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Abstract In extreme value theory, the presence
of asymptotic independence signifies that joint
extreme events across multiple variables are unlikely.
Although well understood in a bivariate context,
the concept remains relatively unexplored when
addressing the nuances of simultaneous occurrence
of extremes in higher dimensions. In this article, we
propose a notion of mutual asymptotic independence
to capture the behaviour of joint extremes in dimen-
sions larger than two and contrast it with the classical
notion of (pairwise) asymptotic independence. Addi-
tionally, we define 𝑘-wise asymptotic independence,
which captures the tail dependence in between pair-
wise and mutual asymptotic independence. The con-
cepts are compared using examples of Archimedean,
Gaussian, and Marshall–Olkin copulas, among oth-
ers. Finally, we discuss the implications of these new
notions of asymptotic independence on assessing
the risk in complex systems under distributional
ambiguity.

Résumé Dans le cadre de la théorie des valeurs
extrêmes, la notion d’indépendance asympto-
tique traduit le fait que la survenue simultanée
d’événements extrêmes sur plusieurs variables
est peu probable. Bien que ce concept soit bien
maitrisé en dimension bivariée, son étude demeure
limitée lorsqu’il s’agit d’appréhender la cooccur-
rence d’événements extrêmes dans des dimen-
sions supérieures. Cet article introduit la notion
d’indépendance asymptotique mutuelle pour ca-
ractériser le comportement conjoint des valeurs
extrêmes en dimension supérieure à deux, par
opposition à la notion classique d’indépendance
asymptotique par paires. Les auteurs introduisent
également la notion d’indépendance asymptotique
entre k-uplets, qui permet de mettre en évidence
des formes intermédiaires de dépendance extrême,
situées entre l’indépendance asymptotique par
paires et l’indépendance asymptotique mutuelle.
Ces différentes notions sont illustrées et comparées
à travers plusieurs exemples, notamment les copules
archimédiennes, gaussiennes et de Marshall-Olkin.
Enfin, les implications de ces nouvelles notions
d’indépendance asymptotique sont examinées dans
le contexte de l’évaluation du risque pour des sys-
tèmes complexes affectés par une incertitude sur la
loi de probabilité sous-jacente.

Keywords Asymptotic independence; copula models; Gaussian copula; multivariate extremes; risk contagion.
MSC2020 Primary: 62H05; 62H20; 62E20; Secondary: 62G32; 91G45.
@ Corresponding author vicky.fasen@kit.edu

© 2025 The Author(s). The Canadian Journal of Statistics | La revue canadienne de statistique published by Wiley Periodicals LLC on behalf of
Statistical Society of Canada | Société statistique du Canada.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.

DOI: 10.1002/cjs.70036 wileyonlinelibrary.com/cjs

https://orcid.org/0000-0002-6172-8228
https://orcid.org/0000-0002-5758-1999
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/journal/1708945x
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcjs.70036&domain=pdf&date_stamp=2025-12-12


2 of 23 DAS AND FASEN-HARTMANN

1 Introduction
In many multivariate models, we observe that the likelihood of a joint occurrence of extreme values in two
or more variables is negligible in comparison to the occurrence of an extreme value in one variable. In this
context, the notion of asymptotic independence looms large in the study of joint extreme values in probability
distributions, although mostly restricted to the bivariate set-up. A random vector (𝑍1, 𝑍2) ∈ ℝ2 with identically
distributed marginals is asymptotically (right-tail/upper-tail) independent if

P(𝑍1 > 𝑡, 𝑍2 > 𝑡) = 𝑜(P(𝑍1 > 𝑡)), 𝑡 → ∞, (1.1)

or, equivalently, P(𝑍1 > 𝑡|𝑍2 > 𝑡) → 0 as 𝑡 → ∞. For the rest of this article, we focus only on extremes in the
non-negative quadrant and drop the terms right-/upper-tail for convenience.

Often called Sibuya’s condition, (1.1) was shown by Sibuya (1960) for bivariate normal random vectors
with any correlation 𝜌 < 1. Such a limit behaviour has also been found to hold for bivariate distributions
with an arbitrary choice of marginals possessing a variety of dependence structures, including the Frank cop-
ula, Ali–Mikhail–Haq copula, Gaussian copula, and Farlie–Gumbel–Morgenstern copula; see Ledford and
Tawn (1996, 1998), Coles et al. (1999), and Heffernan (2000). It is widely believed that the presence of asymp-
totic independence hinders the computation of joint tail probabilities, and this has led to a variety of tech-
niques for modelling and estimating rare tail probabilities when such a property is present; see Ledford and
Tawn (1996), Resnick (2002), Ramos and Ledford (2009), Lehtomaa and Resnick (2020), Das et al. (2013), and
Das et al. (2022). Nevertheless, for random vectors in dimensions higher than two, limited expositions are avail-
able, and multivariate asymptotic independence is often understood to be (1.1) holding for all pairs of variables,
which we call pairwise asymptotic independence. Such a notion of multivariate asymptotic independence may
have its origins in the study of extremes. For instance, in Resnick (2008, Chapter 5.5), a multivariate distribution
is called multivariate asymptotically independent if it is in the maximum domain of attraction of a multivariate
extreme value distribution with independent marginals. Additionally, it is shown that such a characterization of
“multivariate asymptotic independence” is equivalent to having “pairwise asymptotic independence” (assum-
ing identical marginals in the maximum domain of attraction of a univariate extreme value distribution); see
Resnick (2008, Proposition 5.27) and Galambos (1978, Corollary 5.3.1). In this article, we show that asymptotic
tail independence often has a much subtler form that goes beyond pairwise asymptotic independence.

Asymptotic independence for bivariate joint tails is also popularly understood using the coefficient of tail
dependence 𝜂 defined in Ledford and Tawn (1996). If 𝑍1 and 𝑍2 are identically unit Fréchet-distributed with
distribution function 𝐹(𝑧) = e−1∕𝑧, 𝑧 > 0, and

P(𝑍1 > 𝑡, 𝑍2 > 𝑡) = 𝑡−1∕𝜂𝓁(𝑡), 𝑡 → ∞,

where 1∕2 ≤ 𝜂 < 1 and 𝓁 is slowly varying at infinity (i.e., 𝓁(𝑡𝑧)∕𝓁(𝑧) → 1 as 𝑡 → ∞, ∀ 𝑧 > 0), then 𝜂 represents
this coefficient of tail dependence. According to Ledford and Tawn (1996), (i) 𝜂 = 1∕2 and 𝓁(𝑡) ≥ 1 signifies
near independence, (ii) 𝜂 = 1 and 𝓁(𝑡) ↛ 0 as 𝑡 → ∞ signifies upper tail dependence, and, finally, (iii) either
1∕2 < 𝜂 < 1, or 𝜂 = 1 and 𝓁(𝑡) → 0 as 𝑡 → ∞ signifies positive association.

The coefficient of tail dependence is a two-dimensional concept and has been extended to 𝑑 dimensions as
upper tail order by Hua and Joe (2011) through the survival copula. Prior to further discussions, we review the
notions of copula and survival copula.

A copula 𝐶 ∶ [0, 1]𝑑 → [0, 1] is a multivariate distribution function with identical uniform [0, 1]marginals.
From Sklar’s Theorem (Sklar, 1959; Nelsen, 2006; Durante and Sempi, 2016), we know that for any 𝑑-
dimensional random vector Z = (𝑍1, … , 𝑍𝑑)with distribution function 𝐹 and marginal distributions 𝐹1, … , 𝐹𝑑,
there exists a copula 𝐶 ∶ [0, 1]𝑑 → [0, 1] such that

𝐹(𝑧1, … , 𝑧𝑑) = 𝐶(𝐹1(𝑧1), … , 𝐹𝑑(𝑧𝑑)),

for (𝑧1, … , 𝑧𝑑) ∈ ℝ𝑑, and if the marginals are continuous, the copula is uniquely given by

𝐶(𝑢1, … , 𝑢𝑑) = 𝐹(𝐹←1 (𝑢1), … , 𝐹←𝑑 (𝑢𝑑))

for 0 < 𝑢1, … , 𝑢𝑑 < 1, where
𝐹←𝑗 (𝑢𝑗) ∶= inf{𝑧 ∈ ℝ ∶ 𝐹𝑗(𝑧) ≥ 𝑢𝑗}

is the generalized inverse of 𝐹𝑗 for 𝑗 ∈ {1, … , 𝑑}. In this article, we are particularly concerned with the probabil-
ity of joint extremes where the survival copula 𝐶 ∶ [0, 1]𝑑 → [0, 1], which is also a copula, plays an important
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role; see Durante and Sempi (2016, Chapter 1), McNeil et al. (2015, Section 5.1.5), and Nelsen (2006, Section
2.6). The survival copula 𝐶 satisfies

P(𝑍1 > 𝑧1, … , 𝑍𝑑 > 𝑧𝑑) = 𝐶(𝐹̄1(𝑧1), … , 𝐹̄𝑑(𝑧𝑑))

for (𝑧1, … , 𝑧𝑑) ∈ ℝ𝑑, where 𝐹̄𝑗 = 1 − 𝐹𝑗 is the tail function of 𝐹𝑗 for 𝑗 ∈ {1, … , 𝑑}. Of course, the survival copula
and the copula are directly related through

𝐶(𝑢1, … , 𝑢𝑑) = 1 +
∑

𝑆⊆{1,…,𝑑}
𝑆≠∅

(−1)|𝑆|𝐶𝑆(1 − 𝑢𝑗 ∶ 𝑗 ∈ 𝑆)

for 0 ≤ 𝑢1, … , 𝑢𝑑 ≤ 1, where |𝑆| is the cardinality of the set 𝑆 and𝐶𝑆 is the appropriate |𝑆|-dimensional marginal
copula of 𝐶. In dimension 𝑑 = 2, this reduces to

𝐶(𝑢1, 𝑢2) = 𝑢1 + 𝑢2 − 1 + 𝐶(1 − 𝑢1, 1 − 𝑢2)

for 0 ≤ 𝑢1, 𝑢2 ≤ 1.
Returning to the notion of tail dependence, if a 𝑑-dimensional survival copula 𝐶 satisfies

𝐶(𝑢,… , 𝑢) = 𝑢𝜅𝓁(𝑢), 0 ≤ 𝑢 ≤ 1, (1.2)

for some slowly varying function 𝓁 at 0 and some constant 𝜅 > 0, then 𝜅 is called the upper tail order. Following
Hua and Joe (2011), (i) the case 𝜅 = 𝑑 signifies near (asymptotic) independence (for 𝑑 = 2, we have 𝜅 = 1∕𝜂),
(ii) the case 𝜅 = 1 and 𝓁(𝑢) ↛ 0 (as 𝑢 ↓ 0) signifies (asymptotic) upper tail dependence, and, (iii) the case where
1 < 𝜅 < 𝑑 is called upper intermediate tail dependence. From the definition of tail order, we can see that for
𝑑 = 2, the survival copulas in both the cases of “near independence” and “upper intermediate tail dependence”
exhibit asymptotic independence in the sense of (1.1); in this article, we gain a better understanding of these
ideas for cases where 𝑑 > 2.

Note that for independence of multiple random variables, it is well known that “pairwise independence” for
all pairs of random variables is not equivalent to their “mutual independence” (cf. Hogg et al. (2013, Chapter 2)).
In a similar vein, we propose here the concepts of pairwise asymptotic independence in Section 2 and mutual
asymptotic independence in Section 3. With the new notion of mutual asymptotic independence, we explore
the ideas of “near independence” and “intermediate upper tail dependence” through all subsequent dimen-
sions 2, 3, … , 𝑑, going beyond just the 𝑑-dimensional characterization as given in (1.2). For models that lie in
between pairwise and mutually asymptotically independent models, we introduce the concept of 𝑘-wise asymp-
totic independence for 𝑘 ∈ {2, … , 𝑑} in Section 4. In particular, we investigate and compare the various notions of
asymptotic independence and illustrate them using popular copula models. Moreover, we obtain the following
three key results for the popular Gaussian copula, which have broader theoretical and practical implications:

(i) a formulation of precise necessary and sufficient conditions for mutual asymptotic independence
to hold;

(ii) a derivation of the correct tail orders; and

(iii) the existence of Gaussian copula models exhibiting 𝑘-wise asymptotic independence but not (𝑘 + 1)-
wise asymptotic independence.

