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Abstract

We consider scattering of time-harmonic plane waves by an ensemble of well-separated
compactly supported inhomogeneous scatterers. The far field operator, which maps super-
positions of plane wave incident fields to the far field patterns of the associated scattered
fields, is commonly used as an idealized description of data sets obtained in corresponding
remote sensing experiments. Suppose that some a priori information about the approxi-
mate position of just one of the scatterers in the ensemble is available. This article is about
recovering the far field operator associated to this single scatterer from the far field operator
associated to the whole collection of scatterers. Due to multiple scattering effects this is
a nonlinear inverse problem. We show that an approximate solution can be obtained by
decomposing the far field operator into a sparse component and a low-rank component,
and we apply a convex program called principal component pursuit for this purpose. We
give necessary and sufficient conditions for unique solvability, establish a stability result and
provide numerical examples to illustrate our theoretical findings.

Mathematics subject classifications (MSC2010): 35R30 (65N21)
Keywords: Inverse medium scattering, Helmholtz equation, far field operator splitting, principal compo-
nent pursuit
Short title: Far field operator splitting

1 Introduction

This article is concerned with far field operators for the scattering of scalar time-harmonic
plane waves by compactly supported inhomogeneous obstacles. These operators are defined in
terms of the far field patterns of scattered fields corresponding to plane wave incident fields at
a single frequency for all possible observation and incident directions. Far field operators map
densities of superpositions of such plane waves to the far field patterns of the associated scattered
fields. They are a popular model for remote sensing observations in inverse scattering theory
and their properties have been widely studied in the literature. It is, for instance, well known
that the refractive index of a bounded penetrable scattering object is uniquely determined by
the associated far field operator (see [4, 36, 38, 40]). Accordingly, far field operators are at
the foundation of many successful reconstruction methods for the inverse medium scattering
problem (see, e.g., [1, 10, 11, 14, 21, 30] and the monographs [5, 6, 13, 33]).

We shall study a particular data splitting problem for far field operators corresponding to
ensembles of finitely many well-separated penetrable scatterers. Well-separated means here that
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the diameters of the supports of the scatterers in the ensemble are small compared to their
distances to each other. Assuming that the approximate locations of all scatterers in such an
ensemble are available a priori, it has recently been shown in [22] that approximations of the
far field operators associated to each scatterer individually can be recovered given the far field
operator associated to the whole collection of scatterers. Due to multiple scattering between the
different scatterers in the ensemble, which has to be disentangled and removed by the splitting
method, this is a nonlinear inverse problem. The algorithms developed in [22] crucially rely
on sparse representations of the far field operators corresponding to the individual scatterers in
the ensemble, which are determined by the a priori information on their approximate locations.
Using these sparse representations, either least squares or a convex program called basis pursuit
(see, e.g., [9, 17, 18]) has been applied to recover the unknown far field operator components
in [22].

In this work we aim to significantly reduce the required a priori information compared to [22].
We ask whether it is possible to extract the far field operator associated to a single scatterer in an
ensemble of well-separated compactly supported scatterers from the far field operator associated
to the whole ensemble, assuming that just the approximate location of this single scatterer is
known, but nothing about the other scatterers. In other words, our goal is to isolate or split
off the information about a single scatterer contained in the far field operator for the whole
ensemble. As in [22], the a priori information on the position of the single scatterer allows for
a sparse representation of the associated far field operator component that we aim to recover.
Moreover, we will show that the remaining part of the far field operator can be approximated by
a low-rank operator, which however is not sparse. Accordingly, the inverse problem is equivalent
to recovering a sparse operator given the sum of this sparse operator with a low-rank operator
plus some modeling error and possibly some data error. We show that a convex program called
principal component pursuit (see [7, 8, 44]) can be applied for this purpose, and we establish
necessary and sufficient conditions for unique solvability as well as stability estimates in the
context of far field operator splitting.

Previous investigations of far field splitting based on suitable sparse representations of far
field patterns have mainly been concentrated on source problems or scattering problems with
a single incident wave. However, the basic reasoning developed in [20, 23, 24, 25, 26] is closely
related to the perspective taken in the present work. Other approaches to wave splitting for
time-harmonic inverse source problems have been proposed in [3, 39]. Furthermore, splitting
problems for time-dependent scattering problems have been considered in [2, 19, 28].

The remainder of this article proceeds as follows. In Section 2 we briefly outline the theoret-
ical background on the scattering problem and discuss sparsity and low-rank properties of far
field operators. Then, in Section 3, we describe how principal component pursuit can be used
to approximate solutions to the splitting problem considered in the paper, and we analyze the
stability of this approach. Numerical results are given in Section 4, and we finally close with
some conclusions.

2 Inhomogeneous medium scattering

Before we discuss sparsity and low-rank properties of far field operators associated to ensembles
of compactly supported scatterers, we summarize some facts and basic notations concerning
the direct scattering problem. We consider time-harmonic scattering from penetrable scatterers
modeled by the Helmholtz equation in R2. Let k > 0 denote the wave number and n2 = 1 + q
the index of refraction for a real-valued compactly supported contrast function q ∈ L∞(R2)
satisfying q > −1 a.e. in R2 and q = 0 a.e. in R2 \ D for some bounded open subset D ⊆ R2.
We call D the support of the scatterers and below we will assume D to be the union of a few
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well-separated connected components.
Suppose the scatterers are illuminated by an incident plane wave

ui(x;d) := eikx·d , x ∈ R2 , (2.1a)

along the illumination direction d ∈ S1. Then the total field uq ∈ H1
loc(R2) and the associated

scattered field usq = uq − ui solves the Helmholtz equation

∆uq + k2n2uq = 0 in R2 , (2.1b)

together with the Sommerfeld radiation condition

lim
r→∞

√
r
(∂usq
∂r

(x;d)− ikusq(x;d)
)

= 0 , r = |x| → ∞ , (2.1c)

uniformly with respect to all directions x/|x| ∈ S1. We often indicate dependencies on the
illumination direction d by a second argument and dependencies on the contrast q by a subscript.

The unique weak solution uq ∈ H1
loc(R2) of (2.1) (see, e.g., [32, Thm. 7.13]) exhibits an

asymptotic expansion as an outgoing cylindrical wave

usq(x;d) =
eiπ/4√
8π

eik|x|√
k|x|

u∞q (x̂;d) +O
(
|x|−

3
2
)
, |x| → ∞ ,

uniformly in all observation directions x̂ = x/|x| ∈ S1 (see, e.g., [32, Thm. 7.15]). Here, the far
field pattern u∞q ∈ L2(S1 × S1) is given by

u∞q (x̂;d) = k2
∫
D
q(y)uq(y;d)e

−ikx̂·y dy , x̂ ∈ S1 . (2.2)

Accordingly, the far field operator

Fq : L
2(S1) → L2(S1) ,

(
Fqg
)
(x̂) :=

∫
S1

u∞q (x̂;d)g(d) ds(d) , (2.3)

which is determined by the far field patterns u∞q (x̂;d) for all possible observation and incident
directions x̂,d ∈ S1, is often considered as an idealized measurement operator for remote sens-
ing experiments in inverse scattering theory. This operator is well-known to be compact and
normal (see, e.g., [32, Thm. 7.20]), and it is of trace class (see [12]) and thus in particular a
Hilbert–Schmidt operator. For later reference we denote the space of Hilbert–Schmidt operators
on L2(S1) by HS(L2(S1)).

