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Abstract

For any finite, simple graph G = (V, E), its 2-distance graph G2 is a graph having the same vertex set V where two vertices are
adjacent if and only if their distance is 2 in G. Connectivity and diameter properties of these graphs have been well studied. For
example, it has been shown that if diam(G) = k ≥ 3 then ⌈

(
1
2 k
)
⌉ ≤ diam(G2), and that this bound is sharp. In this paper, we prove

that diam(G2) = ∞ (that is, G2 is disconnected) or otherwise diam(G2) ≤ k + 2. In addition, we show that this inequality is sharp
for any even k, a result that we verify for some higher orders through judicious use of a sat solver.
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1. Introduction

Given a finite, simple graph G, we let V and E denote the vertex set and the edge set of G, respectively. By dG(u, v)
we denote geodesic distance, the length of a shortest path, between the vertices u and v in the graph G. The diameter
of G, also denoted as diam(G), is the greatest geodesic distance between any two vertices in G. If G is disconnected,
then diam(G) = ∞. The k-distance operator Dk takes as input a simple graph G and outputs its k-distance graph, a
graph having the same vertex set V but where any pair (u, v) has dGk (u, v) = 1 if and only if dG(u, v) = k. The graph
Dk(G) is called the k-distance graph of G. A graph Y is k-distance if there exists a graph X such that Y � Dk(X)
(meaning that Y is isomorphic to Dk(X)). When ambiguity is impossible, we simply write Gk to refer to Dk(G).

The general class of k-distance graphs was first introduced by Harary et al. [9] and are also known under the
name of exact distance powers [3, 6]. Special cases for fixed k have been studied for their connectivity, diameter,
and periodicity properties [10, 11, 12, 13, 5]. Known results in the literature are numerous. For example, the cubic
self 2-distance graphs do not exist [1]. On the other hand, Azimi et al. [2] showed the complete set of graphs whose
2-distance graphs are simple paths or cycles. General characterizations were given by Ching and Garces [4] whereas
Gaar and Krenn [7] characterized regular 2-distance graphs. Recognition under special constraints was shown to be
polynomial-time by Bai et al. [3].
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Recently, Jafari and Musawi [11] conjectured that if diam(G) = k ≥ 3 then diam(G2) ≤ k + 2, and proved it for
diam(G) = 3. Under the standard assumption that diam(G) = ∞ when G is disconnected, we will prove that the
statement is true when diam(G2) � ∞.

2. Preliminaries

Our graph theory notation basically follows that of Golumbic [8]. We write G[S ] to refer to the subgraph of G
induced by the vertex set of S . For a graph H, we let V(H) and E(H) denote the vertex set and the edge set of H,
respectively. For any x ∈ V , let NG(x) = {y : {x, y} ∈ E} be the (open) neighborhood of x and NG[x] = N(x) ∪ {x} the
closed neighborhood of x. We write x ∈ NG(S ) to say that x is adjacent to some vertex in S while x � S . We write
x ∈ NG[S ] if x ∈ NG(S ) ∪ S . We denote by CNG (S ) the common neighborhood of S in G. i.e. CNG (S ) =

⋂
v∈S NG(v).

A sequence of vertices P = ⟨u = x0x1 · · · xk−1xk = v⟩ is called a walk if xi ∈ NG[xi+1] for all i ∈ {0, 1, . . . , k − 1}.
The length of a walk is the number of edges it contains. We say P is a path if the vertices x0, x1, . . . , xk are all
distinct. A walk with endpoints u and v may be called a u, v-walk. If v ∈ NG(v′), then we denote by P−v′ the walk
⟨u = x0x1 · · · xk−1xk = vv′⟩. Similarly, if P = ⟨x0x1 · · · xk⟩ and P′ = ⟨y0y1 · · · yq⟩ are walks and xk ∈ NG(y0), then we let
P−P′ = ⟨x0 · · · xky0 · · · yq⟩. We write P[xi, x j] where (0 ≤ i ≤ j ≤ k) for the subwalk ⟨xi · · · x j⟩ of P. It is well known
that we can extract a u, v-path from the subset of every u, v-walk. A triangle is a set of three vertices such that each
vertex is adjacent to the other two.

3. Diameter Bounds

In this section, we show that the diameter of G imposes strong constraints on the diameter of G2 (see Theorem 7).
We need an easy way to refer to paths between G and its 2-distance graph in our proofs. For a basic example of the
following definition, see Fig. 1.

Definition 1. Let P = ⟨v1v2 · · · vk−1vk⟩ be a walk in G and let p = k − (k mod 2). If for each odd i ∈ [1, k − 2] we
have that P[vi, vi+2] is induced, then there exists a walk ⟨v1v3 · · · vp−2vp⟩ in G2 that we denote by D2(P).

v1
v2 v3 v4 v5 v6 v7

v8

Fig. 1. Let P = ⟨v1v2 · · · v8⟩ in G, shown with black edges. The green edges are the edges of D2(P) by Definition 1.

We will prove our main theorem by showing that a graph G2 having an exceedingly high diameter causes G to
contain the complement of a path. This high edge-density subgraph will lead to a contradiction to diam(G). This result
builds on a sequence of lemmas which we will now begin.

Lemma 2. Let G be a graph with diam(G) = k ≥ 3, let P2 = ⟨a1a2 · · · ak+3ak+4⟩ be a shortest path in G2, and let
ℓ = ⌈
(

k+4
2

)
⌉. Then, a1, ak+4 ∈ NG(aℓ+1).

Proof. To prove the statement, we will show that ⟨a1, aℓ+1⟩ and ⟨ak+1, aℓ+1⟩ exist and that all other cases result in a
contradiction. For P2 to exist in G2, the graph G must contain a walk taking the form of P = ⟨a1b1a2b2a3 · · · ak+3bk+3
ak+4⟩. We will first show that the shortest paths between vertices of V(P2) in G satisfy special constraints.

