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Abstract

Parageobacillus thermoglucosidasius is a carboxydotrophic microorganism that produces H, through the water-gas shift
(WGS) reaction, using carbon monoxide (CO) as the main substrate. CO is a common constituent of syngas, alongside CO,,
H,, O,, and other gases. The facultatively anaerobic nature of P. thermoglucosidasius is particularly pertinent for hydrogeno-
genesis from O,-containing syngas. Here, we evaluated the effects of different syngas compositions (5, 12, and 20% of H,
gas, with constant CO and CO,; 10, 30, and 50% CO gas with constant CO, and H,) on hydrogenogenesis at the bioreactor
scale. Electron balance analysis showed that 88-91% of electrons coming from CO were converted into H,, regardless of the
gas composition. The presence of H, in different compositions had no inhibitory effect on hydrogen production rate (HPR),
and the maximum HPR corresponded to 13.65 L H, L' day ! in fermentations containing 30% CO. A carbon source, other
than CO, is needed for biomass formation of P. thermoglucosidasius. Acetate was shown to be the primary intermediate
metabolite of glucose metabolism, but could also be used as an initial carbon source for biomass generation. When this
carbon source was used, most electrons from CO were converted to H,, demonstrating that this organic acid can be used as
an effective alternative to glucose for H, production with P. thermoglucosidasius.

Key points

o Evaluation of lab-defined syngas at different compositions for H2 production with P. thermoglucosidasius at the bioreac-
tor scale.

e Hydrogen presence in the headspace was not inhibiting for subsequent H2 production.

e Acetate can replace glucose to generate biomass when growing P. thermoglucosidasius.
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Introduction

Dwindling fossil fuel reserves and the increase in atmos-
pheric CO, emissions as a result of their combustion are
driving the development of alternative energy sources to
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meet growing global energy demand (Achakulwisut et al.
2023). Renewable production approaches, such as electro-
lytic, thermolytic, and photo-electrolytic water-splitting
technologies, as well as biological (biomass) transforma-
tions, may provide a sustainable means for the production of
H,, an attractive fossil fuel alternative (Nikolaidis and Poul-
likkas 2017; Balachandar et al. 2020; Martins et al. 2021).
The latter involves the use of bacteria and algae to produce
H, photolytically (from water and sunlight), or through
dark fermentation, using biomass or organic acids through
hydrogenase or nitrogenase enzyme systems (Nikolaidis and
Poullikkas 2017; Balachandar et al. 2020). In addition to the
existing biological processes for H, production, carboxydo-
trophic microorganisms that produce H, and CO, through
the water-gas shift (WGS) reaction, using carbon monox-
ide (CO) and water as substrates, are a potential option for
CO-based H, production (Mohr et al. 2018; Martins et al.
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2021). The thermophilic facultatively anaerobic bacterium
Parageobacillus thermoglucosidasius is a metabolically ver-
satile, biotechnologically relevant microorganism that can
perform the WGS reaction in the presence of low levels of
oxygen (Mohr et al. 2018, 2019; Mol et al. 2024). Syngas,
gas mixtures comprised primarily of CO, H,, and CO,, are
produced through the industrial gasification of coal, bio-
mass, or natural gas and may serve as a good source for
WGS-driven hydrogenogenesis, but often contain traces of
oxygen, making P. thermoglucosidasius an attractive can-
didate for syngas-derived hydrogen production (Mol et al.
2024). In addition to syngas, steel mill off-gases could also
be potentially used for H, production (Collis et al. 2021).
Previous studies have shown that this bacterium was able to
perform the WGS reaction with complex syngas mixtures
and that this gas substrate led to a shorter lag phase before
the commencement of hydrogenesis (Mol et al. 2024), com-
pared to when more purified (CO and N,) gas mixtures were
used (Aliyu et al. 2021).

In previous work, we evaluated the effect of increasing
CO, N,, and H, partial pressures at the bottle scale, con-
cluding that increasing the CO partial pressure to 3.0 bar
inhibited H, production, while rising N, and H, partial
pressures had a positive effect (Ardila et al. 2024). Pressure
was evaluated as a process parameter, as the experiments
allowed for assessing the total pressure of the system and
comparing the different partial pressures of the gas mix-
tures used (Ardila et al. 2024). In comparison, the present
work aimed to evaluate the effects of increased CO and H,
percentages in a gas mixture containing CO, CO, and H,,
at ambient pressure, on hydrogenogenesis at the bioreactor
scale with continuous gas flow and pH regulation. Scaling
up to bioreactor systems is essential for gaining insights into
fermentation processes, as bottle fermentations offer limited
control over critical parameters such as pH, temperature, and
gas flow rates. Furthermore, gas-liquid mass transfer can be
enhanced through mixing and sparging systems in bioreac-
tors, whereas in bottles, gas diffusion is achieved solely by
stirring (Chezeau et al. 2019; Liu et al. 2019).