Besides the Gaussian copula, we also provide examples to show the breadth of asymptotic (in)dependence
behaviour using the Archimedean copula family. We apply the new notions of asymptotic independence in
Section 5 to show its implications on assessing the risk in complex systems under distributional ambiguity.
The different notions of asymptotic independence influence risk contagion in financial systems differently
and hence may lead to an underestimation or overestimation of risk if applied improperly. In particular, we
exhibit this phenomenon using two pertinent conditional risk measures, namely conditional tail probabilities
and Contagion Value-at-Risk or Conditional Value-at-Risk (CoVaR) in dimensions 𝑑 > 2. Finally, in Section 6,
we conclude with some broader implications of interpreting asymptotic independence in this new light. All
proofs for the results presented in this article are provided in the Appendix.
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1.1 Notations
We denote by 𝕀𝑑 = {1, … , 𝑑} an index set with 𝑑 ≥ 1 elements, and the cardinality of a set 𝑆 ⊆ 𝕀𝑑 by |𝑆|. For
a random vector Z = (𝑍1, … , 𝑍𝑑), we write Z ∼ 𝐹 if Z has distribution function 𝐹; moreover, we understand
that marginally 𝑍𝑗 ∼ 𝐹𝑗 for 𝑗 ∈ 𝕀𝑑. For any non-empty sets 𝑆 ⊆ 𝕀𝑑, the copula and survival copula of the cor-
responding |𝑆|-dimensional marginal are denoted by 𝐶𝑆 and 𝐶𝑆, respectively. Moreover, if 𝑑 = 1, we have
𝐶𝑆(𝑢) = 𝐶𝑆(𝑢) = 𝑢 for 0 ≤ 𝑢 ≤ 1. For a given vector z ∈ ℝ𝑑 and 𝑆 ⊆ 𝕀𝑑, we denote by z⊤ the transpose of
z and by z𝑆 ∈ ℝ|𝑆| the vector obtained by deleting the components of z in 𝕀𝑑 ⧵ 𝑆. Similarly, for non-empty
𝑆 ⊆ 𝕀𝑑, Σ𝑆 denotes the appropriate submatrix of a given matrix Σ ∈ ℝ𝑑×𝑑 after removing all rows and columns
with indices in 𝕀𝑑 ⧵ 𝑆. Furthermore, 0𝑑 = (0, … , 0)⊤ and 1𝑑 = (1, … , 1)⊤ are vectors in ℝ𝑑, and I𝑑 is the iden-
tity matrix in ℝ𝑑×𝑑; subscripts are dropped when evident from the context. Vector operations are understood
component-wise: for example, for vectors z = (𝑧1, … , 𝑧𝑑) and y = (𝑦1, … , 𝑦𝑑), z ≤ y means 𝑧𝑗 ≤ 𝑦𝑗, ∀𝑗 ∈ 𝕀𝑑. For
functions 𝑓, 𝑔 ∶ (0,∞) → (0,∞), we write 𝑓(𝑢) ∼ 𝑔(𝑢) as 𝑢 ↓ 0 if lim𝑢↓0 𝑓(𝑢)∕𝑔(𝑢) = 1. Moreover, a function
𝓁 ∶ (0,∞) → (0,∞) is called slowly varying at 0 if lim𝑢↓0 𝓁(𝑢𝑧)∕𝓁(𝑢) = 1, ∀𝑧 > 0.

2 Pairwise asymptotic independence
Note that the definition in (1.1) can be easily generalized to distributions with potentially unequal marginals;
any random vector (𝑍1, 𝑍2) ∈ ℝ2 with continuous marginals𝑍𝑗 ∼ 𝐹𝑗, 𝑗 ∈ {1, 2} is asymptotically independent if

𝐶(𝑢, 𝑢) = P(𝐹1(𝑍1) > 1 − 𝑢, 𝐹2(𝑍2) > 1 − 𝑢) = 𝑜(𝑢), 𝑢 ↓ 0, (2.1)

where 𝐶 is the survival copula of 𝐹. Note that the limit properties in (1.1) and (2.1) remain equivalent
when the marginals of (𝑍1, 𝑍2) are completely tail-equivalent, that is, P(𝑍1 > 𝑡)∕P(𝑍2 > 𝑡) → 1 as 𝑡 → ∞.
Although not all extreme sets are of this form, this definition has been a key concept in the modelling of joint
extremes.

An interesting feature of this definition of asymptotic independence is that it is based on tail sets tethered
along the main diagonal (𝑡, 𝑡) (in (1.1)) or (1 − 𝑢, 1 − 𝑢) (in (2.1)). It is easy to check that (2.1) is equivalent to

𝐶(𝑎𝑢, 𝑏𝑢) = 𝑜(𝑢), 𝑢 ↓ 0

for some 𝑎, 𝑏 > 0 (Balkema and Nolde, 2010, Theorem 2). Curiously, an equivalent result for the distribution
function of a bivariate random vector does not hold: even if (1.1) holds, it does not necessarily hold for diagonals
of the form (𝑎𝑡, 𝑏𝑡) for arbitrary 𝑎, 𝑏 > 0; see Das and Fasen-Hartmann (2024, Proposition 3.9) for an example
with normally distributed marginals (𝑍1, 𝑍2) with Cor(𝑍1, 𝑍2) = 𝜌 > 0, where P(𝑍1 > 𝑎𝑡, 𝑍2 > 𝑡) = 𝑂(P(𝑍2 >
𝑡)), as 𝑡 → ∞, for 0 < 𝑎 ≤ 𝜌.

Although (1.1) and (2.1) are widely applied for bivariate random vectors, a proper multivariate characteri-
zation of asymptotic independence has been relatively scarce. A definition often used and based on all pairwise
comparisons following (2.1) is given next.

Definition 1 (Pairwise asymptotic independence). An ℝ𝑑-valued random vector Z ∼ 𝐹 with continuous
marginal distributions, copula 𝐶, and associated survival copula 𝐶 is pairwise asymptotically independent if
∀ 𝑗, 𝓁 ∈ 𝕀𝑑, 𝑗 ≠ 𝓁,

𝐶{𝑗,𝓁}(𝑢, 𝑢) = 𝑜(𝑢), 𝑢 ↓ 0. (2.2)

We interchangeably say Z, 𝐹, or 𝐶 exhibits pairwise asymptotic independence.

Remark 1.

(a) More generally, for any multivariate distribution with non-continuous marginal distributions, its
copula is no longer unique; hence, we cannot extend Definition 1 straightforwardly in such a case. For
convenience, since we are primarily concerned with the asymptotic behaviour of the survival copula, we
will assume for the rest of the article that all distributions will have continuous marginal distributions,
ensuring that both their copula and associated survival copula are unique. Note that, since we are only
concerned with tail probabilities in this article, it actually suffices to have the marginal distributions to
be continuous above a fixed threshold (that means they are eventually continuous).
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(b) In contrast to asymptotic independence, a 𝑑-dimensional copula 𝐶 with 𝑑 ≥ 2 exhibits asymptotic
upper tail dependence if its survival copula 𝐶 satisfies

lim
𝑢↓0

𝐶(𝑢,… , 𝑢)
𝑢 = 𝜆 ∈ (0, 1). (2.3)

Obviously, (2.3) implies that (2.2) cannot hold. If (2.3) holds, then it is equivalent to having 𝜅 = 1 and
𝓁(𝑢) ↛ 0 as 𝑢 ↓ 0 for the upper tail order defined in (1.2).

2.1 Examples
Pairwise asymptotic independence exists in many multivariate distributions. We note a few examples here.

Example 1 (Independence). If all components of a random vector Z ∈ ℝ𝑑 are independent, then

P(𝑍1 > 𝑧1, … , 𝑍𝑑 > 𝑧𝑑) =
𝑑∏

𝑗=1
𝐹̄𝑗(𝑧𝑗) = 𝐶ind(𝐹̄1(𝑧1), … , 𝐹̄(𝑧𝑑))

for (𝑧1, … , 𝑧𝑑) ∈ ℝ𝑑, where 𝐶ind ∶ [0, 1]𝑑 → [0, 1]𝑑 is the independence copula given by

𝐶ind(𝑢1, … , 𝑢𝑑) =
𝑑∏

𝑗=1
𝑢𝑗 (2.4)

for 0 ≤ 𝑢1, … , 𝑢𝑑 ≤ 1 with survival copula 𝐶ind(𝑢1, … , 𝑢𝑑) = 𝐶ind(𝑢1, … , 𝑢𝑑). For any distinct 𝑗, 𝓁 ∈ 𝕀𝑑, the (𝑗, 𝑙)
marginal survival copula is

𝐶ind
{𝑗,𝓁}(𝑢1, 𝑢2) = 𝑢1𝑢2, 0 ≤ 𝑢1, 𝑢2 ≤ 1.

Thus, clearly (2.2) holds, and hence, the independence copula exhibits pairwise asymptotic independence.

Example 2 (Marshall–Olkin dependence). The Marshall–Olkin (MO) distribution is used in reliability theory
to capture the failure of subsystems in a networked system. Here we consider a particular MO dependence; see
Lin and Li (2014) and Das and Fasen-Hartmann (2023). Assume that for every non-empty set 𝑆 ⊆ 𝕀𝑑, there
exists a parameter 𝜆𝑆 > 0 and Λ ∶= {𝜆𝑆 ∶ ∅ ≠ 𝑆 ⊆ 𝕀𝑑}. Then, the generalized MO copula 𝐶MO(Λ) can be defined
by its associated survival copula 𝐶MO(Λ), with rate parameter Λ given by

𝐶MO(Λ)(𝑢1, … , 𝑢𝑑) =
𝑑∏

𝑖=1

∏

|𝑆|=𝑖

⋀

𝑗∈𝑆
𝑢
𝜂𝑆𝑗
𝑗 (2.5)

for 0 ≤ 𝑢1, … , 𝑢𝑑 ≤ 1, where

𝜂𝑆𝑗 = 𝜆𝑆∕
⎛
⎜
⎝

∑

𝐽⊇{𝑗}
𝜆𝐽
⎞
⎟
⎠
, 𝑗 ∈ 𝑆 ⊆ 𝕀𝑑. (2.6)

For any distinct 𝑗, 𝓁 ∈ 𝕀𝑑, we can compute that

𝐶MO(Λ)
{𝑗,𝓁} (𝑢, 𝑢) = 𝑢𝜂

∗
𝑗𝓁

with

𝜂∗𝑗𝓁 =
∑

𝑆⊆𝕀𝑑
𝑗∈𝑆,𝓁∉𝑆

𝜂𝑆𝑗 +
∑

𝑆⊆𝕀𝑑
𝑗∉𝑆,𝓁∈𝑆

𝜂𝑆𝓁 +
∑

𝑆⊆𝕀𝑑
𝑗,𝓁∈𝑆

max{𝜂𝑆𝑗 , 𝜂
𝑆
𝓁} > 1. (2.7)

Clearly, since 𝜂∗𝑗𝓁 > 1, ∀𝑗 ≠ 𝓁, 𝐶MO(Λ) possesses pairwise asymptotic independence for any choice ofΛ; see also
Lin and Li (2014, Proposition 3). An even larger class of MO copulas has been introduced in Lin and Li (2014)
which are also pairwise asymptotically independent.

Although 𝜆𝑆 is allowed to take any positive value for the non-empty 𝑆 ⊂ 𝕀𝑑, we discuss below two particu-
larly interesting choices of the parameters; see also Das and Fasen-Hartmann (2023, Example 2.14).
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(a) Equal parameter values for all sets: Here, 𝜆𝑆 = 𝜆 for all non-empty 𝑆 ⊆ 𝕀𝑑 where 𝜆 > 0, and we denote
the survival copula by 𝐶MO= . We can check from (2.6) that the value of 𝜆 is irrelevant here. Clearly in this
case, 𝜂𝑆𝑗 = 1∕2𝑑−1, for all 𝑗 ∈ 𝑆 and non-empty 𝑆 ⊂ 𝕀𝑑. Hence, we can compute the value of 𝜂∗𝑗𝓁 defined
in (2.7) as

𝜂∗𝑗𝓁 = 𝜂
∗
12 =

∑

𝑆⊆𝕀𝑑
1∈𝑆

1
2𝑑−1

+
∑

𝑆⊆𝕀𝑑
1∉𝑆,2∈𝑆

1
2𝑑−1

= 2𝑑−1 + 2𝑑−2

2𝑑−1
= 3

2 .

Therefore, for all 𝑗, 𝓁 ∈ 𝑆 with 𝑗 ≠ 𝓁,

𝐶MO=
{𝑗,𝓁} (𝑢, 𝑢) = 𝑢

3∕2, 0 ≤ 𝑢 ≤ 1.

