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1 Introduction

Higgs boson pair production offers exceptional promise for uncovering new physics. Indeed,
if the Higgs trilinear coupling deviates from the Standard Model (SM) prediction, di-Higgs
production could reveal hints of physics beyond the SM before a new particle is detected. On
the other hand, such deviations can only be clearly identified as signposts of new physics
if the SM prediction for this process is under very good theoretical control.

In gluon-fusion di-Higgs production, the main sources of theoretical uncertainty arise
from missing higher-order QCD and electroweak (EW) corrections, approximations such as
the mt → ∞ limit, and scheme-dependent treatments of the top-quark mass. Considerable
effort has already been devoted to reducing these uncertainties. The leading order (LO) cross
section has been calculated in refs. [1–3]; next-to-leading order (NLO) QCD corrections in the
heavy top limit (HTL) have been presented in ref. [4]; NLO QCD corrections including the
full top-quark mass dependence have been calculated in refs. [5–8]. The results of refs. [5, 6]
have been matched to parton showers in refs. [9, 10], and combined with next-to-next-to-
leading (NNLO) corrections in the so-called NNLOFTapprox framework, where only the virtual
contributions are evaluated in the HTL [11]. These results have also been incorporated into
calculations at N3LO in the HTL [12, 13] and in combined N3LO+N3LL predictions [14].
Analytic approaches for the NLO QCD corrections to Higgs boson pair production, based
on increasingly accurate approximations that cover nearly the entire phase space [15, 16],
have also become available [17–20].

In recent years, therefore, significant progress has been made in reducing both scale
uncertainties and those arising from approximations of the top-quark mass dependence.
Uncertainties from EW corrections have also been substantially reduced following the compu-
tation of the full NLO EW corrections in ref. [21]. These corrections have additionally been
obtained in a 1/mt expansion [22]; see also refs. [23–28] for earlier partial EW corrections.
Analytic results are available for the light-quark contributions [29], as well as for the Yukawa
and Higgs-self-coupling corrections in the high-energy limit [30]. Numerical results for the
Yukawa and self-coupling contributions have been presented in ref. [31]. Currently, the
uncertainties that dominate the overall uncertainty budget are those associated with the
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choice of top-quark mass renormalization scheme — first identified in refs. [7, 8] and further
studied in refs. [20, 32]. This situation is expected to improve in the near future. In fact, the
large logarithms responsible for the difference between the on-shell and MS schemes at high
energies have been identified in ref. [32], and ongoing efforts to compute NNLO corrections
with full top-quark mass dependence [33–35] are likely to further reduce these uncertainties.

All this remarkable progress has been directed towards reducing the theoretical un-
certainties of gluon-fusion di-Higgs production. This naturally raises the question of the
impact of the subsequent Higgs boson decays. In other words, with production now brought
under substantially improved theoretical control, do corrections to the Higgs boson decays
compromise this accuracy by introducing sizable effects? For a long time, this question
remained unaddressed in the context of Higgs boson pair production. This situation changed
with ref. [36], which investigated gluon-fusion di-Higgs production followed by decay into
bb̄γγ within the narrow-width approximation (NWA). The study found that NLO QCD
corrections to the decay H → bb̄ can induce large effects, of order 19% for the fiducial
integrated cross section. In a later work, the same authors considered the final state bb̄τ+τ−

and reached similar conclusions [37].
Here, we investigate the origin of these large corrections. We show that they are an artifact

of fixed-order (FO) calculations, where infrared (IR) sensitivity leads to large logarithms.
Parton showers (PS), by resumming these logarithms, mitigate the effect: the large NLO QCD
corrections to di-Higgs decays observed at FO are therefore washed out. Similar observations
were recently reported in ref. [38], which studied Higgs boson decays to bb̄ in weak boson
fusion, comparing FO NNLO results [39, 40] with MiN(N)LO predictions [41, 42].1 Ref. [38]
concluded that the large FO corrections are reduced once PS are included. In the present
study, we illustrate this phenomenon in the channel gg → HH → bb̄ γγ, which combines
a clean diphoton signal with the large branching fraction of H → bb̄, and which has been
the subject of dedicated searches by both ATLAS [47] and CMS [48]. Furthermore, we
show that the same phenomenon persists when the γγ system is replaced by any other final
state involving no colored particles.