No shortest path in G has length exceeding diam(G). In particular, the subwalks P[a1, aℓ+1] and P[aℓ+1, ak+4] are not
shortest paths because their lengths exceeds diam(G) = k. Thus, there exist shortest paths R = ⟨a1 = r1r2 · · · rp = aℓ+1⟩
and R′ = ⟨aℓ+1 = r′1r′2 · · · r′p′ = ak+4⟩ in G. In the remainder of the proof, we will frequently recall the fact that the

length of D2(R) is at most ⌊
(

k
2

)
⌋, which arises from the understanding that D2(R) is at most half the length of R by

Definition 1.
We claim that the lengths of R and R′ are odd. Suppose instead that L = R (resp. L = R′) has an even length. Note

that µ = (ℓ+ 1)− 1 is the difference between the indices of aℓ+1 and a1. Moreover, ω = k+ 4− (ℓ+ 1) is the difference
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between the indices of ak+4 and aℓ+1. We have that D2(L) is shorter than both P2[a1, aℓ+1] and P2[aℓ+1, ak+4] because
⌊
(

k
2

)
⌋ (the greatest possible length of D2(L)) is strictly less than both µ and ω, respectively, a fact easily verified for

any value of k ≥ 3. This is a contradiction to the assumption that P2 is a shortest path. Fig. 2 shows an example for
k = 4 and L = R′. We have proven our claim.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

r′2 r′3 r′4

Fig. 2. Let k = 4. So, P2 has length 7 and ℓ + 1 = 5. Let the black edges denote E(G) and let the green edges denote E(G2). A shortest a5, a8-path
of length 4 in G causes dG2 (a5, a8) = 2, a contradiction.

There is an important distinction between odd and even k. When k is odd, then R has length at most k. When k is
even, then R has length at most k − 1 because we have shown that R may not have even length. Let k′ = k when k is
odd, but k′ = k − 1 when k is even. Later in the proof, we will need to use k′ in order to reach a contradiction. We
will arrive at a contradiction from assuming that the length of R or R′ is greater than 1, and so the only possibility left
is that both lengths are 1, i.e., they are edges. Note that rp−1 is the last endpoint of D2(R) because R has odd length.
Consider two cases based on the incidence of rp−1 to R′.

Case 1: rp−1 is in the closed neighborhood of every vertex in R′ in G. If ak+4 = rp−1 then D2(R) is an a1, ak+4-path
of length at most ⌊

(
k
2

)
⌋, a contradiction to the assumption that dG2 (a1, ak+4) = k + 3. Thus, ak+4 � rp−1. Next, if

X = ⟨ak+4rp−1aℓ+1⟩ is an induced path in G then D2(X) = ⟨ak+4aℓ+1⟩ gives dG2 (ak+4, aℓ+1) = 1, a contradiction. So, X
is not induced, meaning that X is a triangle in G, implying ak+4 ∈ NG(aℓ+1). Now ⟨aℓ+1ak+4⟩ is a shortest path in G,
and therefore R′ has length 1 (i.e. R′ = ⟨aℓ+1ak+4⟩). Since the lengths of R and R′ are odd, and we are considering the
case where they are not both equal to 1, the length of R is 3 or greater.

Let B = CNG (aℓ, aℓ+1). For any b ∈ B, suppose that b � NG[rp−1] ∪ NG[ak+4]. Observe that D2(R−b−R′) has length
at most ⌊

(
k
2

)
⌋ + 2, a contradiction to the assumption that dG2 (a1, ak+4) = k + 3. Fig. 3 demonstrates this contradiction

where k = 4 and b = bℓ. Thus, b ∈ NG[rp−1] ∪ NG[ak+4] for any b ∈ B.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

r2 rp−1

R′

R

Fig. 3. In this example, we follow the assumptions set at the beginning of Case 1 of Lemma 2 where k = 4. Thus, diam(G2) = 7, ℓ + 1 = 5, and
k + 4 = 8. Let the black edges denote E(G) and let the green edges denote E(G2). Let b4 � NG[rp−1] ∪ NG[a8]. The green walk D2(R−b−R′) has a
length less than dG2 (a1, a8), a contradiction within the proof.

We claim that rp−1 ∈ NG[B]. Suppose not. For a fixed b ∈ B we have rp−1 � NG[b]. Hence, ak+4 ∈ NG[b]. If
ak+4 = b, then rp−1 ∈ NG[b] (recall that rp−1 ∈ NG(ak+4)), a contradiction. Therefore, ak+4 � b. Now G has a walk
Y = ⟨ak+4baℓ⟩ with all vertices distinct. If Y is induced then D2(Y) gives dG2 (ak+4, aℓ) = 1, a contradiction. Therefore,
Y is not induced, meaning that ak+4 ∈ NG(aℓ) and so R′−aℓ is a path in G. The existence of R′−aℓ in G implies that
ak+4 ∈ CNG (aℓ, aℓ+4) (i.e. ak+4 ∈ B). This immediately shows that rp−1 ∈ NG[B] because rp−1 neighbors ak+4 ∈ R′, a
contradiction. We have proven our claim. We consider two specific subcases of the result of this claim.

Case 1.1: rp−1 ∈ NG(B). In particular, let b′ ∈ B and rp−1 ∈ NG(b′). Recall that rp = aℓ+1. If rp−1 = aℓ, then trivially
aℓ � NG2 (aℓ+1), a contradiction to the definition of P2. Thus, rp−1 � aℓ.

