3R are significantly faster than
COLMAP, and VGGT can be remarkably faster than

(b)

Figure 6. Reconstruction models for 191-image experiment on dataset-2: (a) VGGT, (b) COLMAPHR,
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Table 8. Point cloud and camera pose evaluation of VGGT and COLMA

P"R on three benchmark datasets. For camera poses, the

values in parentheses are for inliers (center distance <1 m, angle difference <10°). If no parentheses appear, no inliers were found.

The best results are in bold.

Point clouds Camera poses
Dataset Method Accu. (m) Comp. (%) Cen.D. (m) Ang. D. (°) Succ. R. (%)
Dataset-1 VGGT 2.936 35.44 10.41 101.6 100
COLMAPHR 0.123 75.06 0.524 (0.352) 34.501 (7.192) 96 (69)
Dataset-2 VGGT 5.991 45.40 42.22 81.97 100
COLMAPHR 0.876 42.77 0.765 (0.4551) 13.84 (5.352) 96 (48)
Dataset-3 VGGT 2.988 38.83 31.48 80.82 100
COLMAPHR 0.197 64.70 0.526 (0.351) 15.01 (9.898) 94 (75)

DUSt3R/MASt3R as well. For instance, in the 38-
image case (Table 9), MASt3R requires only 9% of
COLMAPHR’s processing time, while VGGT operates
at just 12% of MASt3R’s processing time, making
VGGT particularly suitable for compute-constrained
environments. The substantial reduction in processing
time is likely due to VGGT’s multi-image training
paradigm, which enables the network to natively per-
form multiview triangulation. In contrast, DUSt3R
relies on separate pairwise triangulations that are
later averaged, resulting in less efficient alignment
procedures.

4.5. A case study in mesh completion of regions
with low image overlap

We apply learning-based methods as a mesh comple-
tion step to repair missing parts in an imperfect 3D
model. As an example, Figure 7(a) shows a model

reconstructed from UAV images in our self-collected
dataset with nadir and near oblique views. The dataset is
described in Section 3. In the COLMAP reconstruction,
coverage is sparse near the edge of the area of interest,
and a tall building has an incomplete facade. This pat-
tern is common with fixed flight plans over complex
sites, where low and simple areas receive many images
while tall and complex structures receive few. In the
baseline COLMAP run, the facade fails to reconstruct
because nearby views do not form tracks long enough
for triangulation, even though one view contains rich
facade texture. With a learning-based method, we pro-
duce a single image 3D point map for that view, align it
to the scene, and fuse it with the model, as shown in
Figure 7(b). This recovers the facade structure, reduces
the gap, and improves completeness.

Learning-based methods work well in many practical
cases. They are especially helpful in mission critical
settings where recollection is impossible, and overlap

Table 9. Average processing time (in seconds) for image sets of varying sizes across
different methods. The best results are in bold.

Time cost (s)
Method 1 2 5 10 38 191
DUSt3R 9 9 1 20 191 -
MASt3R 9 9 12 22 208 -
VGGT 9 9 10 12 24 103
COLMAP“? - - Y 87 370 -
COLMAPHR - - 271 568 2349 5280

(b)

Figure 7. Filling a facade gap with a learned monocular point map. (a) COLMAP reconstruction with a missing facade due to sparse
overlap. (b) The model after adding a single image 3D point map from DUSt3R, aligned and fused with the COLMAP result, which

closes the gap and improves completeness.



is weak. In multi date aerial collections, seasonal and
radiometric changes reduce classical keypoint matches
and limit triangulation, and deep models have been
proposed to handle illumination and appearance differ-
ences (Albanwan and Qin 2022; Huang, Hu, and Zhu
2024). Moreover, prior work in satellite settings reports
that deep models can yield better results on specific
regions such as flat ground (Sadeq 2025). In one-time
collections, many frames may be missing, and view
angles can vary widely. There are also studies that
apply learning-based methods directly to heritage 3D
reconstruction (Ge et al. 2024; Mazzacca et al. 2023).
Learned methods also enable single-image 3D point
maps that can be aligned to a scene, which gives
a practical way to add structure in places where pairwise
matching is unreliable. Therefore, these results justify
the use of learning-based matching for sparse coverage,
multi-date collections, and historical archives where
traditional pipelines struggle.

5. Conclusions

This study critically assesses state-of-the-art learning-
based direct 3D reconstruction methods (DUSt3R,
MASt3R, and VGGT) against the classic COLMAP
pipeline on the UseGeo photogrammetry dataset. We
evaluate the scenarios that reflect both typical and
challenging conditions in aerial photogrammetry,
with the input image counts from 1 to 191 and overlap
levels from approximately 10% to 70%. Unlike general
computer vision datasets, aerial photogrammetry
involves large-scale outdoor scenes, highly regular
acquisition geometry, and industry-standard require-
ments for geometric accuracy and completeness.

VGGT and MASt3R perform impressively in sce-
narios characterized by minimal image counts or low
overlap, producing dense point clouds with accuracy
up to 0.4m and completeness as high as +50%, sub-
stantially outperforming COLMAP, which either fails
or yields extremely poor results (as low as 8% com-
pleteness). However, COLMAP performs best in stan-
dard photogrammetric scenarios involving larger
image sets and higher overlaps, with errors as low as
0.06 m (compared to more than 1 m for VGGT) and
completeness of up to 74% (versus 36% for DUSt3R).
For camera pose estimation, COLMAP surpasses
others in nearly all standard scenarios, with the excep-
tion of cases involving only two input images.
However, VGGT"s advantage is its ability to recover
image poses where other methods fail.

