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Asymptotic independence in more than two dimensions
and its implications on risk management
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Abstract In extreme value theory, the presence

of asymptotic independence signifies that joint
extreme events across multiple variables are unlikely.
Although well understood in a bivariate context,

the concept remains relatively unexplored when
addressing the nuances of simultaneous occurrence
of extremes in higher dimensions. In this article, we
propose a notion of mutual asymptotic independence
to capture the behaviour of joint extremes in dimen-
sions larger than two and contrast it with the classical
notion of (pairwise) asymptotic independence. Addi-
tionally, we define k-wise asymptotic independence,
which captures the tail dependence in between pair-
wise and mutual asymptotic independence. The con-
cepts are compared using examples of Archimedean,
Gaussian, and Marshall-Olkin copulas, among oth-
ers. Finally, we discuss the implications of these new
notions of asymptotic independence on assessing
the risk in complex systems under distributional
ambiguity.

Résumé Dans le cadre de la théorie des valeurs
extrémes, la notion d’indépendance asympto-

tique traduit le fait que la survenue simultanée
d’événements extrémes sur plusieurs variables

est peu probable. Bien que ce concept soit bien
maitrisé en dimension bivariée, son étude demeure
limitée lorsqu’il s’agit d’appréhender la cooccur-
rence d’événements extrémes dans des dimen-
sions supérieures. Cet article introduit la notion
d’indépendance asymptotique mutuelle pour ca-
ractériser le comportement conjoint des valeurs
extrémes en dimension supérieure a deux, par
opposition a la notion classique d’indépendance
asymptotique par paires. Les auteurs introduisent
également la notion d’indépendance asymptotique
entre k-uplets, qui permet de mettre en évidence
des formes intermédiaires de dépendance extréme,
situées entre I'indépendance asymptotique par
paires et I'indépendance asymptotique mutuelle.
Ces différentes notions sont illustrées et comparées
a travers plusieurs exemples, notamment les copules
archimédiennes, gaussiennes et de Marshall-Olkin.
Enfin, les implications de ces nouvelles notions
d’indépendance asymptotique sont examinées dans
le contexte de I’évaluation du risque pour des sys-
temes complexes affectés par une incertitude sur la
loi de probabilité sous-jacente.
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1 Introduction

In many multivariate models, we observe that the likelihood of a joint occurrence of extreme values in two
or more variables is negligible in comparison to the occurrence of an extreme value in one variable. In this
context, the notion of asymptotic independence looms large in the study of joint extreme values in probability
distributions, although mostly restricted to the bivariate set-up. A random vector (Z;, Z,) € R? with identically
distributed marginals is asymptotically (right-tail/upper-tail) independent if

P(Z, > 1,2, > t) = 0o(P(Z, > 1)), t— oo, (1.1)

or, equivalently, P(Z; > t|Z, > t) — 0 as t —» oo. For the rest of this article, we focus only on extremes in the
non-negative quadrant and drop the terms right-/upper-tail for convenience.

Often called Sibuya’s condition, (1.1) was shown by Sibuya (1960) for bivariate normal random vectors
with any correlation p < 1. Such a limit behaviour has also been found to hold for bivariate distributions
with an arbitrary choice of marginals possessing a variety of dependence structures, including the Frank cop-
ula, Ali-Mikhail-Haq copula, Gaussian copula, and Farlie-Gumbel - Morgenstern copula; see Ledford and
Tawn (1996, 1998), Coles et al. (1999), and Heffernan (2000). It is widely believed that the presence of asymp-
totic independence hinders the computation of joint tail probabilities, and this has led to a variety of tech-
niques for modelling and estimating rare tail probabilities when such a property is present; see Ledford and
Tawn (1996), Resnick (2002), Ramos and Ledford (2009), Lehtomaa and Resnick (2020), Das et al. (2013), and
Das et al. (2022). Nevertheless, for random vectors in dimensions higher than two, limited expositions are avail-
able, and multivariate asymptotic independence is often understood to be (1.1) holding for all pairs of variables,
which we call pairwise asymptotic independence. Such a notion of multivariate asymptotic independence may
have its origins in the study of extremes. For instance, in Resnick (2008, Chapter 5.5), a multivariate distribution
is called multivariate asymptotically independent if it is in the maximum domain of attraction of a multivariate
extreme value distribution with independent marginals. Additionally, it is shown that such a characterization of
“multivariate asymptotic independence” is equivalent to having “pairwise asymptotic independence” (assum-
ing identical marginals in the maximum domain of attraction of a univariate extreme value distribution); see
Resnick (2008, Proposition 5.27) and Galambos (1978, Corollary 5.3.1). In this article, we show that asymptotic
tail independence often has a much subtler form that goes beyond pairwise asymptotic independence.

Asymptotic independence for bivariate joint tails is also popularly understood using the coefficient of tail
dependence 7 defined in Ledford and Tawn (1996). If Z; and Z, are identically unit Fréchet-distributed with
distribution function F(z) = e%/%, z > 0, and

P(Z, > t,Z, > t) = t"V7¢(1), t > o,

where 1/2 <7 < 1and ¢ isslowly varying at infinity (i.e., £(tz)/¢(z) — last — o,V z > 0), then 7 represents
this coefficient of tail dependence. According to Ledford and Tawn (1996), (i) n = 1/2 and ¢(t) > 1 signifies
near independence, (i) n =1 and ¢(t) » 0 as t — oo signifies upper tail dependence, and, finally, (iii) either
1/2<n<1,orn=1and¢(t) - 0ast — oo signifies positive association.

The coefficient of tail dependence is a two-dimensional concept and has been extended to d dimensions as
upper tail order by Hua and Joe (2011) through the survival copula. Prior to further discussions, we review the
notions of copula and survival copula.

A copula C : [0,1]¢ — [0,1] is a multivariate distribution function with identical uniform [0, 1] marginals.
From Sklar’s Theorem (Sklar, 1959; Nelsen, 2006; Durante and Sempi, 2016), we know that for any d-
dimensional random vector Z = (Z,, ..., Z;) with distribution function F and marginal distributions F, ..., Fy,
there exists a copula C : [0,1]¢ — [0,1] such that

F(Zl’ ’Zd) = C(Fl(zl)a 7Fd(zd))a
for (zy, ..., z4) € R4, and if the marginals are continuous, the copula is uniquely given by
Cuy, .., ug) = F(Fy (), ..., F3 (ug))

for 0 < uy,...,uy < 1, where
Fj‘._(uj) :=inf{z €R : Fj(z) > u;}

is the generalized inverse of F f for j € {1, ..., d}. In this article, we are particularly concerned with the probabil-
ity of joint extremes where the survival copula C : [0,1]¢ — [0,1], which is also a copula, plays an important
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role; see Durante and Sempi (2016, Chapter 1), McNeil et al. (2015, Section 5.1.5), and Nelsen (2006, Section
2.6). The survival copula C satisfies

P(Z, > 21, ..., Zq > 24) = C(F1(21), ..., Fa(24))

for (zy, ...,z4) € R4, where F ; =1 —F;isthe tail function of F; for j € {1, ..., d}. Of course, the survival copula
and the copula are directly related through

Cluy, ..., ug) =1+ Z (-DBSICs(1—u; 1 jeS)
SC1,...d}
S#0

for0 < uy,...,uy < 1,where |S| is the cardinality of the set S and Cy is the appropriate |S|-dimensional marginal
copula of C. In dimension d = 2, this reduces to

é\(ul,uz) = u1 + uZ -1 + C(l - ul,l - UZ)

for0 <u;,u, <1.
Returning to the notion of tail dependence, if a d-dimensional survival copula C satisfies

Clu, ..., u) =u ), 0<u<l, (1.2)

for some slowly varying function ¢ at 0 and some constant ¥ > 0, then « is called the upper tail order. Following
Hua and Joe (2011), (i) the case x = d signifies near (asymptotic) independence (for d = 2, we have x = 1/7),
(ii) the case x = 1 and ¢(u) » 0 (asu | 0) signifies (asymptotic) upper tail dependence, and, (iii) the case where
1 < x < d is called upper intermediate tail dependence. From the definition of tail order, we can see that for
d = 2, the survival copulas in both the cases of “near independence” and “upper intermediate tail dependence”
exhibit asymptotic independence in the sense of (1.1); in this article, we gain a better understanding of these
ideas for cases where d > 2.