The remainder of the paper is structured as follows. In section 2, we outline the framework
of our calculation, explaining the factorization of the cross section and its implementation in
our codes. Section 3 presents our results and section 4 summarizes our findings.

2 Framework

We investigate NLO QCD corrections to the di-Higgs decays in gg → HH → bb̄γγ, as well
as the effects of the inclusion of PS in the process. We start by discussing preliminary
theoretical aspects of this investigation in section 2.1, and we then turn to its implementation
in section 2.2.

2.1 Theory considerations

We work in the NWA, which implies a factorization of production and decay. The Higgs
bosons are thus assumed to be on-shell, and the QCD corrections for production and decay

1Studies of H → bb̄ at higher orders in QCD in the context of associated production have been carried out
in refs. [43–46].
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are completely separable. The differential cross section for gluon fusion di-Higgs production
and decay to bb̄γγ can then be written as

dσ = dσggF 2Br(H → bb̄) dγbb̄ Br(H → γγ) dγγγ . (2.1)

dσggF is the differential di-Higgs production cross section via gluon fusion, the factor of 2
accounts for the two possible assignments of which Higgs decays to bb̄ and which decays to
γγ, Br(H → X) is the H → X branching ratio, and

dγX ≡ dΓ(H → X)
Γ(H → X) . (2.2)

Here Γ(H → X) is the partial width for the channel X and dΓ(H → X) the corresponding
Lorentz-invariant differential decay matrix element. If X consists solely of colorless particles,
no real gluon emission arises at NLO as a direct consequence of color conservation. In
particular, there is no NLO QCD radiation in H → γγ, so that all NLO QCD corrections to
dγγγ are virtual. This implies the factorization of HH → bb̄γγ into H → bb̄ and H → γγ

implicit in eq. (2.1). It also implies that the (virtual) NLO QCD corrections to dγγγ cancel
in the normalized ratio dγγγ ≡ dΓ(H → γγ)/Γ(H → γγ); indeed, if fiducial selections F

are applied to the photons, we find

∫
dγγγ =

∫
F dΓ(H → γγ)
Γ(H → γγ) = |MH→γγ |2

|MH→γγ |2

∫
FdΦ∫
dΦ = Ωfid

Ω , (2.3)

with Ωfid and Ω being the phase space volume with and without fiducial cuts, respectively.
Therefore, the integral in eq. (2.3) is purely an acceptance (unity if F = 1) and receives
no QCD corrections at NLO.

Two important conclusions follow from these observations. The first is that NLO QCD
effects in HH → bb̄γγ arise solely from H → bb̄. This implies, in the second place, that γγ

may be replaced by another final state X made exclusively of colorless particles (e.g. τ+τ−,
ZZ(∗) → 4ℓ, WW (∗) → ℓνℓν, Zγ): the corresponding dγX has no QCD correction at NLO,
and its fiducial integral is simply a ratio of phase space volumes. As a consequence, the
conclusions derived by ref. [36] about large NLO QCD corrections extend straightforwardly
to the case HH → bb̄τ−τ+ discussed by the same authors in ref. [37].

Finally, we emphasize that our focus lies on the NLO QCD corrections to the di-Higgs
decays in the process gg → HH → bb̄γγ. Our goal is not to provide a complete NLO QCD
calculation of the process, but rather to investigate the origin of the large corrections reported
in refs. [36, 37], and to determine whether these corrections related to the decay persist once
the effects of PS are included. The impact of PS in combination with NLO QCD corrections
to di-Higgs production has already been investigated in the literature [9, 10]. Furthermore,
within the NWA at NLO QCD, including NLO QCD corrections to the production would
require treating the di-Higgs decays at LO, which would defeat the purpose of our study.
To avoid introducing unnecessary complications, we therefore restrict our analysis to QCD
corrections in the decays.
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Powheg ggHH lhefmerge Herwig Rivet

··
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Production Event Files

··
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Production Events

Decayed (+ Showered)
Events

Figure 1. Workflow of the event generation and analysis setup.