Next, we will prove that rp−1 ∈ NG(aℓ). Suppose otherwise. Recalling the definition of k′, note that D2(R) has
length at most ⌊

(
k′
2

)
⌋. There exists an a1, aℓ-walk Q = D2(R−b′−aℓ) of length at most ⌊

(
k′
2

)
⌋ + 1 in G2. It is easy to
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Let B = CNG (aℓ, aℓ+1). For any b ∈ B, suppose that b � NG[rp−1] ∪ NG[ak+4]. Observe that D2(R−b−R′) has length
at most ⌊

(
k
2

)
⌋ + 2, a contradiction to the assumption that dG2 (a1, ak+4) = k + 3. Fig. 3 demonstrates this contradiction

where k = 4 and b = bℓ. Thus, b ∈ NG[rp−1] ∪ NG[ak+4] for any b ∈ B.
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r2 rp−1

R′
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Fig. 3. In this example, we follow the assumptions set at the beginning of Case 1 of Lemma 2 where k = 4. Thus, diam(G2) = 7, ℓ + 1 = 5, and
k + 4 = 8. Let the black edges denote E(G) and let the green edges denote E(G2). Let b4 � NG[rp−1] ∪ NG[a8]. The green walk D2(R−b−R′) has a
length less than dG2 (a1, a8), a contradiction within the proof.

We claim that rp−1 ∈ NG[B]. Suppose not. For a fixed b ∈ B we have rp−1 � NG[b]. Hence, ak+4 ∈ NG[b]. If
ak+4 = b, then rp−1 ∈ NG[b] (recall that rp−1 ∈ NG(ak+4)), a contradiction. Therefore, ak+4 � b. Now G has a walk
Y = ⟨ak+4baℓ⟩ with all vertices distinct. If Y is induced then D2(Y) gives dG2 (ak+4, aℓ) = 1, a contradiction. Therefore,
Y is not induced, meaning that ak+4 ∈ NG(aℓ) and so R′−aℓ is a path in G. The existence of R′−aℓ in G implies that
ak+4 ∈ CNG (aℓ, aℓ+4) (i.e. ak+4 ∈ B). This immediately shows that rp−1 ∈ NG[B] because rp−1 neighbors ak+4 ∈ R′, a
contradiction. We have proven our claim. We consider two specific subcases of the result of this claim.

Case 1.1: rp−1 ∈ NG(B). In particular, let b′ ∈ B and rp−1 ∈ NG(b′). Recall that rp = aℓ+1. If rp−1 = aℓ, then trivially
aℓ � NG2 (aℓ+1), a contradiction to the definition of P2. Thus, rp−1 � aℓ.

Next, we will prove that rp−1 ∈ NG(aℓ). Suppose otherwise. Recalling the definition of k′, note that D2(R) has
length at most ⌊

(
k′
2

)
⌋. There exists an a1, aℓ-walk Q = D2(R−b′−aℓ) of length at most ⌊

(
k′
2

)
⌋ + 1 in G2. It is easy to
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verify that ⌊
(

k′
2

)
⌋+ 1 < (ℓ − 1) = (⌈

(
k+4

2

)
⌉ − 1) for any k ≥ 3. Consequently, the length of Q contradicts the assumption

that dG2 (a1, aℓ) = ℓ − 1. Therefore, rp−1 ∈ NG(aℓ). Now rp−1 ∈ CNG (aℓ, ak+4) (i.e. rp−1 ∈ B), a contradiction.
Case 1.2: rp−1 ∈ B. Note that rp−1 ∈ NG(aℓ) by the definition of B. We also have that aℓ ∈ NG(ak+4), otherwise

D2(⟨aℓrp−1ak+4⟩) gives dG2 (aℓ, ak+4) = 1, a contradiction. Recall that R has length 3 or greater. Thus, rp−2 and rp−3
exist. If rp−3 ∈ NG(ak+4), then ⟨rp−3ak+4aℓ+1⟩ has length at most 2 in G, a contradiction to the fact that R is a shortest
path with dG(rp−3, rp) = 3. Hence, rp−3 � NG(ak+4).

If rp−2 � NG(ak+4) ∪ NG(aℓ), then there exists Q = ⟨ak+4rp−1rp−2rp−1aℓ⟩ in G; in fact, Q exists even if rp−2 ∈
{aℓ, ak+4}. Now D2(Q) = ⟨ak+4rp−2aℓ⟩ is an ak+4, aℓ-walk of length at most 2 in G2, a contradiction. We have shown
that rp−2 ∈ NG(ak+4) ∪ NG(aℓ). In particular, we will show that rp−2 ∈ NG(aℓ). Suppose not, and thus rp−2 ∈ NG(ak+4).
Now D2(R[r1, rp−2]−ak+4) is an a1, ak+4-path of length at most ⌊

(
k
2

)
⌋ in G2, a contradiction. Therefore, rp−2 ∈ NG(aℓ).

There exists Q′ = R[r1, rp−2]−aℓ in G. If rp−3 � NG(aℓ), then D2(Q′) is an a1, aℓ-path of length at most ⌊
(

k′
2

)
⌋. Then,

noting that ⌊
(

k′
2

)
⌋ < (ℓ − 1) = (⌈

(
k+4

2

)
⌉ − 1) for any k ≥ 3, observe that D2(Q′) is shorter than dG2 (a1, aℓ) = ℓ − 1, a

contradiction. Thus, rp−3 ∈ NG(aℓ).
There exists T = R[r1, rp−3]−aℓ−ak+4 in G. Recalling that rp−3 � NG(ak+4), observe that D2(T ) is an a1, ak+4-path

of length at most ⌊
(

k
2

)
⌋ in G2, a contradiction.

Case 2: rp−1 is not in the closed neighborhood of every vertex in R′ in G. Let r′f be the first vertex in R′ that
is not in NG[rp−1]. Since rp−1 is adjacent to aℓ+1 = r′1 by the definitions of R and R′, clearly f > 1. There exists
T = R[r1, rp−1]−R′[r′f−1, r

′
p′ ] in G. Notice T is an a1, ak+4-walk with length no greater than 2k.

It is straightforward to check that if f is even, then T has even length. Subsequently, from D2(T ) we can extract an
a1, ak+4-path having length at most k. This contradicts the assumption that dG2 (a1, ak+4) = k + 3. So, f is odd.