The CO content of the syngas mixtures evaluated in
serum bottles was 17% and 38% (Mol et al. 2024). How-
ever, syngas composition can vary widely depending on fac-
tors such as production method, reactor design, gasifying
agent, and feedstock type (Benevenuti et al. 2021). Typical
compositions range from 5 to 40% H,, 7 to 40% CO, 2 to
70% N,, 10 to 40% CO,, and 0.2 to 12% CH, (Benevenuti
et al. 2021). In addition to the presence of impurities, the
H,/CO ratio is a critical parameter that must be considered
before integrating syngas into other processes, especially
given recent efforts to produce CO-rich syngas for specific
applications (Chan et al. 2021; Benevenuti et al. 2021).
Evaluating gas mixtures with higher CO and H, contents
is essential to understand the limits of the WGS reaction
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with P. thermoglucosidasius and to explore the potential for
detoxifying CO-rich mixtures.

In addition to using syngas as a substitute for pure CO in
bioreactor-scale fermentations, glucose in the medium must
also be replaced to enable a sustainable scale-up process.
Acetate, or more specifically its protonated form acetic acid,
can be found in biomass gasification waste streams (Hara-
hap and Ahring 2023). Microorganisms such as acetogenic
bacteria that metabolize syngas often produce acetate as an
intermediate or end product, such as acetogenic bacteria,
which can convert CO and CO, into acetate via the Wood-
Ljungdahl pathway (Redl et al. 2017; Arantes et al. 2020).
This organic acid is also produced by P. thermoglucosida-
sius as a metabolite during fermentation, following glucose
depletion, and is later consumed during the fermentation
(Aliyu et al. 2021). Therefore, a set of fermentations was
designed to evaluate acetate as a carbon source and its
effects on H, production in P. thermoglucosidasius.

Materials and methods
Microorganisms and media

P. thermoglucosidasius DSM 6285 was acquired from the
Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ, Braunschweig, Germany) and was conserved in
glycerol (80%) stocks at —80 °C. Routine cultivation of P.
thermoglucosidasius DSM 6285 was performed in modified
Luria Bertani (mLB) medium (Mohr et al. 2019). Bioreactor
fermentations were undertaken in modified ammonium sul-
fate medium (mASM) containing 1 g/L glucose (Greening
et al. 2016; Ardila et al. 2025). For the acetate fermentations,
glucose (1 g/L) was replaced with acetate at the same con-
centration (16.7 M=1 g/L).

Inoculum preparation

A volume of 300 pL of glycerol stock was added to 200 mL
of mLB medium in 500-mL shake flasks and grown under
aerobic conditions at 60 °C, and rotation at 120 rpm in an
Infors Thermotron (Infors Thermotron, Infors AG, Bott-
mingen, Switzerland). After 14 h, a calculated volume of
the inoculum was added to the reactors to achieve an initial
absorbance (ODy,) of 0.1 for a total volume of 1 L.

Experimental setup

Each fermentation was performed in two bioreactors of 2.5
L capacity (Minifors, Infors AG, Bottmingen, Schweiz) with
a 1 L working volume. The growth conditions were main-
tained as reported previously (Ardila et al. 2025), with stirrer
speed set to 500 rpm, temperature to 55 °C, and pH to 6.8;
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pH was controlled using a pH probe (Easyferm plus, Ham-
ilton, Switzerland) and with the help of a peristaltic pump
connected to the reactor system providing NaOH (1 M) and
H,SO, (1 M). For the syngas fermentation, an anaerobiza-
tion step was performed to ensure no oxygen was present
in the reactors before inoculation. This was achieved by
flushing the reactors overnight with nitrogen (N,) gas. Two
hours before the addition of the inoculum, the gas mixture
was set through mass flow controllers, with a flow rate of
200 mL min~" and the gas compositions outlined in Table 1.
The two-phase fermentation using acetate as an additional
substrate was performed as described before (Ardila et al.
2025). The aerobic phase (Acetate P1) had a continuous
flow rate of 100 mL min~" of air and CO for 24 h, while the
anaerobic phase (Acetate P2) had an 80 mL min~! flow of a
mixture of 80% nitrogen and 20% CO (Table 1).