(b) Parameters proportional to the cardinality of the sets: Here, 𝜆𝑆 = |𝑆|𝜆 for all non-empty 𝑆 ⊆ 𝕀𝑑 where
𝜆 > 0 and we denote the survival copula by 𝐶MO∞ . Also, the value of 𝜆 is irrelevant, and for all 𝑗 ∈ 𝑆 and
non-empty subset 𝑆 ⊂ 𝕀𝑑, we have

𝜂𝑆𝑗 =
|𝑆|

(𝑑 + 1)2𝑑−2
.

We compute again the value of 𝜂∗𝑗𝓁 defined in (2.7) as

𝜂∗𝑗𝓁 = 𝜂
∗
12 =

∑

𝑆⊆𝕀𝑑
1∈𝑆

|𝑆|
(𝑑 + 1)2𝑑−2

+
∑

𝑆⊆𝕀𝑑
1∉𝑆,2∈𝑆

|𝑆|
(𝑑 + 1)2𝑑−2

=
(𝑑 + 1)2𝑑−2 + 𝑑2𝑑−3

(𝑑 + 1)2𝑑−2
= 1 + 𝑑

2(𝑑 + 1)
.

Therefore, for all 𝑗, 𝓁 ∈ 𝑆 with 𝑗 ≠ 𝓁,

𝐶MO∞
{𝑗,𝓁} (𝑢, 𝑢) = 𝑢

1+𝑑∕(2(𝑑+1)), 0 ≤ 𝑢 ≤ 1.

The generalized MO copulas with these particular choices of parameters, as in (a) and (b), are also known
as Caudras–Augé copulas (Cuadras and Augé, 1981) and have been used in Lévy frailty models for survival
analysis. Moreover, if the marginals are identically distributed, then the associated random vector turns out to
be exchangeable (Durrett, 1991).

Example 3 (Archimedean copula). Archimedean copulas constitute a widely utilized family of copula models
for constructing multivariate distributions (Joe, 2015; Charpentier and Segers, 2009). A 𝑑-dimensional copula
𝐶𝜙 is Archimedean if

𝐶𝜙(𝑢1, … , 𝑢𝑑) ∶= 𝜙←(𝜙(𝑢1) + · · · + 𝜙(𝑢𝑑)) (2.8)

for 0 ≤ 𝑢1, … , 𝑢𝑑 ≤ 1, where the generator function 𝜙 ∶ [0, 1] → [0,∞] is convex and decreasing, with 𝜙(1) = 0
and 𝜙←(𝑦) = inf{𝑢 ∈ [0, 1] ∶ 𝜙(𝑢) ≤ 𝑦} for 𝑦 ∈ (0,∞). Necessary and sufficient conditions on the function 𝜙
such that 𝐶𝜙 in (2.8) is a copula are given in McNeil and Nešlehová (2009). Note that the survival copula 𝐶𝜙 of
an Archimedean copula 𝐶𝜙 is, in general, not Archimedean. A popular choice of 𝜙 is the Laplace transform of
any positive random variable.

Tail dependence in such copulas has been studied in Charpentier and Segers (2009), Larsson and Nešle-
hová (2011), and Hua and Joe (2011), and sufficient conditions to obtain pairwise asymptotic independence
exist. Suppose the random vector Z having an Archimedean copula 𝐶𝜙 has a generator 𝜙 satisfying

lim
𝑢↓0

𝑢𝜙′(1 − 𝑢)
𝜙(1 − 𝑢)

= 1.

Then we may conclude from Charpentier and Segers (2009, Theorem 4.1 and equation (4.4)) that Z is pairwise
asymptotically independent. In contrast, if the limit

𝜃1 ∶= lim
𝑢↓0

𝑢𝜙′(1 − 𝑢)
𝜙(1 − 𝑢)

∈ (1,∞)
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exists and is larger than 1, then Z has asymptotic upper tail dependence, that is, its survival copula 𝐶𝜙 satisfies
(2.3). We observe from Charpentier and Segers (2009, Table 1) that for many Archimedean copulas, we have
𝜃1 = 1 and thus they are pairwise asymptotically independent; this includes the Frank copula, Clayton copula,
and Ali–Mikhail–Haq copula; see also Nelsen (2006, Table 4.1) for further details.

Example 4 (Gaussian copula). The Gaussian dependence structure is perhaps the most popular one used in
practice. Let ΦΣ denote the distribution function of a 𝑑-variate normal distribution with all marginal means 0,
variances 1, and a positive-definite correlation matrix Σ ∈ ℝ𝑑×𝑑, and let Φ denote the standard normal distri-
bution function. Then for 0 < 𝑢1, … , 𝑢𝑑 < 1,

𝐶Σ(𝑢1, … , 𝑢𝑑) = ΦΣ(Φ
−1(𝑢1), … , Φ

−1(𝑢𝑑))

denotes the Gaussian copula with correlation matrix Σ. Note that by radial symmetry, any Gaussian copula is
equal to its own survival copula, that is, 𝐶Σ = 𝐶Σ. Pairwise asymptotic independence has been well established
for the bivariate normal distribution, as well as the bivariate Gaussian copula if the correlation is less than
1 (Sibuya, 1960; Ledford and Tawn, 1996). Hence, we may immediately conclude that for 𝑑 ≥ 2, a Gaussian
copula 𝐶Σ exhibits pairwise asymptotic independence if Σ is positive definite. In fact, it is possible to find the
exact tail order for the Gaussian survival copula for any 𝑆 ⊆ 𝕀𝑑 with |𝑆| ≥ 2, where the precise result is given in
Section 3.2.2.

3 Mutual asymptotic independence
Pairwise asymptotic independence has often either been used as a natural extension of asymptotic indepen-
dence (Balkema and Nolde, 2010; Guillou et al., 2018), or taken as a consequence from other relevant properties
(de Haan and Ferreira, 2006, Remark 6.2.5), or implicitly assumed (Lalancette et al., 2021) in a variety of works.
Next, we define a notion that captures the global joint concurrent tail behaviour of random vectors portrayed
by many popular multivariate dependence structures, including, for example, the Gaussian, MO, or various
Archimedean copulas, but not restricted to the mere replication of pairwise comparisons of tails.

Definition 2 (Mutual asymptotic independence). An ℝ𝑑-valued random vector Z ∼ 𝐹 with continuous
marginal distributions, copula 𝐶, and associated survival copula 𝐶 is mutually asymptotically independent if
for all 𝑆 ⊆ 𝕀𝑑 with |𝑆| ≥ 2, we have

lim
𝑢↓0

𝐶𝑆(𝑢, … , 𝑢)
𝐶𝑆⧵{𝓁}(𝑢, … , 𝑢)

= 0, ∀𝓁 ∈ 𝑆, (3.1)

where we define 0∕0 ∶= 0. We interchangeably say Z, 𝐹, or 𝐶 possesses mutual asymptotic independence.

Remark 2. Some explanation is due here in order to distinguish between the traditional notion of multivari-
ate asymptotic independence (sometimes called “mutual” asymptotic independence) in dimensions 𝑑 > 2
(Resnick (2008, Chapter 5.5), Galambos (1978, Chapter 5.2), and McNeil et al. (2015, Chapter 7.6)), and
the notion defined in Definition 2. Owing to Resnick (2008, Proposition 5.27) under the constraint that the
marginals are continuous, identically distributed, and in the maximum domain of attraction of a univariate
extreme value distribution, pairwise asymptotic independence is equivalent to a distribution having “multi-
variate asymptotic independence”, meaning that the distribution lies in the maximum domain of attraction of
an extreme value distribution with independent marginals (the limit distribution is a product measure). Our
notion of mutual asymptotic independence is not equivalent to multivariate asymptotic independence as we
demonstrate in this article, and in particular, in Example 5.

When 𝑑 = 2, both (2.2) and (3.1) reduce to (2.1) and hence are equivalent. Assuming 𝑑 ≥ 3 and mutual
asymptotic independence, if we take all choices of 𝑆 ⊆ 𝕀𝑑 with |𝑆| = 2, then (3.1) is just a restatement of (2.2),
implying pairwise asymptotic independence. We summarize this in the next proposition.

Proposition 1. If an ℝ𝑑-valued random vector Z with continuous marginal distributions is mutually asymptot-
ically independent, then it is also pairwise asymptotically independent.
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8 of 23 DAS AND FASEN-HARTMANN

The reverse implication of Proposition 1 is not necessarily true, as we see in the following example, which
mimics the consequences for the analogous notions of classical “mutual” and “pairwise independence” (Hogg
et al., 2013).

Example 5. The difference between pairwise and mutual independence can be shown using an ℝ3-valued
random vector with Bernoulli marginals (Hogg et al., 2013, Chapter 2). We adopt a similar approach, but using
uniform marginals. Consider i.i.d. uniform [0,1] random variables𝑈,𝑉 and𝑊. Then Z∗ = (𝑈,𝑉,𝑊) is mutu-
ally asymptotically independent (cf. Example 6) and hence pairwise asymptotically independent as well. Now
consider Z = (𝑍1, 𝑍2, 𝑍3) ∼ 𝐹 such that

Z =
⎧

⎨
⎩

(𝑈,𝑉,min(𝑈, 𝑉)), with prob. 1∕3,
(𝑈,min(𝑈, 𝑉), 𝑉), with prob. 1∕3,
(min(𝑈, 𝑉),𝑈, 𝑉), with prob. 1∕3.

First note that for 0 < 𝑧 < 1, marginally,

𝐹𝑗(𝑧) = P(𝑍𝑗 ≤ 𝑧) = 2𝑧∕3 + 1∕3[1 − (1 − 𝑧)2] = 4𝑧∕3 − 𝑧2∕3, 𝑗 ∈ {1, 2, 3},

and hence the 𝑍𝑗 ’s are identically distributed.

(i) If 𝐶 denotes the survival copula of Z, then we can check that for any {𝑗, 𝓁} ⊂ {1, 2, 3},

𝐶{𝑗,𝓁}(𝑢, 𝑢) = P(𝑍𝑗 > 2 −
√

1 + 3𝑢, 𝑍𝓁 > 2 −
√

1 + 3𝑢)

= P(𝑈 > 2 −
√

1 + 3𝑢, 𝑉 > 2 −
√

1 + 3𝑢)

= (
√

1 + 3𝑢 − 1)2 = 9𝑢2∕4 + 𝑜(𝑢2), 𝑢 ↓ 0. (3.2)

Hence, Z exhibits pairwise asymptotic independence.

(ii) But

𝐶(𝑢, 𝑢, 𝑢) = P(𝑈 > 2 −
√

1 + 3𝑢, 𝑉 > 2 −
√

1 + 3𝑢)

= (
√

1 + 3𝑢 − 1)2 = 9𝑢2∕4 + 𝑜(𝑢2), 𝑢 ↓ 0,

implying that Z does not have mutual asymptotic independence since (3.1) fails for 𝑆 = {1, 2, 3}.

(iii) We can compute that if Z(1), … ,Z(𝑛) are i.i.d. 𝐹 and if M𝑛 is the random vector of component-wise
maxima given by

M𝑛 = (
𝑛⋁

𝑖=1
𝑍(𝑖)1 ,

𝑛⋁

𝑖=1
𝑍(𝑖)2 ,

𝑛⋁

𝑖=1
𝑍(𝑖)3 ),

then with 𝑎𝑛 = 3∕2𝑛 and 𝑏𝑛 = 1, we have for x ∈ ℝ,

lim
𝑛→∞

P(M𝑛 ≤ 𝑎𝑛x + 𝑏𝑛) = lim
𝑛→∞

𝐹𝑛(𝑎𝑛x + 𝑏𝑛) = 𝐺(x) =
3∏

𝑖=1
Ψ1(𝑥𝑖), (3.3)

where Ψ1(⋅) is a univariate extreme value distribution given by Ψ1(𝑥) = min(𝑒𝑥, 1), 𝑥 ∈ ℝ. Thus 𝐹 ∈
MDA(𝐺), where𝐺 is indeed a product measure according to (3.3), implying multivariate asymptotic inde-
pendence although 𝐹 does not have mutual asymptotic independence as shown in (ii).

For illustration, we showed the multivariate asymptotic independence by hand, but the pairwise
asymptotic independence in (i) and Resnick (2008, Proposition 5.27) already imply multivariate asymp-
totic independence.

3.1 Examples: Part I
It is instructive to note examples of mutual asymptotic independence in various distributions.
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ASYMPTOTIC INDEPENDENCE IN MORE THAN TWO DIMENSIONS AND ITS IMPLICATIONS ON RISK MANAGEMENT 9 of 23

Example 6 (Independence). Suppose 𝐶ind is the independence copula as given in (2.4), then the survival
copula for any non-empty subset 𝑆 ⊂ 𝕀𝑑 satisfies

𝐶ind
𝑆 (𝑢, … , 𝑢) = 𝑢|𝑆|, 0 ≤ 𝑢 ≤ 1.