2.1 Far field operator splitting

To simplify the presentation we restrict the discussion in the following to ensembles of two
scatterers. Accordingly, we assume that the scatterer D = D1∪D2 consists of two well-separated
components D1, D2 ⊆ R2 such that Dj ⊆ BRj (cj), j = 1, 2, for some R1, R2 > 0 and c1, c2 ∈ R2

satisfying |c1 − c2| > R1 +R2, and we denote q1 := q|D1 and q2 := q|D2 . However, we note that
our analysis immediately extends to the case when D\D1 consists of more than one component.

Let us first recap the far field operator splitting problem as considered in [22]. Given the far
field operator Fq, the wave number k and sufficient a priori information on the location of D1

and D2 (i.e., about c1 and c2) the goal in [22] was to recover the far field operators Fq1 and Fq2

corresponding to the two individual components of the scatterer. The procedure in [22] is based
on splitting the given data into three parts,

Fq = Fq1 + Fq2 + Fq1,q2 ,
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and approximating each of these three components by sparse operators with respect to certain
suitably modulated Fourier bases of L2(S1). In this decomposition Fq1,q2 = Fq − (Fq1 + Fq2)
represents those multiple scattering components that involve scattering both on q1 and q2 and
therefore can neither be assigned to Fq1 nor to Fq2 . Accordingly, Fq1,q2 is the part of Fq that
has to be removed when recovering Fq1 and Fq2 .

In this paper, we consider a modified version of this far field operator splitting problem.
We assume that only a priori information on the approximate location of D1 (i.e., about c1) is
available, and we are only interested in recovering the far field operator Fq1 associated to the
first component of the scatterer. Accordingly, we split the given far field data

Fq = Fq1 + Fq\q1

into two parts. Our strategy remains to approximate Fq1 by a sparse operator with respect to the
same modulated Fourier basis as before. However, in contrast to [22], we now approximate the
remaining part Fq\q1 by an operator of low-rank, which does not require any a priori information
on the approximate location of D2 (i.e., about c2).

2.2 Sparse and low-rank approximations of far field operators

If uq ∈ H1
loc(R2) is the solution to the scattering problem (2.1), then uq|D ∈ L2(D) satisfies the

Lippmann–Schwinger integral equation

uq(x;d) = ui(x;d) + k2
∫
R2

q(y)Φ(x− y)uq(y;d) dy , x ∈ D .

Here, Φ(x) := i
4H

(1)
0 (k|x|), x ̸= 0, denotes the fundamental solution to the Helmholtz equation

(cf., e.g., [32, Thm. 7.12]). Introducing Lq : L
2(D) → L2(D) by

(Lqf) (x) := k2
∫
D
q(y)f(y)Φ(x− y) dy , x ∈ D ,

yields the Born series representation

usq( · ;d) =

∞∑
l=1

(Lq)
lui( · ;d) in R2 , (2.4)

of the scattered field, provided that the operator norm ∥Lq∥ is strictly less than one (see,
e.g., [29, 31, 37, 41, 42] for more detailed discussions). Neglecting terms of order l ≥ 3 in (2.4)
(i.e., considering the second order Born approximation) and substituting the result into (2.2)
and (2.3), it has been established in [22] that the far field operator can be approximated in terms
of

Fq ≈ F1 + F2 +
(
F1,2 + F2,1

)
, (2.5)

where F1 ≈ Fq1 and F2 ≈ Fq1 denote the second order Born approximations of the far field
operators Fq1 and Fq2 associated to the two components of the scatterer in D1 and D2, respec-
tively, and F1,2+F2,1 ≈ Fq −Fq1 −Fq2 is the second order Born approximation of the remaining
multiple scattering effects.

Denoting by (en)n := (ein arg( · )/
√
2π)n the standard Fourier basis of L2(S1), and introducing

the far field translation operator

Tcj : L
2(S1) → L2(S1) , (Tcjg)(x̂) := eikcj ·x̂g(x̂) , (2.6)
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Figure 2.1: Left: Support of two scatterersD1, D2 (solid) contained in discs BR1(c1), BR2(c2) (dashed).
Center and right: Absolute values of modulated Fourier coefficients (am,n)m,n of far field operator
components Fq1 (center) and Fq\q1 (right) at wave number k = 1. Dashed square (center) and dashed
cross (right) correspond to active coefficients in sparse approximation of Fq1 in Vc1

N1
with N1 = 7 and to

those in low-rank approximation of Fq\q1 in Wc2

N2
with N2 = 7, respectively.

we define the finite dimensional subspaces Vcj ,cl
Nj ,Nl

⊆ HS(L2(S1)) for all possible combinations
of j, l ∈ {1, 2} by

Vcj ,cl
Nj ,Nl

:=
{
G ∈ HS(L2(S1))

∣∣∣ Gg =
∑

|m|≤Nj

∑
|n|≤Nl

am,n T−cjem
〈
g, T−clen

〉
L2(S1)

, am,n ∈ C
}
.

(2.7)
We also use the short hand Vcj

Nj
:= Vcj ,cj

Nj ,Nj
, j = 1, 2. One of the main outcomes of [22] has

been that the far field operator components F1, F2, F1,2, and F2,1 in the second order Born
approximation (2.5) of the far field operator Fq can be well approximated in Vc1

N1
, Vc2

N2
, Vc1,c2

N1,N2
,

and Vc2,c1
N2,N1

, respectively, whenever we choose N1 ≳ kR1 and N2 ≳ kR2. Here the notation ≳
means “somewhat larger”. Corresponding approximation error estimates have been provided
in [22, Lmm. 3.4].

For moderate values of N1 ∈ N the approximation of F1 in Vc1
N1

as in (2.7) can be considered
to be sparse, because it involves at most (2N1+1)2 nonzero coefficients. Defining another finite
dimensional subspace Wc2

N2
⊆ HS(L2(S1)) by

Wc2
N2

:=
{
G ∈ HS(L2(S1))

∣∣∣ Gg =
∑

|n|≤N2

(
T−c2en

〈
g, αn

〉
L2(S1)

+ βn
〈
g, T−c2en

〉
L2(S1)

)
, αn, βn ∈ L2(S1)

}
,

(2.8)

we immediately observe that Vcj ,cl
Nj ,Nl

⊆ Wc2
N2

whenever j = 2 or l = 2. Consequently, the sum of
operators F2 + F1,2 + F2,1 can be well approximated in Wc2

N2
. Since

rankG ≤ 2(2N2 + 1) for any G ∈ Wc2
N2
,

this implies that for moderate values of N2 ∈ N the approximation of F2 + F1,2 + F2,1 in Wc2
N2

as in (2.8) is low-rank.
To sum up, the idea in the following is to compute a sparse operator F1 ∈ Vc1

N1
and a low-rank

operator L ∈ Wc2
N2

such that
Fq ≈ F1 + L (2.9)

and to approximate Fq1 by F1 and Fq\q1 = Fq − Fq1 by L.
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Example 2.1. We illustrate the essential supports of the modulated Fourier coefficients of Fq1

and Fq\q1 by a numerical example with q = χD1 − 0.5χD2 for D1 and D2 as shown in Fig-
ure 2.1 (left). Using a Nyström method (see, e.g., [13, pp. 91–96]) for the associated trans-
mission problem, we simulate the far field patterns u∞q (x̂m;dn) and u∞q1 (x̂m;dn) for M = 170
equidistant observation and illumination directions on S1 at wave number k = 1. The matrices