Among these learning-based solutions, VGGT
uniquely extends processing capability from dozens to
hundreds of images and can produce camera poses that
meet inlier criteria. Nevertheless, VGGT cannot serve as
a replacement for traditional SfM and MVS pipelines in
typical photogrammetric applications, as its strongest
performance is restricted to narrow cases, mainly one or
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two images, and its flexibility is lower than COLMAP.
Instead, VGGT is most valuable as a supplement, for
example, to fill model gaps or to recover initial poses in
sparse-image situations. Although VGGT achieves sig-
nificant time savings, requiring only 1% of COLMAP’s
processing time for the 38-image case, its scalability is
currently limited to the hundreds range.

Overall, our findings indicate that COLMAP
remains the most robust and versatile solution for
aerial photogrammetry datasets, particularly in stan-
dard, high-overlap scenarios. Nevertheless, VGGT
exhibits distinct advantages when inputs are extremely
limited and when computational efficiency is a priority.
These attributes position VGGT as a promising sup-
plementary approach for challenging or resource-
constrained photogrammetric applications.

To enhance VGGT’s accuracy and its capacity to
process higher-resolution imagery, several strategic
improvements are recommended. Although VGGT cur-
rently exhibits limitations in camera pose accuracy, its
estimated poses can serve as effective initial approxima-
tions that enable further refinement through traditional
SfM and MV pipelines, such as by applying subsequent
bundle adjustment. In addition, fine-tuning on specia-
lized aerial or aerial-ground datasets, such as
AerialMegaDepth, may significantly boost performance.
Together, these improvements are expected to collec-
tively strengthen the robustness, accuracy, and practical
applicability of VGGT in photogrammetric workflows.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Funding

This research was partially supported by the Intelligence
Advanced Research Projects Activity (IARPA) via the
Department of Interior/Interior Business Center (DOI/
IBC) [Grant number 140D0423C0075]. The U.S.
Government is authorized to reproduce and distribute rep-
rints for Governmental purposes, notwithstanding any
copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of IARPA, DOI/IBC, or the U.S. Government. It
is also supported by the Office of Naval Research [Grant
numbers N000142012141 and N000142312670].

Notes on contributors

Xinyi Wu received the B.S. degree in Electrical Engineering
and its Automation from North China Electric Power
University in 2020, and the M.S. degree in Electrical and
Computer Engineering from The Ohio State University in
2025. She is currently a PhD student in Civil,
Environmental, and Geodetic Engineering at The Ohio



16 (&) X WUETAL

State University, with research interests in 3D reconstruc-
tion and computer vision.

Steven Landgraf received the B.S. and M.S. degrees in
Geodesy and Geoinformatics from Karlsruhe Institute of
Technology in 2018 and 2020, respectively, and completed
his Dr.-Ing. degree from Karlsruhe Institute of Technology
in 2025. He is currently a Postdoctoral Researcher in the
Machine Vision Metrology group at the Institute of
Photogrammetry and Remote Sensing, Karlsruhe Institute
of Technology. His research interests include machine
learning, photogrammetry, and explainable AT

Markus Ulrich is a distinguished academic and industry
expert with over twenty years of experience bridging the
realms of academia and industry. Currently a Professor for
Machine Vision Metrology at the Institute of
Photogrammetry and Remote Sensing at the Karlsruhe
Institute of Technology (KIT), his journey began with
a PhD degree at the Department of Civil, Geo, and
Environmental Engineering of Technical University of
Munich (TUM). Prior to academia, he served as the
Invention and Patent Manager at MVTec Software GmbH,
Munich, and headed the research team at the same institu-
tion. In 2017, he completed his habilitation (venia legendi)
and was appointed as a Privatdozent (Lecturer) at KIT. His
research interests include machine vision, close-range
photogrammetry, machine learning, and their applications
in industry for quality inspection, automation, and robotics.

Rongjun Qin (Senior Member, IEEE) is a Full Professor of
the Department of Civil, Environmental, and Geodetic
Engineering, and the Department of Electrical and
Computer Engineering, The Ohio State University. He is
also chairing the working group “Satellite Constellation
for Remote Sensing” of the International Society for
Photogrammetry and Remote Sensing Commission. He
received the B.S. degree in computational mathematics
and the M.S. degree in photogrammetry and remote sen-
sing from Wuhan University in 2009 and 2011, respec-
tively, and the PhD degree in photogrammetry and remote
sensing from ETH Zirich in 2015. Prof. Qin’s awards
include the First Prize in the Mathematical Modeling
Contest and several other prominent scholarship awards.
His research interests include photogrammetric
3D reconstruction, remote sensing image classification,
UAV image processing, image dense matching, and
change detection. His research seeks computational solu-
tions to various geometric and interpretation problems in
an urban context using imaging sensors, such as aerial/
UAV imagery, LiDAR, and satellite multispectral/hyper-
spectral images. He is the author of the RPC stereo pro-
cessor (RSP) and multi-stereo processor (MSP) used for
reconstructing 3D information from 2D images with high
quality.