Note that for independence of multiple random variables, it is well known that “pairwise independence” for
all pairs of random variables is not equivalent to their “mutual independence” (cf. Hogg et al. (2013, Chapter 2)).
In a similar vein, we propose here the concepts of pairwise asymptotic independence in Section 2 and mutual
asymptotic independence in Section 3. With the new notion of mutual asymptotic independence, we explore
the ideas of “near independence” and “intermediate upper tail dependence” through all subsequent dimen-
sions 2, 3, ..., d, going beyond just the d-dimensional characterization as given in (1.2). For models that lie in
between pairwise and mutually asymptotically independent models, we introduce the concept of k-wise asymp-
totic independence for k € {2, ..., d} in Section 4. In particular, we investigate and compare the various notions of
asymptotic independence and illustrate them using popular copula models. Moreover, we obtain the following
three key results for the popular Gaussian copula, which have broader theoretical and practical implications:

(i) a formulation of precise necessary and sufficient conditions for mutual asymptotic independence
to hold;

(ii) a derivation of the correct tail orders; and

(iii) the existence of Gaussian copula models exhibiting k-wise asymptotic independence but not (k + 1)-
wise asymptotic independence.

Besides the Gaussian copula, we also provide examples to show the breadth of asymptotic (in)dependence
behaviour using the Archimedean copula family. We apply the new notions of asymptotic independence in
Section 5 to show its implications on assessing the risk in complex systems under distributional ambiguity.
The different notions of asymptotic independence influence risk contagion in financial systems differently
and hence may lead to an underestimation or overestimation of risk if applied improperly. In particular, we
exhibit this phenomenon using two pertinent conditional risk measures, namely conditional tail probabilities
and Contagion Value-at-Risk or Conditional Value-at-Risk (CoVaR) in dimensions d > 2. Finally, in Section 6,
we conclude with some broader implications of interpreting asymptotic independence in this new light. All
proofs for the results presented in this article are provided in the Appendix.
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11 Notations

We denote by [I; = {1, ...,d} an index set with d > 1 elements, and the cardinality of a set S C I; by |S|. For
a random vector Z = (Z,, ..., Z;), we write Z ~ F if Z has distribution function F; moreover, we understand
that marginally Z; ~ F; for j € ;. For any non-empty sets S C 4, the copula and survival copula of the cor-

responding |S|-dimensional marginal are denoted by Cg and @S, respectively. Moreover, if d = 1, we have
Csu)=Cs(u)=ufor0<u<1. Fora given vector z € R? and S C I, we denote by z' the transpose of
z and by zg € RIS! the vector obtained by deleting the components of z in [, \ S. Similarly, for non-empty
S C 14, Zg denotes the appropriate submatrix of a given matrix = € R after removing all rows and columns
with indices in I, \ S. Furthermore, 0; = (0,...,0)" and 1; = (1,...,1)T are vectors in R¢, and I, is the iden-
tity matrix in R9¥¢; subscripts are dropped when evident from the context. Vector operations are understood
component-wise: for example, for vectors z = (24, ..., zq) andy = (yy, ..., yq), 2 < ymeans z; < y;, Vj € l;. For
functions f,g : (0, 00) — (0, 00), we write f(u) ~ g(u) asu | 0 if lim, |, f(u)/g(u) = 1. Moreover, a function
¢ : (0,00) = (0, 00) is called slowly varying at 0 if lim,, |, € (uz)/¢(u) = 1,Vz > 0.

2 Pairwise asymptotic independence

Note that the definition in (1.1) can be easily generalized to distributions with potentially unequal marginals;
any random vector (Z;, Z,) € R? with continuous marginals Z j ~ Fj, j €{1,2}is asymptotically independent if

Clu,u) =P(Fy(Z)) >1—u,Fy(Z,) >1—u) =o(u), ulo, (2.1)

where C is the survival copula of F. Note that the limit properties in (1.1) and (2.1) remain equivalent
when the marginals of (Z,,Z,) are completely tail-equivalent, that is, P(Z; > t)/P(Z, >t) > 1 as t > .
Although not all extreme sets are of this form, this definition has been a key concept in the modelling of joint
extremes.

An interesting feature of this definition of asymptotic independence is that it is based on tail sets tethered
along the main diagonal (t,t) (in (1.1)) or (1 — u, 1 — u) (in (2.1)). It is easy to check that (2.1) is equivalent to

Clau,bu) = o(w), ulo0

for some a, b > 0 (Balkema and Nolde, 2010, Theorem 2). Curiously, an equivalent result for the distribution
function of a bivariate random vector does not hold: even if (1.1) holds, it does not necessarily hold for diagonals
of the form (at, bt) for arbitrary a, b > 0; see Das and Fasen-Hartmann (2024, Proposition 3.9) for an example
with normally distributed marginals (Z,, Z,) with Cor(Z,,Z,) = p > 0, where P(Z, > at,Z, > t) = O(P(Z, >
t)),ast — oo, for0 < a < p.

Although (1.1) and (2.1) are widely applied for bivariate random vectors, a proper multivariate characteri-
zation of asymptotic independence has been relatively scarce. A definition often used and based on all pairwise
comparisons following (2.1) is given next.

Definition 1 (Pairwise asymptotic independence). An R?-valued random vector Z ~ F with continuous
marginal distributions, copula C, and associated survival copula C is pairwise asymptotically independent if
Vijtel,j#?,

é\{j,g}(u, u) = o(u), ul 0. (2.2)

We interchangeably say Z, F, or C exhibits pairwise asymptotic independence.

Remark 1.

(a) More generally, for any multivariate distribution with non-continuous marginal distributions, its
copula is no longer unique; hence, we cannot extend Definition 1 straightforwardly in such a case. For
convenience, since we are primarily concerned with the asymptotic behaviour of the survival copula, we
will assume for the rest of the article that all distributions will have continuous marginal distributions,
ensuring that both their copula and associated survival copula are unique. Note that, since we are only
concerned with tail probabilities in this article, it actually suffices to have the marginal distributions to
be continuous above a fixed threshold (that means they are eventually continuous).
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(b) In contrast to asymptotic independence, a d-dimensional copula C with d > 2 exhibits asymptotic
upper tail dependence if its survival copula C satisfies

CA‘(u, 7))
u

lim =1€(0,1). (2.3)

ul0

Obviously, (2.3) implies that (2.2) cannot hold. If (2.3) holds, then it is equivalent to having ¥ = 1 and
¢(u) » 0asu | 0 for the upper tail order defined in (1.2).

21 Examples

Pairwise asymptotic independence exists in many multivariate distributions. We note a few examples here.

Example 1 (Independence). If all components of a random vector Z € R? are independent, then

d
P(Z, > z1,... 24 > 24) = | [Fj(z)) = CM(F\(2)), ..., F(z,))
j=1

for (zy,...,24) € R%, where C™™ : [0,1]¢ — [0,1]¢ is the independence copula given by
d
CM(yy, ..., uy) = Huj (2.4
j=1

for 0 < uy, ..., uy < 1 with survival copula C™(u,, ..., uy) = C"(uy, ..., uy). For any distinct j, ¢ € Iy, the (j, 1)
marginal survival copula is
Cﬁnd

{jf}(ul,uZ) = uluz, 0 S ul,uz S 1.

Thus, clearly (2.2) holds, and hence, the independence copula exhibits pairwise asymptotic independence.

Example 2 (Marshall-Olkin dependence). The Marshall-Olkin (MO) distribution is used in reliability theory
to capture the failure of subsystems in a networked system. Here we consider a particular MO dependence; see
Lin and Li (2014) and Das and Fasen-Hartmann (2023). Assume that for every non-empty set S C [, there
exists a parameter Ag > 0and A := {Ag : @ # S C I;}. Then, the generalized MO copula CM°™) can be defined
by its associated survival copula CMO®), with rate parameter A given by

S

d
MWy, ug) =T ] /\ ujf (2.5)

i=1 [S|=i jes

for 0 < uy,...,uy <1, where

nj=2/| LAl jeSCla (2.6)
J2{j}

For any distinct j, ¢ € [, we can compute that

AMO(A) _
C{j,f} (u,u) =u'J
with
m= D, mi+ D, mi+ Y maxininik> 1. @.7)
SClg SClg SClg
JES.CES j&s.tes j.tes

Clearly, since 77;‘ > LVj#E, CMOM) possesses pairwise asymptotic independence for any choice of A; see also

Lin and Li (2014, Proposition 3). An even larger class of MO copulas has been introduced in Lin and Li (2014)
which are also pairwise asymptotically independent.