Case 2.1: f > 3. Hence, f ≥ 5 (since f cannot be even) and R′ has length 5 or greater. There exists a walk
R′[r′p′ , r

′
f−1]−⟨rp−1rp⟩ in G whose length is strictly less than the length of R′, a contradiction to the assumption that R′

is a shortest path in G.
Case 2.2: f = 3. So, r′3 = r′f and r′2 = r′f−1. Notice that ⟨rp−1r′2r′3⟩ is induced in G. There exists Q =

R[r1, rp−1]−⟨r′2r′3r′2r′1⟩ in G. It follows that D2(Q) is an a1, aℓ+1-walk with length at most τ = ⌊
(

k′
2

)
⌋ + 2 in G2. It

is easy to verify that τ < ℓ for any value of k ≥ 3, a contradiction to dG2 (a1, aℓ+1) = ℓ.

The following simple result will be useful in later proofs.

Proposition 3. Given a graph G with diam(G) = k ≥ 3, let P2 = ⟨a1a2 · · · ak+3ak+4⟩ be a shortest path in G2, and let
i ∈ [3, k + 2] such that a1, ak+4 ∈ NG(ai). The set {a1, ai, ak+4} induces a triangle in G.

Proof. There exists a path R = ⟨a1aiak+4⟩ in G. If a1 � NG(ak+4), then D2(R) = ⟨a1ak+4⟩ exists in G2, a contradiction
to the assumption that P2 is a shortest path.

Next, we will show that any central vertex in P2 that is adjacent to both the first and last vertices in P2 infers the
existence of two additional edges in G.

Lemma 4. Under the hypothesis of Proposition 3 where i > 3, we have that a1, ak+4 ∈ NG(ai−1).

Proof. Let b ∈ CNG (ai−1, ai) and R = ⟨a1aibaiak+4⟩. By Proposition 3 we have that a1 ∈ NG(ak+4). Suppose for the
sake of contradiction that b � NG(a1) ∪ NG(ak+4). Then, there exists a walk D2(R) = ⟨a1bak+4⟩ (this walk exists even
if b ∈ {a1, ak+4}). But, now we have that dG2 (a1, ak+4) ≤ 2, a contradiction. Thus, b ∈ NG(a1) ∪ NG(ak+4).

Next, if b ∈ NG(a1), then let (u, v) = (a1, ak+4); alternatively, if b ∈ NG(ak+4) then let (u, v) = (ak+4, a1). Surely
u ∈ NG(ai−1) when b = u (trivially) or when b � u (otherwise D2(⟨ubai−1⟩) = ⟨uai−1⟩ exists in G2, a contradiction).
Furthermore, we have v ∈ NG(ai−1) when b = v (trivially) or when b � v (otherwise D2(⟨vuai−1⟩) = ⟨vai−1⟩ exists in
G2, a contradiction). We have shown that u, v ∈ NG(ai−1), so we are done.

Next, we will show that a graph satisfying the conclusions of Lemmas 2 and 4 contains a subgraph that induces the
complement of a path. The existence of this structure will be vital for proving Theorem 7.

Theorem 5. Let G have diam(G) = k ≥ 3 and let P2 = ⟨a1a2 · · · ak+3ak+4⟩ be a shortest path in G2. Then, V(P2)
induces the complement of a path in G.
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Proof. For easier reference, let A = V(P2). Let ℓ = ⌈
(

k+4
2

)
⌉ and let PR

2 = ⟨ak+4ak+3 · · · a1⟩ be a path in G2 (that is,
PR

2 is the reverse of P2). By Lemma 2 we have that a1, ak+4 ∈ NG(aℓ+1). By Proposition 3 where i := ℓ we have that
a1 ∈ NG(ak+4).

We will show by induction that, for each 3 ≤ j ≤ ℓ, we have a1, ak+4 ∈ NG(a j). The statement is true if j = ℓ
because Lemma 4 is applicable by setting P2 := P2 and i := ℓ + 1, giving a1, ak+4 ∈ NG(aℓ). Now suppose that
3 ≤ j < ℓ. By the inductive hypothesis, a1, ak+4 ∈ NG(a j+1). Then, Lemma 4 holds where P2 := P2, and i := j + 1,
promising that a1, ak+4 ∈ NG(a j).

Next, we will also show by induction that, for each ℓ ≤ j ≤ k + 2, we have a1, ak+4 ∈ NG(a j). The statement is true
if j = ℓ because Lemma 4 is applicable by setting P2 := PR

2 and i := ℓ− 1, giving a1, ak+4 ∈ NG(aℓ). Now suppose that
ℓ < j ≤ k + 2. By the inductive hypothesis, a1, ak+4 ∈ NG(a j−1). Then, Lemma 4 holds where P2 := PR

2 and i := j − 1,
promising that a1, ak+4 ∈ NG(a j). We have proven our claim.

Observe now that both a1 and ak+4 are in the closed neighborhood of every vertex in A \ {a2, ak+3}. We claim
that for each i, j ∈ [3, k + 2] such that abs(i − j) > 1 we have ai ∈ NG(a j). Suppose on the contrary that for some
i′, j′ ∈ [3, k + 2] where abs(i′ − j′) > 1 we have ai′ � NG(a j′ ). The existence of D2(⟨ai′a1a j′ ⟩) = ⟨ai′a j′ ⟩ gives
dG2 (ai′ , a j′ ) = 1, a contradiction. We have proven the claim. At this stage of the proof, A \ {a2, ak+3} has been shown
to induce the complement of a path in G.

