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ABSTRACT

Carbazolide complexes of lanthanum and terbium with cyclooctatetraenediide (COT) and THF coligands of the type
[(4*PCbz)LnCOT(thf),] (n = 2 for La, 1 for Tb) were synthesized by salt metathesis reactions. The THF molecules were
found to be labile, and drying under vacuum led to their partial removal with concomitant formation of the dinuclear

complexes [(4°PCbz),Ln,(COT),(thf)]. The luminescence of both lanthanum and terbium complexes was investigated, and at

cryogenic temperatures, strongly temperature-dependent phosphorescence was observed. The terbium complexes show the

expected element-characteristic emission with narrow lines between 480 and 700 nm upon excitation at 370 nm. Beyond that,

broad emission was induced selectively by excitation at lower energy. Related phosphorescence was found for the lanthanum

complex, which implies intra- or inter-ligand excitation as source for the latter. This interpretation was corroborated by TD-DFT

computations.

1 | Introduction

The aromatic, 107-electron cyclooctatetraenide (COT) derivatives
serve as important building blocks in organolanthanide chem-
istry. The steric demand of the COT ligands can be tuned by intro-
ducing, for example, different silyl-substituents at the 1- and 4-
position. During the past decades, different homoleptic structural
motifs have been disclosed by using solely the COT derivatives.
These range from simple double-decker [1, 2] and triple-decker
[3] species to even larger multi-decker compounds [4-6]. Apart
from the homoleptic ones, a certain number of heteroleptic COT-
containing sandwich structures have also been isolated, most of
them utilizing other 7-coordinating coligands [7-11]. Introduced
in place of cyclic carbon-based ligands, anionic N-donor ligands

have expanded the scope of heteroleptic Ln-COT compounds as
suitable anchor ligands for the hard trivalent lanthanides. Notable
examples include amides (Scheme 1, I-IIT) [12-14], amidinates
(IV,V)[15,16], iminophosphonamides (VI) [15], aminotroponim-
inates (VII) [17], bis(phosphinimino)methanides (VIII) [18-20],
B-diketiminates (IX) [21], and imido ligands (X) [22, 23] as
coligands (Scheme 1). In addition to their unique structural
motifs, some of those compounds have also been investigated
in terms of their catalytic behavior. For example, the samarium
complex [{CH(PPh,NSiMe,),}Sm(n®-CsHy)] was found to be an
efficient catalyst for intramolecular hydroamination/cyclisation
reaction of terminal aminoolefins and alkynes [20]. While the
catalytic aspects of such compounds have garnered attention,
their optical properties remain relatively unexplored.
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SCHEME 1 | Selected examples of heteroleptic lanthanide cyclooc-
tatetraenediide complexes with monoanionic N-donors.

Carbazole derivatives represent another group of promising
N-donor ligands for heteroleptic Ln-COT compounds. Recent
research on carbazoles has put a primary focus on their optical
properties, with a purpose of their use in organic light-emitting
diodes and field-effect transistors (OLED and OFET). Variation
in substitution patterns on the carbazole scaffold and coordi-
nation to diverse metals, have unveiled intriguing luminescent
properties.

In coordination chemistry, various monodentate and tridentate
pincer-type carbazolides have been utilized as ligands for various
metal ions. In previous work, our group prepared a series of alkali-
metal carbazolides bearing the sterically demanding carbazolyl
substituent ¢®?Cbz (4*PCbz = 1,8-bis(3,5-di-tert-butyl-phenyl)-3,6-
di-tert-butyl-carbazolyl), which show efficient fluorescence with
the emission maxima across a broad spectral range [24].

The aim of this work is an introduction of the “®Cbz ligand
into heteroleptic Ln-COT compounds and characterization of
its “antenna” effect for sensitization of trivalent lanthanides
for which element-characteristic narrowband luminescence is
expected. In this contribution, we report on the synthesis
and structures of the lanthanum and terbium carbazolide-COT
complexes and their photophysical properties.

2 | Results and Discussion
2.1 | Syntheses and Structures

When potassium carbazolide was treated with [Tb(COT)I(thf), 5]
[25] in THF (Scheme 2), the initially yellow solution immediately
darkened. After stirring overnight and evaporation of all volatiles
at ambient temperature, the greenish residue was extracted with
toluene and filtered off. From the toluene solution, crystalline
material was obtained after concentration. After discarding the
supernatant and washing the crystals with n-hexane, 1Tb was
obtained in 47% yield. To prepare 2Tb, crystals of 1Tb were
ground with a spatula and further dried for 60 min at ambi-
ent temperature. Recrystallisation of the material from toluene
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SCHEME 2 | Synthesisof the La and Tb carbazolide COT complexes.
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FIGURE 1 | Molecular structures of 1La and 1Tb, thermal ellipsoids
at 50% probability at 130 and 180 K, respectively. Selected bond lengths
[A] and angles [°] for 1La: N1-Lal 2.579(3), Ol-Lal 2.627(2), N1-Lal-O1
90.39(8), Lal-NC4 plane 37.0°, 2.061 A; for 1Th: N1-Tb1 2.353(3), O1-Tbl
2.418(2), N1-Tb1-01 81.24(9), Tb1-NC4 plane 35.8°, 1.914 A.