ORCID

Xinyi Wu
Steven Landgraf
Markus Ulrich
Rongjun Qin

http://orcid.org/0009-0004-4437-7157
http://orcid.org/0000-0002-2056-567X
http://orcid.org/0000-0001-8457-5554
http://orcid.org/0000-0002-5896-1379

Data availability statement

The original data presented in the study are openly available
in the UseGeo at https://usegeo.fbk.eu/.

References

Agarwal, S., Y. Furukawa, N. Snavely, I. Simon, B. Curless,
S. M. Seitz, and R. Szeliski. 2011. “Building Rome in a
Day.” Communications of the ACM 54 (10): 105-112.
https://doi.org/10.1145/2001269.2001293.

Ahmad Fuad, N., A. R. Yusoff, Z. Ismail, and Z. Majid. 2018.
“Comparing the Performance of Point Cloud
Registration Methods for Landslide Monitoring Using
Mobile Laser Scanning Data.” Paper presented at the
International Conference on Geomatic & Geospatial
Technology (GGT 2018), Kuala Lumpur, Malaysia,
September 3-5. https://doi.org/10.5194/isprs-archives-
XLII-4-W9-11-2018.

Albanwan, H., and R. Qin. 2022. “A Comparative Study on
Deep-Learning Methods for Dense Image Matching of
Multi-Angle and Multi-Date Remote Sensing
Stereo-Images.” The Photogrammetric Record 37 (180):
385-409. https://doi.org/10.1111/phor.12430.

Albanwan, H., R. Qin, and Y. Tang. 2024. “Image Fusion in
Remote Sensing: An Overview and Meta-Analysis.”
Photogrammetric Engineering ¢ Remote Sensing 90 (12):
755-775. https://doi.org/10.14358/PERS.24-00110R1.

Alidoost, F., and H. Arefi. 2017. “Comparison of UAS-Based
Photogrammetry Software for 3D Point Cloud
Generation: A Survey Over a Historical Site.” Paper pre-
sented at the 4th International GeoAdvances Workshop,
Safranbolu, Karabuk, Turkey, October 14-15. https://doi.
org/10.5194/isprs-annals-1V-4-W4-55-2017.

Arnold, E., J. Wynn, S. Vicente, G. Garcia-Hernando,
A. Monszpart, V. Prisacariu, D. Turmukhambetov, and
E. Brachmann. 2022. “Map-Free Visual Relocalization:
Metric Pose Relative to a Single Image.” Paper presented
at European Conference on Computer Vision, Tel Aviv,
690-708. Israel, October 23-27.

Besl, P. J., and N. D. McKay. 1992. “Method for Registration
of 3-D Shapes.” Paper presented at Sensor Fusion IV:
Control Paradigms and Data Structures, Vol. 1611,
586-606. Boston, MA, USA: SPIE. November 12-15.
https://doi.org/10.1117/12.57955.

Bianco, S., G. Ciocca, and D. Marelli. 2018. “Evaluating the
Performance of Structure from Motion Pipelines.”
Journal of Imaging 4 (8): 98. https://doi.org/10.3390/jima
ging4080098.

Brown, K., and A. Hamilton. 2016. “Photogrammetry and
Star Wars Battlefront.” Paper presented at the Game
Developer Conference (GDC 2016), San Francisco, CA,
USA, March 14-18.

Cernea, D. 2020. “OpenMVS: Multi-View Stereo
Reconstruction Library.” https://cdcseacave.github.io/
openMVS.

Charles, R. Q., H. Su, M. Kaichun, and L. J. Guibas. 2017.
“PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation.” Paper presented at
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 77-85.
Honolulu, HI, USA, July 21-26.

Crandall, D., A. Owens, N. Snavely, and D. Huttenlocher.
2011. “Discrete-Continuous Optimization for Large-Scale
Structure from Motion.” Paper presented at Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 3001-3008. Colorado Springs, CO,
USA, June 20-25.

Dame, A., V. A. Prisacariu, C. Y. Ren, and I. Reid. 2013.
“Dense Reconstruction Using 3D Object Shape Priors.”
Paper presented at Proceedings of the IEEE Conference


https://usegeo.fbk.eu/
https://doi.org/10.1145/2001269.2001293
https://doi.org/10.1145/2001269.2001293
https://doi.org/10.5194/isprs-archives-XLII-4-W9-11-2018
https://doi.org/10.5194/isprs-archives-XLII-4-W9-11-2018
https://doi.org/10.1111/phor.12430
https://doi.org/10.14358/PERS.24-00110R1
https://doi.org/10.5194/isprs-annals-IV-4-W4-55-2017
https://doi.org/10.5194/isprs-annals-IV-4-W4-55-2017
https://doi.org/10.1117/12.57955
https://doi.org/10.1117/12.57955
https://doi.org/10.3390/jimaging4080098
https://doi.org/10.3390/jimaging4080098
https://cdcseacave.github.io/openMVS
https://cdcseacave.github.io/openMVS

on Computer Vision and Pattern Recognition (CVPR),
1288-1295. Portland, OR, USA, June 23-28.

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, et al. 2021. “An
Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” Paper presented at the
International Conference on Learning Representations,
Online. May 3-7.