Fq1 :=
2π

M
[u∞q1 (x̂m;dn)]1≤m,n≤M and Fq\q1 :=

2π

M
[u∞q (x̂m;dn)− u∞q1 (x̂m;dn)]1≤m,n≤M

then approximate the far field operator components Fq1 and Fq\q1 . The dashed discs in Fig-
ure 2.1 (left) are centered at c1 = (−28,−30)⊤ and c2 = (26,−3)⊤ with radii R1 = R2 = 5,
respectively. Taking the two-dimensional Fourier transform of Fq1 and Fq\q1 after multiplica-
tion with the appropriate modulation factors yields an approximation of the modulated Fourier
coefficients (am,n)m,n of Fq1 in terms of (T−c1en)n and of Fq\q1 in terms of (T−c2en)n, respec-
tively. In Figure 2.1 (center, right) the absolute values of these modulated Fourier coefficients
are plotted using a logarithmic color scale. In the plot in the center, it can be observed that
they are essentially supported in a square [−N1, N1]

2 for N1 = 7 ≳ 5 = kR1. In the right plot,
the coefficients with the largest magnitude are essentially supported in the cross-shaped index
set {(m,n) : |m| ≤ N2 or |n| ≤ N2} for N2 = 7 ≳ 5 = kR2. However, the contribution of the
coefficients outside the cross-shaped index set is larger than in the middle plot, which leads to
a larger approximation error for the projection of Fq\q1 onto Wc2

N2
compared to the projection

of Fq1 onto Vc1
N1

. This is caused by those far field operator components of scattering order three
or higher, that can actually be approximated well in Vc1

N1
, but belong to Fq\q1 and not to Fq1 . ♢

The splitting ansatz in (2.9) will only work reliably if we can ensure that the low-rank
operators in Wc2

N2
do not have a sparse representation in Vc1

N1
. The following section addresses

this question.

2.3 When does sparse plus low-rank far field operator splitting work?

To avoid cluttered notation we write V := Vc1
N1

and W := Wc2
N2

in the following. We denote the
orthogonal projections onto V and W by PV and PW , respectively, and we define PV⊥ := I − PV
and PW⊥ := I − PW .

Operators G = G1 + G2 ∈ V + W can be uniquely decomposed into G1 ∈ V and G2 ∈ W
if and only if V ∩ W = {0}. This is the case if and only if the cosine of the minimal angle
between V and W,

∥PVPW∥ = sup
G∈V , H∈W

|⟨G,H⟩HS

∥G∥HS∥H∥HS
, (2.10)

is strictly smaller than one (cf., e.g., [15, Lmm. 2.10]). Moreover, the smaller ∥PVPW∥ is, the
more robust splitting becomes with respect to noise in the data G. Thus, the aim of this section
is to develop an upper bound for ∥PVPW∥, similar to what has been established in [22, Props. 3.8
and 3.14]. We start with some additional notations and technical remarks.
Remark 2.2. Apart from the usual Hilbert–Schmidt norm, we will also use some other norms
on HS(L2(S1)) in our analysis below. We first recall that any operator G ∈ HS(L2(S1)) can be
expanded in terms of the Fourier basis (en)n ⊆ L2(S1) via

Gf =
∑
m∈Z

∑
n∈Z

am,n em⟨f, en⟩L2(S1) , g ∈ L2(S1) , (2.11)

with Fourier coefficients (am,n)m,n = (⟨Gen, em⟩L2(S1))m,n ∈ ℓ2 × ℓ2. For 1 ≤ p ≤ ∞ this
representation gives rise to the norms

∥G∥ℓp×ℓp := ∥(am,n)m,n∥ℓp×ℓp , G ∈ HS(L2(S1)) ,
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at least if the right hand side is finite. On the other hand, G ∈ HS(L2(S1)) also possesses a
singular value decomposition

Gf =
∑
n∈N

σn un
〈
f, vn

〉
L2(S1)

, f ∈ L2(S1) ,

with singular values (σn)n ∈ ℓ2 and singular vectors (un)n, (vn)n ⊆ L2(S1). Therewith the
Hilbert–Schmidt norm of an operator G can be written as ∥G∥HS = ∥(σn)n∥ℓ2 , its nuclear norm
as ∥G∥nuc = ∥(σn)n∥ℓ1 and its operator norm as ∥G∥ = ∥(σn)n∥ℓ∞ . Furthermore, Parseval’s
identity shows that

⟨G,H⟩HS = ⟨G,H⟩ℓ2×ℓ2 for G,H ∈ HS(L2(S1)) .

We also denote the number of nonzero coefficients (am,n)m,n in (2.11) by ∥G∥ℓ0×ℓ0 and we recall
that the number of nonzero singular values (σn)n of G coincides with rank(G). ♢

To relate the modulated Fourier bases in the definitions (2.7) of V and (2.8) of W to the
unmodulated Fourier basis (en)n, we introduce for any c ∈ R2 the operator

Tc : HS(L2(S1)) → HS(L2(S1)) , TcG := Tc ◦G ◦ T−c , (2.12)

where Tc has already been defined in (2.6). The mapping properties of Tc have proven to be
an essential tool in [22]. To begin with, we note that Fqj( ·+cj) = TcjFqj for j = 1, 2, and
accordingly the subspaces V and W can be rewritten as

V =
{
G ∈ HS(L2(S1))

∣∣ Tc1G ∈ V0
N1

}
and W =

{
G ∈ HS(L2(S1))

∣∣ Tc2G ∈ W0
N2

}
.

The following lemma presents further results that are relevant for this work.

Lemma 2.3. Let c ∈ R2 with c ̸= 0. Then,
(a) Tc is a unitary operator on HS(L2(S1)) with Tc

∗ = T−c,
(b) Tc preserves the norms ∥ · ∥HS, ∥ · ∥nuc and ∥ · ∥ as well as the rank, and
(c) for any c ∈ R2 and N ∈ N, we have that

∥TcG∥ℓ∞×ℓ∞ ≤ 2βcN∥G∥HS , G ∈ W0
N , (2.13)

where

βcN :=

√√√√sup
n∈Z

( ∑
|n′−n|≤N

J2
n′(k|c|)

)
≤ min

{
1 , b

√
2N + 1

k|c|

}
(2.14)

with b ≈ 0.7595.

Proof. Part (a) follows immediately from the definitions (2.6) and (2.12) of Tc and Tc (see [22,
Lmm. 2.2]).

Since applying the unitary operator Tc does not change the singular values of an opera-
tor G∈ HS(L2(S1)), part (b) follows from the characterizations of ∥ · ∥HS, ∥ · ∥nuc and ∥ · ∥ in
terms of the singular values at the end of Remark 2.2.

Part (c) requires a bit more effort. By definition (2.8) of W0
N and since{

(m′, n′)
∣∣ |m′| ≤ N or |n′| ≤ N

}
=
{
(m′, n′)

∣∣m′ ∈ Z , |n′| ≤ N
}
∪
{
(m′, n′)

∣∣ |m′| ≤ N , |n′| > N
}
,
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we can write any G ∈ W0
N as

G =
∑
m′∈Z

∑
|n′|≤N

am′,n′ em′⟨ · , en′⟩L2(S1) +
∑

|m′|≤N

∑
|n′|>N

am′,n′ em′⟨ · , en′⟩L2(S1) .