Thus, (3.1) holds for all such 𝑆 with |𝑆| ≥ 2, and hence 𝐶ind exhibits mutual asymptotic independence.

Example 7 (Marshall–Olkin dependence). In Example 2, we stated that any random vector Z with dependence
given by the generalized MO survival copula 𝐶MO(Λ) as defined in (2.5) is pairwise asymptotically indepen-
dent. In fact, by Lin and Li (2014, Proposition 3) we can conclude that 𝑍 is indeed mutually asymptotically
independent as well.

3.2 Examples: Part II
In this section, we discuss examples that are pairwise asymptotically independent but may not be mutually
asymptotically independent. This will include a large class of examples from the Archimedean copula and the
Gaussian copula family.

3.2.1 Archimedean copulas
Recall the Archimedean copula 𝐶𝜙 defined in Example 3. The following result provides sufficient conditions
on the generator 𝜙 for a random vector with Archimedean copula 𝐶𝜙 to possess both pairwise and mutual
asymptotic independence.

Theorem 1 (Archimedean copula with mutual asymptotic independence). Let the dependence structure of an
ℝ𝑑-valued random vector Z with continuous marginal distributions be given by an Archimedean copula 𝐶𝜙 with
generator 𝜙 as in (2.8). Suppose 𝜙← is 𝑑-times continuously differentiable and (−𝐷)𝑗𝜙←(0) < ∞ ∀ 𝑗 ∈ 𝕀𝑑. Then Z
possesses both pairwise and mutual asymptotic independence.

The proof follows directly from Charpentier and Segers (2009, Theorem 4.3). The Archimedean copulas
of Theorem 1 have the property that for any subset 𝑆 ⊂ 𝕀𝑑 with |𝑆| ≥ 2, the survival copula 𝐶𝜙𝑆 of the |𝑆|-
dimensional marginal behaves like the independence copula near the tails, that is,

𝐶𝜙𝑆 (𝑢, … , 𝑢) ∼ 𝑢
𝜅𝑆 , 𝑢 ↓ 0,

where the upper tail order of 𝐶𝜙𝑆 is 𝜅𝑆 = |𝑆| (also follows from Charpentier and Segers (2009, Theorem 4.3)).
In particular, the upper tail order for 𝐶𝜙 is 𝜅 = 𝜅𝕀𝑑 = 𝑑, and hence these copulas are also “nearly independent”
(see paragraph below (1.2)); several popular Archimedean copula models such as the Frank copula, Clayton
copula, and Ali–Mikhail–Haq copula (Charpentier and Segers, 2009, Table 1) fall into this class exhibiting both
pairwise and mutual asymptotic independence. In contrast, there are also Archimedean copulas exhibiting
pairwise asymptotic independence but not mutual asymptotic independence. The following result provides
sufficient conditions on the generator 𝜙 to obtain such Archimedean copulas.

Theorem 2 (Archimedean copula with only pairwise asymptotic independence). Let the dependence structure
of a random vector Z ∈ ℝ𝑑 with continuous marginal distributions be given by an Archimedean copula 𝐶𝜙 with
generator 𝜙 as in (2.8). Suppose 𝜙′(1) = 0 and

𝐿(𝑢) ∶= −𝜙′(1 − 𝑢) − 𝑢−1𝜙(1 − 𝑢)

is a positive function, which is slowly varying at 0. Then, Z possesses pairwise asymptotic independence but does
not possess mutual asymptotic independence.

The proof follows directly from Charpentier and Segers (2009, Theorem 4.6 and Corollary 4.7). Now, the
Archimedean copulas of Theorem 2 have a different characteristic in the sense that for any subset 𝑆 ⊂ 𝕀𝑑 with
|𝑆| ≥ 2, the survival copula 𝐶𝜙𝑆 on the |𝑆|-dimensional marginal behaves as

𝐶𝜙𝑆 (𝑢, … , 𝑢) ∼ 𝑢𝓁(𝑢), 𝑢 ↓ 0,
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10 of 23 DAS AND FASEN-HARTMANN

where 𝓁 is a slowly varying function at 0 (this follows from Charpentier and Segers (2009, Corollary 4.7)).
Hence, the upper tail order of 𝐶𝜙𝑆 is 𝜅𝑆 = 1 for all 𝑆 ⊂ 𝕀𝑑 with |𝑆| ≥ 2. To obtain an example of such a copula,
fix some parameter 𝜃 ∈ (0,∞) and define the generator

𝜙𝜃(𝑢) =
1 − 𝑢

(− log(1 − 𝑢))𝜃
, 0 ≤ 𝑢 ≤ 1.

Then 𝐶𝜙𝜃 satisfies the assumptions of Theorem 2, resulting in an Archimedean copula with pairwise but not
mutual asymptotic independence; we refer to Charpentier and Segers (2009, Table 1).

3.2.2 Gaussian copula
In Example 4, we observed that any random vector with a Gaussian copula having a positive-definite correlation
matrix has pairwise asymptotic independence. Interestingly, not all such models will have mutual asymptotic
independence. The following theorem provides the exact condition for this.

Theorem 3. Let the dependence structure of an ℝ𝑑-valued random vector Z with continuous marginal distri-
butions be given by a Gaussian copula 𝐶Σ with positive-definite correlation matrix Σ. Then, Z exhibits mutual
asymptotic independence if and only if Σ−1

𝑆 1|𝑆| > 0|𝑆| for all non-empty sets 𝑆 ⊆ 𝕀𝑑.

The proof of the theorem is quite involved, requiring a few auxiliary results based on the recently derived
knowledge on the asymptotic behaviour of tail probabilities of a multivariate distribution with identically dis-
tributed Pareto marginals and Gaussian copula 𝐶Σ in Das and Fasen-Hartmann (2024). Hence the proof has
been relegated to Appendix A. Curiously, the ingredients of the proof allow us to find the tail asymptotics of
the survival copula of any |𝑆|-dimensional marginal in terms of its tail order.

Proposition 2. Let 𝐶Σ be a Gaussian copula with positive-definite correlation matrix Σ. Then for any subset
𝑆 ⊂ 𝕀𝑑 with |𝑆| ≥ 2, we have as 𝑢 ↓ 0,

𝐶Σ𝑆 (𝑢, … , 𝑢) ∼ 𝑢
𝜅𝑆𝓁𝑆(𝑢), (3.4)

where 𝓁𝑆 is slowly varying at 0 and
𝜅𝑆 = min

{z∈ℝ|𝑆|∶z≥1𝑆}
z⊤Σ−1

𝑆 z.

A proof of this result is given in Appendix A as well.

Remark 3. A few interesting features of Proposition 2 and related results are to be noted here.

(a) Although Proposition 2 only gives the tail order of 𝐶Σ𝑆 , in fact, the exact tail asymptotics for 𝐶Σ𝑆 (𝑢v𝑆)
as 𝑢 ↓ 0 for v𝑆 = (𝑣𝑠)𝑠∈𝑆 , 𝑣𝑠 ∈ (0, 1), including the slowly varying function are available in Proposition 4
in Appendix A.

(b) The upper tail order 𝜅𝑆 in (3.4) is obtained as a solution to a quadratic programming problem; the
exact solution is given in Lemma 2 in Appendix A.

(c) With respect to (3.4), for subsets 𝑆, 𝑇 ⊂ 𝕀𝑑 with 𝑆 ⊊ 𝑇 and |𝑆| ≥ 2, it is possible to have (i) 𝜅𝑆 <
𝜅𝑇 , (ii) 𝜅𝑆 = 𝜅𝑇, with 𝓁𝑆(𝑢) ∼ 𝑐 𝓁𝑇(𝑢), 𝑢 ↓ 0 for 𝑐 > 0, and (iii) 𝜅𝑆 = 𝜅𝑇 , with 𝓁𝑆(𝑢) = 𝑜(𝓁𝑇(𝑢)), 𝑢 ↓ 0. In
Example 8, we can observe both (i) and (ii) holding under different assumptions; an example for (iii) with
Pareto marginals and Gaussian copulas is available in Das and Fasen-Hartmann (2024, Remark 5).

(d) In Hua and Joe (2011, Example 1), the authors already state that the tail order 𝜅 of a Gaussian copula
with positive-definite correlation matrix Σ is 𝜅 = 1⊤Σ−11 (cf. Joe (2015, Section 4.3.2)). However, to the
best of our knowledge, the aforementioned paper does not specify that Σ−11 > 0 is indeed a necessary
condition for the result, since otherwise the statement is not valid; in fact, if Σ−11 ≯ 0, then 𝜅 < 1⊤Σ−11
is possible (cf. Lemma 2).

Example 8. For the purpose of illustration, we provide a positive-definite correlation matrix (with 𝑑 = 3) for
a Gaussian copula parameterized by a single parameter 𝜌 which exhibits mutual asymptotic independence for
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only certain values of 𝜌 and only pairwise asymptotic independence for other feasible values; see Das and Fasen-
Hartmann (2024, Example 1(b)) for further details. Throughout, we denote by 𝓁𝑗(𝑢), 𝑗 ∈ ℕ, a slowly varying
function at 0. Consider the Gaussian copula 𝐶Σ with correlation matrix

Σ =
⎛
⎜
⎜
⎝

1 𝜌
√

2𝜌
𝜌 1

√
2𝜌√

2𝜌
√

2𝜌 1

⎞
⎟
⎟
⎠

,

where 𝜌 ∈
(
(1 −

√
17)∕8, (1 +

√
17)∕8

)
≈ (−0.39, 0.64), which ensures the positive definiteness of Σ. Clearly,

pairwise asymptotic independence holds for all such 𝜌 values.

(i) Suppose 𝜌 < 1∕(2
√

2 − 1) ≈ 0.55. Then one can check that Σ−11 > 0, and hence mutual asymptotic
independence holds as well. In fact, we can find the behaviour of the survival copula (using Proposition 4
or Das and Fasen-Hartmann (2024, Example 1(b))): As 𝑢 ↓ 0,

𝐶Σ(𝑢, 𝑢, 𝑢) ∼ 𝑢
3−(4

√
2−1)𝜌

1+𝜌−4𝜌2 𝓁1(𝑢). (3.5)

We also find that as 𝑢 ↓ 0,

𝐶Σ{13}(𝑢, 𝑢) = 𝐶
Σ
{23}(𝑢, 𝑢) ∼ 𝑢

2
1+
√

2𝜌 𝓁2(𝑢), and

𝐶Σ{12}(𝑢, 𝑢) ∼ 𝑢
2

1+𝜌 𝓁3(𝑢). (3.6)

(ii) On the other hand, if 𝜌 ≥ 1∕(2
√

2 − 1) ≈ 0.55, then Σ−11 ≯ 0 and the copula does not have mutual
asymptotic independence. In this case, the behaviour of the two-dimensional marginal survival copulas
will still be given by (3.6), but the tail behaviour as seen in (3.5) does not hold anymore. Now, as 𝑢 ↓ 0,
we have

𝐶Σ(𝑢, 𝑢, 𝑢) ∼ 𝑢
2

1+𝜌 𝓁4(𝑢).

In fact, we can check that 𝓁4(𝑢) ∼ 𝛽 𝓁3(𝑢) as 𝑢 ↓ 0 for some constant 𝛽 > 0 (Das and Fasen-
Hartmann, 2024, Example 1(b)), and hence

𝐶Σ(𝑢, 𝑢, 𝑢) ∼ 𝛽 𝐶Σ{12}(𝑢, 𝑢), 𝑢 ↓ 0,

also verifying that mutual asymptotic independence does indeed not hold here.

4 𝑘-wise asymptotic independence
The fact that some multivariate models exhibit pairwise asymptotic independence yet not mutual asymptotic
independence naturally prompts an inquiry into the existence of models that lie in between these two notions.
The following definition provides an answer.

Definition 3 (𝑘-wise asymptotic independence). An ℝ𝑑-valued random vector Z ∼ 𝐹 with continuous
marginal distributions, copula 𝐶, and associated survival copula 𝐶 is 𝑘-wise asymptotically independent for a
fixed 𝑘 ∈ {2, … , 𝑑} if for all 𝑆 ⊆ 𝕀𝑑 with 2 ≤ |𝑆| ≤ 𝑘, we have

lim
𝑢↓0

𝐶𝑆(𝑢, … , 𝑢)
𝐶𝑆⧵{𝓁}(𝑢, … , 𝑢)

= 0, ∀ 𝓁 ∈ 𝑆,

where we define 0∕0 ∶= 0. We interchangeably say Z, 𝐹, or 𝐶 possesses 𝑘-wise asymptotic independence.