Fahim, G., K. Amin, and S. Zarif. 2021. “Single-View 3D
Reconstruction: A Survey of Deep Learning Methods.”
Computers & Graphics 94:164-190. https://doi.org/10.
1016/j.cag.2020.12.004.

Farshian, A., M. Gotz, G. Cavallaro, C. Debus, M. Nief3ner,
J. A. Benediktsson, and A. Streit. 2023. “Deep-Learning-
Based 3-D Surface Reconstruction—A Survey.”
Proceedings of the IEEE 111 (11): 1464-1501. https://doi.
org/10.1109/JPROC.2023.3321433.

Fu, K., J. Peng, Q. He, and H. Zhang. 2021. “Single Image 3D
Object Reconstruction Based on Deep Learning: A
Review.” Multimedia Tools and Applications 80 (1):
463-498. https://doi.org/10.1007/s11042-020-09722-8.

Furukawa, Y., and C. Hernandez. 2015. “Multi-View Stereo:
A Tutorial.” Foundations and Trends® in Computer
Graphics and Vision 9 (1-2): 1-148. https://doi.org/10.
1561/0600000052.

Furukawa, Y., and J. Ponce. 2010. “Accurate, Dense, and
Robust Multiview Stereopsis.” IEEE Transactions on
Pattern Analysis and Machine Intelligence 32 (8):
1362-1376. https://doi.org/10.1109/TPAMI.2009.161.

Gao, X.-S., X.-R. Hou, J. Tang, and H.-F. Cheng. 2003.
“Complete  Solution  Classification  for  the
Perspective-Three-Point Problem.” IEEE Transactions
on Pattern Analysis and Machine Intelligence 25 (8):
930-943. https://doi.org/10.1109/TPAMI.2003.1217599.

Ge, Y., B. Guo, P. Zha, S. Jiang, Z. Jiang, and D. Li. 2024. “3D
Reconstruction of Ancient Buildings Using UAV Images
and Neural Radiation Field with Depth Supervision.”
Remote Sensing 16 (3): 473. https://doi.org/10.3390/
rs16030473.

Georgopoulos, A., C. Oikonomou, E. Adamopoulos, and
E. Stathopoulou. 2016. “Evaluating Unmanned Aerial
Platforms for Cultural Heritage Large Scale Mapping.”
Paper presented at the XXIII ISPRS Congress, Prague,
Czech Republic, July 12-19. https://doi.org/10.5194/
isprs-archives-XLI-B5-355-2016.

Girardeau-Montaut, D. 2016. CloudCompare, Software,
Version 2.13.2. France: EDF R&D Telecom ParisTech.
https://www.cloudcompare.org/.

Glira, P., N. Pfeifer, and G. Mandlburger. 2019. “Hybrid
Orientation of Airborne LIDAR Point Clouds and
Aerjal Images.” Paper presented at ISPRS Geospatial
Week 2019, Enschede, The Netherlands, June 10-14.
https://doi.org/10.5194/isprs-annals-IV-2-W5-567-2019.

Gonsoroski, E., Y. Ahn, E. W. Harville, N. Countess,
M. Y. Lichtveld, K. Pan, L. Beitsch, S. P. Sherchan, and
C. K. Uejio. 2023. “Classifying Building Roof Damage
Using High Resolution Imagery for Disaster Recovery.”
Photogrammetric Engineering ¢ Remote Sensing 89 (7):
437-443. https://doi.org/10.14358/PERS.22-00106R2.

Hamal, S. N. G, and A. Ulvi. 2024. “Investigation of
Underwater Photogrammetry =~ Method  with
Cost-Effective Action Cameras and Comparative
Analysis between Reconstructed 3D Point Clouds.”
Photogrammetric Engineering ¢» Remote Sensing 90 (4):
251-259. https://doi.org/10.14358/PERS.23-00042R2.

Han, X.-F., H. Laga, and M. Bennamoun. 2021. “Image-
Based 3D Object Reconstruction: State-of-the-Art and

GEO-SPATIAL INFORMATION SCIENCE . 17

Trends in the Deep Learning Era.” IEEE Transactions on
Pattern Analysis and Machine Intelligence 43 (5):
1578-1604. https://doi.org/10.1109/TPAMI.2019.2954885 .

Hartley, R., and A. Zisserman. 2003. Multiple View
Geometry in Computer Vision. Cambridge, UK:
Cambridge University Press. https://doi.org/10.1017/
CB0O9780511811685.

Hartmann, W., S. Galliani, M. Havlena, L. Van Gool, and
K. Schindler. 2017. “Learned Multi-Patch Similarity.”
Paper presented at Proceedings of the IEEE
International Conference on Computer Vision (ICCV),
1586-1594. Venice, Italy, October 22-29.

Hermann, M., M. Weinmann, F. Nex, E. K. Stathopoulou,
F. Remondino, B. Jutzi, and B. Ruf. 2024. “Depth
Estimation and 3D Reconstruction from UAV-Borne
Imagery: Evaluation on the USEGeo Dataset.” ISPRS
Open Journal of Photogrammetry and Remote Sensing
13:100065. https://doi.org/10.1016/j.0phot0.2024.100065 .

