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Abstract

For any finite, simple graph G = (V, E), its 2-distance graph G, is a graph having the same vertex set V where two vertices are
adjacent if and only if their distance is 2 in G. Connectivity and diameter properties of these graphs have been well studied. For
example, it has been shown that if diam(G) = k > 3 then I'(%k)] < diam(G,), and that this bound is sharp. In this paper, we prove
that diam(G,) = oo (that is, G, is disconnected) or otherwise diam(G,) < k + 2. In addition, we show that this inequality is sharp
for any even k, a result that we verify for some higher orders through judicious use of a sar solver.
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1. Introduction

Given a finite, simple graph G, we let V and E denote the vertex set and the edge set of G, respectively. By dg(u, v)
we denote geodesic distance, the length of a shortest path, between the vertices u and v in the graph G. The diameter
of G, also denoted as diam(G), is the greatest geodesic distance between any two vertices in G. If G is disconnected,
then diam(G) = oo. The k-distance operator Dy, takes as input a simple graph G and outputs its k-distance graph, a
graph having the same vertex set V but where any pair (&, v) has dg,(u,v) = 1 if and only if dg(u, v) = k. The graph
Di(G) is called the k-distance graph of G. A graph Y is k-distance if there exists a graph X such that Y = Dy(X)
(meaning that Y is isomorphic to D;(X)). When ambiguity is impossible, we simply write Gy, to refer to Di(G).

The general class of k-distance graphs was first introduced by Harary et al. [9] and are also known under the
name of exact distance powers [3, 6]. Special cases for fixed k have been studied for their connectivity, diameter,
and periodicity properties [10, 11, 12, 13, 5]. Known results in the literature are numerous. For example, the cubic
self 2-distance graphs do not exist [1]. On the other hand, Azimi et al. [2] showed the complete set of graphs whose
2-distance graphs are simple paths or cycles. General characterizations were given by Ching and Garces [4] whereas
Gaar and Krenn [7] characterized regular 2-distance graphs. Recognition under special constraints was shown to be
polynomial-time by Bai et al. [3].
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Recently, Jafari and Musawi [11] conjectured that if diam(G) = k > 3 then diam(G;) < k + 2, and proved it for
diam(G) = 3. Under the standard assumption that diam(G) = oo when G is disconnected, we will prove that the
statement is true when diam(G,) # oo.

2. Preliminaries

Our graph theory notation basically follows that of Golumbic [8]. We write G[S] to refer to the subgraph of G
induced by the vertex set of S. For a graph H, we let V(H) and E(H) denote the vertex set and the edge set of H,
respectively. For any x € V, let Ng(x) = {y : {x,y} € E} be the (open) neighborhood of x and Ng[x] = N(x) U {x} the
closed neighborhood of x. We write x € Ng(S) to say that x is adjacent to some vertex in § while x ¢ S. We write
x € Ng[S]if x € Ng(S) U S. We denote by Cy,,(S) the common neighborhood of S in G.i.e. Cn,(S) = (,es No(V).

A sequence of vertices P = (u = xoX| - - - Xy X¢ = v) is called a walk if x; € Ng[x;;1] foralli € {0,1,...,k — 1}.
The length of a walk is the number of edges it contains. We say P is a path if the vertices xg, Xy, ..., x; are all
distinct. A walk with endpoints u and v may be called a u, v-walk. If v € Ng(v’), then we denote by P—v’" the walk
(u = xox1 - X1 x¢ = ). Similarly, if P = (xox; -+ - x;) and P’ = (ygy; - - - y,) are walks and x; € Ng(yo), then we let
P—P" = (xo- - X0 - - Yg). We write P[x;, x;] where (0 < i < j < k) for the subwalk (x; - - - x;) of P. It is well known
that we can extract a u, v-path from the subset of every u, v-walk. A triangle is a set of three vertices such that each
vertex is adjacent to the other two.