Remark 4. The concept of 𝑘-wise asymptotic independence allows us to assess dependence for multidimen-
sional extremes in finer detail. If a random vector Z exhibits 𝑘-wise asymptotic independence but not (𝑘 + 1)-
wise asymptotic independence, then there exists a combination of exactly 𝑘 components in Z such that when
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12 of 23 DAS AND FASEN-HARTMANN

these are large, another component is large as well; moreover, fewer than 𝑘 large components cannot pro-
duce a large value in another component. Consequently, lower values of 𝑘 reflect a stronger dependence in the
extremes.

Note that for any 𝑑-dimensional copula, 𝑑-wise asymptotic independence is the same as mutual asymptotic
independence (and of course 2-wise is the same as pairwise). Again, following Proposition 1, we may check
that mutual asymptotic independence indeed implies 𝑘-wise asymptotic independence for all 𝑘 ∈ {2, … , 𝑑}.
The converse of the previous implication is, of course, not true; the examples in the following section also
show this.

Obviously, an equivalent characterization of 𝑘-wise asymptotic independence is the following.

Proposition 3. An ℝ𝑑-valued random vector Z is 𝑘-wise asymptotically independent if and only if for all 𝑆 ⊆ 𝕀𝑑
with |𝑆| = 𝑘, the ℝ𝑘-valued random vector Z𝑆 is mutually asymptotically independent.

4.1 Examples
Indeed, within the class of Archimedean copulas as well as the class of Gaussian copulas with dimensions 𝑑 >
2, we find examples of models that exhibit 𝑘-wise asymptotic independence, but not (𝑘 + 1)-wise asymptotic
independence given any 𝑘 ∈ {2, … , 𝑑 − 1}. Consequently, these models are also not mutually asymptotically
independent. Let us begin with an investigation of a particular Archimedean copula.

4.1.1 ACIG copula
This Archimedean copula based on the Laplace transform (LT) of an inverse-gamma distribution, called the
ACIG copula in short, was introduced in Hua and Joe (2011), and operates like this: if 𝑌 = 𝑋−1 and 𝑋 ∼
Gamma(𝛼, 1) for 𝛼 > 0, then the generator of this Archimedean copula is given by the LT of 𝑌. The expres-
sion of the generator includes the Bessel function of the second kind. Closed-form expressions of the copula
𝐶𝜙 and survival copula 𝐶𝜙 are not easy to write down; nevertheless, from computations in Hua and Joe (2011,
Example 4) and Hua et al. (2014, Example 4.4), we can conclude that for any 𝑑 ≥ 2, the survival copula of the
ACIG copula with parameter 𝛼 > 0 has the following asymptotic behaviour:

𝐶𝜙(𝑢, … , 𝑢) ∼ 𝛽𝑑𝑢𝜅𝑑 , 𝑢 ↓ 0, (4.1)

where 𝜅𝑑 = max{1,min{𝛼, 𝑑}} and 𝛽𝑑 > 0 is a positive constant. Here, 𝜅𝑑 is the tail order of the copula. There-
fore, if 𝛼 ≤ 1 then 𝜅𝑑 = 1 for all 𝑑 ≥ 2, and if 𝛼 > 1, then 𝜅𝑑 = min(𝛼, 𝑑). Note that by the exchangeability
property of Archimedean copulas and (4.1), we know that for any 𝑆 ⊂ 𝕀𝑑 with |𝑆| ≥ 2,

𝐶𝜙𝑆 (𝑢, … , 𝑢) ∼ 𝛽|𝑆|𝑢
𝜅|𝑆| , 𝑢 ↓ 0.

Thus, we may conclude that for an ACIG copula with parameter 𝛼 > 0, the following holds:

(i) If 0 < 𝛼 ≤ 1, the ACIG copula exhibits asymptotic upper tail dependence.

(ii) If 1 < 𝛼 ≤ 𝑑 − 1, the ACIG copula exhibits pairwise asymptotic independence but not mutual asymp-
totic independence. If additionally, 𝑘 − 1 < 𝛼 ≤ 𝑘 for 𝑘 ∈ {2, … , 𝑑 − 1}, then the ACIG copula still exhibits
𝑖-wise asymptotic independence for all 𝑖 ∈ {2, … , 𝑘}, but not (𝑘 + 1)-wise asymptotic independence.

(iii) If 𝛼 > 𝑑 − 1, the ACIG copula exhibits 𝑘-wise asymptotic independence for all 𝑘 ∈ {2, … , 𝑑}, and
hence exhibits mutual asymptotic independence as well.

4.1.2 Gaussian copula
The Gaussian copula has been popular in modelling dependence in a wide variety of applications. It turns out
that a class of Gaussian copula models is also able to capture the presence of 𝑘-wise asymptotic independence
and not (𝑘 + 1)-wise asymptotic independence. This is demonstrated in the following result, whose proof is
given in Appendix B.

Theorem 4. Suppose 𝑘 ∈ {2, … , 𝑑 − 1} and 𝑆1 ⊆ 𝑆2 ⊆ {1, … , 𝑑}with |𝑆1| = 𝑘 and |𝑆2| = 𝑘 + 1. Then there exists
a Gaussian copula 𝐶Σ and a positive-definite correlation matrix Σ, such that 𝐶Σ exhibits 𝑘-wise asymptotic inde-
pendence but not (𝑘 + 1)-wise asymptotic independence and for any 𝑥 > 0,
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ASYMPTOTIC INDEPENDENCE IN MORE THAN TWO DIMENSIONS AND ITS IMPLICATIONS ON RISK MANAGEMENT 13 of 23

lim
𝑢↓0

𝐶Σ𝑆2
(𝑢, … , 𝑢, 𝑥𝑢, 𝑢, … , 𝑢)

𝐶Σ𝑆1
(𝑢, … , 𝑢)

= 1, (4.2)

where 𝑥𝑢 is placed at the unique element in 𝑆2 ⧵ 𝑆1.

This theorem not only provides the existence of a 𝑘-wise asymptotically independent Gaussian copula
but also gives the striking feature of the copula behaviour in (4.2), where, surprisingly, the value of 𝑥 has no
influence.

This means that for a random vector Z with Gaussian copula 𝐶Σ, as given in Theorem 4, and identically
distributed marginals, large values in all the 𝑆1 components result in an extremely large value in the single
component of 𝑆2 ⧵ 𝑆1; hence there is a strong dependence between the extremes of the components of 𝑆1 and
that of 𝑆2 ⧵ 𝑆1. All components in 𝑆1 must be large at the same time; only a few components that are large do
not result in a large value in the 𝑆2 ⧵ 𝑆1 component. This is demonstrated quite nicely in the following example,
which was used in the proof of Theorem 4.

Example 9. Let the correlation matrix of the Gaussian copula be given as

Σ = [
I𝑑−1 𝜌1𝑑−1

𝜌1⊤𝑑−1 1
],

for some 𝜌 ∈ (0, 1). Then, for 𝜌 ∈ (1∕(𝑘 − 1), 1∕(𝑘 − 2)), the Gaussian copula 𝐶Σ is (𝑘 − 1)-wise asymptotically
independent but not 𝑘-wise asymptotically independent (see proof of Theorem 4); therefore, if the first (𝑘 −
1) components are jointly large, then the last component is also large. But if we consider fewer components
than (𝑘 − 1) components to be large, they have no effect on the size of the last component. Note that here 𝑘 −
1 = ⌈𝜌−1⌉ = inf{𝑚 ∈ ℕ ∶ 𝜌−1 ≤ 𝑚}. Thus, for a high value of 𝜌, fewer components, namely only the first ⌈𝜌−1⌉
components, result in a large value in the last component. Although 𝜌 provides a measure of linear dependence,
in this example it also measures the dependence in the extremes, which is reflected in the degree ⌈𝜌−1⌉ of
asymptotic independence.

For the derivation of worst case measures for risk contagion under distributional ambiguity in the next
section, Theorem 4 turns out to be indispensable.

Remark 5. It is important to mention here that although most popular copula families are bivariate in nature,
Joe (2015, Chapter 4) lists multiple extensions of bivariate copulas to general high dimensions; many such
copulas can be explored for creating models with particular levels of asymptotic independence as necessitated
by the context.

5 Implication on risk management under distributional ambiguity
In financial risk management, a variety of risk measures are used to assess the risk contagion between dif-
ferent financial products, including stocks, bonds, and equities. Such contagion or systemic risk measures
are often based on conditional probabilities and range from computing regular conditional tail probabilities
to CoVaR, marginal expected shortfall (MES), marginal mean excess (MME), and more; see Das and Fasen-
Hartmann (2018) and Adrian and Brunnermeier (2016) for details.

Here, we focus on two such measures of risk contagion based on specific conditional tail probabilities and
conditional tail quantiles. First, recall that for a random variable 𝑍, the Value-at-Risk or VaR at level 1 − 𝛾 ∈
(0, 1) is defined as

VaR𝛾(𝑍) ∶= inf {𝑦 ∈ ℝ ∶ P(𝑍 > 𝑦) ≤ 𝛾} = inf {𝑦 ∈ ℝ ∶ P(𝑍 ≤ 𝑦) ≥ 1 − 𝛾},

the (1 − 𝛾)-quantile of 𝑍 where inf ∅ ∶= ∞ (cf. Embrechts et al. (2024)). If 𝑍 ∼ 𝐹 and 𝐹 is continuous and
strictly increasing, then 𝐹 is invertible with inverse 𝐹−1, and for 0 < 𝛾 < 1, we have VaR𝛾(𝑍) = 𝐹−1(1 − 𝛾).

Consider the returns from a portfolio of 𝑑 > 1 stocks being given by the random vector Z = (𝑍1, … , 𝑍𝑑) ∼ 𝐹.
Suppose we are interested in measuring the risk of 𝑍1 having an extremely large value, given that all variables
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14 of 23 DAS AND FASEN-HARTMANN

in some non-empty subset 𝐽 ⊂ 𝕀𝑑 ⧵ {1} with |𝐽| = 𝓁 are at extremely high levels. This can be captured via the
following conditional tail probability (CTP)

P
(
𝑍1 > 𝑡|𝑍𝑗 > 𝑡, ∀𝑗 ∈ 𝐽

)
, (5.1)

as 𝑡 → ∞. Alternatively, for a level 𝛾 ∈ (0, 1), we are interested in the risk measure

CTP𝛾(Z1|𝐽) ∶= P
(
𝑍1 > VaR𝛾(𝑍1)|𝑍𝑗 > VaR𝛾(𝑍𝑗), ∀𝑗 ∈ 𝐽

)
, (5.2)

as 𝛾 → 0. Note that (5.1) and (5.2) are equivalent if all the marginal random variables 𝑍1, … , 𝑍𝑑 are identically
distributed. For convenience, we will focus on the measure CTP𝛾 as defined in (5.2).

A second measure of risk contagion we are interested in is a generalization of the VaR to the multivariate
setting given by the Contagion Value-at-Risk or CoVaR at confidence level (𝛾1, 𝛾2) for 𝛾1, 𝛾2 ∈ (0, 1), defined as

CoVaR𝛾1,𝛾2(Z1|𝐽) ∶= inf{𝑧 ∈ ℝ+ ∶ P(𝑍1 > 𝑧|𝑍𝑗 > VaR𝛾2(𝑍𝑗), ∀𝑗 ∈ 𝐽) ≤ 𝛾1}. (5.3)

The risk measure CoVaR was introduced in the bivariate setting for 𝐽 = 2 to capture risk contagion, as well as
systemic risk by Adrian and Brunnermeier (2016) where they set the conditioning event to be 𝑍2 = VaR𝛾2(𝑍2);
this was later modified by Girardi and Ergün (2013) to 𝑍2 > VaR𝛾2(𝑍2)with the restriction that 𝛾1 = 𝛾2; this lat-
ter definition has been widely used in dependence modelling (Nolde et al., 2022; Mainik and Schaanning, 2014;
Härdle et al., 2016; Das and Fasen-Hartmann, 2025) and is generalized in our definition given in (5.3).

In risk management applications, computing quantities like CTP and CoVaR requires knowledge of the
joint distribution of the risk vector Z. Even if the univariate distributions of all the marginal variables can be
estimated, the joint distribution often remains unknown and relatively more involved for estimation purposes.
An approach often used is to provide a worst case value for such risk measures under certain constraints on the
joint distribution of the variables. Naturally, for such tail risk measures, constraints can be provided in terms of
their joint asymptotic tail behaviour, including pairwise, mutual, or 𝑘-wise asymptotic independence. It turns
out that under different constraints, we may obtain a different tail behaviour for the worst case measures. To
further this discussion, let us define 𝒫 to be the class of all probability distributions in ℝ𝑑 with continuous
marginal distributions.