We conclude by expanding Tcem′ in terms of (em)m and Tcen′ in terms of (en)n that the
coefficients (acm,n)m,n in the Fourier expansion of TcG as in (2.11) are given by

acm,n =
∑
m′∈Z

∑
|n′|≤N

am′,n′⟨Tcem′ , em⟩L2(S1)⟨en, Tcen′⟩L2(S1)

+
∑

|m′|≤N

∑
|n′|>N

am′,n′⟨Tcem′ , em⟩L2(S1)⟨en, Tcen′⟩L2(S1)

for m,n ∈ Z. Throughout this work, ⟨ · , · ⟩L2(S1) is linear in its first and antilinear in its second
argument. Accordingly, applying the Cauchy–Schwarz inequality we deduce that

∥TcG∥ℓ∞×ℓ∞ = ∥(acm,n)m,n∥ℓ∞×ℓ∞

≤ 2

√√√√sup
m∈Z

(∑
m′∈Z

|⟨Tcem′ , em⟩L2(S1)|2
)
sup
n∈Z

( ∑
|n′|≤N

|⟨Tcen′ , en⟩L2(S1)|2
)
∥G∥HS = 2βcN∥G∥HS .

For the last equality, we used that |⟨Tcen′ , en⟩L2(S1)|2 = J2
n−n′(k|c|) due to the Jacobi–Anger

expansion
e±ikx̂·y =

∑
n∈Z

(±i)ne−in arg yJn(k|y|)ein arg x̂ , y ∈ R2 , x̂ ∈ S1 , (2.15)

and that ∥(Jm(k|c|))m∥ℓ2 = 1 (see, e.g., [16, Eq. (10.23.3)]). Applying the uniform upper bound
for the Bessel functions from [34, Thm. 2] finally gives the second inequality in (2.14).

Now we are ready to establish an upper bound for ∥PVPW∥ from (2.10).

Proposition 2.4. For all G ∈ V and H ∈ W we have that

|⟨G,H⟩HS|
∥G∥HS∥H∥HS

≤ 2
√

∥Tc1G∥ℓ0×ℓ0 β
c1−c2
N2

≤ 8(2N1 + 1)
√
2N2 + 1

5
√
k|c1 − c2|

. (2.16)

Proof. We use Lemma 2.3, Hölder’s inequality and the inequality ∥ · ∥ ≤ ∥ · ∥HS to estimate

|⟨G,H⟩HS| = |⟨Tc1G,Tc1−c2(Tc2H)⟩ℓ2×ℓ2 | ≤ ∥Tc1G∥ℓ1×ℓ1∥Tc1−c2(Tc2H)∥ℓ∞×ℓ∞

≤ 2
√

∥Tc1G∥ℓ0×ℓ0 β
c1−c2
N2

∥Tc1G∥HS∥Tc2H∥HS = 2
√
∥Tc1G∥ℓ0×ℓ0 β

c1−c2
N2

∥G∥HS∥H∥HS .

Recalling that ∥Tc1G∥ℓ0×ℓ0 ≤ (2N1 + 1)2 for any G ∈ V, and using the upper bound for βc1−c2
N2

from (2.14) completes the proof.

Remark 2.5. Using the Jacobi–Anger expansion (2.15) we can rewrite

βc1−c2
N2

=

√√√√sup
n∈Z

( ∑
|n′|≤N2

|⟨T−c2en′ , T−c1en⟩L2(S1)|2
)
.

This shows that βc1−c2
N2

is a measure of incoherence of span{T−c2en′ : |n′| ≤ N2} ⊂ L2(S1)

with respect to the orthonormal system {T−c1en : n ∈ Z} in L2(S1). If βc1−c2
N2

is small, this
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Figure 2.2: Plots of βc2−c2

N2
(dotted blue) and of the upper bound from (2.14) (dashed red) as function

of t = k|c1 − c2| on a double-logarithmic scale for N2 = 5 (left) and for N2 = 10 (right). The level 0.1
(solid gray) is attained by βc2−c2

N2
for t > 191 in the case N2 = 5, and for t > 372 in the case N2 = 10.

The upper bound falls below the level 0.1 only for considerably larger values of t, namely for t > 635
when N2 = 5 and for t > 1212 when N2 = 10.

means that operators in W cannot have a sparse representation in V. We note that βc1−c2
N2

corresponds to β(S) as introduced in [8, Eq. (4.6)] for S = span{T−c2en′ : |n′| ≤ N2} and the
n-th standard basis vector replaced by T−c1en, n ∈ Z. We also refer to [27], where a similar
notion of incoherence was considered.

Our numerical results in Figure 2.2 suggest that the upper bound of βc1−c2
N2

in (2.14) is
of optimal order but not sharp. To generate these plots, we have used the superlinear decay
of |Jm(t)| in |m| for |m| > |t|, which ensures that the supremum in the definition of βc1−c2

N2

is already attained for moderate values of n ∈ Z, to calculate βc1−c2
N2

numerically. However,
the upper bound in (2.16) gives a good qualitative impression of sufficient conditions for the
geometry of the scatterer to allow for stable splitting. The smaller the diameters of the two
components are and the farther apart they are from each other, both in terms of the wave
length, the smaller this bound becomes. Here, the size R1 of the first scatterer has a stronger
influence than R2. ♢

In the next section we examine a convex program called principal component pursuit to
approximate Fq1 based on a priori knowledge of c1.

3 Far field operator splitting by principal component pursuit

Suppose that (F1, L) is an approximate split of the far field operator Fq as in (2.9) such
that F1 ∈ V is sparse and L ∈ W is low-rank. Following [44] we consider the constrained
optimization problem

minimize
F̃1,L̃∈HS(L2(S1))

λ∥Tc1F̃1∥ℓ1×ℓ1 + ∥L̃∥nuc subject to ∥F δ
q − F̃1 − L̃∥HS ≤ δ , (3.1)

to recover an approximation of (F1, L) from possibly noisy observations F δ
q ∈ HS(L2(S1)) of Fq.

Here λ ∈ (0, 1) is a coupling parameter that will be specified below. The parameter δ > 0 not
just accounts for the data error F δ

q − Fq but also for the modeling error Fq − F1 − L that is
caused by the sparse plus low-rank approximation according to (2.9).

Before we address the stable recovery of (F1, L) by means of (3.1) in Theorem 3.5 below, we
establish conditions on the diameters of the supports of the scatterers D1 and D2 and on their
distance to each other in terms of the wave length that guarantee uniqueness of solutions to the
unrelaxed optimization problem

minimize
F̃1,L̃∈HS(L2(S1))

λ∥Tc1F̃1∥ℓ1×ℓ1 + ∥L̃∥nuc subject to F1 + L = F̃1 + L̃ . (3.2)
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The latter is commonly referred to as Principal Component Pursuit (PCP). We note that in PCP
the aim usually is to recover the low-rank matrix L – the principal component – while the sparse
matrix component typically is of less interest. However, in our setting it is the other way round
as our main goal is to recover the sparse component F1.

For any F̃1, L̃ ∈ HS(L2(S1)) we write

Ψλ(F̃1, L̃) := λ∥Tc1F̃1∥ℓ1×ℓ1 + ∥L̃∥nuc . (3.3)

A characterization of the subdifferential of Ψλ in (F1, L) (see, e.g., [8, p. 580]) will be required in
the proof of Proposition 3.1 below. Denoting the Fourier coefficients in the series representation
of Tc1F1 as in (2.11) by (ac1m,n)m,n and by (σn;un, vn)n a singular system for L, we introduce
the two operators

Σ :=
∑

|m|≤N1

∑
|n|≤N1

ac1m,n

|ac1m,n|
T−c1em

〈
· , T−c1en

〉
L2(S1)

and Λg :=

2(2N2+1)∑
n=1

un
〈
· , vn

〉
L2(S1)

. (3.4)

The following proposition is similar to [7, Lmm. 2.5] and [8, Prop. 2]. However, the translation
operator Tc1 in (3.3) requires some subtle changes.