3. Diameter Bounds

In this section, we show that the diameter of G imposes strong constraints on the diameter of G, (see Theorem 7).
We need an easy way to refer to paths between G and its 2-distance graph in our proofs. For a basic example of the
following definition, see Fig. 1.

Definition 1. Let P = (vivy---vi_1v) be a walk in G and let p = k — (k mod 2). If for each odd i € [1,k — 2] we
have that Pv;, viy2] is induced, then there exists a walk (vivs - - - v,_2v,) in G, that we denote by D(P).

VI @ ® @ @ o3
%) V3 V4 Vs Ve %4

Fig. 1. Let P = (v1v2 - - - vg) in G, shown with black edges. The green edges are the edges of D, (P) by Definition 1.

We will prove our main theorem by showing that a graph G, having an exceedingly high diameter causes G to
contain the complement of a path. This high edge-density subgraph will lead to a contradiction to diam(G). This result
builds on a sequence of lemmas which we will now begin.

Lemma 2. Let G be a graph with diam(G) = k > 3, let Py = {(a1a; - - - ar+3ar+4) be a shortest path in G,, and let
t= F(%)l Then, ay, ar+4 € Ng(aes1).

Proof. To prove the statement, we will show that {a;, ae+1) and {ai+1,ae+1) exist and that all other cases result in a
contradiction. For P, to exist in G,, the graph G must contain a walk taking the form of P = {abjaxbra3 - - - ay+3bi+3
ar+4). We will first show that the shortest paths between vertices of V(P,) in G satisfy special constraints.

No shortest path in G has length exceeding diam(G). In particular, the subwalks P[a, as+1] and Plag, 1, ag+4] are not
shortest paths because their lengths exceeds diam(G) = k. Thus, there exist shortest paths R = (a; = ri7y - -7 = azs1)
and R' = {apy1 = rjry-+ r’p, = ag+4) in G. In the remainder of the proof, we will frequently recall the fact that the
length of Dy(R) is at most I_(g)J, which arises from the understanding that D,(R) is at most half the length of R by
Definition 1.

We claim that the lengths of R and R’ are odd. Suppose instead that L = R (resp. L = R’) has an even length. Note
that 4 = (€ + 1) — 1 is the difference between the indices of a,.; and a;. Moreover, w = k+4 — (€ + 1) is the difference
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between the indices of ;44 and agy1. We have that D,(L) is shorter than both P;[a;, asy1] and Py[as. 1, are4] because
L(%)J (the greatest possible length of D,(L)) is strictly less than both y and w, respectively, a fact easily verified for
any value of k > 3. This is a contradiction to the assumption that P, is a shortest path. Fig. 2 shows an example for
k =4 and L = R’. We have proven our claim.

b by b3 by bs be by

aj as

Fig. 2. Let k = 4. So, P, has length 7 and £ + 1 = 5. Let the black edges denote E(G) and let the green edges denote E(G»). A shortest as, ag-path
of length 4 in G causes dg, (as, ag) = 2, a contradiction.

There is an important distinction between odd and even k. When k is odd, then R has length at most k. When £ is
even, then R has length at most k — 1 because we have shown that R may not have even length. Let k¥’ = k when k is
odd, but ¥ = k — 1 when £ is even. Later in the proof, we will need to use £’ in order to reach a contradiction. We
will arrive at a contradiction from assuming that the length of R or R’ is greater than 1, and so the only possibility left
is that both lengths are 1, i.e., they are edges. Note that r,_; is the last endpoint of D,(R) because R has odd length.
Consider two cases based on the incidence of r,_; to R’.

Case 1: r,,_; is in the closed neighborhood of every vertex in R in G. If a4 = r,_; then D,(R) is an ay, ax+4-path
of length at most L(%)J, a contradiction to the assumption that dg, (a1, ar+s) = k + 3. Thus, apa # 7,-1. Next, if
X = (aysa7p-1a¢41) is an induced path in G then D> (X) = (apsaaes1) gives dg,(ar+4, acr1) = 1, a contradiction. So, X
is not induced, meaning that X is a triangle in G, implying ay.4 € Ng(ag+1). Now {ars1ax+4) is a shortest path in G,
and therefore R’ has length 1 (i.e. R" = {as+1a+4)). Since the lengths of R and R’ are odd, and we are considering the
case where they are not both equal to 1, the length of R is 3 or greater.