For 𝑘 ∈ {2, … , 𝑑}, define the classes of distributions

𝒫𝑘 ∶= {𝐹 ∈ 𝒫 ∶ 𝐹 possesses 𝑘-wise asymptotic independence},

and similarly, the restriction of 𝒫𝑘 to distributions with Gaussian copulas,

𝒩𝑘 ∶= 𝒫𝑘 ∩ {𝐹 ∈ 𝒫 ∶ 𝐹 has a Gaussian copula 𝐶Σ with Σ positive definite}.

Note that 𝒫2 models the class of pairwise asymptotically independent random vectors, whereas 𝒫𝑑 models
the class of mutually asymptotically independent random vectors. By Definition 3, it is easy to check that

𝒫 ⊇ 𝒫2 ⊇ 𝒫3 ⊇ · · · ⊇ 𝒫𝑑 and 𝒫 ⊇ 𝒩2 ⊇ 𝒩3 ⊇ · · · ⊇ 𝒩𝑑. (5.4)

Furthermore, these classes are non-empty, since 𝒩𝑘 ≠ ∅ by Theorem 4 and 𝒩𝑘 ⊆ 𝒫𝑘.
Since the joint distributions are unknown, we may want to find the worst case CTP or CoVaR in such cases

where 𝐹 ∈ 𝒫𝑘 ⊂ 𝒫 or 𝐹 ∈ 𝒩𝑘, 𝑘 ∈ {2, … , 𝑑}. First, we present the result for the CTP. The proofs of this theorem
and all subsequent results in this section are given in Appendix C.

Theorem 5. Suppose anℝ𝑑-valued random vector Z = (𝑍1, … , 𝑍𝑑) ∼ 𝐹, 𝑑 ≥ 2, has continuous marginal distri-
butions. Furthermore, suppose 𝐽 ⊂ 𝕀𝑑 ⧵ {1} with |𝐽| = 𝓁.

(a) If 𝑘 ∈ {𝓁 + 1, … , 𝑑}, then

sup
𝐹∈𝒩𝑘

lim
𝛾↓0

CTP𝛾(Z1|𝐽) = sup
𝐹∈𝒫𝑘

lim
𝛾↓0

CTP𝛾(Z1|𝐽) = 0.

(b) If 𝑘 ∈ {2, … , 𝓁}, then

sup
𝐹∈𝒩𝑘

lim
𝛾↓0

CTP𝛾(Z1|𝐽) = sup
𝐹∈𝒫𝑘

lim
𝛾↓0

CTP𝛾(Z1|𝐽) = 1.
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The results indicate a qualitatively different behaviour of the worst case CTP depending on whether the tail
dependence exhibits 𝑘-wise asymptotic independence with 𝑘 > |𝐽| vis-a-vis 𝑘 ≤ |𝐽|. When 𝑘 > |𝐽|, CTP𝛾(Z1|𝐽)
converges to 0 as 𝛾 ↓ 0, suggesting that extremely large losses of 𝑍𝑗 for all 𝑗 ∈ 𝐽 have a negligible influence
on extremely large losses of 𝑍1. In contrast, when 𝑘 ≤ |𝐽|, there exists a 𝑘-wise asymptotically independent
distribution function 𝐹, which is also pairwise asymptotically independent, such that extremely large losses
of 𝑍𝑗 for all 𝑗 ∈ 𝐽 result, with a probability converging to 1, in an extremely large loss of 𝑍1. In particular, for
the Gaussian copula, that is an astonishing result because it is in contrast to the belief that there are no joint
extremes. This shows that for measuring risk contagion, it is important to distinguish between these different
concepts of tail independence and that assuming an improper notion of asymptotic independence for our risk
portfolio may lead to either underestimation or overestimation of the risk contagion.

In the following, we investigate the asymptotic behaviour of the measure CoVaR. For technical reasons,
we restrict the class 𝒫𝑘 slightly; in particular, we will assume that 𝐹1, the distribution of 𝑍1, is Pareto-
distributed, that is, 𝐹1(𝑧) = 1 − 𝑧−𝛼, 𝑧 ≥ 1, for some 𝛼 > 0. Suppose 𝒫∗ ∶= {𝐹 ∈ 𝒫 ∶ 𝐹1 is Pareto-distributed}.
For 𝑘 ∈ {2, … , 𝑑}, define the classes

𝒫∗𝑘 ∶= 𝒫𝑘 ∩ {𝐹 ∈ 𝒫
∗ ∶ sup

𝛾∈(0,𝑥−1]

𝐶𝑆(𝑥𝛾, 𝛾, … , 𝛾)
𝐶𝑆(𝛾, 𝛾, … , 𝛾)

< ∞, ∀ 𝑆 ⊆ 𝕀𝑑, ∀ 𝑥 ≥ 1} ⊆ 𝒫𝑘,

and

𝒩∗
𝑘 ∶= 𝒩𝑘 ∩ 𝒫

∗ ⊆ 𝒩𝑘.

Remark 6. Instead of assuming that 𝐹1 follows a Pareto distribution, it is possible to consider a broader class,
allowing 𝐹1 to have a regularly varying tail. However, this approach makes the proofs more technical without
providing any further valuable insights. Hence, we have shown our results for the smaller class 𝒫∗𝑘 for the
purpose of exposition.

Although we reduce the class𝒫𝑘 to𝒫∗𝑘, it still remains quite large and contains, in particular, 𝑘-wise asymp-
totically independent Gaussian copulas (with 𝐹1 being Pareto-distributed).

Lemma 1. 𝒩∗
𝑘 ⊆ 𝒫

∗
𝑘 for 𝑘 ∈ {2, … , 𝑑}.

By restricting our consideration to the sets 𝒫∗𝑘 and 𝒩∗
𝑘, we derive the subsequent result concerning the

asymptotic behaviour of the CoVaR.

Theorem 6. Suppose anℝ𝑑-valued random vector Z = (𝑍1, … , 𝑍𝑑) ∼ 𝐹, 𝑑 ≥ 2, has continuous marginal distri-
butions and the marginal 𝐹1 is a Pareto distribution. Furthermore, let 𝐽 ⊂ 𝕀𝑑 ⧵ {1} with |𝐽| = 𝓁.

(a) If 𝑘 ∈ {𝓁 + 1, … , 𝑑}, then for any 𝛾1 ∈ (0, 1),

sup
𝐹∈𝒩∗

𝑘

lim
𝛾2↓0

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

= sup
𝐹∈𝒫∗𝑘

lim
𝛾2↓0

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

= 0.

(b) If 𝑘 ∈ {2, … , 𝓁}, then for any 𝛾1 ∈ (0, 1),

sup
𝐹∈𝒩∗

𝑘

lim
𝛾2↓0

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

= sup
𝐹∈𝒫∗𝑘

lim
𝛾2↓0

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

= ∞.

Similar to the case of finding the worst case CTP, we observe that the worst case CoVaR also has a qualita-
tively different behaviour depending on whether the tail dependence exhibits 𝑘-wise asymptotic independence
with 𝑘 > |𝐽|, or with 𝑘 ≤ |𝐽|. When 𝑘 > |𝐽|, the ratio CoVaR𝛾1,𝛾2(Z1|𝐽)∕VaR𝛾2(𝑍1) converges to 0, reflecting that
CoVaR𝛾1,𝛾2(Z1|𝐽) increases at a negligible rate in comparison to VaR𝛾2(𝑍1) as 𝛾2 ↓ 0 and that CoVaR𝛾1,𝛾2(Z1|𝐽) is
relatively small; in other words, the required risk reserve capital is low. But if 𝑘 ≤ |𝐽|, there exists a𝐹 ∈ 𝒩∗

𝑘 ⊆ 𝒫
∗
𝑘

where CoVaR𝛾1,𝛾2(Z1|𝐽)∕VaR𝛾2(𝑍1) converges to∞, so that CoVaR𝛾1,𝛾2(Z1|𝐽)may increase much faster to∞ than
VaR𝛾2(𝑍1) as 𝛾2 ↓ 0, giving a relatively high CoVaR𝛾1,𝛾2(Z1|𝐽) and a higher reserve risk capital requirement.

DOI: 10.1002/cjs.70036 wileyonlinelibrary.com/cjs

 1708945x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.70036 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [15/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/journal/1708945x


16 of 23 DAS AND FASEN-HARTMANN

Remark 7. Computations analogous to the ones carried out in this section can also be done for other measures
of risk contagion, such as the marginal expected shortfall (MES), or the marginal mean excess (MME) (Cai
et al., 2015; Das and Fasen-Hartmann, 2018). Note that, as when computing CoVaR, we need to restrict 𝒫𝑘 to
smaller classes satisfying various technical conditions. We leave these pursuits for interested readers to explore.

6 Conclusion
In this article, we provided a notion of multivariate asymptotic independence, which is useful in comparing
extreme events in different dimensions beyond mere pairwise comparisons (which have traditionally been used
in the literature). This parallels the dichotomy of mutual independence vis-a-vis pairwise independence for
multivariate random vectors. We believe this new notion also provides an alternate pathway for characterizing
extremal dependence for high-dimensional problems relating to tail events. We have illustrated this idea using
examples of particular copula models, including a few from the Archimedean family, along with the Gaussian
and MO copulas. The copulas considered often exhibit at least pairwise asymptotic independence if not mutual
asymptotic independence. For both Archimedean and Gaussian copulas, we presented examples exhibiting not
only mutual asymptotic independence but also pairwise asymptotic independence without mutual asymptotic
independence. In particular, for the Gaussian copula, this result is quite striking since it is in contrast to the
common belief that the Gaussian copula does not allow joint extremes. We have also introduced the concept of
𝑘-wise asymptotic independence, which generalizes these two notions (pairwise and mutual) and brings them
under the same umbrella. Here we have shown that for any 𝑘 ∈ {2, … , 𝑑}, there exists a 𝑘-wise asymptotically
independent Gaussian copula (which is not (𝑘 + 1)-wise asymptotically independent if 𝑘 < 𝑑). Moreover, we
have shown that these assumptions of different notions of asymptotic tail independence significantly impact
measures of risk contagion within a financial system, such as CTP or CoVaR, depending on the specific context.
Overlooking these concepts and assuming merely pairwise asymptotic independence for models may often lead
to a significant underestimation of risks.
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A Proofs of Section 3
First, we present some auxiliary results required for the proof of Theorem 3. The following lemma is from
Hashorva and Hüsler (2002, Proposition 2.5 and Corollary 2.7).

Lemma 2. Let Σ ∈ ℝ𝑑×𝑑 be a positive-definite correlation matrix. Then for any 𝑆 ⊂ 𝕀𝑑 with |𝑆| ≥ 2, the quadratic
programming problem

𝒫Σ−1
𝑆
∶ min
{z∈ℝ|𝑆|∶z≥1𝑆}

z⊤Σ−1
𝑆 z

has a unique solution e𝑆 ∈ ℝ𝑑 such that

𝜅𝑆 ∶= min
{z∈ℝ|𝑆|∶z≥1𝑆}

z⊤Σ−1
𝑆 z = e𝑆 ⊤Σ−1

𝑆 e𝑆 > 1.
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Moreover, there exists a unique non-empty index set 𝐼𝑆 ⊆ 𝑆 with 𝐽𝑆 ∶= 𝑆 ⧵ 𝐼𝑆 such that the unique solution e𝑆 is
given by

e𝑆𝐼𝑆 = 1𝐼𝑆 ,

e𝑆𝐽𝑆 = −[Σ
−1
𝑆 ]−1

𝐽𝑆𝐽𝑆
[Σ−1
𝑆 ]𝐽𝑆𝐼𝑆1𝐼𝑆 ≥ 1𝐽𝑆 ,

and 1𝐼𝑆Σ
−1
𝐼𝑆 1𝐼𝑆 = e𝑆 ⊤Σ−1

𝑆 e𝑆 = 𝜅𝑆 > 1 as well as z⊤Σ−1
𝑆 e𝑆 = z⊤𝐼𝑆Σ

−1
𝐼𝑆 1𝐼𝑆 ∀ z ∈ ℝ|𝑆|. Also, defining ℎ𝑆𝑖 ∶= 𝑒

⊤
𝑖 Σ

−1
𝐼𝑆 1𝐼𝑆

for 𝑖 ∈ 𝐼𝑆, where 𝑒𝑖 has only one nonzero entry 1 at the 𝑖th co-ordinate, we have ℎ𝑆𝑖 > 0 ∀𝑖 ∈ 𝐼𝑆 .