Proposition 3.1. The pair (F1, L) is the unique minimizer of (3.2) if
(a) there holds ∥PVPW∥ < 1/2 and
(b) there exists a dual certificate W ∈ HS(L2(S1)) satisfying

PWW = 0 , ∥W∥ < 1
2 , ∥PV(Λ− λΣ+W )∥HS ≤ λ

4 , ∥Tc1PV⊥(Λ +W )∥ℓ∞×ℓ∞ < λ
4 . (3.5)

Proof. Assume that the conditions (a) and (b) are satisfied. Since any feasible pair (F̃1, L̃)
for (3.2) can be written as (F1 −G,L+G) for some G ∈ HS(L2(S1)), we have to show

Ψλ(F1 −G,L+G) > Ψλ(F1, L)

whenever G ̸= 0. Let Z1 ∈ ∂∥Tc1F1∥ℓ1×ℓ1 and ZL ∈ ∂∥L∥nuc be arbitrary subgradients, i.e.,

Z1 = Σ+G1 for some G1 ∈ V⊥ with ∥Tc1G1∥ℓ∞×ℓ∞ ≤ 1 , (3.6a)

ZL = Λ+GL for some GL ∈ W⊥ with ∥GL∥ ≤ 1 . (3.6b)

Then the subgradient property gives

Ψλ(F1 −G,L+G) ≥ Ψλ(F1, L)− λ⟨Z1, G⟩HS + ⟨ZL, G⟩HS . (3.7)

We can choose G1 and GL satisfying (3.6) such that

⟨G1,PV⊥G⟩HS = −∥Tc1PV⊥G∥ℓ1×ℓ1 and ⟨GL,PW⊥G⟩HS = ∥PW⊥G∥nuc .

For G1 this can be achieved by picking

G1 = −
∑

|m|>N1

∑
|n|>N1

bc1m,n

|bc1m,n|
T−c1en⟨ · , T−c1en⟩L2(S1)

with (bc1m,n)m,n denoting the Fourier coefficients in the series representation of Tc1G as in (2.11).
The operator GL can be constructed using the duality of ∥ ·∥ and ∥ ·∥nuc as outlined in the proof
of [7, Lmm. 2.5]. Inserting this into (3.7) we obtain

Ψλ(F1 −G,L+G) ≥ Ψλ(F1, L) + Ψλ(PV⊥G,PW⊥G)− |⟨λΣ− Λ, G⟩HS| . (3.8)
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Rewriting Λ−λΣ = PV(Λ−λΣ+W )+PV⊥(Λ+W )−W and using Hölder’s inequality as well
as Lemma 2.3 (a)–(b) and the assumption (b) of the proposition, we can bound the third term
on the right hand side of (3.8) by

|⟨λΣ− Λ, G⟩HS| ≤ |⟨PV(Λ− λΣ+W ), G⟩HS|+ |⟨PV⊥(Λ +W ), G⟩HS|+ |⟨W,G⟩HS|
≤ λ

4∥PVG∥HS +
λ
4∥Tc1PV⊥G∥ℓ1×ℓ1 +

1
2∥PW⊥G∥nuc .

(3.9)

Using condition (a) of the proposition we conclude that

∥PVG∥HS ≤ ∥PVPWG∥HS + ∥PVPW⊥G∥HS ≤ 1
2∥G∥HS + ∥PW⊥G∥HS

= 1
2∥PVG∥HS +

1
2∥PV⊥G∥HS + ∥PW⊥G∥HS .

Combining this with ∥ · ∥HS ≤ ∥ · ∥ℓ1×ℓ1 and ∥ · ∥HS ≤ ∥ · ∥nuc we obtain that

∥PVG∥HS ≤ ∥Tc1PV⊥G∥ℓ1×ℓ1 + 2∥PW⊥G∥nuc . (3.10)

Inserting (3.10) into (3.9) and the result into (3.8) finally yields

Ψλ(F1 −G,L+G) ≥ Ψλ(F1, L) +
1
2 (λ∥Tc1PV⊥G∥ℓ1×ℓ1 + (1− λ)∥PW⊥G∥nuc) . (3.11)

The second term on the right hand side of (3.11) is nonnegative and vanishes if and only
if PV⊥G = PW⊥G = 0, i.e., if and only if G = 0 as V ∩ W = {0} due to condition (a) of the
proposition. This ends the proof.

In Proposition 3.3 below, we establish sufficient conditions on λ, k, N1, N2 and |c1 − c2|
such that the conditions (a) and (b) of Proposition 3.1 are fulfilled. For this purpose we define

µ := sup
G∈V , ∥Tc1G∥ℓ∞×ℓ∞≤1

∥G∥ and ξ := sup
G∈W , ∥G∥≤1

∥Tc1G∥ℓ∞×ℓ∞ ,

which correspond to µ(F1) and ξ(L) as introduced in [8, Eq. (1.1), (1.2)]. The number ξ
being small means that for any G ∈ W the translated operator Tc1G is not too sparse with
respect to the Fourier basis (en)n. If the product of µ and ξ is sufficiently small, we can use
arguments developed in [8] to establish uniqueness of the minimizer of (3.2). The following
lemma expresses µ and ξ in terms of k, N1, N2 and |c1 − c2|.

Lemma 3.2. There holds

µ = 2N1 + 1 and ξ ≤ 2βc1−c2
N2

with βc1−c2
N2

as in (2.14).

Proof. The upper bound for ξ follows immediately from (2.13).
For µ we conclude from Lemma 2.3 (b) and Parseval’s identity for any G ∈ V with (ac1m,n)m,n

denoting the coefficients of the series expansion of Tc1G as in (2.11) that

∥G∥ = ∥Tc1G∥ = sup
∥f∥L2(S1)=1

∥(Tc1G)f∥L2(S1) = sup
∥f∥L2(S1)=1

√ ∑
|m|≤N1

|⟨(Tc1G)f, em⟩|2
L2(S1)

= sup
∥f∥L2(S1)=1

√√√√ ∑
|m|≤N1

∣∣∣∣ ∑
|n|≤N1

ac1m,n⟨f, en⟩2L2(S1)

∣∣∣∣ ≤ (2N1 + 1)∥Tc1G∥ℓ∞×ℓ∞ .

This yields µ ≤ 2N1+1 and since the upper bound is attained for f =
∑

|m|≤N1
T−c1em/(2N1+1),

we obtain equality.
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The following proposition adapts the sufficient conditions for uniqueness of minimizers es-
tablished in [8, Thm. 2] for our far field operator splitting problem.

Proposition 3.3. The conditions (a) and (b) of Proposition 3.1 are satisfied for

λ ∈

(
8βc1−c2

N1

1− 8(N1 + 3)(2N1 + 1)βc1−c2
N1

,
2(1− 16(2N1 + 1)2βc1−c2

N1
)

15(2N1 + 1)

)
(3.12)

provided 2(2N1 + 1)2βc1−c2
N1

< 1/8 and provided N1 and βc1−c2
N1

are small enough so that above
interval is a subset of (0, 1).