Huang, S., H. Hu, and Q. Zhu. 2024. “I2-FagadeNet: An
Mlumination-Invariant Fagade Recognition Network
Leveraging Sparsely Gated Mixture of Multi-Color
Space Experts for Aerial Oblique Imagery.”
Photogrammetric Engineering ¢ Remote Sensing 90 (1):
21-31. https://doi.org/10.14358/PERS.23-00033R2.

Izadi, S., D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, et al. 2011. “KinectFusion: Real-Time
3D Reconstruction and Interaction Using a Moving
Depth Camera.” Paper presented at Proceedings of the
24th Annual ACM Symposium on User Interface
Software and Technology, 559-568. Santa Barbara, CA,
USA, October 16-19. https://doi.org/10.1145/2047196.
2047270.

Jarahizadeh, S., and B. Salehi. 2024. “A Comparative
Analysis of UAV  Photogrammetric ~ Software
Performance for Forest 3D Modeling: A Case Study
Using Agisoft Photoscan, PIX4Dmapper, and DJI
Terra.” Sensors 24 (1): 286. https://doi.org/10.3390/
$24010286.

Jassoom, H. H., and R. S. Abdoon. 2024. “Monitoring LULC
Changes in Babil Province for Sustainable Development
Purposes  within  the  Period  2004-2023.”
Photogrammetric Engineering & Remote Sensing 90 (12):
745-753. https://doi.org/10.14358/PERS.24-00027R3.

Ji, S., J. Liu, and M. Lu. 2019. “CNN-Based Dense Image
Matching for Aerial Remote Sensing Images.”
Photogrammetric Engineering ¢» Remote Sensing 85 (6):
415-424. https://doi.org/10.14358/PERS.85.6.415.

Kerbl, B., G. Kopanas, T. Leimkuehler, and G. Drettakis.
2023. “3D Gaussian Splatting for Real-Time Radiance
Field Rendering.” ACM Transactions on Graphics 42 (4).
https://doi.org/10.1145/3592433.

Knobelreiter, P., C. Vogel, and T. Pock. 2018. “Self-
Supervised Learning for Stereo Reconstruction on Aerial
Images.” Paper presented at IGARSS 2018: IEEE
International ~Geoscience and Remote Sensing
Symposium, 4379-4382. Valencia, Spain, July 22-27.
https://doi.org/10.1109/IGARSS.2018.8518316.

Koutsoudis, A., B. Vidmar, G. Ioannakis, F. Arnaoutoglou,
G. Pavlidis, and C. Chamzas. 2014. “Multi-Image 3D
Reconstruction Data Evaluation.” Journal of Cultural
Heritage 15 (1): 73-79. https://doi.org/10.1016/j.culher.
2012.12.003.

Leroy, V., Y. Cabon, and J. Revaud. 2025. “Grounding
Image Matching in 3D with MASt3R.” Paper presented
at Computer Vision - ECCV 2024, 71-91. Milan, Italy,
September 29-October 4.


https://doi.org/10.1016/j.cag.2020.12.004
https://doi.org/10.1016/j.cag.2020.12.004
https://doi.org/10.1109/JPROC.2023.3321433
https://doi.org/10.1109/JPROC.2023.3321433
https://doi.org/10.1007/s11042-020-09722-8
https://doi.org/10.1561/0600000052
https://doi.org/10.1561/0600000052
https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1109/TPAMI.2003.1217599
https://doi.org/10.3390/rs16030473
https://doi.org/10.3390/rs16030473
https://doi.org/10.5194/isprs-archives-XLI-B5-355-2016
https://doi.org/10.5194/isprs-archives-XLI-B5-355-2016
https://www.cloudcompare.org/
https://doi.org/10.5194/isprs-annals-IV-2-W5-567-2019
https://doi.org/10.14358/PERS.22-00106R2
https://doi.org/10.14358/PERS.23-00042R2
https://doi.org/10.1109/TPAMI.2019.2954885
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.1016/j.ophoto.2024.100065
https://doi.org/10.14358/PERS.23-00033R2
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.3390/s24010286
https://doi.org/10.3390/s24010286
https://doi.org/10.14358/PERS.24-00027R3
https://doi.org/10.14358/PERS.85.6.415
https://doi.org/10.1145/3592433
https://doi.org/10.1145/3592433
https://doi.org/10.1109/IGARSS.2018.8518316
https://doi.org/10.1109/IGARSS.2018.8518316
https://doi.org/10.1016/j.culher.2012.12.003
https://doi.org/10.1016/j.culher.2012.12.003

18 (&) X WUETAL

Liu, R., R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov,
and C. Vondrick. 2023. “Zero-1-To-3: Zero-Shot One
Image to 3D Object.” Paper presented at Proceedings of
the IEEE/CVF International Conference on Computer
Vision (ICCV), 9298-9309. Paris, France, October 1-6.

Lowe, D. G. 2004. “Distinctive Image Features from
Scale-Invariant Keypoints.” International Journal of
Computer Vision 60 (2): 91-110. https://doi.org/10.
1023/B:VISI.0000029664.99615.94.

Madhuanand, L., F. Nex, and M. Y. Yang. 2021. “Self-
Supervised Monocular Depth Estimation from Oblique
UAV Videos.” ISPRS Journal of Photogrammetry and
Remote Sensing 176:1-14. https://doi.org/10.1016/j.
isprsjprs.2021.03.024.