Let B = Cy,(ae, ae+1). For any b € B, suppose that b ¢ Ng[r,-1] U Nglar.s]. Observe that D,(R—b—R’) has length
at most L(%)J + 2, a contradiction to the assumption that dg,(ai, ax+4) = k + 3. Fig. 3 demonstrates this contradiction
where k = 4 and b = b,. Thus, b € Ng[r,-1]1 U Nglags] for any b € B.

Fig. 3. In this example, we follow the assumptions set at the beginning of Case 1 of Lemma 2 where k = 4. Thus, diam(G2) =7, {+ 1 =5, and
k +4 = 8. Let the black edges denote E(G) and let the green edges denote E(G>). Let by € Ng[r,-1]1U Nglag]. The green walk D,(R-b—R’) has a
length less than dg, (a1, ag), a contradiction within the proof.

We claim that r,_; € Ng[B]. Suppose not. For a fixed b € B we have r,_; ¢ Ng[b]. Hence, ar.4 € Nglb]. If
ax+4 = b, then r,_ € Ng[b] (recall that r,_; € Ng(ak+4)), a contradiction. Therefore, a;.4 # b. Now G has a walk
Y = {ays4bar) with all vertices distinct. If Y is induced then D,(Y) gives dg,(ar+4,a¢) = 1, a contradiction. Therefore,
Y is not induced, meaning that a;,4 € Ng(ar) and so R'—a, is a path in G. The existence of R'—a, in G implies that
a4 € Cngy(ae, apss) (i.€. ages € B). This immediately shows that r,_; € Ng[B] because r,_; neighbors a4 € R, a
contradiction. We have proven our claim. We consider two specific subcases of the result of this claim.

Case 1.1: r,_ € Ng(B). In particular, let b’ € Band r,_; € Ng(b"). Recall that r, = ag.1. If v, = ag, then trivially
a¢ & Ng,(aey1), a contradiction to the definition of P;. Thus, r,_; # a,.

Next, we will prove that r,_; € Ng(a,). Suppose otherwise. Recalling the definition of &, note that D,(R) has

length at most L(%)J. There exists an a;,ag-walk Q = Dy(R-b'—ay) of length at most L(%)J + 1 in G,. It is easy to
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verify that L(%)J +1<(-1)= (I'(%)'I — 1) for any k > 3. Consequently, the length of Q contradicts the assumption
that dg, (a1, a¢) = € — 1. Therefore, r,_; € Ng(ar). Now r,_; € Cy,(ae, arss) (i.€. 7,1 € B), a contradiction.

Case 1.2: r,_; € B. Note that r,_; € Ng(ar) by the definition of B. We also have that a; € Ng(ay.4), otherwise
D ({acrp-1ax+4)) gives dg,(ae, arss) = 1, a contradiction. Recall that R has length 3 or greater. Thus, r,_» and r,_3
exist. If 7,3 € Ng(ay+4), then (rp_3asaaes1) has length at most 2 in G, a contradiction to the fact that R is a shortest
path with dG(rp_3, }’p) = 3. Hence, Tp-3 ¢ Ng(ap+a).

If r,» ¢ Ng(ax+4) U Ng(ae), then there exists QO = (ari47p-17p-2Fp-1a¢) in G; in fact, Q exists even if r,_, €
{a¢, akea). Now Do(Q) = (ars+4tp-20ar) 18 an ap.4, ac-walk of length at most 2 in G», a contradiction. We have shown
that r,_» € Ng(ak+4) U Ng(ae). In particular, we will show that r,_, € Ng(a,). Suppose not, and thus r,_> € Ng(ai44).

