KIT | KIT-Bibliothek | Impressum | Datenschutz

Multiphase-Field Simulation Studies of Coarsening in Ni-GDC SOFC Anode Microstructures and the Effect of Interfacial Energies

Jeela, R. K. 1; Ahmad, M.; Wieler, M.; Liu, Y. ORCID iD icon 2; Juckel, M.; Schneider, D. ORCID iD icon 1,3; Weber, A. ORCID iD icon 2; Menzler, N. H.; Nestler, B. 1,3
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The long-term durability of solid oxide fuel cells (SOFCs) requires a comprehensive understanding of electrode degradation mechanisms. Performance degradation of nickel-gadolinium-doped ceria (Ni-GDC) electrodes, however, is not yet thoroughly understood, limiting their effective design and advance-
ment. Multiphase-field (MPF) simulation studies provide an effective method to understand the underlying microstructural changes and the resulting electrochemical property alterations in
SOFCs over time. In this study, we present quantitative simulations of nickel and GDC coarsening in SOFC anodes employing an MPF model utilizing focused ion beam-scanning electron microscopy-
reconstructed experimental 3D microstructures and reliable thermophysical parameters. The model is initialized with experimentally reconstructed pristine and preaged Ni-GDC microstructures and validated against aged experimental microstructures after 240 and 1100 operating hours. The model incorporates both surface and interface diffusivity to capture morphological evolutions. Key microstructural properties, mean particle size, three-phase boundary line density, tortuosity, and specific surface
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000188715
Veröffentlicht am 16.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 22.12.2025
Sprache Englisch
Identifikator ISSN: 2574-0962
KITopen-ID: 1000188715
Erschienen in ACS Applied Energy Materials
Verlag American Chemical Society (ACS)
Band 8
Heft 24
Seiten 17670–17687
Vorab online veröffentlicht am 30.11.2025
Nachgewiesen in OpenAlex
Dimensions
Scopus
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page