Mazzacca, G., A. Karami, S. Rigon, E. M. Farella, P. Trybala,
and F. Remondino. 2023. “NeRF for Heritage 3D
Reconstruction.” Paper presented at the 29th CIPA
Symposium, Florence, Italy, June 25-30. https://doi.org/
10.5194/isprs-archives-XLVIII-M-2-2023-1051-2023.

Mildenhall, B., P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. 2021. “Nerf: Representing
Scenes as Neural Radiance Fields for View Synthesis.”
Communications of the ACM 65 (1): 99-106. https://doi.
org/10.1145/3503250.

Moulon, P., P. Monasse, R. Perrot, and R. Marlet. 2017.
“OpenMVG: Open Multiple View Geometry.” Paper pre-
sented at Reproducible Research in Pattern Recognition
(RRPR 2016), 60-74. Cancun, Mexico, December 4.
https://doi.org/10.1007/978-3-319-56414-2_5.

Nex, F., E. K. Stathopoulou, F. Remondino, M. Y. Yang,
L. Madhuanand, Y. Yogender, B. Alsadik, M. Weinmann,
B. Jutzi, and R. Qin. 2024. “Usegeo - A UAV-Based
Multi-Sensor Dataset for Geospatial Research.” ISPRS
Open Journal of Photogrammetry and Remote Sensing

13:100070. https://doi.org/10.1016/j.0photo.2024.100070 .

Noh, Z., M. S. Sunar, and Z. Pan. 2009. “A Review on
Augmented Reality for Virtual Heritage System.” Paper
presented at Learning by Playing. Game-Based
Education System Design and Development, 50-61.
Banff, Canada, August 9-11. https://doi.org/10.1007/
978-3-642-03364-3_7.

Palazzolo, E., J. Behley, P. Lottes, P. Giguere, and
C. Stachniss. 2019. “Refusion: 3D Reconstruction in
Dynamic Environments for RGB-D Cameras Exploiting
Residuals.” Paper presented at 2019 IEEE/RS]
International Conference on Intelligent Robots and
Systems (IROS), 7855-7862. Macau, China, November
3-8. https://doi.org/10.1109/TROS40897.2019.8967590.

Pan, J., X. Han, W. Chen, J. Tang, and K. Jia. 2019. “Deep
Mesh Reconstruction from Single RGB Images via
Topology Modification Networks.” Paper presented at
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 9964-9973. Seoul, South
Korea, October 27-November 2.

Pepe, M., V. S. Alfio, and D. Costantino. 2022. “UAV
Platforms and the SfM-MVS Approach in the 3D
Surveys and Modelling: A Review in the Cultural
Heritage Field.” Applied Sciences 12 (24): 12886. https://
doi.org/10.3390/app122412886.

Pi, Y., N. D. Nath, and A. H. Behzadan. 2020.
“Convolutional Neural Networks for Object Detection
in Aerial Imagery for Disaster Response and Recovery.”
Advanced Engineering Informatics 43:101009. https://doi.
org/10.1016/j.2€i.2019.101009.

Purkis, S. J., and V. V. Klemas. 2011. Remote Sensing and
Global Environmental Change. Chichester, UK: Wiley.
https://doi.org/10.1002/9781118687659.

Ranftl, R., A. Bochkovskiy, and V. Koltun. 2021. “Vision
Transformers for Dense Prediction.” Paper presented at
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), Online, Montreal, QC,
Canada, October 10-17.

Reizenstein, J., R. Shapovalov, P. Henzler, L. Sbordone,
P. Labatut, and D. Novotny. 2021. “Common Objects in
3D: Large-Scale Learning and Evaluation of Real-Life 3D
Category  Reconstruction.” Paper presented at
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), Online, Montreal, QC,
Canada, October 10-17.

Remondino, F., E. Nocerino, I. Toschi, and F. Menna. 2017.
“A Critical Review of Automated Photogrammetric
Processing of Large Datasets.” The International
Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 42:591-599. https://doi.org/
10.5194/isprs-archives-XLII-2-W5-591-2017.

Ruan, X., F. Yang, M. Guo, and C. Zou. 2023. “3D Scene
Modeling Method and Feasibility Analysis of River
Water-Land Integration.” Photogrammetric Engineering
& Remote Sensing 89 (6): 353-359. https://doi.org/10.
14358/PERS.22-00127R2.

Sadeq, H. A. 2025. “Accuracy Assessment of Dense Point
Cloud Generated by Deep Learning and Semiglobal
Matching.” Photogrammetric Engineering ¢ Remote
Sensing 91 (3): 153-162. https://doi.org/10.14358/PERS.
24-00066R3.

Samavati, T., and M. Soryani. 2023. “Deep Learning-Based
3D Reconstruction: A Survey.” Artificial Intelligence
Review 56 (9): 9175-9219. https://doi.org/10.1007/
$10462-023-10399-2.

Sattler, T., W. Maddern, C. Toft, A. Torii, L. Hammarstrand,
E. Stenborg, D. Safari, et al. 2018. “Benchmarking 6DOF
Outdoor Visual Localization in Changing Conditions.”
Paper presented at Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
8601-8610. Salt Lake City, UT, USA, June 18-22.

Schonberger, J. L., and J.-M. Frahm. 2016. “Structure-from-
Motion Revisited.” Paper presented at Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 4104-4113. Las Vegas, NV, USA,
June 27-30.