2.2 Implementation

We generated several sets of Monte Carlo samples for gg → HH → bb̄γγ. We considered
both LO and NLO descriptions of H → bb̄, each evaluated either at FO or matched to PS.
Figure 1 illustrates the workflow through which we generated the different samples. In what
follows, we explain in detail the different elements.

Starting with production, we consider proton-proton collisions at the center-of-mass
energy

√
s = 14TeV. Di-Higgs production through gluon fusion is simulated with Powheg [49–

51], retaining the full top-mass dependence in the loop amplitudes [5, 6, 9]. As discussed
above, we restrict our investigation of the production to the LO results in αs. More-
over, we consider the b quark to be massless in the production; at the level of the total
cross section, this is a reasonable approximation, the difference being below the percent
level [52]. Parton distribution functions (PDFs) and strong coupling constant are taken
from PDF4LHC15_nlo_100_pdfas [53], and their evolution is obtained from LHAPDF [54].
Following ref. [36], the (production) renormalization scale µR,p and factorization scale µF

are chosen to be equal, µR,p = µF = mHH/2, with mHH being the di-Higgs invariant mass.
The dependence of the results on µR,p and µF is well known [9] and, given our focus on
the decays, is not investigated in what follows.

Once the output from Powheg is obtained, we process the generated events with a
custom routine, lhefmerge, which serves two purposes: first, it merges the event files from
parallelized Powheg runs into a single file; second, it modifies the identifier of the second
Higgs boson in each event, replacing it with a fictitious particle H1. This particle is defined
to be identical to the Higgs boson H, except that it is constrained to decay exclusively as
H1 → γγ, while the original Higgs boson is forced to decay as H → bb̄. This modification is
introduced solely to enhance efficiency, since otherwise only a very small fraction of events
would result in the final state HH → bb̄γγ. The physical results remain unaffected, as
they depend only on the fraction of HH → bb̄γγ events passing the fiducial cuts, not on
their total number.

Higgs boson decays and the PS are performed with Herwig [55–58], with hadronization
and the underlying event disabled. All necessary frame transformations are performed
internally by Herwig, which provides built-in implementations of the LO decay H → γγ and
the NLO decay H → bb̄. H → γγ is trivially implemented, as discussed in the previous section.
For H → bb̄ we consider both the LO case, as well as the case with NLO QCD corrections, the
latter evaluated entirely in the on-shell scheme. The only explicit scale dependence therefore
shows up in renormalization scale µR,d that controls the evaluation of αs(µR,d), which we set
to µR,d = mH . We note that ref. [36] instead adopts µR,d = µR,p = mHH/2. Although this
choice is technically consistent with the NWA, we consider µR,d = mH to be the more natural
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scale for the decay, as it reflects the characteristic hard scale of the H → bb̄ process. A
discussion of the estimation of theoretical uncertainties in the decays is deferred to section 3.

Still concerning H → bb̄, we assume a massive b quark in the matrix elements and in
the phase space, with mass mb(mb) = 4.18GeV. Here again we differ from ref. [36], which
considers a massless-b setup. A finite mb is not only employed in the Herwig implementation
of H → bb̄ at NLO, but also ensures a stable interface to the shower. The differences between
massive and massless b should be of subpercent level [40]. We note that the Yukawa coupling
ends up cancelling in the ratio dγbb̄. IR singularities in the FO calculation are handled with
the default Catani-Seymour dipole subtraction [59, 60] in Matchbox [61]. When we turn on
PS, showering is performed with the angular-ordered q̃ algorithm [62].

Analyses are performed with Rivet [63], which calls FastJet [64] for jet clustering,
where we use the anti-kT algorithm [65]. Unless stated otherwise, we set the jet radius to
R = 0.4. We use the default Rivet prescription for parton-level b-tagging. To unambiguously
identify the two b-jets from the Higgs boson decay, we select events with exactly two b-jets,
defined by pj

T ≥ 25 GeV and |ηj | ≤ 2.5 (we place no constraints on additional jets). The
invariant mass of the two b-jets is further required to satisfy 90 GeV ≤ mjj ≤ 190 GeV.
For the photons, we impose pγ

T ≥ 25 GeV and |ηγ | ≤ 2.5, together with separation cuts
∆Rjj ,∆Rjγ ,∆Rγγ ≥ 0.4, in order to ensure well-isolated b-jets and photons, and avoid
overlapping objects in the fiducial phase space.2 The selection described in this paragraph is
intended to reproduce, as closely as possible, the strategy of ref. [36], and is broadly consistent
with the CMS strategy in the HH → bb̄γγ channel [48].