Although Ay is allowed to take any positive value for the non-empty S C [;, we discuss below two particu-
larly interesting choices of the parameters; see also Das and Fasen-Hartmann (2023, Example 2.14).
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(a) Equal parameter values for all sets: Here, Ag = A for all non-empty S C [; where A > 0, and we denote
the survival copula by CMO . We can check from (2.6) that the value of A is irrelevant here. Clearly in this

case, nf =1/ 2971 for all j € S and non-empty S C [;. Hence, we can compute the value of ’7;5 defined

in (2.7) as
d-1 | ~d-2
. 1 1 2 +2 3
7Nt = 77* = — 4 = = -,
Jjt 12 & d-1 ngu‘zd 5d-1 5d-1 2
1€S 1¢S,2€S

Therefore, for all j,¢ € S with j # ¢,

AMO™ — 1,3/2
C{j,f} (u,u) =u’*, 0<u<l.

(b) Parameters proportional to the cardinality of o}he sets: Here, Ag = |S|4 for all non-empty S C [; where
A > 0 and we denote the survival copula by CMO™ | Also, the value of 1 is irrelevant, and for all j€Sand
non-empty subset S C [;, we have

s _ S|
N = d—2"
(d+1)2
We compute again the value of 77;-} defined in (2.7) as
. S| S| (d+1)2%7% 4 g3 d
Nig =M = — st = =14+—.
gt ngud (d+1)2%2 &_:Zud (d +1)242 (d +1)2%72 2d+1)

1es 1¢S,2eS
Therefore, for all j,¢ € S with j # ¢,

(’:«\MOoo

mo (u,u) = uH/CED) o<y <1,

The generalized MO copulas with these particular choices of parameters, as in (a) and (b), are also known
as Caudras-Augé copulas (Cuadras and Augé, 1981) and have been used in Lévy frailty models for survival

analysis. Moreover, if the marginals are identically distributed, then the associated random vector turns out to
be exchangeable (Durrett, 1991).

Example 3 (Archimedean copula). Archimedean copulas constitute a widely utilized family of copula models
for constructing multivariate distributions (Joe, 2015; Charpentier and Segers, 2009). A d-dimensional copula
C*? is Archimedean if

C¢(u17 ’ud) = ¢<_(¢(u1) +-o ¢(ud)) (28)

for 0 < uy, ..., uy < 1, where the generator function ¢ : [0,1] — [0, oo] is convex and decreasing, with ¢(1) = 0
and ¢~ (y) = inf{u € [0,1] : ¢(u) < y} for y € (0, o). Necessary and sufficient conditions on the function ¢
such that C? in (2.8) is a copula are given in McNeil and Neslehové (2009). Note that the survival copula C*¢ of
an Archimedean copula C? is, in general, not Archimedean. A popular choice of ¢ is the Laplace transform of
any positive random variable.

Tail dependence in such copulas has been studied in Charpentier and Segers (2009), Larsson and Nesle-
hova (2011), and Hua and Joe (2011), and sufficient conditions to obtain pairwise asymptotic independence
exist. Suppose the random vector Z having an Archimedean copula C? has a generator ¢ satisfying

upgd-w _
o d(l—w)

Then we may conclude from Charpentier and Segers (2009, Theorem 4.1 and equation (4.4)) that Z is pairwise
asymptotically independent. In contrast, if the limit

L eoug'1—u)
O =m0
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exists and is larger than 1, then Z has asymptotic upper tail dependence, that is, its survival copula C? satisfies
(2.3). We observe from Charpentier and Segers (2009, Table 1) that for many Archimedean copulas, we have
6, = 1 and thus they are pairwise asymptotically independent; this includes the Frank copula, Clayton copula,
and Ali-Mikhail-Haq copula; see also Nelsen (2006, Table 4.1) for further details.

Example 4 (Gaussian copula). The Gaussian dependence structure is perhaps the most popular one used in
practice. Let @5 denote the distribution function of a d-variate normal distribution with all marginal means 0,
variances 1, and a positive-definite correlation matrix ¥ € R4%d and let @ denote the standard normal distri-
bution function. Then for 0 < uy,...,uz <1,

CE(uy, ..., ug) = Os(@ (uy), ..., ® (uy))

denotes the Gaussian copula with correlation matrix X. Note that by radial symmetry, any Gaussian copula is
equal to its own survival copula, that is, C* = CZ. Pairwise asymptotic independence has been well established
for the bivariate normal distribution, as well as the bivariate Gaussian copula if the correlation is less than
1 (Sibuya, 1960; Ledford and Tawn, 1996). Hence, we may immediately conclude that for d > 2, a Gaussian
copula C* exhibits pairwise asymptotic independence if T is positive definite. In fact, it is possible to find the
exact tail order for the Gaussian survival copula for any S C [; with |S| > 2, where the precise result is given in
Section 3.2.2.

3 Mutual asymptotic independence

Pairwise asymptotic independence has often either been used as a natural extension of asymptotic indepen-
dence (Balkema and Nolde, 2010; Guillou et al., 2018), or taken as a consequence from other relevant properties
(de Haan and Ferreira, 2006, Remark 6.2.5), or implicitly assumed (Lalancette et al., 2021) in a variety of works.
Next, we define a notion that captures the global joint concurrent tail behaviour of random vectors portrayed
by many popular multivariate dependence structures, including, for example, the Gaussian, MO, or various
Archimedean copulas, but not restricted to the mere replication of pairwise comparisons of tails.

Definition 2 (Mutual asymptotic independence). An R?-valued random vector Z ~ F with continuous
marginal distributions, copula C, and associated survival copula C is mutually asymptotically independent if
for all S C [; with |S| > 2, we have

limosG-o W) 0, V¢eS, (3.1)

ul0 é\S\{f}(ua ceey u)
where we define 0/0 : = 0. We interchangeably say Z, F, or C possesses mutual asymptotic independence.

Remark 2. Some explanation is due here in order to distinguish between the traditional notion of multivari-
ate asymptotic independence (sometimes called “mutual” asymptotic independence) in dimensions d > 2
(Resnick (2008, Chapter 5.5), Galambos (1978, Chapter 5.2), and McNeil et al. (2015, Chapter 7.6)), and
the notion defined in Definition 2. Owing to Resnick (2008, Proposition 5.27) under the constraint that the
marginals are continuous, identically distributed, and in the maximum domain of attraction of a univariate
extreme value distribution, pairwise asymptotic independence is equivalent to a distribution having “multi-
variate asymptotic independence”, meaning that the distribution lies in the maximum domain of attraction of
an extreme value distribution with independent marginals (the limit distribution is a product measure). Our
notion of mutual asymptotic independence is not equivalent to multivariate asymptotic independence as we
demonstrate in this article, and in particular, in Example 5.

When d = 2, both (2.2) and (3.1) reduce to (2.1) and hence are equivalent. Assuming d > 3 and mutual
asymptotic independence, if we take all choices of S C [; with |S| = 2, then (3.1) is just a restatement of (2.2),
implying pairwise asymptotic independence. We summarize this in the next proposition.

Proposition 1. If an R%-valued random vector Z with continuous marginal distributions is mutually asymptot-
ically independent, then it is also pairwise asymptotically independent.
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The reverse implication of Proposition 1 is not necessarily true, as we see in the following example, which

mimics the consequences for the analogous notions of classical “mutual” and “pairwise independence” (Hogg
et al., 2013).

Example 5. The difference between pairwise and mutual independence can be shown using an R3-valued
random vector with Bernoulli marginals (Hogg et al., 2013, Chapter 2). We adopt a similar approach, but using
uniform marginals. Consider i.i.d. uniform [0,1] random variables U,V and W. Then Z* = (U, V, W) is mutu-
ally asymptotically independent (cf. Example 6) and hence pairwise asymptotically independent as well. Now
consider Z = (Z,,Z,,Z3;) ~ F such that

(U, V,min(U, V)), with prob. 1/3,
Z = {(U,min(U, V), V), with prob. 1/3,
(min(U, V), U, V), with prob. 1/3.

First note that for 0 < z < 1, marginally,

Fi(2)=P(Z;<z)=2z/3+1/3[1-(Q—-2)]1=4z/3-2%/3, je{l1,2,3},

and hence the Z;’s are identically distributed.