Now Dy (R[r1, rp—2]—ak+4) is an ay, ax.4-path of length at most L(%)J in G,, a contradiction. Therefore, r,_, € Ng(ay).
There exists Q" = R[r,rp-2]-a,in G. If r,_3 ¢ Ng(ar), then D,(Q') is an ay, ae-path of length at most I_(%')J. Then,

noting that |(4)] < (£ = 1) = ((&*)1 - 1) for any k > 3, observe that Dy(Q") is shorter than dg,(a1,ar) = € -1, a
contradiction. Thus, r,_3 € Ng(ae).

There exists T = R[r|, rp—3]—ar—ar.4 in G. Recalling that r,_3 ¢ Ng(ai.4), observe that D»(T) is an ay, ag.4-path
of length at most L(’%)J in G,, a contradiction.

Case 2: r,,_; is not in the closed neighborhood of every vertex in R” in G. Let 7, be the first vertex in R’ that
is not in Ng[r,_1]. Since r,_; is adjacent to asy; = | by the definitions of R and R, clearly f > 1. There exists
T = R[ry, rp_l]—R’[(’f._] s r;,] in G. Notice T is an ay, ay+4-walk with length no greater than 2k.

It is straightforward to check that if f is even, then T has even length. Subsequently, from D,(7T) we can extract an
ay, ar+4-path having length at most k. This contradicts the assumption that dg, (a1, ax+4) = k + 3. So, f is odd.

Case 2.1: f > 3. Hence, f > 5 (since f cannot be even) and R’ has length 5 or greater. There exists a walk
R'[r,, r}_ 1={rp-17p) in G whose length is strictly less than the length of R’, a contradiction to the assumption that R’
is a shortest path in G.

Case 2.2: f = 3. S0, 1} = r}. and ) = r}_l. Notice that (r,1r;r;) is induced in G. There exists Q =
RIry, rpt1=(rorsrrt) in G. It follows that Dy(Q) is an ay, ar.i-walk with length at most 7 = [(%)] + 2 in Gy. It
is easy to verify that 7 < ¢ for any value of k > 3, a contradiction to dg,(a, ac+1) = €. O

The following simple result will be useful in later proofs.

Proposition 3. Given a graph G with diam(G) = k > 3, let P, = {a1ay - -+ ar3ar44) be a shortest path in G,, and let
i €[3,k+ 2] such that ay, ar+4 € Ng(a;). The set {ay, a;, ar.4} induces a triangle in G.

Proof. There exists a path R = {(aja;ar+4) in G. If a; ¢ Ng(ai+4), then Dy(R) = {ajax+4) exists in G,, a contradiction
to the assumption that P, is a shortest path. O

Next, we will show that any central vertex in P, that is adjacent to both the first and last vertices in P, infers the
existence of two additional edges in G.

Lemma 4. Under the hypothesis of Proposition 3 where i > 3, we have that ay, ay+4 € Ng(ai-1).

Proof. Let b € Cy,(ai-1,a;) and R = {a,a;ba;ai.4). By Proposition 3 we have that a; € Ng(ax.4). Suppose for the
sake of contradiction that b ¢ Ng(a;) U Ng(ar.4). Then, there exists a walk D,(R) = (a;bay4) (this walk exists even
if b € {ay, ar+4}). But, now we have that dg, (a1, ar+4) < 2, a contradiction. Thus, b € Ng(a;) U Ng(a+4).

Next, if b € Ng(ay), then let (u,v) = (a1, ar4); alternatively, if b € Ng(ag+4) then let (u,v) = (a4, a;). Surely
u € Ng(a;—1) when b = u (trivially) or when b # u (otherwise D,({uba;_1)) = (ua;_1) exists in G,, a contradiction).
Furthermore, we have v € Ng(a;-1) when b = v (trivially) or when b # v (otherwise D,({vua;_1)) = (va;_1) exists in
G, a contradiction). We have shown that u, v € Ng(a;_1), so we are done. O

Next, we will show that a graph satisfying the conclusions of Lemmas 2 and 4 contains a subgraph that induces the
complement of a path. The existence of this structure will be vital for proving Theorem 7.