The fiducial cross section is

σ = 2Br(H→bb̄) Br(H→γγ)σggF Q, (2.4)

with σggF being the total production cross section via gluon fusion, and

Q ≡ 1
σggF

∫
F (ΦHH ; γbb̄, γγγ) dσggF(ΦHH) dγbb̄ dγγγ . (2.5)

F encodes the fiducial cuts; ΦHH denotes the Higgs-pair production phase space, while
γbb̄ and γγγ parameterize the decay kinematics in the Higgs rest frames. In practice, we
evaluate Q as the acceptance, i.e.

Q = Npass
Ntotal

, (2.6)

where Ntotal is the total number of generated events and Npass the number of events that
satisfy all fiducial cuts. We set the numerical values of the SM input parameters to

mH = 125GeV, mt = 173GeV,

Br
(
H → bb̄

)
= 0.5824, Br (H → γγ) = 2.27× 10−3, (2.7)

in agreement with ref. [36].3

2∆Rjγ is required for each of the four possible pairings between one of the two b-jets and one of the two
photons.

3While in principle the branching ratios could have corrections, we set them to the fixed values given in
eq. (2.7).
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FO FO+PS
σLO-decay (fb) 0.027 83(5) 0.023 58(4)
σNLO-decay (fb) 0.023 63(4) 0.022 89(4)

K 0.849(2) 0.971(3)

Table 1. Fiducial cross section for gg → HH → bb̄γγ, assuming the selection described in section 2.2.
See text for details.

3 Results

We finally turn to our numerical results. As a reference, the (LO) production cross section
amounts to σggF = 19.873(2) fb, where the quoted uncertainty reflects the Monte Carlo
integration. While this value simply provides the normalization for our study, our main
interest lies in the impact of QCD corrections to the Higgs boson decays. To this end, table 1
reports the fiducial cross sections obtained with the decay treated at LO and at NLO, both
without PS (i.e. at FO) and including the showers. Again, the displayed uncertainty is
the Monte Carlo uncertainty, calculated by combining the propagated uncertainty from the
production cross section with Poisson uncertainties on the number of counted events used to
calculate Q from eq. (2.6). The fiducial selection is the one defined in the previous section.
For each case, we also display the factor K ≡ σNLO-decay/σLO-decay, which directly quantifies
the size of the NLO corrections in the decay.

Before discussing the results, we comment on the lack of uncertainties beyond the Monte
Carlo ones, both for the FO results and for the results with showers. Concerning the former,
it is customary to estimate the theoretical uncertainty by varying the renormalization scale
up and down by a factor of two. In our case, and as mentioned above, the only explicit scale
dependence arises through αs(µR,d). Varying µR,d around our central choice mH (taking
µR,d = 2mH and µR,d = mH/2), we observe differences of order O(1%). Two remarks
follow: first, this variation is much smaller than the uncertainties affecting the production
process [36]; second, the FO result is not particularly meaningful in itself, since (as we shall
see) it is affected by large logarithms that are resummed once PS are included. In this
sense, performing scale variations on a result that is intrinsically unphysical is of limited
relevance. As for the results with PS effects, estimating the theoretical uncertainty is a more
involved task. While such an analysis is certainly interesting in its own right, it is not the
focus of the present work, which is instead to demonstrate that the large FO corrections are
largely washed out by parton showers. For these reasons, we do not pursue a systematic
uncertainty estimate in what follows.