3.1

(i) If C denotes the survival copula of Z, then we can check that for any {j, £} c {1,2, 3},

Cinuw) =P(Z; >2-V1+3u,Z, > 2—V1+3u)
=P(U>2-V1+3u,V>2-V1+3u)
=(W1+3u—12=9%%/4+0u?, ulo. (3.2)

Hence, Z exhibits pairwise asymptotic independence.
(i) But

Clu,u,u) = P(U > 2 —m,v > Z—W)

=(W1+3u—-12= u?/4+ow?), ulo,
implying that Z does not have mutual asymptotic independence since (3.1) fails for S = {1, 2, 3}.

(iii) We can compute that if Z(l), ,Z(") are i.i.d. F and if M,, is the random vector of component-wise

maxima given by
n n n
M, = (\/Z(”, \/z2, \/ZS)>,
i=1 i=1 i=1

then with a,, = 3/2n and b, = 1, we have forx € R,

3
lim P(M,, < a,x+b,) = lim F*(a,x +b,) = G(x) = [ [¥1(x), (3.3)
n—oo n—oo i=1
where ¥,(-) is a univariate extreme value distribution given by ¥;(x) = min(e*,1),x € R. Thus F €
MDA(G), where G is indeed a product measure according to (3.3), implying multivariate asymptotic inde-
pendence although F does not have mutual asymptotic independence as shown in (ii).

For illustration, we showed the multivariate asymptotic independence by hand, but the pairwise
asymptotic independence in (i) and Resnick (2008, Proposition 5.27) already imply multivariate asymp-
totic independence.

Examples: Part |

It is instructive to note examples of mutual asymptotic independence in various distributions.
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Example 6 (Independence). Suppose C™ is the independence copula as given in (2.4), then the survival
copula for any non-empty subset S C [ satisfies

CA;“d(u, ey u) =ulsl, 0<u<l.

Thus, (3.1) holds for all such S with |S| > 2, and hence C'™¢ exhibits mutual asymptotic independence.

Example 7 (Marshall-Olkin dependence). In Example 2, we stated that any random vector Z with dependence
given by the generalized MO survival copula CMOW) a5 defined in (2.5) is pairwise asymptotically indepen-
dent. In fact, by Lin and Li (2014, Proposition 3) we can conclude that Z is indeed mutually asymptotically
independent as well.

3.2 Examples: Part Il

In this section, we discuss examples that are pairwise asymptotically independent but may not be mutually
asymptotically independent. This will include a large class of examples from the Archimedean copula and the
Gaussian copula family.

3.21 Archimedean copulas

Recall the Archimedean copula C? defined in Example 3. The following result provides sufficient conditions
on the generator ¢ for a random vector with Archimedean copula C? to possess both pairwise and mutual
asymptotic independence.

Theorem 1 (Archimedean copula with mutual asymptotic independence). Let the dependence structure of an
R<-valued random vector Z with continuous marginal distributions be given by an Archimedean copula C% with
generator ¢ as in (2.8). Suppose ¢ is d-times continuously differentiable and (—D)/¢=(0) < co V j € l4. Then Z
possesses both pairwise and mutual asymptotic independence.

The proof follows directly from Charpentier and Segers (2009, Theorem 4.3). The Archimedean copulas

of Theorem 1 have the property that for any subset S C [; with |S| > 2, the survival copula C\z of the |S|-
dimensional marginal behaves like the independence copula near the tails, that is,

éz(u,...,u) ~u*, ulo,

where the upper tail order of C? is kg = |S| (also follows from Charpentier and Segers (2009, Theorem 4.3)).
In particular, the upper tail order for C% is x = x; ; = d, and hence these copulas are also “nearly independent”
(see paragraph below (1.2)); several popular Archimedean copula models such as the Frank copula, Clayton
copula, and Ali-Mikhail - Haq copula (Charpentier and Segers, 2009, Table 1) fall into this class exhibiting both
pairwise and mutual asymptotic independence. In contrast, there are also Archimedean copulas exhibiting
pairwise asymptotic independence but not mutual asymptotic independence. The following result provides
sufficient conditions on the generator ¢ to obtain such Archimedean copulas.

Theorem 2 (Archimedean copula with only pairwise asymptotic independence). Let the dependence structure
of a random vector Z € R® with continuous marginal distributions be given by an Archimedean copula C% with
generator ¢ as in (2.8). Suppose ¢'(1) = 0 and

L) := —¢'1—u) —ulp(l —u)

is a positive function, which is slowly varying at 0. Then, Z possesses pairwise asymptotic independence but does
not possess mutual asymptotic independence.

The proof follows directly from Charpentier and Segers (2009, Theorem 4.6 and Corollary 4.7). Now, the
Archimedean copulas of Theorem 2 have a different characteristic in the sense that for any subset S C [; with

|S| = 2, the survival copula (’?\;s on the |S|-dimensional marginal behaves as

é\?(u, v u)~ut(u), ulo,
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where ¢ is a slowly varying function at 0 (this follows from Charpentier and Segers (2009, Corollary 4.7)).
Hence, the upper tail order of C? isxg = 1forall S C [; with |S| > 2. To obtain an example of such a copula,
fix some parameter 8 € (0, o0) and define the generator

1—u

Uuy=————, 0u<l
Pelt) = g —wy

Then C% satisfies the assumptions of Theorem 2, resulting in an Archimedean copula with pairwise but not
mutual asymptotic independence; we refer to Charpentier and Segers (2009, Table 1).

3.2.2 Gaussian copula

In Example 4, we observed that any random vector with a Gaussian copula having a positive-definite correlation
matrix has pairwise asymptotic independence. Interestingly, not all such models will have mutual asymptotic
independence. The following theorem provides the exact condition for this.

Theorem 3. Let the dependence structure of an R¥-valued random vector Z with continuous marginal distri-
butions be given by a Gaussian copula CT with positive-definite correlation matrix X. Then, Z exhibits mutual
asymptotic independence if and only if Z;llm > 0/ for all non-empty sets S C .

The proof of the theorem is quite involved, requiring a few auxiliary results based on the recently derived
knowledge on the asymptotic behaviour of tail probabilities of a multivariate distribution with identically dis-
tributed Pareto marginals and Gaussian copula C* in Das and Fasen-Hartmann (2024). Hence the proof has
been relegated to Appendix A. Curiously, the ingredients of the proof allow us to find the tail asymptotics of
the survival copula of any |S|-dimensional marginal in terms of its tail order.

Proposition 2. Let CT be a Gaussian copula with positive-definite correlation matrix X. Then for any subset
S C Iy with |S| > 2, we haveasu | 0,

CE(u, ..., u) ~ uSstg(w), (3.4)

where € g is slowly varying at 0 and
ks = min z' %'z
{zeRISI:z>16}

A proof of this result is given in Appendix A as well.
Remark 3. A few interesting features of Proposition 2 and related results are to be noted here.

(a) Although Proposition 2 only gives the tail order of (,A‘g, in fact, the exact tail asymptotics for @E(uvs)
asu | 0 for vg = (Vy)ses, Us € (0, 1), including the slowly varying function are available in Proposition 4
in Appendix A.

(b) The upper tail order kg in (3.4) is obtained as a solution to a quadratic programming problem; the
exact solution is given in Lemma 2 in Appendix A.

(c) With respect to (3.4), for subsets S,T C I; with S C T and |[S]| > 2, it is possible to have (i) xg <
xr, (i) kg = xp, with €g(u) ~ ¢ €r(w),u | 0 for ¢ > 0, and (iii) xg = x7, with €5(u) = o(€(u)),u | 0. In
Example 8, we can observe both (i) and (ii) holding under different assumptions; an example for (iii) with
Pareto marginals and Gaussian copulas is available in Das and Fasen-Hartmann (2024, Remark 5).

(d) InHua and Joe (2011, Example 1), the authors already state that the tail order x of a Gaussian copula
with positive-definite correlation matrix X is x = 17="1 (cf. Joe (2015, Section 4.3.2)). However, to the
best of our knowledge, the aforementioned paper does not specify that £7'1 > 0 is indeed a necessary
condition for the result, since otherwise the statement is not valid; in fact, if ='1 # 0, then x < 17z™11
is possible (cf. Lemma 2).

Example 8. For the purpose of illustration, we provide a positive-definite correlation matrix (with d = 3) for
a Gaussian copula parameterized by a single parameter p which exhibits mutual asymptotic independence for
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only certain values of p and only pairwise asymptotic independence for other feasible values; see Das and Fasen-
Hartmann (2024, Example 1(b)) for further details. Throughout, we denote by ¢ ;(u), j € N, a slowly varying
function at 0. Consider the Gaussian copula C* with correlation matrix

1 p W2
s=| p 1 W20l

V2o V2p 1

where p € ((1 —\17)/8,(1 ++17)/ 8) ~ (—0.39,0.64), which ensures the positive definiteness of . Clearly,
pairwise asymptotic independence holds for all such p values.