We claim that a2 ∈ NG(ak+4) and ak+3 ∈ NG(a1). Note the symmetry of the fact that a2 and ak+3 are the second and
second to last vertices in P2, respectively. W.l.o.g. suppose for the sake of contradiction that a2 � NG(ak+4). Note that
if dG(a2, ak+4) = 2, then dG2 (a2, ak+4) = 1, a contradiction. There exists a vertex b1 ∈ CNG (a1, a2) because we have
assumed that dG2 (a1, a2) = 1. Let W = ⟨ak+4a1b1a1aℓ⟩ in G. If b1 � NG(aℓ) ∪ NG(ak+4), then D2(W) = ⟨ak+4b1aℓ⟩
is shorter than the assumed value of dG2 (aℓ, ak+4), a contradiction (this is easily verified for any k, and is true even if
b1 ∈ {aℓ, ak+4}). But, b1 ∈ NG(ak+4) gives dG(a2, ak+4) = 2, a contradiction. Hence, it is necessary that b1 ∈ NG(aℓ).
However, the existence of ⟨a2b1aℓ⟩ in G implies that dG2 (a2, aℓ) = 1, a contradiction. Thus, a2 ∈ NG(aℓ). Because
a2 � NG(ak+4), we have that the existence of ⟨a2aℓak+4⟩ in G gives dG2 (a2, ak+4) = 1, a contradiction. We have proven
our claim.

Note the symmetry of the fact that a2 and ak+3 are adjacent to ak+4 and a1, respectively. We will prove that a2 ∈
NG(u) for all u ∈ A \ {a1, a2, a3, ak+3, ak+4}. This will similarly show that ak+3 ∈ NG(v) for all v ∈ A \ {ak+4, ak+3, ak+2,
a2, a1}. W.l.o.g. suppose for the sake of contradiction that a2 � NG(u′) for some u′ ∈ A \ {a1, a2, a3, ak+3, ak+4}. It
follows that ⟨a2ak+4u′⟩ is an induced path in G that gives dG2 (a2, u′) = 1, a contradiction. We have proven our claim.

In order to complete the proof, it remains to show that a2 ∈ NG(ak+3). If not, then the induced path ⟨a2a4ak+3⟩ in G
gives dG2 (a2, ak+3) = 1, a contradiction.

The next lemma is crucial because it shows that the existence of V(P2), the complement of a path in G, applies
special constraints on its neighboring vertices. More specifically, any such vertex has at least two edges between itself
and V(P2), and these edges are incident to vertices that are far apart in P2.

Lemma 6. Given a graph G with diam(G) = k ≥ 3, let P2 = ⟨a1a2 · · · ak+3ak+4⟩ be a shortest path in G2 and let
A ⊆ G be the subgraph induced by V(P2). Let u ∈ NG(A). Then, NG(u) ∩ A ⊇ {ai, a j} such that i, j ∈ [1, k + 4] and
abs(i − j) > 2.

Proof. We will prove the statement directly. By Theorem 5, A is the complement of a path. Let u ∈ NG(ah) for any
h. If h = 1, then let S = {ah, ah+1}; otherwise if h = k + 4, then let S = {ah−1, ah}; otherwise, let S = {ah−1, ah, ah+1}.
Next, let as, at ∈ A \ S such that i � {s, t} and abs(s − t) > 2 (it is easy to verify that such a pair as, at exists). There
exists a walk W = ⟨asahuahat⟩ in G. If u � NG(as)∪NG(at), then D2(W) = ⟨asuat⟩ exists in G2, giving dG2 (as, at) = 2,
a contradiction to the assumption that abs(s − t) > 2. See Fig. 4 for an example of this contradiction. Therefore,
u ∈ NG(as) ∪ NG(at). If u ∈ NG(as) and abs(h − s) > 3, then we are done by setting (i, j) := (h, s). If u ∈ NG(at) and
abs(h − t) > 3, then we are done by setting (i, j) := (h, t). W.l.o.g. it remains for us to find appropriate (i, j) when
u ∈ NG(at) and abs(h − t) = 2. We consider two cases based on the value of h.

Case 1: 1 < h < k+2. Note that dG2 (ah−1, at+1) = 4. There exists a path T = ⟨ah−1atuahat+1⟩ in G. If u � NG(ah−1)∪
NG(at+1), then D2(T ) = ⟨ah−1uat+1⟩ gives dG2 (ah−1, at+1) = 2, a contradiction. Thus, u ∈ NG(ah−1) ∪ NG(at+1). If
u ∈ NG(ah−1), then we are done by setting (i, j) := (h − 1, t). But if u ∈ NG(at+1), then we are done by setting
(i, j) := (h, t + 1).



	 Oleksiy Al-saadi  et al. / Procedia Computer Science 273 (2025) 22–29� 27
O. Al-saadi and J. Natal / Procedia Computer Science 00 (2025) 000–000 5

Proof. For easier reference, let A = V(P2). Let ℓ = ⌈
(

k+4
2

)
⌉ and let PR

2 = ⟨ak+4ak+3 · · · a1⟩ be a path in G2 (that is,
PR

2 is the reverse of P2). By Lemma 2 we have that a1, ak+4 ∈ NG(aℓ+1). By Proposition 3 where i := ℓ we have that
a1 ∈ NG(ak+4).

We will show by induction that, for each 3 ≤ j ≤ ℓ, we have a1, ak+4 ∈ NG(a j). The statement is true if j = ℓ
because Lemma 4 is applicable by setting P2 := P2 and i := ℓ + 1, giving a1, ak+4 ∈ NG(aℓ). Now suppose that
3 ≤ j < ℓ. By the inductive hypothesis, a1, ak+4 ∈ NG(a j+1). Then, Lemma 4 holds where P2 := P2, and i := j + 1,
promising that a1, ak+4 ∈ NG(a j).

Next, we will also show by induction that, for each ℓ ≤ j ≤ k + 2, we have a1, ak+4 ∈ NG(a j). The statement is true
if j = ℓ because Lemma 4 is applicable by setting P2 := PR

2 and i := ℓ− 1, giving a1, ak+4 ∈ NG(aℓ). Now suppose that
ℓ < j ≤ k + 2. By the inductive hypothesis, a1, ak+4 ∈ NG(a j−1). Then, Lemma 4 holds where P2 := PR

2 and i := j − 1,
promising that a1, ak+4 ∈ NG(a j). We have proven our claim.
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a2, a1}. W.l.o.g. suppose for the sake of contradiction that a2 � NG(u′) for some u′ ∈ A \ {a1, a2, a3, ak+3, ak+4}. It
follows that ⟨a2ak+4u′⟩ is an induced path in G that gives dG2 (a2, u′) = 1, a contradiction. We have proven our claim.