afforded 2Tb in 81% yield. The lanthanum analogues were pre-
pared for comparison. Similarly, the reaction between potassium
carbazolide [(“®*Cbz)K] [26] and [La(COT)I(thf),] [27, 28] was
carried out in THF. After stirring the reaction mixture at room
temperature for 12 h, the insoluble materials (KI) were filtered
off. Layering the concentrated THF solution with n-pentane led
to the formation of yellow crystals in 44% yield. The isolated single
crystals of complex 1La were dried under vacuum and redissolved
in C¢Dg for NMR spectroscopy. In the 'H NMR spectrum, two
singlet signals were detected at 1.59 and 1.42 ppm in 2:1 molar
ratio for the two types of tBu groups. The ring proton signals for
the COT were found at 5.58 ppm. Out drying procedure removed
effectively one and a half THF molecules from the complex.
Recrystallization from toluene at room temperature led to the
formation of complex 2La in 72% crystalline yield. It should be
noted that neither 1 nor 2 can be dried at elevated temperatures
without decomposition, which yields “®?CbzH and insoluble
yellowish material.

Complex 1Tb was crystallized from toluene as a THF solvate in
the space group P2,/n (Figure 1). The COT ligand was modelled
disordered over two positions. The complex can be described as
two-legged ‘piano stool’ motif. Key interatomic distances are N—-
Tb 2.353(3) A and O-Tb 2.418(2) A with an N-Tb-O angle of
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81.24(9)°. The Tb-COT interaction is characterized by a Tb- COT
centroid distance of 1.788 A, while the average Tb-C distance is
2.568 A. The Tb atom is 1.914 A away from the central NC, plane
of the carbazole, with an angle of the N-Tb vector to that plane of
35.8°.

Complex 1La crystallized from a THF/n-pentane layered solvent
mixture in the orthorhombic space group Pnma and the asym-
metric unit cell contains half of the molecule, with the La-N bond
located on a mirror plane (Figure 1). The molecular structure of
1La closely resembles that of Tb, however, due to the larger ionic
radius of La** compared to Tb**, two THF molecules coordinate
to the La atom. The planar cyclooctatetraenide ring is n®-bound
with a slight variation of the La-C distances from 2.691(6) to
2.725(7) A, resulting in a three-legged ‘piano stool’ geometry.

The key metrics are N-La 2.579(3) A, O-La 2.627(2) A with N-
La-0 90.39(8)° and O-La-0 69.54(11)°. The La-COT centroid and
average La—C distances are 2.026 A and 2.729 A, respectively.
The La—N bond is bent out of the NC, plane by 37.0° resulting
in a distance of 2.061 A between La and that plane. We note
that the above N—La distance is significantly longer than in
the comparable La-amide complex [(COT)La[N(SiHMe, ), |(thf),]
(2.410(2) A) [13].

Upon removal of coordinated THF molecules by drying 1Tb
and 1La and recrystallisation from toluene, complexes 2Tb and
2La were obtained (Figure 2). In their structures, one moiety is
very similar to 1Tb and 1La. The other one features a related
coordination sphere, where the coordinated THF is removed and
replaced by a long n'-contact between C1 and the metal atom
Tb2 and La2, respectively. The Ln2-COT centroid contacts are
shorter than their Lnl analogues, as are the average Ln-C contacts
(2Tb: Tb1-COT centroid 1.810 A, average Tbl-C 2.583 A; Tb2-
COT centroid major component 1.776 A, average Tb2-C 2.554 A;
2La: Lal-COT centroid 2.009 A, Lal-C average 2.717 A; La2-COT
centroid major component 1.973 A, La2-C average 2.693 A).

Tb2 displays the smallest angle between the Tb2-N vector and the
NC, plane (44.2°) and thus the smallest deviation of Tb2 from that
plane (1.697 A), placing the atom in the “pocket” provided by the
Cbz ligand and potentially enabling 7 interactions.