(i) Suppose p <1/ (2\/5 —1) ~ 0.55. Then one can check that £™'1 > 0, and hence mutual asymptotic
independence holds as well. In fact, we can find the behaviour of the survival copula (using Proposition 4
or Das and Fasen-Hartmann (2024, Example 1(b))): Asu | 0,

3-(4V2-1)p
CEZ(u,u,u) ~u 1+ ¢, (u). (3.5)

We also find thatas u | 0,

2
6{213}(“’ u) = 6{223}(“’ u) ~ utV ¢y(u), and

2

6{212}(”’ u) ~ utte £5(u). (3.6)

(i) On the other hand, if p > 1/ (2\/5 —1) ~ 0.55, then =1 # 0 and the copula does not have mutual
asymptotic independence. In this case, the behaviour of the two-dimensional marginal survival copulas
will still be given by (3.6), but the tail behaviour as seen in (3.5) does not hold anymore. Now, as u | 0,
we have

2
CZ(u, u,u) ~ ut+e € 4(u).

In fact, we can check that ¢,(u) ~f ¢5(u) as u | 0 for some constant 8 >0 (Das and Fasen-
Hartmann, 2024, Example 1(b)), and hence

Cw,uu) ~ f Cwu), ulo,

also verifying that mutual asymptotic independence does indeed not hold here.

4 k-wise asymptotic independence

The fact that some multivariate models exhibit pairwise asymptotic independence yet not mutual asymptotic
independence naturally prompts an inquiry into the existence of models that lie in between these two notions.
The following definition provides an answer.

Definition 3 (k-wise asymptotic independence). An R¢-valued random vector Z ~ F with continuous
marginal distributions, copula C, and associated survival copula C is k-wise asymptotically independent for a
fixed k € {2,...,d} ifforall S C [; with 2 < |S]| < k, we have

mM =0, V ¢e8,
ul0 CS\{g}(u, ooy u)

where we define 0/0 : = 0. We interchangeably say Z, F, or C possesses k-wise asymptotic independence.

Remark 4. The concept of k-wise asymptotic independence allows us to assess dependence for multidimen-
sional extremes in finer detail. If a random vector Z exhibits k-wise asymptotic independence but not (k + 1)-
wise asymptotic independence, then there exists a combination of exactly k components in Z such that when
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these are large, another component is large as well; moreover, fewer than k large components cannot pro-
duce a large value in another component. Consequently, lower values of k reflect a stronger dependence in the
extremes.

Note that for any d-dimensional copula, d-wise asymptotic independence is the same as mutual asymptotic
independence (and of course 2-wise is the same as pairwise). Again, following Proposition 1, we may check
that mutual asymptotic independence indeed implies k-wise asymptotic independence for all k € {2, ..., d}.
The converse of the previous implication is, of course, not true; the examples in the following section also
show this.

Obviously, an equivalent characterization of k-wise asymptotic independence is the following.

Proposition 3. An R%-valued random vector Z is k-wise asymptotically independent if and only if forall S C I
with |S| = k, the R*-valued random vector Zg is mutually asymptotically independent.

41 Examples

Indeed, within the class of Archimedean copulas as well as the class of Gaussian copulas with dimensions d >
2, we find examples of models that exhibit k-wise asymptotic independence, but not (k + 1)-wise asymptotic
independence given any k € {2,...,d — 1}. Consequently, these models are also not mutually asymptotically
independent. Let us begin with an investigation of a particular Archimedean copula.

411 ACIG copula

This Archimedean copula based on the Laplace transform (LT) of an inverse-gamma distribution, called the
ACIG copula in short, was introduced in Hua and Joe (2011), and operates like this: if Y = X~! and X ~
Gamma(a, 1) for a > 0, then the generator of this Archimedean copula is given by the LT of Y. The expres-
sion of the generator includes the Bessel function of the second kind. Closed-form expressions of the copula
C? and survival copula C? are not easy to write down; nevertheless, from computations in Hua and Joe (2011,
Example 4) and Hua et al. (2014, Example 4.4), we can conclude that for any d > 2, the survival copula of the
ACIG copula with parameter o > 0 has the following asymptotic behaviour:

C*(u,...,u) ~ Bgud,  ulo, (4.1)

where x; = max{l, min{a, d}} and 8, > 0 is a positive constant. Here, x; is the tail order of the copula. There-
fore, if « <1 then x; =1 for all d > 2, and if a > 1, then x; = min(«, d). Note that by the exchangeability
property of Archimedean copulas and (4.1), we know that for any S C [; with |S| > 2,

@?(u, v, ) ~ Bigutsl,  u ] 0.

Thus, we may conclude that for an ACIG copula with parameter a > 0, the following holds:

(i) If0 < a < 1, the ACIG copula exhibits asymptotic upper tail dependence.

(i) If1 < a < d — 1, the ACIG copula exhibits pairwise asymptotic independence but not mutual asymp-
totic independence. Ifadditionally, k — 1 < a < kfork € {2, ...,d — 1}, then the ACIG copula still exhibits
i-wise asymptotic independence for all i € {2, ..., k}, but not (k + 1)-wise asymptotic independence.

(iii) If @« > d — 1, the ACIG copula exhibits k-wise asymptotic independence for all k € {2,...,d}, and
hence exhibits mutual asymptotic independence as well.

412 Gaussian copula

The Gaussian copula has been popular in modelling dependence in a wide variety of applications. It turns out
that a class of Gaussian copula models is also able to capture the presence of k-wise asymptotic independence
and not (k + 1)-wise asymptotic independence. This is demonstrated in the following result, whose proof is
given in Appendix B.

Theorem 4. Supposek € {2,...,d —1}and S, C S, C{1,...,d}with |S;| = kand |S,| = k + 1. Then there exists
a Gaussian copula C* and a positive-definite correlation matrix Z, such that C* exhibits k-wise asymptotic inde-
pendence but not (k + 1)-wise asymptotic independence and for any x > 0,
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@§ W, ..., U, XU, U, ..., U)
lim——— =1, (4.2)
ul0 C?l W, ..., u)

where xu is placed at the unique elementin S, \ S;.

This theorem not only provides the existence of a k-wise asymptotically independent Gaussian copula
but also gives the striking feature of the copula behaviour in (4.2), where, surprisingly, the value of x has no
influence.

This means that for a random vector Z with Gaussian copula CZ, as given in Theorem 4, and identically
distributed marginals, large values in all the S; components result in an extremely large value in the single
component of S, \ S;; hence there is a strong dependence between the extremes of the components of S; and
that of S, \ S;. All components in S; must be large at the same time; only a few components that are large do
not result in a large value in the S, \ S; component. This is demonstrated quite nicely in the following example,
which was used in the proof of Theorem 4.

Example 9. Let the correlation matrix of the Gaussian copula be given as

I, 1,
Ez[ dT1 Plg 1]’
P, 1

for some p € (0,1). Then, for p € (1/(k — 1),1/(k — 2)), the Gaussian copula C* is (k — 1)-wise asymptotically
independent but not k-wise asymptotically independent (see proof of Theorem 4); therefore, if the first (k —
1) components are jointly large, then the last component is also large. But if we consider fewer components
than (k — 1) components to be large, they have no effect on the size of the last component. Note that here k —
1=[p '] =inf{m € N : p~! < m}. Thus, for a high value of p, fewer components, namely only the first [p~!]
components, result in a large value in the last component. Although p provides a measure of linear dependence,
in this example it also measures the dependence in the extremes, which is reflected in the degree [p~!] of
asymptotic independence.

For the derivation of worst case measures for risk contagion under distributional ambiguity in the next
section, Theorem 4 turns out to be indispensable.

Remark 5. It is important to mention here that although most popular copula families are bivariate in nature,
Joe (2015, Chapter 4) lists multiple extensions of bivariate copulas to general high dimensions; many such
copulas can be explored for creating models with particular levels of asymptotic independence as necessitated
by the context.

5 Implication on risk management under distributional ambiguity

In financial risk management, a variety of risk measures are used to assess the risk contagion between dif-
ferent financial products, including stocks, bonds, and equities. Such contagion or systemic risk measures
are often based on conditional probabilities and range from computing regular conditional tail probabilities
to CoVaR, marginal expected shortfall (MES), marginal mean excess (MME), and more; see Das and Fasen-
Hartmann (2018) and Adrian and Brunnermeier (2016) for details.