In order to complete the proof, it remains to show that a2 ∈ NG(ak+3). If not, then the induced path ⟨a2a4ak+3⟩ in G
gives dG2 (a2, ak+3) = 1, a contradiction.

The next lemma is crucial because it shows that the existence of V(P2), the complement of a path in G, applies
special constraints on its neighboring vertices. More specifically, any such vertex has at least two edges between itself
and V(P2), and these edges are incident to vertices that are far apart in P2.

Lemma 6. Given a graph G with diam(G) = k ≥ 3, let P2 = ⟨a1a2 · · · ak+3ak+4⟩ be a shortest path in G2 and let
A ⊆ G be the subgraph induced by V(P2). Let u ∈ NG(A). Then, NG(u) ∩ A ⊇ {ai, a j} such that i, j ∈ [1, k + 4] and
abs(i − j) > 2.

Proof. We will prove the statement directly. By Theorem 5, A is the complement of a path. Let u ∈ NG(ah) for any
h. If h = 1, then let S = {ah, ah+1}; otherwise if h = k + 4, then let S = {ah−1, ah}; otherwise, let S = {ah−1, ah, ah+1}.
Next, let as, at ∈ A \ S such that i � {s, t} and abs(s − t) > 2 (it is easy to verify that such a pair as, at exists). There
exists a walk W = ⟨asahuahat⟩ in G. If u � NG(as)∪NG(at), then D2(W) = ⟨asuat⟩ exists in G2, giving dG2 (as, at) = 2,
a contradiction to the assumption that abs(s − t) > 2. See Fig. 4 for an example of this contradiction. Therefore,
u ∈ NG(as) ∪ NG(at). If u ∈ NG(as) and abs(h − s) > 3, then we are done by setting (i, j) := (h, s). If u ∈ NG(at) and
abs(h − t) > 3, then we are done by setting (i, j) := (h, t). W.l.o.g. it remains for us to find appropriate (i, j) when
u ∈ NG(at) and abs(h − t) = 2. We consider two cases based on the value of h.

Case 1: 1 < h < k+2. Note that dG2 (ah−1, at+1) = 4. There exists a path T = ⟨ah−1atuahat+1⟩ in G. If u � NG(ah−1)∪
NG(at+1), then D2(T ) = ⟨ah−1uat+1⟩ gives dG2 (ah−1, at+1) = 2, a contradiction. Thus, u ∈ NG(ah−1) ∪ NG(at+1). If
u ∈ NG(ah−1), then we are done by setting (i, j) := (h − 1, t). But if u ∈ NG(at+1), then we are done by setting
(i, j) := (h, t + 1).
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Case 2: h = 1 or h = k + 2. More specifically, this means that either (h, t) = (1, 3) or (h, t) = (k + 2, k + 4). Due to
the symmetry, finding indices that give us appropriate (i, j) in one of the two cases is enough to complete the proof.
Hence, w.l.o.g. we may assume that (h, t) = (1, 3). We will show that u ∈ NG(a4)∪NG(a7). Suppose not. There exists a
path R = ⟨a4a1ua3a7⟩ in G. Then, D2(R) = ⟨a4ua7⟩ gives dG2 (a4, a7) = 2, a contradiction. Thus, u ∈ NG(a4) ∪ NG(a7).
In particular, if u ∈ NG(a4), then we are done by setting (i, j) := (1, 4). But if u ∈ NG(a7), then we are done by setting
(i, j) := (1, 7).

u

a1 a7

a2 a6

a3 a5

a4

u1

a1 a7

a2 a6

a3 a5

a4u2

Fig. 4. The black and red edges belong to E(G) and the green edges belong to E(G2). On the left, the graph shows a contradiction that occurs within
the proof of Lemma 6 where (k, h, s, t) = (3, 2, 4, 7). The red edges, in particular, denote W. On the right, we portray the proof of Theorem 7 where
k = 3, (b, d) = (1, 4), and (p, q) = (2, 5). The red edges denote W within Case 1. Note that the path D2(W) = ⟨a1u2a4⟩ exists but is not drawn.

We are prepared to prove our main result:

Theorem 7. Given a graph G = (V, E) with diam(G) = k ≥ 3, we have that either G2 is disconnected or diam(G2) ≤
k + 2.

Proof. Suppose that G2 is connected (and so G is also connected) and diam(G2) > k+2. Thus, G2 contains a diametral
path of length k + 3 or greater. This path necessarily contains a shortest path P2 = ⟨a1a2 · · · ak+3ak+4⟩. By Theorem
5, we have that V(P2) induces the complement of a path in G. Let A ⊆ G be the subgraph induced by V(P2) for
simplicity. It is trivial to see that diam(A) = 2. Since diam(G) = k, there exists S = NG(A) where S � ∅.

We claim that G \ (A ∪ S ) = ∅. Suppose not. Let u ∈ S and v ∈ NG(u) \ (A ∪ S ). By Lemma 6, u ∈ S satisfies
NG(u) ∩ A = {ai, a j} such that i, j ∈ [1, k + 4] and abs(i − j) > 2. Clearly, for any a ∈ A we have dG(u, a) ≤ 2.
Consequently, there exists T = ⟨aiuvua j⟩ in G. If v � NG(ai)∪NG(a j), then D2(T ) = ⟨aiva j⟩ in G2 gives dG2 (ai, a j) = 2,
a contradiction to the fact that abs(i − j) > 2. Thus, v ∈ NG(ai) ∪ NG(a j), a contradiction to the fact that v � S . We
have proven the claim.

It is easy to see that |S | > 1, otherwise diam(G[A ∪ S ]) = 2, a contradiction. Next, we will prove that for all
pairs v1, v2 ∈ S we have dG(v1, v2) ≤ 2. On the contrary, suppose that some u1, u2 ∈ S has dG(u1, u2) > 2. Note that
CNG (u1, u2) = ∅.