Theorem 5. Let G have diam(G) = k > 3 and let P, = {(a1a;y - - - ar+3ar+4) be a shortest path in G,. Then, V(P;)
induces the complement of a path in G.
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Proof. For easier reference, let A = V(P;). Let £ = I'(’%‘)'I and let Pg = (ag+4ax+3 -+ - ap) be a path in G, (that is,
P‘; is the reverse of P,). By Lemma 2 we have that a;,ay.4 € Ng(acs1). By Proposition 3 where i := ¢ we have that
ai € Ng(agi4).

We will show by induction that, for each 3 < j < ¢, we have ay,ar.4 € Ng(a;). The statement is true if j = ¢
because Lemma 4 is applicable by setting P, := P, and i := £ + 1, giving ay, a4 € Ng(ar). Now suppose that
3 < j < {. By the inductive hypothesis, ai, ai+4 € Ng(ajs1). Then, Lemma 4 holds where P, := P, and i := j + 1,
promising that ay, ar4 € Ng(a;).

Next, we will also show by induction that, for each £ < j < k + 2, we have a;, ai+4 € Ng(a;). The statement is true
if j = ¢ because Lemma 4 is applicable by setting P, := P§ and i := -1, giving a;, ai+4 € Ng(ar). Now suppose that
t < j £ k+ 2. By the inductive hypothesis, ai, ai+s € Ng(a;-1). Then, Lemma 4 holds where P, := P’; andi:=j—1,
promising that ay, ar.4 € Ng(a;). We have proven our claim.

Observe now that both a; and a4 are in the closed neighborhood of every vertex in A \ {as, ax+3}. We claim
that for each i, j € [3,k + 2] such that abs(i — j) > 1 we have a; € Ng(a;). Suppose on the contrary that for some
i',j € [3,k + 2] where abs(i’ — j’) > 1 we have a; ¢ Ng(aj). The existence of D>({araiay)) = (araj) gives
dg,(ay,aj) = 1, a contradiction. We have proven the claim. At this stage of the proof, A \ {a2, a3} has been shown
to induce the complement of a path in G.

We claim that a; € Ng(ai+4) and a3 € Ng(a;). Note the symmetry of the fact that a, and a3 are the second and
second to last vertices in P,, respectively. W.1.0.g. suppose for the sake of contradiction that a, ¢ Ng(ax+4). Note that
if dg(ay, ar+4) = 2, then dg,(az, ar+4) = 1, a contradiction. There exists a vertex by € Cy,(ai,az) because we have
assumed that dg,(a1,a2) = 1. Let W = (arpaa1brarar) in G. If by ¢ Ng(ar) U Ng(ag+a), then Dy(W) = (ariabiar)
is shorter than the assumed value of dg, (as, ar+4), a contradiction (this is easily verified for any k, and is true even if
by € {a¢, axsa}). But, by € Ng(ag+a) gives dg(as, ag+a) = 2, a contradiction. Hence, it is necessary that b; € Ng(ay).
However, the existence of {(axbja,) in G implies that dg,(az,ar) = 1, a contradiction. Thus, a; € Ng(ar). Because
ay ¢ Ng(ag+4), we have that the existence of {axarar.4) in G gives dg,(az, ar+4) = 1, a contradiction. We have proven
our claim.

Note the symmetry of the fact that a, and a3 are adjacent to a4 and a;, respectively. We will prove that a, €
Ng(u) for all u € A\ {a1, az, az, ay.3, ageq}. This will similarly show that ay,3 € Ng(v) for all v € A\ {aj14, Grs3, Ars2,
az,ar}. W.lo.g. suppose for the sake of contradiction that a, ¢ Ng(u’') for some v’ € A\ {a;, as,as, ars3, Arsa}. It
follows that {a»a.4u’) is an induced path in G that gives dg,(az, u’) = 1, a contradiction. We have proven our claim.