Here, we focus on two such measures of risk contagion based on specific conditional tail probabilities and
conditional tail quantiles. First, recall that for a random variable Z, the Value-at-Risk or VaR atlevel 1 —y €
(0,1) is defined as

VaR,(Z) :=inf{y eR:P(Z>y)<y}=inf{y eR : P(Z<y)>1-v}

the (1 — y)-quantile of Z where inf@J := oo (cf. Embrechts et al. (2024)). If Z ~ F and F is continuous and

strictly increasing, then F is invertible with inverse F~!, and for 0 < y < 1, we have VaR,(Z)=F 11 -yp).
Consider the returns from a portfolio of d > 1 stocks being given by the random vector Z = (Z1, ..., Z,) ~ F.

Suppose we are interested in measuring the risk of Z; having an extremely large value, given that all variables
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in some non-empty subset J C [; \ {1} with |J| = ¢ are at extremely high levels. This can be captured via the
following conditional tail probability (CTP)

P(Z, >tZ; >, Vj €J), (5.1)
as t — oo. Alternatively, for a level y € (0, 1), we are interested in the risk measure
CTP,(Zy;) :=P(Z, > VaR,(Z))|Z; > VaR,(Z)), Vj €]), (5.2)

as y — 0. Note that (5.1) and (5.2) are equivalent if all the marginal random variables Z1, ..., Z; are identically
distributed. For convenience, we will focus on the measure CTP, as defined in (5.2).

A second measure of risk contagion we are interested in is a generalization of the VaR to the multivariate
setting given by the Contagion Value-at-Risk or CoVaR at confidence level (y;,y,) for y1, 7, € (0,1), defined as

CoVaR,, , (Zy;) :=inf{z € R, : P(Z; > z|Z; > VaR,,(Z)), Vj €J) <y} (5.3)

The risk measure CoVaR was introduced in the bivariate setting for J = 2 to capture risk contagion, as well as
systemic risk by Adrian and Brunnermeier (2016) where they set the conditioning event to be Z, = VaR, (2,);
this was later modified by Girardi and Ergiin (2013) to Z, > VaR, (Z,) with the restriction that y; = y,; this lat-
ter definition has been widely used in dependence modelling (Nolde et al., 2022; Mainik and Schaanning, 2014;
Hirdle et al., 2016; Das and Fasen-Hartmann, 2025) and is generalized in our definition given in (5.3).

In risk management applications, computing quantities like CTP and CoVaR requires knowledge of the
joint distribution of the risk vector Z. Even if the univariate distributions of all the marginal variables can be
estimated, the joint distribution often remains unknown and relatively more involved for estimation purposes.
An approach often used is to provide a worst case value for such risk measures under certain constraints on the
joint distribution of the variables. Naturally, for such tail risk measures, constraints can be provided in terms of
their joint asymptotic tail behaviour, including pairwise, mutual, or k-wise asymptotic independence. It turns
out that under different constraints, we may obtain a different tail behaviour for the worst case measures. To
further this discussion, let us define 2 to be the class of all probability distributions in R with continuous
marginal distributions.

For k € {2, ..., d}, define the classes of distributions

P, :={F € P : F possesses k-wise asymptotic independence},
and similarly, the restriction of 2, to distributions with Gaussian copulas,
Ny := P, n{F € P : F has a Gaussian copula C* with I positive definite}.

Note that 2, models the class of pairwise asymptotically independent random vectors, whereas ?; models
the class of mutually asymptotically independent random vectors. By Definition 3, it is easy to check that

POP,D2P;2---2P; and POIN,DIN32D---2Ny. (5.4)

Furthermore, these classes are non-empty, since Ny # @ by Theorem 4 and V', C P,.

Since the joint distributions are unknown, we may want to find the worst case CTP or CoVaR in such cases
where F € P, C PorF € Ny, k € {2,..., d}. First, we present the result for the CTP. The proofs of this theorem
and all subsequent results in this section are given in Appendix C.

Theorem 5. Suppose an R9-valued random vector Z = (Z1,...,Z4) ~ F,d > 2, has continuous marginal distri-
butions. Furthermore, supposeJ C 15 \ {1} with |J| = €.

(@) If ke {t +1,..,d}, then

sup lim CTP,(Z,;) = sup lim CTP,(Z;;) = 0.
FeNy 710 FePy 710

b) If ke {2,...,¢}, then

sup lim CTP,(Z,;) = sup lim CTP,(Z;;) = 1.
FeNy 710 FePy 710
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The results indicate a qualitatively different behaviour of the worst case CTP depending on whether the tail
dependence exhibits k-wise asymptotic independence with k > |J| vis-a-vis k < |J|. When k > |J|, CTP,(Z;)
converges to 0 as y | 0, suggesting that extremely large losses of Z; for all j € J have a negligible influence
on extremely large losses of Z;. In contrast, when k < |J|, there exists a k-wise asymptotically independent
distribution function F, which is also pairwise asymptotically independent, such that extremely large losses
of Z; for all j € J result, with a probability converging to 1, in an extremely large loss of Z;. In particular, for
the Gaussian copula, that is an astonishing result because it is in contrast to the belief that there are no joint
extremes. This shows that for measuring risk contagion, it is important to distinguish between these different
concepts of tail independence and that assuming an improper notion of asymptotic independence for our risk
portfolio may lead to either underestimation or overestimation of the risk contagion.

In the following, we investigate the asymptotic behaviour of the measure CoVaR. For technical reasons,
we restrict the class P, slightly; in particular, we will assume that F,;, the distribution of Z;, is Pareto-
distributed, that is, F;(z) = 1 — z™%, z > 1, for some & > 0. Suppose P :={F € P : F, is Pareto-distributed}.
For k € {2, ..., d}, define the classes

Cs(x7,7, s
P ep Fer s sup STV v vxslca,
re@x1] Cs(¥, ¥, -5 ¥)

and

Ny =N NP CN.

Remark 6. Instead of assuming that F; follows a Pareto distribution, it is possible to consider a broader class,
allowing F; to have a regularly varying tail. However, this approach makes the proofs more technical without
providing any further valuable insights. Hence, we have shown our results for the smaller class P}, for the
purpose of exposition.

Although we reduce the class P, to P, it still remains quite large and contains, in particular, k-wise asymp-
totically independent Gaussian copulas (with F; being Pareto-distributed).

Lemmal. N} C P fork € {2,...,d}.

By restricting our consideration to the sets P} and N}, we derive the subsequent result concerning the
asymptotic behaviour of the CoVaR.

Theorem 6. Suppose an R¢-valued random vector Z = (Zy, ..., Z4) ~ F, d > 2, has continuous marginal distri-
butions and the marginal F, is a Pareto distribution. Furthermore, let J C 4\ {1} with |J| = €.

(a) If k e {¢ +1,...,d}, then for any y, € (0,1),

CoVaR,, ,,(Zyy) CoVaR,, , (Zy;)
sup lim ——72 I sup lim —— 7 2
Feni 7210 VaRy,(Z;) pep; 7210 VaR,,(Zy)
(b) If k € {2, ..., ¢}, then for any v, € (0,1),
. CovaRyl,yz(ZM]) CoVaR},M,Z(le])
sup lim———2 —" = sup lim————— 2 —" =
FeNy r2lo VaR,, (Z1) FeP} r2l0 VaR, Z)

Similar to the case of finding the worst case CTP, we observe that the worst case CoVaR also has a qualita-
tively different behaviour depending on whether the tail dependence exhibits k-wise asymptotic independence
with k > |J|, orwith k < |J|. When k > |J|, the ratio CoVaR, , (Z;;)/VaR,,(Z;) converges to 0, reflecting that
CoVaR,, ,,(Z,);) increases at a negligible rate in comparison to VaR, (Z;) as y, | 0 and that CoVaR,, , (Z;;) is
relatively small; in other words, the required risk reserve capital is low. Butifk < |J|, thereexistsaF € N} C P
where CoVaR,, ,,(Z;);)/VaR,,(Z;) converges to oo, so that CoVaR,, ., (Z;);) may increase much faster to co than

172
VaR,, (Z,) asy, | 0, giving a relatively high CoVaR,, ,.(Z;);) and a higher reserve risk capital requirement.
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Remark 7. Computations analogous to the ones carried out in this section can also be done for other measures
of risk contagion, such as the marginal expected shortfall (MES), or the marginal mean excess (MME) (Cai
et al., 2015; Das and Fasen-Hartmann, 2018). Note that, as when computing CoVaR, we need to restrict P, to
smaller classes satisfying various technical conditions. We leave these pursuits for interested readers to explore.