2.2 | Photoluminescence Properties

As could be expected, photoluminescence (PL) of 1La and 2La
shares some features with the PL of the alkali-metal complexes
possessing the same Y*PCbz ligand [24]. Indeed, the lanthanum
ion does not show element-specific luminescence, hence the
PL spectra observed for 1La and 2La are assumed to similarly
originate from the negatively charged carbazolyl scaffold. Those
features include the PL excitation (PLE) onset at ca. 450-500 nm
and broad emission centered at ca. 500-550 nm (Figure 3).
However, in contrast to the fluorescence of the alkali-metal
complexes [24], 1La and 2La only emit phosphorescence as
indicated by microsecond-long decay times (1La: 7= 6 ps at 77 K,
Figure S13). Accordingly, the La ion appears to provide for very
efficient intersystem conversion (ISC) to a triplet excited state in
the 4°PCbz ligand. With the exception of 2La, phosphorescence
demonstrates a relatively small Stokes shift and therefore is
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FIGURE 2 | Structures of 2La and 2Tb. Thermal ellipsoids at 50%
probability at 180 and 100 K, respectively. Selected bond lengths [A] and
angles [°] for 2Tb: N-Tbl 2.326(2), O-Tbl 2.372(2), N-Tb1-O 82.01(8),
Tb1-NC4 plane -34.4°, 1.921 A, N-Tb2 2.357(2), C-Tb2 2.93(2), N-Tb2-C
77.2(2); for 2La: N-Lal 2.440(2), O-Lal 2.530(1), N-Lal-O 78.7(4), Lal-
NC4 plane -40.9°, 1.833 A, N-La2 2.507(14), C-La2 2.98(2), N-La2—-C
75.9(6), La2-NC4 plane -41.2°,1.896 A.

spectrally close to the above fluorescence. In contrast to the latter
[24], it is bright at cryogenic temperatures, but decreases strongly
above ~150 K. This observation has been made both for fast-
frozen THF solutions of 1La at 77 K (containing monomeric
species) and solid samples of 2La (where crystallographically
authenticated dimeric species cause the emission). At room
temperature, the La complexes are practically nonluminescent.
Figure S9illustrates the PL temperature dependence for solid 2La.
In case of the terbium complexes 1Tb and 2 Tb (PL studied in THF
solution and in solid (polycrystalline) state, respectively), a bright
emission typical for Tb(III) (perceived as a green light) is observed
atlow temperatures. For both 1Tb and 2Tb, excitation with longer
wavelengths also led to broad carbazolyl emission (Figure 3, blue
lines). The Tb emission consists of the characteristic structured
bands corresponding to the major °D,—"F,, *°D,—"F; transitions
(at ca. 485 and 550 nm) as well as the low intensity bands of the
’D,—’F, and °D,—"F; transitions (at ca. 595 and 630 nm). The
lifetime of the excited state at 77 K amounts to 110 ps (average
value from a biexponential fit) for solid 2 Tb and 380 ps for 1 Tb
dissolved in THF. Typically, luminescent Tb(III) complexes show
only a moderate temperature dependence of the PL properties and
many of them emit efficiently even in aqueous solutions [29]. The
temperature dependence of the Tb(III) emission in 1 and 2 Tb
follows, however, that of the carbazolyl phosphorescence in 1La
and 2La: it is bright below ~100 K, but strongly decreases above
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FIGURE 3 | Top:Photograph of emission of 1Tb (left) and 1La (right)
in frozen THF solution upon excitation with a (254/366 nm) UV lamp.
Bottom: Normalized PLE (black) and PL (red and blue, excitation values
given) spectra of 1Tb, 1La, 2Tb and 2La at 77K. Complexes 1Tb and 1La
were measured in frozen THF solution, 2Tb and 2La as neat solids.

~150 K (Figure S10). At room temperature, Tb(IIT) emission was
practically nonobservable in dissolved 1Tb, in solid 2Tb it was
estimated to drop by a factor of 100. A corresponding quantum
efficiency was estimated as 0.3% (by using an integrating sphere
and excitation at 350 nm). The PL efficiency thus approaches
a ~30% level below 50 K, in accordance with the bright green
emission of 2Tb visually observed at low temperatures. On the
other hand, the emission decay (tens to few hundreds of microsec-
onds) only moderately depends on the temperature (Figure S14),
indicating that the intensity decrease is due to a breakdown in
energy transfer to the Tb(III) ion. A similar scenario likely also
occurs in 1Tb. The mechanistic details of such thermally induced
decrease in energy transfer to Tb(III) are not clear at present. One
can note here that thermal quenching of Tb(III) emission has
been commonly observed in inorganic materials, albeit relatively
rarely at low temperatures [30]. However, this quenching is due
to thermally activated electron transfer from the Tb(III) D, level
to the conduction band of a specific inorganic host and thus
different from that in 1Tb and 2Tb.