Analytical methods

Online measurement of the gas content in the headspace
of the reactor was performed using a 3000 Micro GC gas
analyzer (Inficon, Switzerland) connected with Molsieve
and PLOT Q columns for data acquisition. Liquid samples
were withdrawn daily, and absorbance (ODg,) readings
were confirmed using an Ultrospec 1100 pro spectropho-
tometer (Amersham Biosciences, Uppsala, Sweden). HPLC
analyses were performed on the liquid samples using the
Agilent 1100 series HPLC system (Agilent Technologies,
Waldbronn, Germany), equipped with a 50-mm pre-column
(model Rezex ROA-Organic Acid H+ 8% Guard Column)
and a 300-mm separation column (model Rezex ROA-
Organic Acid H+8%), together with a wavelength detector
and refractive index detector. Operational parameters were
55 °C for column temperature, flow rate of 0.6 mL min -1
injection volume of 10 uL, a mobile phase of 5 mM H,SO,,
and a duration of 40 min per sample. ChemStation software
(Agilent Technologies) was used for data acquisition and
analysis. Gas composition was calculated according to the

Table1 Gas mixtures for each fermentation, with increasing CO
(1-3) and H, (4-6) percentages

Fermentation H, (%) CO (%) CO, (%) N, (%)
CO-1 15 10 15 55
CO-2 15 30 15 35
CO-3 15 50 15 20
H,—4 5 20 15 60
H,-5 12 20 15 53
H,—6 20 20 15 45
Acetate P1* - 10 - -
Acetate P2 - 20 - 80

*In Acetate P1, there was also 90% air

ideal gas law, as described before (Mohr et al. 2018). The
hydrogen production rate (HPR) was calculated based on
the difference between H, in the outflow and the H, in the
inflow; more information can be found in the supplemen-
tary material. The electron selectivity was used to show the
electron flux in the process. This was calculated from the
electron mole (e~ mol) of each compound, calculated from
the quantities of each compound (mmol), and a conversion
factor to electrons based on the oxidation state of each ele-
ment. The calculation of the electron balance takes into
account the electrons from CO, glucose, and acetate (once
acetate starts to be consumed). Additional information on
the calculations can be found in Table S1.

Results

Effects of different CO concentrations on H,
production

The increase of CO was performed to evaluate possible inhi-
bition on the hydrogen production rate by a high CO percent-
age within the gas mixture. The HPR is given in liters of H,
produced per liter of growth media per day. Evaluation of
the HPRs at the three different CO percentages showed that
H, produced was similar until day 2 and increased to 14.1 L
H,/L/day on day 4 (Fig. 1A). Unconverted CO was detected
in the gas outflow (Fig. S1).

Analysis of the electron balance within the CO percent-
ages evaluated was similar, as 88-90% of electrons coming
from CO, glucose, and acetate were converted into H,, with
acetate as the second main product, followed by formate
(Fig. 1B). Other metabolites such as lactate, butyrate, pro-
pionate, and valerate were produced in lower proportions
(<1%).

Glucose (5.5 mM) present in the media was fully con-
sumed by the first day of fermentation at all three CO levels,
while formate was cumulatively produced in all CO per-
centages evaluated (Fig. 2A). Acetate production was simi-
lar reaching 11.6, 12.4, and 12.2 mM at 10, 30, and 50%
CO, respectively, by day 2, before being almost completely
consumed by day 4. In comparison, lactate accumulation
showed a similar trend at CO levels of 10%, 30%, and 50%,
reaching concentrations of 5.2, 6.6, and 1.1 mM, respec-
tively. At 10% and 30% CO, lactate was then fully consumed
within two days.

The greatest biomass (ODg,) was attained at 30% CO.
After a long lag phase of nearly 1 day, the absorbance started
to increase, reaching a maximum of 1.5 at day 4 post-inocu-
lation (Fig. 2B). At 10% CO, absorbance started to increase
from 0.16 days post-inoculation and reached an ODg, of
0.9 by the end of the fermentation (4 days). After 1 day, the
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Fig.2 A Metabolite concentration during the fermentations at increasing CO percentages. B Growth of P. thermoglucosidasius in terms of
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absorbance at 50% CO increased to 0.1 and reached 0.4 at
day 2 of fermentation, remaining constant until day 4.