Schonberger, J. L., E. Zheng, J.-M. Frahm, and M. Pollefeys.
2016. “Pixelwise View Selection for Unstructured
Multi-View Stereo.” Paper presented at Computer
Vision - ECCV 2016, 501-518. Amsterdam, The
Netherlands, October 11-14. https://doi.org/10.1007/
978-3-319-46487-9_31.

Schops, T., J. L. Schonberger, S. Galliani, T. Sattler,
K. Schindler, M. Pollefeys, and A. Geiger. 2017. “A
Multi-View Stereo Benchmark with High-Resolution
Images and Multi-Camera Videos.” Paper presented at
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 3260-3269. Honolulu,
HI, USA, July 21-26.

Shen, Y., Z. Zhang, Y. Qu, and L. Cao. 2025. “FastVGGt:
Training-Free Acceleration of Visual Geometry
Transformer.” arXiv Preprint arXiv:2509.02560. https://
arxiv.org/abs/2509.02560.

Sinha, A., J. Bai, and K. Ramani. 2016. “Deep Learning 3D
Shape Surfaces Using Geometry Images.” Paper pre-
sented at Computer Vision - ECCV 2016, 223-240.
Amsterdam, The Netherlands, October 11-14. https://
doi.org/10.1007/978-3-319-46466-4_14.

Snavely, N., S. M. Seitz, and R. Szeliski. 2006. “Photo
Tourism: Exploring Photo Collections in 3D.” Paper


https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1016/j.isprsjprs.2021.03.024
https://doi.org/10.1016/j.isprsjprs.2021.03.024
https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1051-2023
https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1051-2023
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1007/978-3-319-56414-2_5
https://doi.org/10.1007/978-3-319-56414-2_5
https://doi.org/10.1016/j.ophoto.2024.100070
https://doi.org/10.1007/978-3-642-03364-3_7
https://doi.org/10.1007/978-3-642-03364-3_7
https://doi.org/10.1109/IROS40897.2019.8967590
https://doi.org/10.3390/app122412886
https://doi.org/10.3390/app122412886
https://doi.org/10.1016/j.aei.2019.101009
https://doi.org/10.1016/j.aei.2019.101009
https://doi.org/10.1002/9781118687659
https://doi.org/10.1002/9781118687659
https://doi.org/10.5194/isprs-archives-XLII-2-W5-591-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W5-591-2017
https://doi.org/10.14358/PERS.22-00127R2
https://doi.org/10.14358/PERS.22-00127R2
https://doi.org/10.14358/PERS.24-00066R3
https://doi.org/10.14358/PERS.24-00066R3
https://doi.org/10.1007/s10462-023-10399-2
https://doi.org/10.1007/s10462-023-10399-2
https://doi.org/10.1007/978-3-319-46487-9_31
https://doi.org/10.1007/978-3-319-46487-9_31
https://arxiv.org/abs/2509.02560
https://arxiv.org/abs/2509.02560
https://doi.org/10.1007/978-3-319-46466-4_14
https://doi.org/10.1007/978-3-319-46466-4_14

presented at ACM SIGGRAPH 2006 Papers, 835-846.
Boston, MA, USA, July 30-August 3. https://doi.org/10.
1145/1179352.1141964.

Stathopoulou, E. K., M. Welponer, and F. Remondino. 2019.
“Open-Source Image-Based 3D Reconstruction Pipelines:
Review, Comparison and Evaluation.” Paper presented at
the 6th International Workshop LowCost 3D, Strasbourg,
France, December 2-3. https://cris.fbk.eu/handle/11582/
320990.

Torres-Sanchez, J., F. Lopez-Granados, I. Borra-Serrano,
and J. M. Pefia. 2018. “Assessing UAV-Collected Image
Overlap Influence on Computation Time and Digital
Surface Model Accuracy in Olive Orchards.” Precision
Agriculture 19 (1): 115-133. https://doi.org/10.1007/
s11119-017-9502-0.

Ummenhofer, B., H. Zhou, J. Uhrig, N. Mayer, E. Ilg,
A. Dosovitskiy, and T. Brox. 2017. “Demon: Depth and
Motion Network for Learning Monocular Stereo.” Paper
presented at Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
5038-5047. Honolulu, HI, USA, July 21-26.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. 2017.
“Attention Is All You Need.” Paper presented at
Advances in Neural Information Processing Systems 30,
5998-6008. Long Beach, CA, USA, December 4-9.

Vetrivel, A., M. Gerke, N. Kerle, F. Nex, and G. Vosselman.

2018. “Disaster Damage Detection Through Synergistic
Use of Deep Learning and 3D Point Cloud Features
Derived from Very High Resolution Oblique Aerial
Images, and Multiple-Kernel-Learning.” ISPRS Journal
of Photogrammetry and Remote Sensing 140 Geospatial
Computer Vision 45-59. https://doi.org/10.1016/j.
isprsjprs.2017.03.001.

Vuong, K., A. Ghosh, D. Ramanan, S. Narasimhan, and
S.  Tulsiani. 2025. “Aerialmegadepth: Learning
Aerial-Ground Reconstruction and View Synthesis.”
Paper presented at Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
21674-21684. Nashville, TN, USA, June 11-15.