In order to complete the proof, it remains to show that a, € Ng(ax.3). If not, then the induced path (aasa.3) in G
gives dg,(az, ar+3) = 1, a contradiction. O

The next lemma is crucial because it shows that the existence of V(P,), the complement of a path in G, applies
special constraints on its neighboring vertices. More specifically, any such vertex has at least two edges between itself
and V(P,), and these edges are incident to vertices that are far apart in P,.

Lemma 6. Given a graph G with diam(G) = k > 3, let P, = {a1ay - - - ar+3a1+4) be a shortest path in G, and let
A C G be the subgraph induced by V(P). Let u € Ng(A). Then, Ng(u) N A 2 {a;,a;} such that i, j € [1,k + 4] and
abs(i — j) > 2.

Proof. We will prove the statement directly. By Theorem 5, A is the complement of a path. Let u € Ng(ay) for any
h.If h =1, thenlet S = {ay, a1 }; otherwise if h = k + 4, then let S = {ay,_1, ay}; otherwise, let S = {a)_1, ap, aps1}-
Next, let az,a; € A\ S such that i ¢ {s,t} and abs(s — ) > 2 (it is easy to verify that such a pair ay, a; exists). There
exists a walk W = (asayuana,) in G. If u ¢ Ng(as) U Ng(a,), then Do(W) = (asua,) exists in G, giving dg, (as, a;) = 2,
a contradiction to the assumption that abs(s — ) > 2. See Fig. 4 for an example of this contradiction. Therefore,
u € Ng(as) U Ng(ay). If u € Ng(ay) and abs(h — s) > 3, then we are done by setting (i, j) := (h, s). If u € Ng(a,) and
abs(h — t) > 3, then we are done by setting (i, j) := (h,¢). W.l.o.g. it remains for us to find appropriate (i, j)) when
u € Ng(a,) and abs(h — t) = 2. We consider two cases based on the value of 4.

Case1: 1 < h < k+2. Note that dg,(aj-1, ar+1) = 4. There exists a path T = (aj—jauaya;1) in G. If u ¢ Ng(ap-1)V
Ng(ai1), then Da(T) = (ap-1ua.1) gives dg,(an-1,a:.1) = 2, a contradiction. Thus, u € Ng(ap-1) U Ng(aw1). If
u € Ng(ap-1), then we are done by setting (i, j) := (h — 1,f). But if u € Ng(a,+1), then we are done by setting
@, j) = (ht+1).
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Case 2: h = 1 or h = k + 2. More specifically, this means that either (&, ) = (1,3) or (h,1) = (k + 2,k + 4). Due to
the symmetry, finding indices that give us appropriate (i, j) in one of the two cases is enough to complete the proof.
Hence, w.l.o.g. we may assume that (h, t) = (1, 3). We will show that u € Ng(as) U Ng(a7). Suppose not. There exists a
path R = {asajuazaz) in G. Then, D>(R) = (asuaz) gives dg,(as, a7) = 2, a contradiction. Thus, u € Ng(as) U Ng(a7).
In particular, if u € Ng(as), then we are done by setting (i, j) := (1,4). But if u € Ng(ay), then we are done by setting
@, ) = ,7). O

Fig. 4. The black and red edges belong to E£(G) and the green edges belong to E(G>). On the left, the graph shows a contradiction that occurs within
the proof of Lemma 6 where (k, &, s,1) = (3,2,4,7). The red edges, in particular, denote W. On the right, we portray the proof of Theorem 7 where
k=3, (b,d)=(1,4),and (p,q) = (2,5). The red edges denote W within Case 1. Note that the path D>(W) = {ajuza4) exists but is not drawn.

We are prepared to prove our main result:

Theorem 7. Given a graph G = (V, E) with diam(G) = k > 3, we have that either G, is disconnected or diam(G;) <
k+2.