Effects of increased H, percentages in the gas
mixture on H, production

Considering H, being the product of the WGS reaction,
increased H, would be expected to inhibit the reaction.
While there were no noticeable differences in hydrogen
production 2 days post-inoculation (Fig. S2), at 3 days post-
inoculation, the HPRs achieved with 5%, 12%, and 20% were
similar (Fig. 3A). By day 4, the HPR was maintained with
the 5% H,, and similar HPR values were observed, in the
range of 12-13 L H,/L/day with 12 and 20% H,.

As observed for the experiments with increasing CO, most of
the electrons from CO went to H, production (Fig. 3B). When
H, was increased from 5 to 20%, acetate tended to increase.

Similar to the trend observed with increasing CO, glu-
cose was consumed (5.5 mM) on the first day when H, was
increased. Formate had a tendency to increase in all H, lev-
els, up to 20 mM with 20% H,. Acetate production increased
up to 17 mM at 12% H, within 1 day before being consumed
by day 4; a similar trend was observed with 5% H, (Fig. 4A).
Maximum lactate production reached 3 mM at 5% H,.

Similar biomass accumulation was observed at 5 and 12%
H,. Even though with 20% H, an ODg, value 50% lower
than that with 5% H, was observed 2 days post-inoculation,
all the H, levels evaluated resulted in similar ODg, values
(~1.2) by 4 days post-inoculation (Fig. 4B).

Acetate as substrate for P. thermoglucosidasius
In batch fermentations using acetate as an additional carbon

source, CO uptake followed a slightly delayed pattern (Fig. SA).
The two-phase fermentation starts aerobically with a mixture of

air and CO, followed by an anaerobic phase with CO and N,.
This was done to increase the biomass before the gas exchange.
Additionally, P. thermoglucosidasius biomass decreased from
an absorbance (ODg,) of 1.0+£0.1 to 0.37+0.01 after gas
exchange. However, the OD recovered in correlation with H,
production, which began 1.5 days post-inoculation and contin-
ued until the end of fermentation (Fig. 5B). The decrease in OD
observed after the gas exchange has been observed before, as
the microorganism needs to adapt to the anaerobic conditions
and start CO consumption (Ardila et al. 2025).

Acetate consumption began around day 1 of the fermenta-
tion, but CO consumption was initiated at approximately 1.5
days. H, production increased gradually in this case, reach-
ing its peak HPR of 0.167 +0.017 mmol min ™' at day 4. In
contrast, in a previous study, when glucose was the additional
carbon source, P. thermoglucosidasius began consuming CO
after 1 day, following gas exchange (Ardila et al. 2025). H,
production via the WGS reaction started concurrently, reach-
ing a maximum HPR of 0.144 +0.002 mmol min™! by day 4.
This indicates that although the onset of WGS activity was
slower with acetate, it led to a slightly higher maximum HPR.

The metabolite production profiles differed significantly
between glucose and acetate fermentations. The acetate fermen-
tation resulted in markedly reduced production of most organic
acids (Fig. 6A). Notably, butyrate became the predominant prod-
uct once acetate consumption began, reaching a production rate
of 0.2 mmol day! within just 0.16 day. This suggests a more
efficient metabolic response, with carbon flux favoring butyrate
and hydrogen production over a wider spread of by-products.
On the other hand, in the glucose batch fermentations, from a
previous study, P. thermoglucosidasius produced a broad mix of
organic acids, particularly formate, lactate, acetate, and propion-
ate (Ardila et al. 2025). Formate was the dominant product, and
acetate production was closely associated with glucose metabo-
lism, decreasing once the substrate was depleted.
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Electron selectivity analysis revealed important differences
in how electrons from CO and the carbon substrate were dis-
tributed. During acetate-fed fermentations, 91.4% electron
selectivity toward H, was reached by 2 days and maintained
thereafter (Fig. 6B). However, acetate fermentation also chan-
neled a small but notable portion of electrons, around 8.3%,
into butyrate production at 2 days. This tighter distribution of
electron flow toward fewer end-products implies a more effi-
cient conversion of substrates into targeted outputs, particularly
hydrogen and butyrate. A similar trend was observed in a previ-
ous study, where glucose fermentation was performed in similar
conditions; electrons were initially routed toward acetate, then
shifted toward H, production following gas exchange (Ardila
et al. 2025). By day 2, 79% of electrons were directed toward
H, production, and this value remained stable at around 90%
by day 3.