Focusing now on the results of the table, the K factor at FO is 0.849, corresponding to
a relative correction of −15.1% with respect to LO. This is smaller in magnitude than the
correction of about −19% reported in ref. [36]. We attribute this discrepancy to differences
in the renormalization scale, renormalization scheme and mass definitions adopted in the two
calculations. For the purposes of our analysis, the precise numerical value is of secondary
importance; the essential point is that in both cases the corrections are sizable. In this sense,
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Figure 2. Distributions of the transverse momentum of the leading jet (left) and the invariant mass
of the two b-jets and two photons (right), assuming the fiducial selection described in section 2.2. In
each plot, the upper pane shows results with the production evaluated at LO; the H → bb̄ decay is
calculated either at LO or at NLO, and with or without PS. The lower pane of each plot shows the
ratio of the different curves of the upper pane to the corresponding LO curve.

we qualitatively confirm the conclusion of ref. [36], namely that NLO QCD corrections to the
di-Higgs decays in gg → HH → bb̄γγ induce large effects on the fiducial cross section.

Table 1 also shows that the sizable negative correction observed at FO of −15.1%
is drastically reduced once PS are included. With showering, indeed, the corresponding
correction is only −2.9%, i.e. almost an order of magnitude smaller. This demonstrates
that the large FO effects in the fiducial cross section, arising from the NLO treatment of
H → bb̄, are to a large extent washed out by the inclusion of PS. This constitutes the
central finding of our study.

These conclusions are not restricted to the integrated fiducial cross section of table 1,
but also hold at the level of differential distributions. To illustrate this, we show in figure 2
the cross sections differential in the transverse momentum of the leading b-jet (left panel)
and in the invariant mass of the two b-jets and two photons, mjjγγ (right panel). In both
observables, the pattern is the same as for the integrated result: at FO, the NLO corrections
are for the most part sizable with respect to LO, while once the PS are included, the LO
and NLO predictions become nearly indistinguishable.

To better understand the origin of the large FO NLO corrections in the decays, we
now examine their dependence on two key fiducial parameters: the transverse-momentum
cut pmin

T applied to the b-jets and the jet radius R used in the clustering algorithm. Both
parameters crucially affect fiducial cross sections, as they control the acceptance of real
radiation. It is therefore natural to expect FO predictions to vary strongly with their values,
and indeed we will see that the NLO corrections change substantially when these parameters
are pushed to extreme regions of phase space. In what follows, we outline the expected
behavior for each variable.

For the jet radius R, it has long been known that cross sections allowing more than
one parton per jet develop a dependence on lnR [66]. Similar arguments hold for photon
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Figure 3. The variation of K (ratio of fiducial cross sections with decays at NLO and at LO), as a
function of the pmin

T cut (left) and of the jet radius parameter R (right). The vertical bars represent
uncertainties due to Monte Carlo integration.

isolation cones [67], where resummation of large logarithms of the cone size is required (see
e.g. ref. [68]). Intuitively, for very small R, NLO radiation often falls outside the jet cone,
so the b-jets lose transverse momentum relative to LO. This out-of-cone loss enhances the
sensitivity to the jet definition and leads to sizable corrections. As R increases, more of the
final-state radiation is captured inside the jets, reducing the relative size of the corrections
and stabilizing the predictions.

A similar reasoning applies to the minimal transverse momentum cut on the b-jets, pmin
T .

At LO, in the Higgs boson rest frame, the b-quarks from H → bb̄ carry a fixed momentum of
mH/2. Since in gg → HH the Higgs bosons are only moderately boosted, the b-jet transverse
momenta in the lab frame remain centered around this scale, with limited broadening. If pmin

T

is set well below this characteristic value, essentially all b-jets pass the selection already at
LO, so NLO corrections have little impact. In contrast, if pmin

T is chosen above this scale, only
a small fraction of LO events survive. At NLO, additional gluon emission smears the b-quark
energies and can easily push the b-jet pT below pmin

T , producing large relative corrections.
These expectations are clearly confirmed by the behavior shown in figure 3. Both panels

display the relative difference between fiducial cross sections evaluated with NLO decays
and with LO decays, expressed through the ratio K. In all cases, the NLO corrections are
negative, reflecting the fact that additional gluon emission tends to lower the reconstructed b-
jet transverse momenta, thereby reducing the number of events that pass the fiducial selection.