The emission peaks of 1Tb and 2Tb shown in Figure 3 have
a bandwidth of ca. 0.5 nm defined by instrumental resolution.
In order to determine the intrinsic bandwidth, the emission of
polycrystalline 2Tb was also measured at 3.2 K using a long
focal length spectrograph with a resolution of ca. 0.015 nm
(for details see the Supporting Information). Figure S11 shows
a high-resolution spectrum of the ’D,—"F; transition between
545-550 nm, indicating an intrinsic FWHM value for the major
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FIGURE 4 | Calculated excitations and spectrum simulated by Gaus-
sian broadening (half-width 10 nm) of 1Tb (a) and 1La (d). Differences
in electron densities of the first (b, e)/second (c, f) excitation band
(wavelengths larger/smaller than 350 nm) and the ground state. Blue/red
color indicates a decrease/increase of electron density upon excitation;
contours are drawn at +0.003 au.

multiplet peak at 547.5 nm as ca. 0.1 nm (3 cm™). Such sharp
emission suggests a high degree of structural order in the
sample. The spectrum appears unexpectedly simple considering
the presence of two Tb ions in the dimeric molecule of 2 Tb.
However, their local surroundings are rather similar (Figure 2)
and it is likely that their emissions overlap within the above
bandwidth.

2.3 | Computational Studies

Time-dependent density functional theory calculations [31, 32]
at the scalar-relativistic X2C/PBEO level using x2c/TZVPall-2c
basis sets [33, 34] have been done to gain further insight into
the character of the lowest excitations. Singlet vertical excitations
were calculated for the 40 energetically lowest excitations for
both 1La and 1Tb in their monomeric crystal structures. The
nonrelaxed overall density difference to the ground state was
obtained and plotted as described previously [35].

For both compounds, the lowest 40 excitations were calculated
and the two lowest bands that are clearly separated from the
subsequent ones were analyzed, see Figure 4, left. The maxima
of the first band at 382 nm for 1La and 371 nm for 1Tb are
in reasonable agreement with those in the measured absorption
spectra, 445 nm for 1La and 370 nm for 1 Tb, see Figure 3, well
reproducing the red-shift for 1La compared to 1Tb (Figure 4a,
d). For the latter, the nonrelaxed density difference (Figure 4b)
indicates a transition of electron density (from blue to red) upon
excitation mainly from the 7z-system of the COT ring to the 7-
systems of the phenyl rings and of the carbazole unit (except
of the N position), but also minor contributions to the f shell
of Tb are visible; according to a Mulliken population analysis
[36], the f occupation is increased by 0.03 electrons for this band
which is very low. Also, for 1La, the lowest excitation band mainly
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is a ligand-ligand excitation, but here the La(f) orbitals are not
involved (Figure 4e).

In addition, for 1Tb six very minor excitations in the low enery
range from roughly 37000 to 1960 nm are found, see Figure S14.
The most dominant excitation lies at 2570 nm (3890 cm™ resp.)
and suggests a very weak 4f-4f excitation of the single minority
spin f electron. These transitions are allowed due to distortion
of the atomic shell via the coordinating COT and carbazolide
ligands. Changes within the orbitals of the f shell amount to 0.2
electrons. A detailed orbital-resolved analysis of the transitions
is given in the Supporting Information. The second excitation
band for 1Tb (Figure 4c) features an excitation of the 7-system
of the COT ring and the N atom to the Tb atom (for individual
orbital contributions, see Tables S2, S3) which is in line with the
experimental results. Here, the electron density at Tb increases by
a total of 0.13 electrons (0.05 for s, and 0.08 for f). This feature is
clearly missing in the second excitation band for 1La (Figure 4f),
probably due to the higher energy of the f orbitals for La compared
to Tb.

It is likely that the (small) participation of the f shell in the
excitations present in 1Tb, but not in 1La, is preserved also for
the emission. This leads to the specific PLE spectral lines for
1La broad charge-transfer transitions involving the 7-systems
of the different rings, while for 1Tb, additional f-f transitions at
wavelengths greater than ~2000 nm as well as a ligand-ligand
transition for lower excitation wavelength were substantiated.

3 | Conclusions

Salt metathesis with elimination of potassium iodide enabled
the synthesis of lanthanide COT carbazolide complexes. The
THF content is variable: Initially, monomeric complexes were
obtained, which, upon drying and recrystallizing, yielded din-
uclear compounds. The former were used for luminescence
study in THF solution, while the latter investigated as crystalline
solids. In each instance, phosphorescence was observed. For the
terbium complexes, in dependence of the excitation wavelength,
either the element-characteristic narrow line emission or broad
line intraligand emission could be induced. The lanthanum
complexes only show the latter phenomenon. Based on TD-
DFT computations the relevant excitations were identified as
7(COT)—*(Cbz/arene) transitions.
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