Carbon recovery during acetate fermentation—calculated
based on the carbon from the substrates (CO and acetate)
incorporated into product formation—exceeded 80%, indi-
cating that the majority of the carbon was successfully con-
verted into products such as formate, lactate, butyrate, propi-
onate, valerate, iso-butyrate, and iso-valerate (Fig. S3). The
ratio of CO, produced to CO consumed ranged from 0.8 to
1.0, suggesting that most of the carbon derived from CO was
converted into CO, (Fig. S4). Additionally, the data indicate
that acetate was primarily converted into biomass and other
organic acids, including formate, lactate, butyrate, propion-
ate, valerate, iso-butyrate, and iso-valerate.

Discussion

Understanding the impact of gas composition on microbial
growth and metabolism is crucial for optimizing fermenta-
tion processes. While the total gas flow in the experiments
remained constant, the CO and H, percentages were varied to
assess potential substrate or product inhibition. Additionally,

scaling up to a bioreactor is necessary, as bottle fermentations
lack precise control over different growth parameters. Scaling
up from bottle fermentations to batch and semi-continuous
systems provided additional insight into the limitations of
the process (Ardila et al. 2025). An increase in CO positively
influenced growth up to 30% CO. However, further increas-
ing CO to 50% led to a 42% reduction in growth by 3 days.
The difference in growth has been described with a non-
hydrogenogenic strain, Parageobacillus toebii DSM 145907,
when compared to other strains producing H, (Mohr et al.
2018). This suggests that there might be additional growth
derived from the production of hydrogen.

A recent study investigating Rhodospirillum rubrum in
a bioreactor found that pCO became inhibitory at 1.0 atm,
where the growth rate decreased from 0.058 to 0.040 h™! as
pCO increased from 0.2 to 1.0 atm. Despite this, H, produc-
tion improved significantly, rising from 1.81 to 4.88 mol
under the same conditions (Rodriguez et al. 2021).

Overall, the increase in CO percentages did not affect
HPRs. This observation aligns with our previous study,
which examined syngas fermentation in bottle experiments
using different gas compositions (Mol et al. 2024). In that
study, CO depletion occurred earlier with a gas mixture
containing 17.28% CO, whereas a higher CO concentration
(38.01%) left residual CO in the headspace. Although this did
not completely inhibit H, production, it delayed the onset of
hydrogenogenesis (Mol et al. 2024). As mentioned above, the
composition of syngas depends on factors such as production
methods and feedstocks, which influence the H,/CO ratio and
result in a wide variety of CO-containing mixtures (Benev-
enuti et al. 2021). In this study, we showed that gas mixtures
with up to 50% CO can be effectively detoxified and enriched
in H, using continuous CO-fed fermentation.

One of the parameters to improve H, production at the bio-
reactor scale would be to evaluate different CO flow rates or
adapt P. thermoglucosidasius to higher CO percentage in syn-
gas. In an adaptive laboratory evolution study with R. rubrum,
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the evolved strains showed up to 50% additional H, production
and a reduced lag phase, compared to the parental strain, dem-
onstrating their adaptation to gas photofermentation (Hernan-
dez-Herreros et al. 2024). Contrariwise, this could also cause a
decrease in the conversion efficiency, as described for Carboxy-
dothermus hydrogenoformans (Haddad et al. 2014). According
to Henry’s law, the amount of dissolved gas is proportional to
its partial pressure in the gas phase (Sander 2023). The low
Henry’s solubility constant of CO (9.7 x 10 mol/m? Pa) indi-
cates its poor solubility in aqueous systems, thereby restricting
the concentration of dissolved CO accessible to microbial cells
(Do et al. 2007; Sander 2023). Consequently, increasing the
CO partial pressure or the total system pressure is required to
enhance CO availability (Ardila et al. 2024). This has to be
considered when conditioning syngas with higher CO levels.

Increasing H, to 20% in a gas mixture containing CO and
CO, was not detrimental to H, production, with a maximum
HPR of 13.2 L H, L ! day ! at 3 days at this H, percentage. In
another study, increasing pH, up to 1.52 bar increased ethanol
production and hydrogen uptake rate in a syngas fermentation
performed with Clostridium ljungdahlii (Perret et al. 2024).
However, a further increase of H, had negative effects, pos-
sibly due to inhibition of an enzymatic reaction above a critical
equilibrium concentration of H, in the liquid phase (Perret
et al. 2024). In this study, an increase in H, percentage led to
comparable HPR values, considering the variability among
reactors. This could suggest that the media was saturated with
H,, the maximum theoretical solubility of H, in water at 50
°C and 1 atm reported is 0.0127 cm?/g (0.52 mM), which is
affected by the concentration of salts in the media and the
partial pressure of the gas (Crozier and Yamamoto’ 1974;
Baranenko and Kirov 1989).