Proof. The condition (a) of Proposition 3.1 holds due to Proposition 2.4 because our assumptions
guarantee that 2(2N1 + 1)βc1−c2

N1
< 1.

For (b) we have to show that there exists a dual certificate W ∈ HS(L2(S1)) satisfying (3.5).
To this end we follow a similar strategy as was used in the proof of [8, Thm. 2]. Since V∩W = {0},
we can choose W = λΣ+ E1 + E2 ∈ V ⊕W with E1 ∈ V and E2 ∈ W such that

PWW = 0 and ∥PV(Λ− λΣ+W )∥HS ≤ λ
4 .

From (3.4) we immediately obtain that

∥Tc1Σ∥ℓ∞×ℓ∞ = ∥Λ∥ = 1 , (3.13)

and since PWW = 0, we conclude that E2 = −PW(λΣ+ E1).
Next, we denote by PU : L2(S1) → L2(S1) the orthogonal projection onto

U := span{T−c2en | |n| ≤ N2} .

Then, we can rewrite PWG = PUG + GPU − PUGPU for any G ∈ HS(L2(S1)), which im-
plies ∥PWG∥ ≤ ∥PUG∥ + ∥(I − PU )GPU∥ ≤ 2∥G∥. Combining this with the definition of µ
and (3.13) we obtain that

∥E2∥ ≤ 2µ(λ+ ∥Tc1E1∥ℓ∞×ℓ∞) . (3.14)

Furthermore, we deduce from

λ

4
≥ ∥PV(Λ− λΣ+W )∥HS ≥ −(2N1 + 1)∥Tc1PV(Λ + E2)∥ℓ∞×ℓ∞ + ∥Tc1E1∥ℓ∞×ℓ∞

≥ −(2N1 + 1)∥Tc1(Λ + E2)∥ℓ∞×ℓ∞ + ∥Tc1E1∥ℓ∞×ℓ∞ ,

the definition of ξ and (3.13) that

∥Tc1E1∥ℓ∞×ℓ∞ ≤ λ

4
+ (2N1 + 1)(1 + ∥E2∥)ξ . (3.15)

Combining Lemma 3.2 with the assumptions of the proposition, we obtain that

2(2N1 + 1)µξ < 4(2N1 + 1)2βc1−c2
N1

< 1 .

Accordingly, substituting (3.14) into (3.15) and solving for ∥Tc1E1∥ℓ∞×ℓ∞ gives

∥Tc1E1∥ℓ∞×ℓ∞ ≤
(2N1 + 1)ξ + (2(2N1 + 1)µξ + 1

4)λ

1− 2(2N1 + 1)µξ
. (3.16)

Similarly, inserting (3.16) into (3.14) yields

∥E2∥ ≤
5
2µλ+ 2(2N1 + 1)µξ

1− 2(2N1 + 1)µξ
. (3.17)
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The definition of µ and (3.13) show that

∥W∥ ≤ µλ∥Tc1Σ∥ℓ∞×ℓ∞ + µ∥Tc1E1∥ℓ∞×ℓ∞ + ∥E2∥ ≤ µ(λ+ ∥Tc1E1∥ℓ∞×ℓ∞) + ∥E2∥ , (3.18)

and using the definition of ξ and again (3.13) gives

∥Tc1PV⊥(Λ +W )∥ℓ∞×ℓ∞ ≤ ∥Tc1(Λ + E2)∥ℓ∞×ℓ∞ ≤ ξ(1 + ∥E2∥) . (3.19)

Inserting the upper bounds (3.16) and (3.17) into (3.18) and (3.19), we conclude that

∥W∥ < 1
2 and ∥Tc1PV⊥(Λ +W )∥ℓ∞×ℓ∞ < λ

4

if
λ ∈

(
4ξ

1− 4(N1 + 3)µξ
,
2(1− 16(2N1 + 1)µξ)

15µ

)
,

i.e., we have constructed a dual certificateW ∈ HS(L2(S1)) satisfying (3.5). Applying Lemma 3.2
once more finally gives (3.12).

Remark 3.4. Unfortunately, Proposition 3.3 is of limited practical relevance, as already for
rather small values of N1 ≳ kR1, the value of k|c1 − c2| must be very large for the assumptions
of Proposition 3.3 to be fulfilled. However, our numerical reconstructions below illustrate that
even when the assumptions of Proposition 3.3 are not fully met, far field operator splitting by
principal component pursuit still gives satisfactory results. ♢

Now we turn to the relaxed minimization problem (3.1) and show a stability estimate for
far field operator splitting with noisy data. A related stability estimate for sparse plus low-rank
matrix splitting has been established in [44, Prop. 4], and we adapt and generalize this result for
the far field operator splitting problem considered here. In Theorem 3.5 below F 0

q ∈ Vc1
N repre-

sents a discrete version of the far field operator Fq ∈ HS(L2(S1)). Since we assume throughout
this work that the whole ensemble of scatterers is compactly supported, there exists a smallest
radius R > 0 such that D ⊆ BR(c1) is contained inside the ball of radius R around c1. Ac-
cordingly, the results from [22] say that choosing N ≳ kR is sufficient to obtain an accurate
best approximation of Fq in Vc1

N . Furthermore, F δ
q ∈ Vc1

N denotes a discretized noisy observation
of Fq. The bound δ0 in (3.20) accounts for the approximation error of the discretization of Fq

by F 0
q and also for the modeling error Fq −F1−L of our sparse plus low-rank ansatz from (2.9).

On the other hand, the data error F 0
q − F δ

q is bounded by (3.21), which also guarantees (F1, L)
to be feasible for problem (3.22). We note that the only a priori information required by (3.22)
is the approximate position c1 of the component D1 of the scatterer.

Theorem 3.5. Suppose that F 0
q , F

δ
q ∈ Vc1

N for some N ∈ N, and let c1, c2 ∈ R2 and N1, N2 ∈ N
with N1, N2 ≤ N . Let Cc1−c2

N1
:= 2(2N1 + 1)βc1−c2

N1
< 1/2 and assume that there exists a dual

certificate satisfying the conditions in Proposition 3.1. Furthermore, we assume that F1 ∈ V
and L ∈ W are such that

max
{
∥F 0

q − (F1 + L)∥ℓ1×ℓ1 , ∥F 0
q − (F1 + L)∥nuc , ∥(I − PVc1

N
)L∥nuc

}
≤ δ0 (3.20)

for some δ0 ≥ 0. Suppose that δ > 0 satisfies

δ ≥ 2δ0 + ∥F 0
q − F δ

q ∥HS (3.21)

and let (F δ
1 , L

δ) ∈ Vc1
N × Vc1

N denote the solution to

minimize
F̃1,L̃∈V

c1
N

Ψλ(F̃1, L̃) subject to ∥F δ
q − (F̃1 + L̃)∥HS ≤ δ . (3.22)
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Here, we choose λ = η/
√
2N + 1 ≤ 1/2 for some η ≥ 1. Then, there exists a constant C > 0

such that
∥F1 − F δ

1 ∥2HS ≤ C
(
1 +

(
1 + (1− Cc1−c2

N1
)−1
)
(2N + 1)2

)
δ2 (3.23a)

and
∥L− Lδ∥2HS ≤ C

(
1 +

(
1 + (1− Cc1−c2

N1
)−1
)
(2N + 1)2

)
δ2 . (3.23b)

Proof. We use the notations F̂1 := F1−F δ
1 , L̂ := L−Lδ, Ĝ+ := (F̂1+L̂)/2 and Ĝ− := (F̂1−L̂)/2.