Lemma 3. Let Σ ∈ ℝ𝑑×𝑑 be a positive-definite correlation matrix and 𝐼 ∶= 𝐼𝕀𝑑 be defined as in Lemma 2.
(a) Suppose Σ−11 > 0. Then for any 𝑆 ⊆ 𝕀𝑑 with 𝑆 ≠ 𝕀𝑑, the inequality 𝜅𝕀𝑑 > 𝜅𝑆 holds.

(b) Suppose Σ−11 ≯ 0. Then 𝐼 ≠ 𝕀𝑑 and for any set 𝑆 ≠ 𝕀𝑑 with 𝐼 ⊆ 𝑆 ⊆ 𝕀𝑑 the equality 𝜅𝕀𝑑 = 𝜅𝑆 holds. For
𝑆 ⊆ 𝕀𝑑 with 𝑆𝑐 ∩ 𝐼 ≠ ∅ we have 𝐼 = 𝐼𝑆 and the inequality 𝜅𝕀𝑑 > 𝜅𝑆 holds.

Proof. We start with some preliminary calculations. Suppose 𝑆 ⊆ 𝕀𝑑 with 𝑆𝑐 ∩ 𝐼 ≠ ∅. Let e∗ ∶= e𝕀𝑑 be the unique
solution of the quadratic programming problem𝒫Σ−1 such that 𝜅𝕀𝑑 = e∗⊤Σ−1e∗, e∗ ≥ 1 and [Σ−1e∗]𝑆𝑐 ≠ 0𝑆𝑐 since
[Σ−1e∗]𝐼 > 0𝐼 and 𝑆𝑐 ∩ 𝐼 ≠ ∅ (cf. Lemma 2). First, define ẽ𝑆 ∶= e∗𝑆𝑐 + [Σ

−1]−1
𝑆𝑐 [Σ

−1]𝑆𝑐𝑆e∗𝑆 and note that

ẽ𝑆 = e∗𝑆𝑐 + [Σ
−1]−1

𝑆𝑐 [Σ
−1]𝑆𝑐𝑆e∗𝑆

= [Σ−1]−1
𝑆𝑐

(
[Σ−1]𝑆𝑐e∗𝑆𝑐 + [Σ

−1]𝑆𝑐𝑆𝑒∗𝑆
)

= [Σ−1]−1
𝑆𝑐

[
Σ−1e∗

]

𝑆𝑐
≠ 0𝑆𝑐 . (A1)

Finally, the Schur decomposition (Lauritzen 2004, eq. (B2))

[Σ−1]𝑆 = Σ
−1
𝑆 + [Σ−1]𝑆𝑆𝑐 [Σ

−1]−1
𝑆𝑐 [Σ

−1]𝑆𝑐𝑆
along with (A1) implies that

𝜅𝕀𝑑 = e∗⊤Σ−1e∗

= e∗⊤𝑆 Σ
−1
𝑆 e∗𝑆 + ẽ⊤𝑆 [Σ

−1]𝑆𝑐 ẽ𝑆 (A2)

> e∗⊤𝑆 Σ
−1e∗𝑆 ≥ min

z𝑆≥1𝑆
z⊤𝑆 Σ

−1
𝑆 z𝑆 = 𝜅𝑆. (A3)

(a) If Σ−11 > 0, then 𝐼 = 𝕀𝑑 and e∗ = 1; see Hashorva and Hüsler (2002, Proposition 2.5). Thus, any 𝑆 ⊆ 𝕀𝑑
with 𝑆 ≠ 𝕀𝑑 satisfies 𝑆𝑐 ∩ 𝐼 ≠ ∅ and the result follows from (A3).

(b) If Σ−11 ≯ 0, then 𝐼 ⊆ 𝕀𝑑 and 𝐼 ≠ 𝕀𝑑; see Hashorva and Hüsler (2002, Proposition 2.5). Hence, Lemma 2
and Σ−1

𝐼 1𝐼 > 0𝐼 imply that

𝜅𝕀𝑑 = 1⊤𝐼 Σ
−1
𝐼 1⊤𝐼 = 𝜅𝐼.

Further, we already know from the Schur decomposition (A2), which is valid independent of the choice of the
set 𝑆, that 𝜅𝕀𝑑 ≥ 𝜅𝑆 ≥ 𝜅𝐼 . Hence the only possibility is that 𝜅𝕀𝑑 = 𝜅𝑆 = 𝜅𝐼 . The second statement was already
proven in (A3). ◻

The next proposition provides the tail asymptotics for the Gaussian survival copula using Das and Fasen-
Hartmann (2024, Theorem 1).

Proposition 4. Let 𝐶Σ be a Gaussian copula with positive-definite correlation matrix Σ and 𝑆 ⊂ 𝕀𝑑 with |𝑆| ≥ 2.
Let 𝜅𝑆, 𝐼𝑆, and ℎ𝑆𝑠 , where 𝑠 ∈ 𝐼𝑆, be defined as in Lemma 2. Now, with v𝑆 = (𝑣𝑠)𝑠∈𝑆 where 𝑣𝑠 ∈ (0, 1), ∀𝑠 ∈ 𝑆, we
have as 𝑢 ↓ 0,

𝐶Σ𝑆 (𝑢v𝑆) = (1 + 𝑜(1))Υ𝑆(2𝜋)
𝜅𝑆
2 𝑢𝜅𝑆 (−2 log𝑢)

𝜅𝑆−|𝐼𝑆|
2

∏

𝑠∈𝐼𝑆

𝑣ℎ
𝑆
𝑠
𝑠 , (A4)

where Υ𝑆 > 0 is a constant.

DOI: 10.1002/cjs.70036 wileyonlinelibrary.com/cjs

 1708945x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.70036 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [15/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/journal/1708945x


18 of 23 DAS AND FASEN-HARTMANN

Proof. Since (A4) is independent of the marginals of the distribution, consider a random vector Z ∼ 𝐺 in ℝ𝑑
with standard Pareto marginals, that is, 𝐺𝑗(𝑧) = P(𝑍𝑗 ≤ 𝑧) = 1 − 𝑧−1, 𝑧 ≥ 1, ∀𝑗 ∈ 𝕀𝑑, and dependence given by
the Gaussian copula 𝐶Σ. Using Das and Fasen-Hartmann (2024, Theorem 1) we have that for z𝑆 = (𝑧𝑠)𝑠∈𝑆 with
𝑧𝑠 > 0 ∀𝑠 ∈ 𝑆, as 𝑡 → ∞,

P(𝑍𝑠 > 𝑡𝑧𝑠, ∀ 𝑠 ∈ 𝑆) = (1 + 𝑜(1))Υ𝑆(2𝜋)
𝜅𝑆
2 𝑡−𝜅𝑆 (2 log(𝑡))

𝜅𝑆−|𝐼𝑆|
2

∏

𝑠∈𝐼𝑆

𝑧−ℎ
𝑆
𝑠

𝑠 , (A5)

where Υ𝑆 > 0 is a constant. Then

𝐶Σ𝑆 (𝑢v𝑆) = P(𝐺𝑠(𝑍𝑠) > 1 − 𝑢𝑣𝑠, ∀ 𝑠 ∈ 𝑆) = P(𝑍𝑠 > 𝑢−1𝑣−1
𝑠 , ∀ 𝑠 ∈ 𝑆),

and the result follows immediately from (A5). ◻

Lemma 4. Let 𝐶Σ be a Gaussian copula with positive-definite correlation matrix Σ. Then there exists a 𝓁 ∈ 𝕀𝑑
such that

lim
𝑢↓0

𝐶Σ(𝑢, … , 𝑢)
𝐶Σ𝕀𝑑⧵{𝓁}(𝑢, … , 𝑢)

= 𝑐 ∈ (0, 1] (A6)

if and only if Σ−11 ≱ 0.

Proof. ⇐: Suppose Σ−11 ≱ 0. From Lemma 3(b) we already know that 𝐼 ≠ 𝕀𝑑. Now let 𝓁 ∈ 𝕀𝑑 ⧵ 𝐼. For 𝑆 = 𝕀𝑑 ⧵
{𝓁}, we have 𝐼 ⊆ 𝑆 ⊆ 𝕀𝑑, with 𝐼 = 𝐼𝑆 and 𝜅𝕀𝑑 = 𝜅𝑆 (cf. proof of Lemma 3). Now, using (A4) we have

lim
𝑢↓0

𝐶Σ(𝑢, … , 𝑢)
𝐶Σ𝕀𝑑⧵{𝓁}(𝑢, … , 𝑢)

=
Υ𝕀𝑑
Υ𝕀𝑑⧵{𝓁}

> 0.

⇒: Suppose there exists 𝓁 ∈ 𝕀𝑑 such that (A6) holds. We prove the statement by contradiction. By way of con-
tradiction, assume Σ−11 > 0 holds. Lemma 3 says that for any set 𝑆 ⊆ 𝕀𝑑 with 𝑆 ≠ 𝕀𝑑, the inequality 𝜅𝕀𝑑 > 𝜅𝑆
holds. Again, using (A4) we have with 𝜅∗ ∶= 𝜅𝕀𝑑 − 𝜅𝕀𝑑⧵{𝓁} and 𝑑∗ ∶= 𝑑 − |𝐼𝕀𝑑⧵{𝓁}|,

lim
𝑢↓0

𝐶Σ(𝑢, … , 𝑢)
𝐶Σ𝕀𝑑⧵{𝓁}(𝑢, … , 𝑢)

= lim
𝑢↓0

Υ𝕀𝑑
Υ𝕀𝑑⧵{𝓁}

(
√

2𝜋𝑢)𝜅∗(−2 log𝑢)
𝜅∗−𝑑∗

2 = 0,

which is a contradiction to (A6). ◻

Proof of Theorem 3. The proof follows now from Lemma 4 by using an analogous argument as given in the
proof of Proposition 4. ◻

Proof of Proposition 2. The proof directly follows from Proposition 4 where a representation for 𝓁𝑆 is also
provided. ◻

B Proofs of Section 4

Proof of Theorem 4. First, we define for some 𝜌 ∈ (− 1
√
𝑘
, 1
√
𝑘
) the ℝ(𝑘+1)×(𝑘+1)-valued positive-definite matrix

Γ𝜌 ∶= [
I𝑘 𝜌1𝑘
𝜌1⊤𝑘 1

],

with inverse

Γ−1
𝜌 =

⎡
⎢
⎢
⎣

I𝑘 +
𝜌2

1−𝑘𝜌2
1𝑘1⊤𝑘

−𝜌
1−𝑘𝜌2

1𝑘
−𝜌

1−𝑘𝜌2
1⊤𝑘

1
1−𝑘𝜌2

⎤
⎥
⎥
⎦

. (B1)
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Note that

Γ−1
𝜌 1𝑘+1 = [

1 − 𝜌
1 − 𝑘𝜌2 , … ,

1 − 𝜌
1 − 𝑘𝜌2 ,

1 − 𝑘𝜌
1 − 𝑘𝜌2 ]

⊤

.

If we restrict 𝜌 ∈ [ 1
𝑘
, 1
√
𝑘
), then the first 𝑘 components of Γ−1

𝜌 1𝑘+1 are positive and the last component is

negative, resulting in Γ−1
𝜌 1𝑘+1 ≯ 0𝑘+1, and hence due to Theorem 3, a Gaussian copula 𝐶Γ𝜌 with corre-

lation matrix Γ𝜌 is not mutually asymptotically independent, and thus not (𝑘 + 1)-wise asymptotically
independent.

Now suppose that X ∈ ℝ(𝑘+1)×(𝑘+1) is a random vector with Gaussian copula 𝐶Γ𝜌 , where 𝜌 is further

restricted to 𝜌 ∈ ( 1
𝑘
,min ( 1

𝑘−1
, 1
√
𝑘
)). Consider a subset 𝑆 ⊂ {1, … , 𝑘 + 1} with |𝑆| = 𝑗 such that 𝑗 ∈ {2, … , 𝑘}.

• If 𝑘 + 1 ∈ 𝑆, considering 𝑘 + 1 to be the final element of 𝑆, we have

[Γ𝜌]−1
𝑆 1𝑗 = [

1 − 𝜌
1 − (𝑗 − 1)𝜌2 , … ,

1 − 𝜌
1 − (𝑗 − 1)𝜌2 ,

1 − (𝑗 − 1)𝜌
1 − (𝑗 − 1)𝜌2 ]

⊤

> 0𝑗.

• If 𝑘 + 1 ∉ 𝑆, then [Γ𝜌]𝑆 = I𝑗 and hence

[Γ𝜌]−1
𝑆 1𝑗 = 1𝑗 > 0𝑗.