Previous anaerobic fermentations with P. thermoglucosida-
sius DSM 6285 showed that the onset of the WGS reaction was
faster and had shorter lag phases for H, production when syngas
was used compared to pure mixtures of CO and N, (Mol et al.
2024). This was also encountered in our fermentations using
syngas compared to previous work with a two-phase system to
change from aerobic to anaerobic conditions, where CO con-
sumption started after 0.5 days from the gas exchange on a
batch fermentation, reaching a maximum consumption rate at
4 days (Ardila et al. 2025). A possible reason could be the addi-
tional time cells need to adapt to the shift from the aerobic to
the anaerobic phase. In contrast, syngas fermentation may allow
for a more seamless metabolic transition due to its composition,
reducing the lag phase. Additionally, the presence of H, in the
syngas mixtures can lead to enzyme activation and metabolic
adaptation in the strain (Esquivel-Elizondo et al. 2017).

As demonstrated by the fermentations with the differ-
ent CO and H, levels (this study) and previous experiments
(Aliyu et al. 2021), acetate is the primary metabolite when
glucose is used as a carbon source for hydrogenogenic fer-
mentation. Here, we evaluated the use of acetate to serve as

@ Springer

a carbon source (alongside CO). Previous evaluation with
glucose achieved a specific H, production rate of 2164 mmol
H, g CDW™! (Ardila et al. 2025). Using 16.6 mM acetate,
a specific H, production rate of 2303 mmol H, g CDW~!
was achieved, translating into a 6% increase in the specific
H, production rate with the latter substrate. Under anaero-
bic conditions, butyrate production from acetate could occur
through microbial chain elongation, as reported for Clostrid-
ium kluyveri; this process would, however, require a reducing
co-substrate such as ethanol, lactate, or H, (Joshi et al. 2021).
Formate production from acetate requires low hydrogen par-
tial pressures and typically occurs through syntrophic inter-
actions with hydrogenotrophic methanogens (Hattori 2008).
Therefore, it is more likely that for P. thermoglucosidasius,
anaerobic reduction or oxidation of formate is linked to the
presence of formate dehydrogenase genes (Mohr et al. 2018).

High acetate concentrations can inhibit microbial growth
due to the uncoupling effect of organic acids, i.e., acetic acid
can diffuse across the cell membrane and affect the osmotic
pressure (Pinhal et al. 2019). In a previous study, the maxi-
mum acetate production reported was 12.1 mM (Mol et al.
2024). There is no known inhibitory concentration for P.
thermoglucosidasius until now. A concentration of 18.10
mM was used in the current study. Additionally, the inhibi-
tory concentration also depends on the pH value. It has been
reported that lowering pH to 5.5 can increase the undissoci-
ated acetic acid, which can be inhibiting for methanogens
(Robazza et al. 2024). In the present fermentation with P.
thermoglucosidasius, acetate was predominant because the
pH was kept at 6.8, above the pKa of acetic acid (4.75),
thereby avoiding inhibition of the microorganism growth by
the undissociated form (Tréek et al. 2015). Therefore, process
optimization, evaluating different substrate concentrations,
gas flow rates, and agitation speeds, is required when using
acetate as a carbon source in a semi-continuous fermenta-
tion or a chemostat (Younesi et al. 2008). Gradual feeding of
acetate or using acetate-tolerant strains can be a solution for
further upscaling strategies (Najafpour et al. 2004).

Conclusions

Higher percentages of CO led to a delayed onset of hydrog-
enogenesis. H, presence in different compositions up to
20% H, had no inhibitory effect on HPR; therefore, H, does
not inhibit the water-gas shift reaction. Electron flow was
primarily directed toward hydrogen production, with the
remainder contributing to the formation of organic acids.
The use of a clean, syngas-like gas mixture, free from com-
mon microbial inhibitors such as tars, ammonia, hydrogen
sulfide, particulates, among others (Ramachandriya et al.
2016), provided a controlled baseline for evaluating micro-
bial performance and scaling up the process. Additionally,
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acetate proved to be an effective alternative to glucose for
biomass production during the aerobic phase, offering sev-
eral advantages due to its direct entry into central metabo-
lism and its lower cost. These characteristics make acetate a
promising substrate for hydrogenogenic fermentation.
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