Proof. Suppose that G, is connected (and so G is also connected) and diam(G») > k+2. Thus, G, contains a diametral
path of length k + 3 or greater. This path necessarily contains a shortest path P, = (aja; - - - ag+3ax+4). By Theorem
5, we have that V(P,) induces the complement of a path in G. Let A € G be the subgraph induced by V(P,) for
simplicity. It is trivial to see that diam(A) = 2. Since diam(G) = k, there exists § = Ng(A) where § # 0.

We claim that G \ (AU §) = 0. Suppose not. Let u € S and v € Ng(u) \ (AU S). By Lemma 6, u € S satisfies
Ng(u) N A = {a;,a;} such that i, j € [1,k + 4] and abs(i — j) > 2. Clearly, for any a € A we have dg(u,a) < 2.
Consequently, there exists T = (auvua;)in G.If v ¢ Ng(a;)UNg(a;), then D(T) = {a;va;) in G, gives dg,(a;, a;) = 2,
a contradiction to the fact that abs(i — j) > 2. Thus, v € Ng(a;) U Ng(a;), a contradiction to the fact that v ¢ S. We
have proven the claim.

It is easy to see that |S| > 1, otherwise diam(G[A U S]) = 2, a contradiction. Next, we will prove that for all
pairs v, v, € § we have dg(vy,v2) < 2. On the contrary, suppose that some uy,u € S has dg(u;,u;) > 2. Note that
CNG(ul, I/lz) =0.

By Lemma 6 where u := u, there exists a set Ng(u;) N A 2 {ap, ay} satistying b,d € [1,k + 4] and abs(b — d) > 2.
W.lo.g. leth <d.

By Lemma 6 where u := u, there exists a set Ng(u2) N A 2 {a,, a,} satisfying p,q € [1,k + 4] and abs(p — q) > 2.
W.lo.g.let p < g. Moreover, w.l.o.g. we may assume that b < p. Note that b, d, p, q are distinct because Cy,, (u;, uz) =
0. Notice it is possible that b+ 1 = p, but it is not possible that b+ 1 € {d, q}. Since b+1 < g, we have that a;, € Ng(a,).
We consider two cases:

Case 1: p + 1 < d. Thus, a, € Ng(as). There exists a path W = (apa,uzayaq) in G. See the right graph in Fig. 4
for an example of this case. However, the existence of D,(W) = (apusa4) gives dg,(ap, az) = 2, a contradiction to the
assumption that abs(b — d) > 2. We have proven our claim that for all pairs vi,v, € § we have dg(vi,v;) < 2. Since
we have also shown that G \ (A U S) = 0, it immediately follows that diam(G) < 2, a contradiction to the hypothesis
that diam(G) = k.

Case 2: p + 1 > d. In other words, we have that a,,a, € Ps[aa-1, ar+4]. First, suppose that p = b + 1. Hence,
b+1)+1>d.1fb+2 € {d,d+ 1}, then we contradict the fact that abs(b—d) > 2. So, it is necessary that b+2 > d+1,
but this clearly contradicts the assumption that b < d. We see that p = b + 1 leads to contradiction. It is necessary that



28 Oleksiy Al-saadi et al. / Procedia Computer Science 273 (2025) 22-29

p # b + 1. Recalling also that p > b, we in fact have that p > b + 1 and thereby a; € Ng(a,). To simplify, we have
shown that a; and a,, are sufficiently far from one another in P, that they are adjacent in G.

Our assumption that p + 1 > d, combined with the fact that abs(p — g) > 2 and p < g, implies that ¢ # d + 1. Thus,
ay € Ng(ag). Stated plainly, a, and ay are far enough away in P, that they are adjacent in G. It has become evident that
there exists a path W = (apa,ura,a4) in G. The existence of Dy(W) = {(apuray) gives dg,(ap, aqs) = 2, a contradiction
to the assumption that abs(b — d) > 2. We have proven our claim that for all pairs v;, v, € § we have dg(vy,v2) < 2.
Since we have also shown that G \ (A U §) = 0, it immediately follows that diam(G) < 2, a contradiction to the
hypothesis that diam(G) = k. O

Combining our main theorem with the lower bound achieved in [11], we arrive at the following statement:
Theorem 8. Let G have diam(G) = k > 3. Then, either diam(G,) = co or ((5) k] < diam(G,) < k + 2.
Proposition 9. The upper bound of the inequality expressed by Theorem 8 is sharp when k = 3 or k > 3 is even.