Thus Theorem 3 implies then that X𝐽 , for any 𝐽 ⊆ {1, … , 𝑘 + 1} with |𝐽| ≤ 𝑘, is a mutually asymptotically
independent random vector inℝ𝐽 . Finally, a conclusion of Proposition 3 is that X is 𝑘-wise asymptotically inde-
pendent in ℝ(𝑘+1)×(𝑘+1), although it is not (𝑘 + 1)-wise asymptotically independent. From Lemma 2, we know
that 𝐼{1,…,𝑘+1} = {1, … , 𝑘} = 𝐼{1,…,𝑘}, 𝜅{1,…,𝑘+1} = 𝜅{1,…,𝑘} = 𝑘, ℎ{1,…,𝑘+1}

𝑖 = ℎ{1,…,𝑘}𝑖 = 1 for 𝑖 ∈ {1, … , 𝑘}, and, finally,
from Proposition 4 that

lim
𝑢↓0

𝐶Γ𝜌{1,…,𝑘+1}(𝑢, … , 𝑥𝑢)

𝐶Γ𝜌{1,…,𝑘}(𝑢, … , 𝑢)
= 1.

Note that the constant Υ𝑆 in Proposition 4 is not specified in this article but is given in Das and Fasen-
Hartmann (2024, Theorem 1), from which we obtain Υ{1,…,𝑘+1} = Υ{1,…,𝑘}.

After all, define the (𝑑 × 𝑑)-dimensional correlation Σ𝜌 as a block diagonal matrix having in the first (𝑑 −
(𝑘 + 1)) × (𝑑 − (𝑘 + 1)) block the identity matrix, zeros in the two off-diagonal blocks, and, in the last (𝑘 + 1) ×

(𝑘 + 1) block Γ𝜌 with 𝜌 ∈ ( 1
𝑘
,min ( 1

𝑘−1
, 1
√
𝑘
)), that is, the random vector Z∗ = (𝑍∗1 , … , 𝑍

∗
𝑑)with Gaussian copula

𝐶Σ𝜌 has the property that𝑍∗1 , … , 𝑍
∗
𝑑−(𝑘+1) are an independent sequence which is also independent of the random

vector X = (𝑍∗𝑑−𝑘, … , 𝑍
∗
𝑑) inℝ(𝑘+1)×(𝑘+1) with Gaussian copula 𝐶Γ𝜌 . Then by analogous arguments as above, Z∗

is a 𝑘-wise asymptotically independent random vector in ℝ𝑑 although it is not (𝑘 + 1)-wise asymptotically
independent and

lim
𝑢↓0

𝐶Σ𝜌{𝑑−𝑘,…,𝑑}(𝑢, … , 𝑥𝑢)

𝐶Σ𝜌{𝑑−𝑘,…,𝑑−1}(𝑢, … , 𝑢)
= 1.

The 𝑑-dimensional random vector Z is finally a permutation of Z∗ with Z𝑆2 = Z∗{𝑑−𝑘,…,𝑑}, Z𝑆1 = Z∗{𝑑−𝑘,…,𝑑−1} and
Z𝕀𝑑⧵𝑆2 = Z∗{1,…,𝑑−𝑘−1} and satisfies the requirements of the theorem. ◻

C Proofs of Section 5

Proof of Theorem 5. For ease of notation, we define 𝐽∗ ∶= 𝐽 ∪ {1}. By definition,

CTP𝛾(Z1|𝐽) = P
(
𝑍1 > VaR𝛾(𝑍1)|𝑍𝑗 > VaR𝛾(𝑍𝑗), ∀𝑗 ∈ 𝐽

)

DOI: 10.1002/cjs.70036 wileyonlinelibrary.com/cjs

 1708945x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.70036 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [15/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/journal/1708945x


20 of 23 DAS AND FASEN-HARTMANN

= P(𝑍1 > 𝐹−1
1 (1 − 𝛾)|𝑍𝑗 > 𝐹−1

𝑗 (1 − 𝛾), ∀𝑗 ∈ 𝐽)

=
𝐶𝐽∗(𝛾, … , 𝛾)
𝐶𝐽(𝛾, … , 𝛾)

, (C1)

which does not depend on the marginal distributions.
(a) Since 𝒩𝑘 ⊆ 𝒫𝑘, and probabilities are non-negative, it is sufficient to show the statement for 𝒫𝑘. But
for any 𝐹 ∈ 𝒫𝑘, by the definition of 𝑘-wise asymptotic independence and because |𝐽∗| = 𝓁 + 1 ≤ 𝑘, we
have lim𝛾↓0 CTP𝛾(Z1|𝐽) = 0, and thus (a) holds.

(b) If 𝑑 = 2, there is nothing else to prove. Hence, now assume 𝑑 ≥ 3. Since 0 ≤ CTP𝛾(Z1|𝐽) ≤ 1, to show
(b), it is sufficient to provide an example of 𝐹 ∈ 𝒩𝓁 ⊆ 𝒩𝑘 ⊆ 𝒫𝑘 for 𝑘 ∈ {2, … , 𝓁}, such that for Z ∼ 𝐹, we
have lim𝛾↓0 CTP𝛾(Z1|𝐽) = 1. To this end, we will choose𝐹 with a Gaussian copula𝐶Σ and positive-definite
correlation matrix Σ as identified in Theorem 4, such that 𝐹 exhibits 𝓁-wise asymptotic independence but
not (𝓁 + 1)-wise asymptotic independence, and for any 𝑥 > 0

lim
𝛾↓0

𝐶Σ𝐽∗(𝑥𝛾, 𝛾, … , 𝛾)

𝐶Σ𝐽 (𝛾, … , 𝛾)
= 1.

Hence, 𝐹 ∈ 𝒩𝓁, and by (C1) we have also

lim
𝛾↓0

CTP𝛾(Z1|𝐽) = lim
𝛾↓0

𝐶Σ𝐽∗(𝛾, … , 𝛾)

𝐶Σ𝐽 (𝛾, … , 𝛾)
= 1,

which is what we wanted to show.
◻

Proof of Lemma 1. By definition, we have the relation𝒩∗
𝑘 ⊆ 𝒩𝑘 ⊆ 𝒫𝑘. Since distributions in𝒩∗

𝑘 have a Pareto-
distributed marginal in the first component, it remains to show that for any Gaussian copula 𝐶Σ, where Σ is a
positive-definite correlation matrix,

sup
𝛾∈(0,𝑥−1]

𝐶Σ𝑆 (𝑥𝛾, 𝛾, … , 𝛾)

𝐶Σ𝑆 (𝛾, 𝛾, … , 𝛾)
< ∞, (C2)

for all 𝑆 ⊆ 𝕀𝑑, and for all 𝑥 ≥ 1. However, a conclusion from Proposition 4 is that for any 𝑆 ⊆ 𝕀𝑑, there exists a
constant ℎ𝑆1 ≥ 0 (where ℎ𝑆1 = 0 if 1 ∉ 𝐼𝑆) so that for any 𝑥 > 0,

lim
𝛾↓0

𝐶Σ𝑆 (𝑥𝛾, 𝛾, … , 𝛾)

𝐶Σ𝑆 (𝛾, 𝛾, … , 𝛾)
= 𝑥ℎ

𝑆
1 ,

implying (C2). ◻

Proof of Theorem 6. First, note that

CoVaR𝛾1,𝛾2(Z1|𝐽) = inf{𝑧 ∈ ℝ+ ∶ P(𝑍1 > 𝑧|𝑍𝑗 > VaR𝛾2(𝑍𝑗), ∀𝑗 ∈ 𝐽) ≤ 𝛾1}

= VaR𝛾2(𝑍1) inf{𝑧 ∈ ℝ+ ∶ P(𝑍1 > 𝑧VaR𝛾2(𝑍1)|𝑍𝑗 > VaR𝛾2(𝑍𝑗), ∀𝑗 ∈ 𝐽) ≤ 𝛾1}.

Suppose 𝑍1 is Pareto(𝛼)-distributed, 𝛼 > 0. Then the previous equation reduces to

CoVaR𝛾1,𝛾2(Z1|𝐽) = VaR𝛾2(𝑍1) inf
⎧

⎨
⎩

𝑧 ∈ ℝ+ ∶
𝐶𝐽∗(𝑧

− 1
𝛼 𝛾2, 𝛾2, … , 𝛾2)

𝐶𝐽(𝛾2, … , 𝛾2)
≤ 𝛾1

⎫

⎬
⎭

, (C3)

where 𝐽∗ = 𝐽 ∪ {1}.
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(a) Suppose 𝐹 ∈ 𝒫∗𝑘 and 𝑘 ∈ {𝓁 + 1, … , 𝑑}. Let 𝜖 ∈ (0, 𝛾1) and

𝐾 ∶= sup
𝛾∈(0,𝜖1∕𝛼]

𝐶𝐽∗(𝜖−1∕𝛼𝛾, 𝛾, … , 𝛾)
𝐶𝐽∗(𝛾, 𝛾, … , 𝛾)

, (C4)

which is finite for 𝐹 ∈ 𝒫∗𝑘 by the definition of 𝒫∗𝑘. Furthermore, 𝐹 ∈ 𝒫∗𝑘 ⊆ 𝒫𝑘 implies that there exists a
𝛾0(𝜖) ∈ (0, 𝛾1) such that

𝐶𝐽∗(𝛾, 𝛾, … , 𝛾)
𝐶𝐽(𝛾, 𝛾, … , 𝛾)

≤ 𝜖
𝐾 , ∀ 𝛾 ∈ (0, 𝛾0(𝜖)). (C5)

Therefore, from (C4) and (C5), for all 0 < 𝛾2 < min(𝜖1∕𝛼, 𝛾0(𝜖)) we have

𝐶𝐽∗(𝜖
− 1
𝛼 𝛾2, 𝛾2, … , 𝛾2)

𝐶𝐽(𝛾2, … , 𝛾2)
=
𝐶𝐽∗(𝜖

− 1
𝛼 𝛾2, 𝛾2, … , 𝛾2)

𝐶𝐽∗(𝛾2, … , 𝛾2)
𝐶𝐽∗(𝛾2, … , 𝛾2)
𝐶𝐽(𝛾2, … , 𝛾2)

≤ 𝐾 ⋅ 𝜖𝐾 < 𝛾1,

and finally, using (C3), we get

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

≤ 𝜖.

Since 𝜖 ∈ (0, 𝛾1) is arbitrary, this results in

lim
𝛾2↓0

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

= 0.

Finally, from Lemma 1 we already know that 𝒩∗
𝑘 ⊆ 𝒫

∗
𝑘, thus the result is true for 𝒩∗

𝑘 as well.

(b) We will construct a Z ∼ 𝐹 ∈ 𝒩∗
𝓁, so that

lim
𝛾2↓0

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

= ∞,

which shows the statement. To this end, we will choose Z ∼ 𝐹, which has a Gaussian copula 𝐶Σ with
positive-definite correlation matrix Σ as in Theorem 4, such that 𝐹 exhibits 𝓁-wise asymptotic indepen-
dence but not (𝓁 + 1)-wise asymptotic independence and for any 𝑥 > 0,

lim
𝑢↓0

𝐶Σ𝐽∗(𝑥𝑢, 𝑢, … , 𝑢)

𝐶Σ𝐽 (𝑢, … , 𝑢)
= 1. (C6)

Additionally, suppose that the marginal 𝐹1 is Pareto(𝛼)-distributed. Then, 𝐹 ∈ 𝒩∗
𝓁 ⊆ 𝒩

∗
𝑘 ⊆ 𝒫

∗
𝑘 for 𝑘 ∈

{2, … , 𝓁}. Because of (C6), for any 𝑀 > 0, there exists a 𝛾0(𝑀) ∈ (0, 1) such that

𝐶Σ𝐽∗(𝑀
− 1
𝛼 𝛾2, 𝛾2, … , 𝛾2)

𝐶Σ𝐽 (𝛾2, … , 𝛾2)
>
𝛾1 + 1

2 , ∀ 𝛾2 ∈ (0, 𝛾0(𝑀)).

From this, we get that ∀ 𝛾2 ∈ (0, 𝛾0(𝑀)),

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

= inf
⎧

⎨
⎩

𝑧 ∈ ℝ+ ∶
𝐶𝐽∗(𝑧

− 1
𝛼 𝛾2, 𝛾2, … , 𝛾2)

𝐶𝐽(𝛾2, … , 𝛾2)
≤ 𝛾1

⎫

⎬
⎭

≥ 𝑀,

implying

lim inf
𝛾2↓0

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

≥ 𝑀.
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Since 𝑀 > 0 is arbitrary, we have

lim
𝛾2↓0

CoVaR𝛾1,𝛾2(Z1|𝐽)
VaR𝛾2(𝑍1)

= ∞,

exhibiting the desired property for our chosen 𝐹 and, hence proving the result.
◻
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