From the parallelogram identity we conclude

∥F̂1∥2HS , ∥L̂∥2HS ≤ ∥F̂1∥2HS + ∥L̂∥2HS = 2∥Ĝ+∥2HS + 2∥Ĝ−∥2HS

= 2∥Ĝ+∥2HS +
(
∥PVĜ

−∥2HS + ∥PWĜ
−∥2HS

)
+
(
∥PV⊥Ĝ−∥2HS + ∥PW⊥Ĝ−∥2HS

)
.

(3.24)

In the following, we bound the three terms on the right hand side of (3.24) separately.
Applying (3.20), (3.21) and the fact that ∥ · ∥HS ≤ ∥ · ∥nuc we obtain for the first term on the

right hand side of (3.24) that

2∥Ĝ+∥2HS ≤ 1
2

(
∥F 0

q − (F1 + L)∥HS + ∥F 0
q − F δ

q ∥HS + ∥F δ
q − (F δ

1 + Lδ)∥HS

)2
≤ 1

2(2δ − δ0)
2 ≤ 2δ2 .

(3.25)

To bound the second term on the right hand side of (3.24) we note first that, using (2.16),

∥PVĜ
− − PWĜ

−∥2HS ≥ ∥PVĜ
−∥2HS + ∥PWĜ

−∥2HS − 2|⟨PVĜ
−,PWĜ

−⟩|HS

≥ ∥PVĜ
−∥2HS + ∥PWĜ

−∥2HS − 2Cc1−c2
N1

∥PVĜ
−∥HS∥PWĜ

−∥HS

≥ (1− Cc1−c2
N1

)
(
∥PVĜ

−∥2HS + ∥PWĜ
−∥2HS

)
.

Dividing this inequality by 1−Cc1−c2
N1

, which is valid since we assumed that Cc1−c2
N1

< 1/2, and
estimating further gives

∥PVĜ
−∥2HS + ∥PWĜ

−∥2HS ≤ 1

1−C
c1−c2
N1

∥PVĜ
− − PWĜ

−∥2HS

= 1

1−C
c1−c2
N1

∥PV⊥Ĝ− − PW⊥Ĝ−∥2HS ≤ 2

1−C
c1−c2
N1

(
∥PV⊥Ĝ−∥2HS + ∥PW⊥Ĝ−∥2HS

)
,

(3.26)

i.e., it remains to establish a bound for the third term on the right hand side of (3.24).
Using the isometry property of Tc1 on HS(L2(S1)) and the estimates ∥ · ∥HS ≤ ∥ · ∥nuc

and ∥ · ∥HS ≤ ∥ · ∥ℓ1×ℓ1 it follows for λ ≥ 1/
√
2N + 1 that

∥PV⊥Ĝ−∥2HS + ∥PW⊥Ĝ−∥2HS ≤ (∥PV⊥Ĝ−∥HS + ∥PW⊥Ĝ−∥HS)
2

≤ (2N + 1)
(
Ψλ(PV⊥Ĝ−,PW⊥Ĝ−)

)2
.

(3.27)

Since (F1,PVc1
N
L) is feasible for (3.22) by (3.20), we conclude using (3.20) once more that

Ψλ(F1 − F̂1, L− L̂) = Ψλ(F
δ
1 , L

δ) ≤ Ψλ(F1,PVc1
N
L) ≤ Ψλ(F1, L) + δ0 . (3.28)

Next we use (3.11) with G = Ĝ−, which is valid since we assumed the assumptions of Proposi-
tion 3.1 to be satisfied, and recall that λ ≤ 1/2 to conclude that

Ψλ(F1 − Ĝ−, L+ Ĝ−)− ψλ(F1, L) ≥ 1
2

(
λ∥Tc1PV⊥Ĝ−∥ℓ1×ℓ1 +

1
2∥PW⊥Ĝ−∥nuc

)
≥ 1

4Ψλ(PV⊥Ĝ−,PW⊥Ĝ−) .
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Consequently, we obtain by rewriting Ĝ− = F̂1 − Ĝ+ = −L̂+ Ĝ+ that

Ψλ(PV⊥Ĝ−,PW⊥Ĝ−) ≤ 4
(
Ψλ(F1 − Ĝ−, L+ Ĝ−)− ψλ(F1, L)

)
≤ 4

(
Ψλ(F1 − F̂1, L− L̂)−

(
Ψλ(F1, L) + δ0

)
+
(
Ψλ(Ĝ

+, Ĝ+) + δ0
))

≤ 4
(
Ψλ(Ĝ

+, Ĝ+) + δ0
)
,

(3.29)

where we have used (3.28) in the last step. Now we insert (3.29) into (3.27) to deduce

∥PV⊥Ĝ−∥2HS+∥PW⊥Ĝ−∥2HS ≤ 16(2N + 1)
(
Ψλ(Ĝ

+, Ĝ+) + δ0
)2

≤ 4(2N + 1)
(
Ψλ(F

0
q − (F δ

1 + Lδ), F 0
q − (F δ

1 + Lδ))

+ Ψλ(F
0
q − (F1 + L), F 0

q − (F1 + L)) + 2δ0
)2
.

(3.30)

Since ∥ · ∥nuc ≤
√
2N + 1∥ · ∥HS and ∥Tc1( · )∥ℓ1×ℓ1 ≤ (2N + 1)∥ · ∥HS on Vc1

N , we can use (3.20)
and (3.21) to obtain

Ψλ(F
0
q − (F δ

1 + Lδ), F 0
q − (F δ

1 + Lδ)) ≤ 2
(√

2N + 1 + λ(2N + 1)
)
(δ − δ0) .

Similarly,
Ψλ(F

0
q − (F1 + L), F 0

q − (F1 + L)) ≤ (1 + λ)δ0 .

Substituting the last two inequalities into (3.30) gives

∥PV⊥Ĝ−∥2HS + ∥PW⊥Ĝ−∥2HS

≤ 4(2N + 1)
(
2(
√
2N + 1 + λ(2N + 1))δ − (2

√
2N + 1 + λ(4N + 1)− 3)δ0

)2
≤ 16(2N + 1)

(√
2N + 1 + λ(2N + 1)

)2
δ2 .

(3.31)

Finally, we insert (3.25), (3.26) and (3.31) into (3.24) to obtain

∥F1−F δ
1 ∥2HS , ∥L−Lδ∥2HS ≤

(
2+ (1+2(1−Cc1−c2

N1
)−1)16(2N +1)(

√
2N + 1+λ(2N +1))2

)
δ2 ,

which implies (3.23) by our choice of λ.

4 Numerical examples

Now we briefly comment on the numerical implementation of far field operator splitting by
principal component pursuit as discussed in the previous section. Following [43] we consider a
slightly relaxed version of (3.1), in which the inequality constraint is replaced by a penalty term.
Accordingly, we aim to solve

minimize
F̃1,L̃∈V

c1
N

∥F δ
q − (F̃1 + L̃)∥2HS + µ

(
λ∥Tc1F̃1∥ℓ1×ℓ1 + ∥L̃∥nuc

)
, (4.1)

where µ > 0 is a small constant. We use a proximal gradient approach as proposed in [35, 43]
to approximate the unique solution of (4.1).