6 Conclusion

In this article, we provided a notion of multivariate asymptotic independence, which is useful in comparing
extreme events in different dimensions beyond mere pairwise comparisons (which have traditionally been used
in the literature). This parallels the dichotomy of mutual independence vis-a-vis pairwise independence for
multivariate random vectors. We believe this new notion also provides an alternate pathway for characterizing
extremal dependence for high-dimensional problems relating to tail events. We have illustrated this idea using
examples of particular copula models, including a few from the Archimedean family, along with the Gaussian
and MO copulas. The copulas considered often exhibit at least pairwise asymptotic independence if not mutual
asymptotic independence. For both Archimedean and Gaussian copulas, we presented examples exhibiting not
only mutual asymptotic independence but also pairwise asymptotic independence without mutual asymptotic
independence. In particular, for the Gaussian copula, this result is quite striking since it is in contrast to the
common belief that the Gaussian copula does not allow joint extremes. We have also introduced the concept of
k-wise asymptotic independence, which generalizes these two notions (pairwise and mutual) and brings them
under the same umbrella. Here we have shown that for any k € {2, ..., d}, there exists a k-wise asymptotically
independent Gaussian copula (which is not (k + 1)-wise asymptotically independent if k < d). Moreover, we
have shown that these assumptions of different notions of asymptotic tail independence significantly impact
measures of risk contagion within a financial system, such as CTP or CoVaR, depending on the specific context.
Overlooking these concepts and assuming merely pairwise asymptotic independence for models may often lead
to a significant underestimation of risks.
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A Proofs of Section 3
First, we present some auxiliary results required for the proof of Theorem 3. The following lemma is from
Hashorva and Hiisler (2002, Proposition 2.5 and Corollary 2.7).

Lemma?2. LetX € R bea positive-definite correlation matrix. Then forany S C Iy with |S| > 2, the quadratic
programming problem

Pe1: min  z2'Z5'z
S {zeRISI:z>16}
has a unique solution e’ € R? such that
ks i= min z'Z;'z=e5 Tz es > 1.

{zeRIS|:z>16}
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Moreover, there exists a unique non-empty index set Iy C S with Jg := S \ I such that the unique solution e’ is
given by

s
€

s 115’

19— -1
eis = _[ZS ]]Sl‘]S[ZS ]fs]glls Z 1]5’
-1 -1 -1 -1 . . -1
and 1; 21, =€ TEg €S =xg > laswell as 2 25 e = ZISZIS 1;, V z € RI|. Also, defining b} := e[ 21 1,
fori € I, where e; has only one nongzero entry 1 at the ith co-ordinate, we have hf >0Viel.
Lemma 3. Let = € R4 be q positive-definite correlation matrixand I := I, , be defined as in Lemma 2.
(a) Suppose 1> 0. Then forany S C Iy with S # 1y, the inequality x;, > xg holds.

(b) Suppose 7114 0. Then I # Ig and for any set S # Iy with I C S C [ the equality x;, = xg holds. For
S C g with S° N1 # P we have I = I and the inequality x;, > xg holds.

Proof. We start with some preliminary calculations. Suppose S C I; with S N I # . Lete* : = ed be the unique
solution of the quadratic programming problem Py -1 such thatx;, = e Tz 'e*, e* > 1and [ 'e*] se # 0gc since

[=7'e*]; > 0; and S N1 # @ (cf. Lemma 2). First, define &g : = e, + [2—1]§C1 [E_l]scse; and note that
eg = e + [2_1];} [E_l]scse§
= (1= seee + 27 Tsese)
== [z‘le*]sc # Oge. (A1)
Finally, the Schur decomposition (Lauritzen 2004, eq. (B2))
(275 = 25" + 27 Tsse 27 G 2 Does

along with (A1) implies that
K, =e T ler

_ ~Tra—-17 ~

= e;TZsleg + eg [Z 1]Sces (AZ)
Ty—1 R O P,

>e;' Y eg > zrgn;{ls ZZg Zs = K. (A3)

(@) If=7'1> 0, then I = I, and e* = 1; see Hashorva and Hiisler (2002, Proposition 2.5). Thus, any S C I,
with S # [; satisfies S° N I # @ and the result follows from (A3).

(b)If= "1 # 0, then I C [, and I # I,; see Hashorva and Hiisler (2002, Proposition 2.5). Hence, Lemma 2
and EI_III > 0; imply that

Ky, = IITZI_IIIT = x;.
Further, we already know from the Schur decomposition (A2), which is valid independent of the choice of the

set S, that x;, > xg > x;. Hence the only possibility is that x;, = xg = x;. The second statement was already
proven in (A3). O

The next proposition provides the tail asymptotics for the Gaussian survival copula using Das and Fasen-
Hartmann (2024, Theorem 1).

Proposition 4. Let C* be a Gaussian copula with positive-definite correlation matrix £ and S C 14 with |S| > 2.
Let xg, I, and h3, where s € I, be defined as in Lemma 2. Now, with vg = (05)ses Where v € (0,1),Vs € S, we
haveasu | 0,

A xS xs—ls| ns
C(uvg) = (1 + o()Ys2m) 2 us(—2logu)” 2 [ ] vy", (A4)

SElg

where Yg > 0 is a constant.

DOI: 10.1002/¢js.70036 wileyonlinelibrary.com/cjs

85U80|7 SUOWILIOD BAIEa.D 8|qed![dde 8Ly Aq peusenob ae S9ole YO 8SN JO Sa|NnJ 10} A%euq1Taul|UO /8|1 UO (SUORIPUOO-PUE-SW.BI W0 A8 | 1M AlRIq | BU1 [UO//:SANY) SUORIPUOD Pue SWie 1 8y 89S *[5202Z/2T/ST] Uo AkeiqiTauliuo A8|im ‘@1bojouyde | and Iminsul jeynsiest Aq 9800, 'S0/200T 0T/I0p/w0 A8 |imAeiq Ul |uo//SAny woly papeoumoq ‘0 ‘XGy680.LT


https://onlinelibrary.wiley.com/journal/1708945x

180f23 | DAS AND FASEN-HARTMANN

Proof. Since (A4) is independent of the marginals of the distribution, consider a random vector Z ~ G in R4
with standard Pareto marginals, that is, G;(z) = P(Z; <z) =1—-z"',z > 1, V] € 4, and dependence given by
the Gaussian copula C*. Using Das and Fasen-Hartmann (2024, Theorem 1) we have that for zg = (z,),eg With
z,>0Vse S,ast — oo,

5 slsl o S
P(Z;>tz;, Vse€S)=1+0(1))Ys(2m)2t7*s(2log(t)) 2 H zg Y, (A5)
s€lg
where Yg > 0 is a constant. Then
@?(uvs) =P(Gs(Z) > 1—uv, Vs €S)=P(Z, >u"lv;!, Vs €S),
and the result follows immediately from (A5). O

Lemma 4. Let C* be a Gaussian copula with positive-definite correlation matrix . Then there exists a € € I
such that

— W) e 01 (A6)
4 Cﬂd\{f}(u,...,u)

ifand only if £7'1 # 0.

Proof. <: Suppose 1 % 0. From Lemma 3(b) we already know that I # ;. Now let £ € [; \ I. For S =[5 \
{¢}, wehave I C S C Iy, with I = Iy and x;, = x (cf. proof of Lemma 3). Now, using (A4) we have

m Cx(u, ..., u) Yy, >0
10 A Y ’
HOCH (s 1) 1g\{¢}

=: Suppose there exists ¢ € [, such that (A6) holds. We prove the statement by contradiction. By way of con-
tradiction, assume £ '1 > 0 holds. Lemma 3 says that for any set S C I3 with S # [, the inequality x;, > xg
holds. Again, using (A4) we have with x* := %), —x,\;sy and d* 1= d — |j\i¢3,

Cu, ..., Y . Kt —d*
lim— @, .., ) = lim—2 (V2mu)© (=2logu) 2 =0,
WO Ch () 0 Yi\ie}

which is a contradiction to (A6). O

Proof of Theorem 3. The proof follows now from Lemma 4 by using an analogous argument as given in the
proof of Proposition 4. |

Proof of Proposition 2. The proof directly follows from Proposition 4 where a representation for ¢ is also
provided. |

B Proofs of Section 4

Proof of Theorem 4. First, we define for some p € (—%, ﬁ) the R*+DXK+1D) yalued positive-definite matrix

I 1
r,:= kT Pk’
plk 1

with inverse

2
P T —P
I + 1,1 1,
-1 _ 1—kp2 7k 1-kp?
l"p = _g - 9 . (B1)
1-kp2 "k 1—kp?
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Note that

1-p 1-p 1-kp"
1—kpe? "1 —kp? 1—kp?