By Lemma 6 where u := u1 there exists a set NG(u1) ∩ A ⊇ {ab, ad} satisfying b, d ∈ [1, k + 4] and abs(b − d) > 2.
W.l.o.g. let b < d.

By Lemma 6 where u := u2 there exists a set NG(u2) ∩ A ⊇ {ap, aq} satisfying p, q ∈ [1, k + 4] and abs(p − q) > 2.
W.l.o.g. let p < q. Moreover, w.l.o.g. we may assume that b < p. Note that b, d, p, q are distinct because CNG (u1, u2) =
∅. Notice it is possible that b+1 = p, but it is not possible that b+1 ∈ {d, q}. Since b+1 < q, we have that ab ∈ NG(aq).
We consider two cases:

Case 1: p + 1 < d. Thus, ap ∈ NG(ad). There exists a path W = ⟨abaqu2apad⟩ in G. See the right graph in Fig. 4
for an example of this case. However, the existence of D2(W) = ⟨abu2ad⟩ gives dG2 (ab, ad) = 2, a contradiction to the
assumption that abs(b − d) > 2. We have proven our claim that for all pairs v1, v2 ∈ S we have dG(v1, v2) ≤ 2. Since
we have also shown that G \ (A ∪ S ) = ∅, it immediately follows that diam(G) ≤ 2, a contradiction to the hypothesis
that diam(G) = k.

Case 2: p + 1 ≥ d. In other words, we have that ap, aq ∈ P2[ad−1, ak+4]. First, suppose that p = b + 1. Hence,
(b+1)+1 ≥ d. If b+2 ∈ {d, d+1}, then we contradict the fact that abs(b−d) > 2. So, it is necessary that b+2 > d+1,
but this clearly contradicts the assumption that b < d. We see that p = b + 1 leads to contradiction. It is necessary that
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p � b + 1. Recalling also that p > b, we in fact have that p > b + 1 and thereby ab ∈ NG(ap). To simplify, we have
shown that ab and ap are sufficiently far from one another in P2 that they are adjacent in G.

Our assumption that p+ 1 ≥ d, combined with the fact that abs(p− q) > 2 and p < q, implies that q � d + 1. Thus,
aq ∈ NG(ad). Stated plainly, aq and ad are far enough away in P2 that they are adjacent in G. It has become evident that
there exists a path W = ⟨abapu2aqad⟩ in G. The existence of D2(W) = ⟨abu2ad⟩ gives dG2 (ab, ad) = 2, a contradiction
to the assumption that abs(b − d) > 2. We have proven our claim that for all pairs v1, v2 ∈ S we have dG(v1, v2) ≤ 2.
Since we have also shown that G \ (A ∪ S ) = ∅, it immediately follows that diam(G) ≤ 2, a contradiction to the
hypothesis that diam(G) = k.

Combining our main theorem with the lower bound achieved in [11], we arrive at the following statement:

Theorem 8. Let G have diam(G) = k ≥ 3. Then, either diam(G2) = ∞ or ⌈
(

1
2

)
k⌉ ≤ diam(G2) ≤ k + 2.

Proposition 9. The upper bound of the inequality expressed by Theorem 8 is sharp when k = 3 or k > 3 is even.

Proof. An example for k = 3 is provided in [11]. There exists a family of graphs showing that sharpness holds for
any even k > 3. See Fig. 5, which shows a graph G having diam(G) = 4 and diam(G2) = 6. By increasing the
size of the largest cycle in G by 4 such that the triangle shares exactly one edge with the largest cycle, diam(G) and
diam(G2) increase by 2. It is easy to verify that this procedure can be repeated in order to generate any number of
graphs satisfying the conclusion of the proposition.
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Fig. 5. These graphs exemplify Proposition 9 where k = 4 and k = 10. The left two graphs (drawn in order as G and then as G2) have diam(G) = 4
and diam(G2) = 6, where black edges denote E(G) and green edges denote E(G2). The right two graphs have diam(G) = 10 and diam(G2) = 12.

4. Computing Higher Order 2-distance Graphs

The use of brute-force to compute all 2-distance graphs is reliable up to 11 vertices, with results provided in Fig.
6. But, the run-time requirements increase exponentially beyond that. As it is apparent from the figure, graphs having
diam(G) = 2 and diam(G2) = |V | − 1 exist. For example, this property holds if G is the complement of a path that has
|V | ≥ 4.

Rather than using exhaustive search, 2-distance graphs with high |V | can be computed with careful use of a sat
solver. In our implementation, we express G = (V, E) and G2 as adjacency matrices where True and False denote
whether an edge exists. Henceforth, let ai, j be the (i, j)-th element in the adjacency matrix of G and let bi, j be the
(i, j)-th element in the adjacency matrix of G2. By definition,

bi,k =
∨

j

(ai, j ∧ a j,k ∧ ¬ai,k)

We fix P2 = ⟨0, 1, 2, 3, . . . , k+1, k+2⟩. Then, the first set of equations for the sat solver fix the edges for P2. That is, for
all bi, j ∈ P2 we have bi, j = True. For any a, b ∈ P2, let Pa,b,ℓ be the set of all a, b-paths of length ℓ in (G2 \P2)∪{a, b}.
The set of equations that forbid shortcuts that would invalidate the diametral path P2 can logically be expressed as

∧
P∈Pa,b,ℓ

¬( ∧
(v,u)∈P

bv,u
)
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for all ℓ ≤ |P2|. To eliminate the large number of isomorphic subgraphs in Pa,b,ℓ in H = G2 \ P2, more edges can
be fixed. Specifically, each nonisomorphic subgraph in H can be assigned its own satisfiability equation. Finally, an
equation to eliminate the low-diameter k = 2 graphs is used, and is given by

¬
∧
i,k

(ai, j ∧ a j,k)

and means that if any path ⟨ai, ja j,k⟩ does not exist (i.e. diam(G) � 2), then this expression will evaluate to True, and
False otherwise.