In all our numerical examples the contrast function is chosen to be q = χD1 − 0.5χD2 with
two scatterers D1 ⊂ BR1(c1) and D2 ⊂ BR2(c2) as shown in Figure 2.1 (left), and we use k = 1
for the wave number. We simulate the associated far field operators Fq and Fq1 using a Nyström
method with M = 170 equidistant illumination and observation directions on S1 as described
in Example 2.1. Here, the number of sampling points M has been chosen such that all far field
operators in the examples below can be fully resolved.
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Figure 4.1: Left: Relative reconstruction errors for varying number M of discretization points
for λ =M−1/2 and for optimally chosen λ in Example 4.1. Right: Relative reconstruction errors for
fixed M = 170 and varying λ. Typically proposed choice λ = M−1/2 ≈ 0.077 from literature and opti-
mal choice λ ≈ 0.13 marked by vertical grey lines.

Denoting in the following the numerical solutions of (4.1) by (F̂1, L̂), we will evaluate the
relative reconstruction errors

ε1rel :=
∥Fq1 − F̂1∥HS

∥Fq1∥HS
and εLrel :=

∥(Fq − Fq1)− L̂∥HS

∥Fq − Fq1∥HS

to assess the quality of these numerical solutions. The a priori information c1 = (−28,−30)⊤ on
the approximate location of the scatterer D1 that enters the reconstruction algorithm is marked
by a cross inside D1 in Figure 2.1 (left).

We note that the assumptions of Theorem 3.5 are not satisfied for the particular setup
discussed in this section. However, we will see that the splitting algorithm still gives good
reconstructions.

Example 4.1 (Choice of coupling parameter λ). In our first example, we study the optimal
choice of the coupling parameter λ in (4.1) depending on the number of incident and obser-
vation directions M used to approximate the far field operators. To this end we vary M
between M = 130 and M = 350, always using µ = 3 × 10−4M/λ for the second parameter
in (4.1).

In the literature often the value λ =M−1/2 is used (see, e.g., [7, 44]). This is also the smallest
possible choice of λ that is covered by our stability Theorem 3.5. However, since a larger choice
of λ promotes a better reconstruction quality for the sparse component F1, it makes sense to
choose λ slightly larger. We have determined the corresponding optimal values for λ depending
on M by minimizing the associated relative reconstruction error ε1rel of the sparse component.
The results are shown in Figure 4.1 (left). It turns out that choosing λ ≈ 2M−1/2 always
produces better reconstructions. For all error curves in Figure 4.1 (left) we observe an increase
of the order O(M) with respect to M , as to be expected from (3.23).

Figure 4.1 (right) shows the relative reconstruction errors depending on the coupling pa-
rameter λ for fixed number of incident and observation directions M = 170. The literature
value λ = M−1/2 ≈ 0.0767 as well as our optimized choice λ ≈ 0.1258 are marked by vertical
gray lines. ♢

Example 4.2 (Varying noise level δ). We consider the same setting as in the previous example
with fixed M = 170 and choose accordingly λ = 0.13. In this example we study the quality
of our reconstructions when complex valued uniformly distributed relative error is being added
to the simulated far field operators Fq. Denoting by δrel ∈ (0, 0.1) the relative noise level,
we generate 15 different random noise realizations for each noise level and plot the relative
reconstruction errors of the worst reconstructions in Figure 4.2. We note that larger noise
levels require more regularization, and accordingly the parameter µ in (4.1) has been increased
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Figure 4.3: Left: Geometry of two scatterers (red, blue) and a priori information on location c1 of first
scatterer (black +) for varying distance |c1 − c2| in Example 4.3. Right: Relative reconstruction errors
for varying distance |c1 − c2| in Example 4.3.

from µ = 3×10−4M/λ for δrel = 0 to µ = 1.2×10−3M/λ for δrel = 0.1 in these calculations. As
soon as the additive random noise dominates the modeling error, both error curves in Figure 4.2
increase with a rate of order O(δrel) with respect to δrel, as expected from (3.23). ♢

Example 4.3 (Varying distance between and diameter of scatterers). In our third example, we
study the dependence of the performance of our method depending on the distance |c1 − c2|
between the two components of the scatterer and on the size parameters R1 and R2. In our
stability estimates (3.23) these dependencies are hidden in the constant Cc1−c2

N1
(see also the last

estimate at the end of the proof of Theorem 3.5). Accordingly, the accuracy of the numerical
reconstructions should improve with increasing distance and with decreasing radii. Our estimates
also suggest that the relative reconstruction errors should grow faster for increasing R1 than for
increasing R2. In our numerical tests below, we use M = 170 and choose µ = 3× 10−4M/λ.

We start by varying the distance |c1 − c2| between the scatterers. To this end we keep the
position c2 of the nut-shaped scatterer D2 fixed and vary the position c1 of the kite-shaped
scatterer D1, as shown in Figure 4.3 (left). The resulting relative reconstruction errors with
optimally chosen coupling parameter λ (see Example 4.1) are shown in Figure 4.3 (right). As
expected, both relative errors decrease with increasing distance |c1 − c2|.

In order to analyze the quality of our reconstructions depending on the size of the scatterers,
we fix one of the two and vary the size of the other. In both tests, we select the coupling
parameter λ optimally (see Example 4.1). We start by varying the size R1 of the kite-shaped
scatterer as shown in Figure 4.4 (left), where its instance for R1 = 5 is highlighted. The
associated relative reconstruction errors are plotted in Figure 4.4 (right). For R1 ≥ 4 both error
curves increase with increasing R1, as expected. For R1 < 4, the relative error ε1rel increases
as R1 decreases. At R1 = 1, the low-rank component L is reconstructed even better than the
sparse component F1. This behavior is probably due to the fact that for R1 very small q2 scatters
much stronger than q1. Finally, we vary the size R2 of the nut-shaped scatterer as shown in
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Figure 4.4: Left: Geometry of two scatterers (red, blue) and a priori information on location c1 of
first scatterer (black +) for varying size R1 of kite-shaped scatterer in Example 4.3. Right: Relative
reconstruction errors for varying size R1 in Example 4.3.
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Figure 4.5: Left: Geometry of two scatterers (red, blue) and a priori information on location c1 of
first scatterer (black +) for varying size R2 of nut-shaped scatterer in Example 4.3. Right: Relative
reconstruction errors for varying size R2 in Example 4.3.

Figure 4.5 (left). Again the instance corresponding to R2 = 5 is highlighted. The associated
relative reconstruction errors can be found in Figure 4.4 (right). As expected, we observe ε1rel
to grow with R2. It can also be seen, that increasing R1 has a stronger effect on the relative
reconstruction error than increasing R2. ♢

Conclusions

We have developed a new method to separate or split off the scattering data associated to a
single scatterer that is part of an ensemble of well-separated scatterers from the scattering data
for the whole ensemble. This question arises for instance when one wishes to recover properties
of scatterers in a certain focus area while not being interested in scatterers outside this region
so much. Using sparsity and low-rank properties of far field operators associated to compactly
supported scatterers, we have shown that a convex program called principle component pursuit
can be utilized to approximate solutions to this inverse problem. Our main theoretical result
is a stability estimate for this method taking into account modeling errors and data noise. We
have put particular emphasis on expressing the prerequisites of this theorem and the associated
stability constants solely in terms of geometric properties of the scattering ensemble and the wave
length. Although the assumptions of our theoretical results are quite restrictive, the numerical
results confirm that the reconstruction algorithm also works well if these assumptions are not
fully met.
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