Wang, C., M. A. Reza, V. Vats, Y. Ju, N. Thakurdesai,

Y. Wang, D. J. Crandall, S. Jung, and J. Seo. 2024. “Deep
Learning-Based 3D Reconstruction from Multiple
Images: A Survey.” Neurocomputing 597:128018. https://
doi.org/10.1016/j.neucom.2024.128018.

Wang, C.-S. B., C. Schmidt, J. Piekenbrinck, and B. Leibe.

2025. “Faster VGGT with Block-Sparse Global
Attention.” arXiv preprint arXiv:2509.07120. http://
arxiv.org/abs/2509.07120.

Wang, J., M. Chen, N. Karaev, A. Vedaldi, C. Rupprecht,

and D. Novotny. 2025. “VGGT: Visual Geometry
Grounded Transformer.” Paper presented at
Proceedings of the IEEE Conference on Computer

GEO-SPATIAL INFORMATION SCIENCE . 19

Vision and Pattern Recognition (CVPR), 5294-5306.
Nashville, TN, USA, June 11-15.

Wang, S., V. Leroy, Y. Cabon, B. Chidlovskii, and J. Revaud.
2024. “DUSt3R: Geometric 3D Vision Made Easy.” Paper
presented at Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
20697-20709. Seattle, WA, USA, Jun 17-21.

Wiles, O., G. Gkioxari, R. Szeliski, and J. Johnson. 2020.
“Synsin: End-to-End View Synthesis from a Single
Image.” Paper presented at Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 7467-7477. Seattle, WA, USA,
June 13-19.

Xu, M., Y. Wang, B. Xu, J. Zhang, J. Ren, Z. Huang,
S. Poslad, and P. Xu. 2024. “A Critical Analysis of
Image-Based Camera Pose Estimation Techniques.”
Neurocomputing 570:127125. https://doi.org/10.1016/j.
neucom.2023.127125.

Xu, N, R. Qin, and S. Song. 2023. “Point Cloud Registration
for LiDAR and Photogrammetric Data: A Critical
Synthesis and Performance Analysis on Classic and
Deep Learning Algorithms.” ISPRS Open Journal of
Photogrammetry and Remote Sensing 8:100032. https://
doi.org/10.1016/j.0phot0.2023.100032.

Yang, J., A. Sax, K. J. Liang, M. Henaff, H. Tang, A. Cao,
J. Chai, F. Meier, and M. Feiszli. 2025. “Fast3R: Towards
3D Reconstruction of 1000+ Images in One Forward
Pass.” Paper presented at Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 21924-21935. Nashville, TN, USA,
June 11-15.

Yin, W, J. Zhang, O. Wang, S. Niklaus, L. Mai, S. Chen, and
C. Shen. 2021. “Learning to Recover 3D Scene Shape from
a Single Image.” Paper presented at Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Online, Nashville, TN, USA, June
19-25.

Zhan, H., R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and
I. Reid. 2018. “Unsupervised Learning of Monocular
Depth Estimation and Visual Odometry with Deep
Feature  Reconstruction.” Paper presented at
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 340-349. Salt
Lake City, UT, USA, June 18-22.

Zhou, T., R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. 2018.
“Stereo Magnification: Learning View Synthesis Using
Multiplane Images.” ACM Transactions on Graphics
37 (4): 1-65. https://doi.org/10.1145/3197517.3201323.

Zhu, Z., S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui,
M. R. Oswald, and M. Pollefeys. 2022. “Nice-SLAM:
Neural Implicit Scalable Encoding for SLAM.” Paper
presented at Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
12786-12796. New Orleans, LA, USA, June 19-24.


https://doi.org/10.1145/1179352.1141964
https://doi.org/10.1145/1179352.1141964
https://cris.fbk.eu/handle/11582/320990
https://cris.fbk.eu/handle/11582/320990
https://doi.org/10.1007/s11119-017-9502-0
https://doi.org/10.1007/s11119-017-9502-0
https://doi.org/10.1016/j.isprsjprs.2017.03.001
https://doi.org/10.1016/j.isprsjprs.2017.03.001
https://doi.org/10.1016/j.neucom.2024.128018
https://doi.org/10.1016/j.neucom.2024.128018
http://arxiv.org/abs/2509.07120
http://arxiv.org/abs/2509.07120
https://doi.org/10.1016/j.neucom.2023.127125
https://doi.org/10.1016/j.neucom.2023.127125
https://doi.org/10.1016/j.ophoto.2023.100032
https://doi.org/10.1016/j.ophoto.2023.100032
https://doi.org/10.1145/3197517.3201323

	Abstract
	1. Introduction
	2. Related work
	3. Material preparation and experiment setup
	3.1. Dataset configuration
	3.2. Evaluated methods
	3.3. Evaluation on dense point clouds generation
	3.3.1. Accuracy
	3.3.2. Completeness

	3.4. Evaluation on camera poses estimation
	3.4.1. Evaluation of camera position/translation
	3.4.2. Evaluation of camera rotation/orientation


	4. Experiment results
	4.1. Accuracy of dense point clouds
	4.2. Accuracy of camera poses
	4.3. Scalability evaluation
	4.4. Computation time
	4.5. A case study in mesh completion of regions with low image overlap

	5. Conclusions
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data availability statement
	References