The left panel illustrates this dependence very clearly. For R = 1 (red triangles) and
very low pmin

T , the FO corrections are small, since virtually all jets pass the selection both at
LO and NLO. As pmin

T grows, the corrections grow in magnitude (more negative), consistent
with the expectation that even modest recoil from an emitted gluon can push a b-jet below
the cut. The comparison between the two radii underscores the role of out-of-cone losses: for
the smaller radius (R = 0.1, blue triangles) the NLO corrections are markedly more negative
than for the larger radius, because radiation is more likely to escape the narrow jet cone.

The right panel reorganizes the same information as a function of R at fixed pmin
T . A

similar pattern is observed: small radii yield stronger negative corrections following the
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lnR behavior, while larger radii capture more radiation and therefore reduce the size of the
corrections. This monotonic behavior holds for pmin

T = 0GeV (blue triangles). By contrast,
for pmin

T = 100GeV (red triangles) two regimes emerge: for R ≲ 0.6 the recovery of emitted
radiation dominates and K rises with increasing R, whereas for R ≳ 0.6 K decreases. In
this large-R regime, finite-angle gluons radiated off one b are increasingly clustered into
the other b-jet. This depletes the emitter-jet pT and drives NLO-decay events below pmin

T ,
while LO-decay events have no analogous loss. Consequently, the NLO acceptance drops
with R and K(R) decreases for large radii.

Finally, in both panels the predictions matched to PS (circles) exhibit two salient features:
(i) the NLO-to-LO shifts are small and (ii) the results are essentially stable under variations of
both R and pmin

T , remaining virtually flat across the scans. We also note that the Monte Carlo
uncertainties (vertical bars) increase with pmin

T , reflecting the progressively lower selection
efficiency discussed above: as the cut hardens, fewer events pass, and the corresponding
statistical errors grow.

4 Conclusions

After substantial theoretical progress in gluon fusion di-Higgs production, the associated
perturbative uncertainties in the production cross section have been substantially reduced.
More recently, it was pointed out that fixed-order (FO) NLO QCD corrections to the decays
can induce large corrections in the fiducial cross section [36]. In this work, we revisited
this issue in HH → bb̄γγ, and demonstrated that such large corrections are an artifact
of FO calculations which are very sensitive to the interplay of the extra gluon radiation
with the phase space restrictions given by the fiducial cuts. Once parton showers (PS) are
included, the infrared sensitivity is cured, since the large logarithms arising from gluon
radiation are effectively resummed.

We began by showing that the γγ system is trivial with respect to NLO QCD corrections.
The large FO NLO corrections to the fiducial cross sections are thus entirely due to the
H → bb̄ decay, and would equally arise if γγ were replaced by any other final state without
colored particles. We then quantified the effect of NLO QCD corrections to the fiducial cross
section, both at FO and with showers. At FO, we found a correction of 15.1% in modulus.
Crucially, once PS are included, this sizable FO correction is reduced to only 2.9%, showing
that the large NLO effects in the fiducial cross section are largely washed out by showering.
Furthermore, we established that the same behavior holds at the level of differential cross
sections; we illustrated this explicitly using the transverse momentum of the leading b-jet and
the invariant mass of the bb̄γγ system, both of which exhibit small corrections and stable
shapes once PS are taken into account.

To better understand the origin of the large FO corrections, we analyzed the dependence
on two fiducial parameters: the minimum jet transverse momentum pmin

T and the jet radius
R. As expected, large pmin

T values and small R lead to stronger FO corrections, since this
severely restricts the phase space available for soft gluon radiation. In contrast, once PS are
included, the NLO corrections become small and largely insensitive to either pmin

T or R.
Several directions for future work naturally follow from this study. First, a complete

NLO QCD+PS analysis of gg → HH → bb̄γγ would be of interest, including a detailed
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assessment of theoretical uncertainties. It would also be valuable to explore the case where
the γγ system is replaced by colored particles. Finally, an Effective Field Theory analysis of
the full production and decay chain could provide further insight, enhancing the possibility
of disentangling genuine QCD effects from possible contributions of new physics.
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