Proof. An example for k = 3 is provided in [11]. There exists a family of graphs showing that sharpness holds for
any even k > 3. See Fig. 5, which shows a graph G having diam(G) = 4 and diam(G,) = 6. By increasing the
size of the largest cycle in G by 4 such that the triangle shares exactly one edge with the largest cycle, diam(G) and
diam(G,) increase by 2. It is easy to verify that this procedure can be repeated in order to generate any number of
graphs satisfying the conclusion of the proposition. O

‘ h . .
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Fig. 5. These graphs exemplify Proposition 9 where k = 4 and k = 10. The left two graphs (drawn in order as G and then as G7) have diam(G) = 4
and diam(G7) = 6, where black edges denote E(G) and green edges denote E(G7). The right two graphs have diam(G) = 10 and diam(G»,) = 12.

4. Computing Higher Order 2-distance Graphs

The use of brute-force to compute all 2-distance graphs is reliable up to 11 vertices, with results provided in Fig.
6. But, the run-time requirements increase exponentially beyond that. As it is apparent from the figure, graphs having
diam(G) = 2 and diam(G,) = |V| — 1 exist. For example, this property holds if G is the complement of a path that has
V| > 4.

Rather than using exhaustive search, 2-distance graphs with high |V| can be computed with careful use of a sar
solver. In our implementation, we express G = (V, E) and G, as adjacency matrices where True and False denote
whether an edge exists. Henceforth, let a; ; be the (i, j)-th element in the adjacency matrix of G and let b; ; be the
(i, j)-th element in the adjacency matrix of G,. By definition,

biy = \/(ai, PN ajg N -ag)
J

We fix P, =(0,1,2,3,...,k+1,k+2). Then, the first set of equations for the sat solver fix the edges for P,. That is, for
all b; ; € P> we have b; ; = True. For any a,b € P,, let &, be the set of all a, b-paths of length £ in (G, \ P») U{a, b}.
The set of equations that forbid shortcuts that would invalidate the diametral path P, can logically be expressed as

/\ _|( (v,L{;eP bv’u)

PeEPupe
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for all £ < |P,|. To eliminate the large number of isomorphic subgraphs in &, ,, in H = G, \ P,, more edges can
be fixed. Specifically, each nonisomorphic subgraph in H can be assigned its own satisfiability equation. Finally, an
equation to eliminate the low-diameter k = 2 graphs is used, and is given by

- /\(ai,j Aaji)
ik
and means that if any path {a; ja ;) does not exist (i.e. diam(G) # 2), then this expression will evaluate to True, and
False otherwise.

After conversion of our logical equations to conjunctive normal form, we were able to perform an experiment
restricted to diam(G») > 7, |V| = 13, and diam(G) > 2 (see Fig. 6). As opposed to the weeks required to exhaustively
enumerate graphs on 13 vertices, we found results within one day.
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Fig. 6. Log scale plots showing the proportion of the diameters of G and G, where G belongs to the set of all graphs which are non-isomorphic,
connected, and have fixed |V/|. The top label corresponds to |V|. Axes labeled d and d> denote diam(G) and diam(Gy), respectively. The blue and
red boundaries express the lower and upper bounds of the inequality from Theorem 8. The right-most plot demonstrates a large reduction in search
space provided by our sat equations for [V| = 13, allowing us to find 2-distance graphs that meet the sharp upper bound at (d, d) = (6, 8) given by
Theorem 8. The red region shows parameter ranges excluded by the equations.
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