-1
I

If we restrict p € [i, %), then the first k components of r;llk 41 are positive and the last component is

negative, resulting in F;llkﬂ # 0i,1, and hence due to Theorem 3, a Gaussian copula C'¢ with corre-
lation matrix T, is not mutually asymptotically independent, and thus not (k + 1)-wise asymptotically
independent.

Now suppose that X € R&+DX(k+D j5 3 random vector with Gaussian copula C'», where p is further

restricted to p € i, min ﬁ, i,() . Consider a subset S C {1, ..., k + 1} with |S| = j such that j € {2, ..., k}.

k
« Ifk+1 € S, considering k + 1 to be the final element of S, we have
) T
-1, = 1-p 1-p 1-(—Dp .
P 1= -Dp2 " 1= (- Dp? 1= (j — 1)p? !

« Ifk +1¢&S,then [[',]g =I; and hence

-1 _
[[,15'1,=1;>0,

Thus Theorem 3 implies then that X;, for any J C {1, ..., k + 1} with |J| < k, is a mutually asymptotically
independent random vector in R’. Finally, a conclusion of Proposition 3 is that X is k-wise asymptotically inde-
pendent in R&+DXK+1) although it is not (k + 1)-wise asymptotically independent. From Lemma 2, we know

that I{l k+1} = {1, ey k} = I{l k}> K{l k+1} = K{l ..... k} = k, I’lfl """ ket 1} = h;{l """ K =1forie {1, ey k}, and, ﬁnally,

...............

from Proposition 4 that

..........

After all, define the (d X d)-dimensional correlation Z, as a block diagonal matrix having in the first (d —
(k +1)) x (d — (k + 1)) block the identity matrix, zeros in the two off-diagonal blocks, and, in the last (k + 1) X

(k +1)block ', with p € (% min <ﬁ ﬁ )) thatis, the random vector Z* = (Z7, ..., Z;) with Gaussian copula

C?* has the property that Z*, ..., Z* are an independent sequence which is also independent of the random

d—(k+1)
vector X = (Zz_k, s Z;) in R&+DX(K+D) with Gaussian copula C'». Then by analogous arguments as above, A
is a k-wise asymptotically independent random vector in R¢ although it is not (k + 1)-wise asymptotically
independent and

o
o G gy x11)
11?01 —~ .
u P
C{d—k ..... d—l}(ua ey u)

..........

Zy\s, = Z; d—k—1; and satisfies the requirements of the theorem. O

.....

C Proofs of Section 5
Proof of Theorem 5. For ease of notation, we define J* :=J U {1}. By definition,
CTP,(Zy)) = P(Z, > VaR,(Z))|Z; > VaR,(Z)), Vj € )
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=P(Z, > F{'A-y)lzZ; > Fj—l(l -y, Vjel)

_ é\p(y, s V)
é}(y, s V)

which does not depend on the marginal distributions.
(a) Since Ny C P, and probabilities are non-negative, it is sufficient to show the statement for ;.. But
for any F € Py, by the definition of k-wise asymptotic independence and because |J*| =¢ + 1 < k, we
have lim, ,, CTP,(Z,};) = 0, and thus (a) holds.

(C1)

(b) If d = 2, there is nothing else to prove. Hence, now assume d > 3. Since 0 < CTP,(Z;;) < 1, to show
(b), it is sufficient to provide an example of F € N, C N, C P, for k € {2, ..., ¢}, such that for Z ~ F, we
have lim, |, CTP,(Z;|;) = 1. To this end, we will choose F with a Gaussian copula C? and positive-definite
correlation matrix X as identified in Theorem 4, such that F exhibits ¢-wise asymptotic independence but
not (¢ + 1)-wise asymptotic independence, and for any x > 0

Cr(xy, 7y ?)
im ———————
o Cr(y, ..., y)

Hence, F € Ny, and by (C1) we have also

=1

é\z*( LRI )
lim CTP (2y,,) = lim 222"
yl0

1,
10 CX(y,....y)

which is what we wanted to show.
O

Proof of Lemma 1. By definition, we have the relation Ny C N C P,. Since distributions in V) have a Pareto-
distributed marginal in the first component, it remains to show that for any Gaussian copula CZ, where X is a
positive-definite correlation matrix,

CE(xy, 7, 7)
<

sup  — 0, (C2)
re0x11 CS(, 75 e s 7)

forall S C [, and for all x > 1. However, a conclusion from Proposition 4 is that for any S C [, there exists a
constant h} > 0 (where b = 0if 1 & I ) so that for any x > 0,

C5(X7.7,51) s
lm,\z— =X1,
o Cs(r.v,-7)
implying (C2). O
Proof of Theorem 6. First, note that

COVaRyl,yz(le‘]) = il’lf{Z S R+ . P(Zl > ZIZJ > VaR},Z(Zj), V] (S J) S )/1}
=VaR,,(Z))inf{z € R, : P(Z, > zVaR,,(Z})|Z; > VaR,,(Z;), Vj €J) < 11}
Suppose Z, is Pareto(a)-distributed, a > 0. Then the previous equation reduces to

~ 1
Cre(Z a¥2,725572) <

CoVaR,, ,.(Zy;) = VaR,,(Z))inf{z € R, : ——— <71 (C3)
Cr(ra,72)

where J* = J U {1}.
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(a) Suppose F € Py and k € {€ +1,...,d}. Lete € (0,7,) and

Cr(eVyy, ...,
K:= sup YY)

~ (C4)
76(0,61/"‘] C]* (7/, Vseees J/)

which is finite for F € ?Z by the definition of ?Z. Furthermore, F € ?Z C P, implies that there exists a
70(€) € (0,7;) such that

é\ * LA A
M < I% V¥ € (0,70(e)). (©
Ci0,7, s 7)

Therefore, from (C4) and (C5), for all 0 < y, < min(e'/%, y,(¢)) we have

~ 1 ~ 1 A

Cre(€ ay2, 725, 72) _ Cre(e ay2, V255 72) Cps(¥2, -0, 72) <x. 5 <y
A~ - A~ A~ — e 1>
Cr(r2s s 72) Cr(r2 > 72) Cr(y2s-s72) K

and finally, using (C3), we get

CoVaR, ,,(Zy))
VaR, (Z)
Since € € (0,y;) is arbitrary, this results in
lim CoVaR,, ,,(Zy;) _
nlo  VaR, (Z;)
Finally, from Lemma 1 we already know that N'; C P, thus the result is true for N}, as well.
(b) We will constructa Z ~ F € N, so that
. COVS.RJ,”,2 (lel)
lim——————— =
r2l0 VaR,, (Zy)

which shows the statement. To this end, we will choose Z ~ F, which has a Gaussian copula C* with
positive-definite correlation matrix X as in Theorem 4, such that F exhibits ¢-wise asymptotic indepen-
dence but not (¢ + 1)-wise asymptotic independence and for any x > 0,

C= (xu,u, ..., u)
lim—l g (C6)
wlo C¥(u, ..., u)

Additionally, suppose that the marginal F; is Pareto(a)-distributed. Then, F € N, C N C P for k €
{2, ..., t}. Because of (C6), for any M > 0, there exists a y,(M) € (0, 1) such that

1
CJZ*(M “Y2, Y25 e ’YZ) S y1+1
é\;‘(yb 7Y2) 2

From this, we get that V y, € (0,y,(M)),

V7, € (0,7,(M)).

1
CoVaR, , (Z;)) Cr(z ayy ¥,
71,72 \“1|J —inflzeR, : J(A V2:V2 ¥2) <y t>m,
VaR,,(Z1) Cr(y2s-es72)
implying
CoVaR,, , (Zy;)
lim inf — 727
7210 VaR,,(Z;)
DOI: 10.1002/¢js.70036 wileyonlinelibrary.com/cjs
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Since M > 0 is arbitrary, we have

lim CoVaR,, ,,(Zy;) _
r2l0 VaR,, (Z;)

s

exhibiting the desired property for our chosen F and, hence proving the result.
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