After conversion of our logical equations to conjunctive normal form, we were able to perform an experiment
restricted to diam(G2) ≥ 7, |V | = 13, and diam(G) > 2 (see Fig. 6). As opposed to the weeks required to exhaustively
enumerate graphs on 13 vertices, we found results within one day.

Fig. 6. Log scale plots showing the proportion of the diameters of G and G2 where G belongs to the set of all graphs which are non-isomorphic,
connected, and have fixed |V |. The top label corresponds to |V |. Axes labeled d and d2 denote diam(G) and diam(G2), respectively. The blue and
red boundaries express the lower and upper bounds of the inequality from Theorem 8. The right-most plot demonstrates a large reduction in search
space provided by our sat equations for |V | = 13, allowing us to find 2-distance graphs that meet the sharp upper bound at (d, d2) = (6, 8) given by
Theorem 8. The red region shows parameter ranges excluded by the equations.
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p � b + 1. Recalling also that p > b, we in fact have that p > b + 1 and thereby ab ∈ NG(ap). To simplify, we have
shown that ab and ap are sufficiently far from one another in P2 that they are adjacent in G.

Our assumption that p+ 1 ≥ d, combined with the fact that abs(p− q) > 2 and p < q, implies that q � d + 1. Thus,
aq ∈ NG(ad). Stated plainly, aq and ad are far enough away in P2 that they are adjacent in G. It has become evident that
there exists a path W = ⟨abapu2aqad⟩ in G. The existence of D2(W) = ⟨abu2ad⟩ gives dG2 (ab, ad) = 2, a contradiction
to the assumption that abs(b − d) > 2. We have proven our claim that for all pairs v1, v2 ∈ S we have dG(v1, v2) ≤ 2.
Since we have also shown that G \ (A ∪ S ) = ∅, it immediately follows that diam(G) ≤ 2, a contradiction to the
hypothesis that diam(G) = k.

Combining our main theorem with the lower bound achieved in [11], we arrive at the following statement:

Theorem 8. Let G have diam(G) = k ≥ 3. Then, either diam(G2) = ∞ or ⌈
(

1
2

)
k⌉ ≤ diam(G2) ≤ k + 2.

Proposition 9. The upper bound of the inequality expressed by Theorem 8 is sharp when k = 3 or k > 3 is even.

Proof. An example for k = 3 is provided in [11]. There exists a family of graphs showing that sharpness holds for
any even k > 3. See Fig. 5, which shows a graph G having diam(G) = 4 and diam(G2) = 6. By increasing the
size of the largest cycle in G by 4 such that the triangle shares exactly one edge with the largest cycle, diam(G) and
diam(G2) increase by 2. It is easy to verify that this procedure can be repeated in order to generate any number of
graphs satisfying the conclusion of the proposition.
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Fig. 5. These graphs exemplify Proposition 9 where k = 4 and k = 10. The left two graphs (drawn in order as G and then as G2) have diam(G) = 4
and diam(G2) = 6, where black edges denote E(G) and green edges denote E(G2). The right two graphs have diam(G) = 10 and diam(G2) = 12.

4. Computing Higher Order 2-distance Graphs

The use of brute-force to compute all 2-distance graphs is reliable up to 11 vertices, with results provided in Fig.
6. But, the run-time requirements increase exponentially beyond that. As it is apparent from the figure, graphs having
diam(G) = 2 and diam(G2) = |V | − 1 exist. For example, this property holds if G is the complement of a path that has
|V | ≥ 4.

Rather than using exhaustive search, 2-distance graphs with high |V | can be computed with careful use of a sat
solver. In our implementation, we express G = (V, E) and G2 as adjacency matrices where True and False denote
whether an edge exists. Henceforth, let ai, j be the (i, j)-th element in the adjacency matrix of G and let bi, j be the
(i, j)-th element in the adjacency matrix of G2. By definition,

bi,k =
∨

j

(ai, j ∧ a j,k ∧ ¬ai,k)

We fix P2 = ⟨0, 1, 2, 3, . . . , k+1, k+2⟩. Then, the first set of equations for the sat solver fix the edges for P2. That is, for
all bi, j ∈ P2 we have bi, j = True. For any a, b ∈ P2, let Pa,b,ℓ be the set of all a, b-paths of length ℓ in (G2 \P2)∪{a, b}.
The set of equations that forbid shortcuts that would invalidate the diametral path P2 can logically be expressed as

∧
P∈Pa,b,ℓ

¬( ∧
(v,u)∈P

bv,u
)
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for all ℓ ≤ |P2|. To eliminate the large number of isomorphic subgraphs in Pa,b,ℓ in H = G2 \ P2, more edges can
be fixed. Specifically, each nonisomorphic subgraph in H can be assigned its own satisfiability equation. Finally, an
equation to eliminate the low-diameter k = 2 graphs is used, and is given by

¬
∧
i,k

(ai, j ∧ a j,k)

and means that if any path ⟨ai, ja j,k⟩ does not exist (i.e. diam(G) � 2), then this expression will evaluate to True, and
False otherwise.

After conversion of our logical equations to conjunctive normal form, we were able to perform an experiment
restricted to diam(G2) ≥ 7, |V | = 13, and diam(G) > 2 (see Fig. 6). As opposed to the weeks required to exhaustively
enumerate graphs on 13 vertices, we found results within one day.

Fig. 6. Log scale plots showing the proportion of the diameters of G and G2 where G belongs to the set of all graphs which are non-isomorphic,
connected, and have fixed |V |. The top label corresponds to |V |. Axes labeled d and d2 denote diam(G) and diam(G2), respectively. The blue and
red boundaries express the lower and upper bounds of the inequality from Theorem 8. The right-most plot demonstrates a large reduction in search
space provided by our sat equations for |V | = 13, allowing us to find 2-distance graphs that meet the sharp upper bound at (d, d2) = (6, 8) given by
Theorem 8. The red region shows parameter ranges excluded by the equations.
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