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BothGeneral Relativity and the StandardModel of particle physics are not UV complete. General Relativity
is perturbatively nonrenormalizable, while the Standard Model features Landau poles, where couplings are
predicted to diverge at finite energies, e.g., in the Abelian gauge sector. Asymptotically safe quantum gravity
may resolve bothof these issues at the same time. In this paper,we assess the systematic uncertainties associated
with this scenario, in particular with the gravitationally induced UV-completion of the Abelian gauge sector.
Specifically, we study the dependence of this qualitative feature, namely the existence of a UV-complete gauge
sector, on unphysical choices like the gauge, and the regulator function. Intriguingly, in some scenarios,we find
simultaneous points of minimal sensitivity relative to both the regulator and gauge parameters, which allow for
a UV completion. This provides further indications that the simultaneous UV-completion of quantum gravity
and matter via an asymptotically safe fixed point is a robust physical feature, and that physical quantities, like
scaling exponents, can become independent of unphysical choices.
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I. MOTIVATION

The quantum nature of gravity remains one of the big
unresolved mysteries of theoretical physics. Despite over a
century of research, no consensus has emerged on a
prevailing theory. Numerous candidate approaches exist,
but the absence of experimental input makes it difficult to
evaluate their respective merits.
Instead, theoretical arguments, i.e., arguments from

consistency have to make do. For instance, a naïve
quantization of General Relativity (GR) along the lines
of the Standard Model of particle physics (SM) leads to a
perturbatively nonrenormalizable theory, rendering it
unpredictive. Existing approaches to quantum gravity
propose different mechanisms for UV completions of GR.
Even without considering gravity, the SM by itself is

UV-incomplete; although perturbatively renormalizable,

some couplings, including the Abelian gauge coupling,
diverge at finite energy scales, at so-called Landau poles
[1–4]. Avoiding these divergences requires removing the
associated interactions at all energies, rendering the theory
trivial [5], and phenomenologically inconsistent (see [6] for a
review).
The existence of the Landau poles has been proven in

dimensions d > 4 [7]. In d ¼ 4 it has been confirmed by
nonperturbative computations using lattice [8–10] and
functional methods [11]. Thus, the triviality problem is
not an artifact of perturbative techniques, but a true
inconsistency of the theory.
The unification of the SM with gravity could also

address the triviality problem. Estimates suggest that the
Landau pole occurs at energies beyond the Planck scale
(ΛL ∼ 1034 GeV in the SM, reduced to ΛL ∼ 1017 GeV in
some supersymmetric extensions [4,10]). This has two key
implications. First, gravity cannot be ignored when assess-
ing the consistency of the theory. Second, the triviality
problem is expected in the deeply quantum-gravitational
regime, necessitating a quantum theory of gravity valid at
those scales to resolve it.
From another perspective, the absence of a Landau pole

in the electroweak sector can serve as a nontrivial test for
quantum-gravity models: any phenomenologically viable
theory of quantum gravity has to resolve it and allow for
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finite Abelian gauge interactions to arise in the IR. It
therefore poses an important phenomenological consis-
tency test for any theory of quantum gravity.
There are different ways, in which theories of quantum

gravity could resolve the triviality problem:
(i) The gauge groups of the SM (together with gravity)

may be unified in a larger framework, e.g., a grand
unified theory, whose gauge couplings do not have a
Landau pole. This unification would be expected,
for example, in string theory [12–14];

(ii) If spacetime exhibits a minimal length or area, there
may be a physical cutoff in momentum space, which
makes it impossible to reach the Landau pole in a
physical process. Fundamental discreteness (or un-
certainty of length/area measurements) is central, e.g.,
to causal-set theory [15,16] or spinfoam models [17];

(iii) The gravitational contribution to the running of gauge
couplings may render the theory asymptotically free
or asymptotically safe [18–23], see [24] for a dis-
cussion of seeming discrepancies with perturbative
computations. Similar to the minimal-length idea, this
behavior leads to the absence of a fundamental scale
in the deeply quantum regime, a hallmark of asymp-
totically safe quantum gravity (ASQG).

In this paper we concentrate on the last point. ASQG is
based on an enhanced symmetry in the UV, namely
quantum scale symmetry. In other words, the theory is
UV-completed by an interacting fixed point in the gravi-
tational sector, the Reuter fixed point [25,26]. Unlike a
perturbative quantization of GR, ASQG is expected to have
only a finite number of relevant directions at the fixed point,
requiring a finite number of free parameters in the IR and
thus providing a predictive framework.
Evidence is mounting that such a fixed point indeed exists

and that the number of free parameters in the gravitational
sector is three [27–86],1 see [87–96] for reviews. Long
standing criticism of this scenario, such as the extension
of studies in Lorentzian signature [82,97,98], and unitarity
[72,82,99–102], are being addressed now, see also [103,104].
There is also significant evidence for a fixed point when the
SM matter content is coupled to gravity [105–110].
Intriguingly, the asymptotically safe fixed point

appears to be near-perturbative in nature, see
[42,45,62,69,70,74,111,112]. This important property sug-
gests that calculations which study operators based on their
canonical mass dimension can already produce reliable
results.
There is also mounting evidence that ASQG can induce a

UV completion of the SM [19,22,113–118], and even
provide predictions for SM parameters [19,22,113–115].

The main goal of this paper is to test the mechanisms for
possible UV completions, focussing on the Abelian gauge
sector. Here, quantum fluctuations of the metric add an
antiscreening contribution to the scale-dependence of the
Abelian hypercharge. This contribution dominates over the
pure-matter screening contribution at small couplings, and
therefore induces asymptotic freedom for the Abelian
gauge coupling [18–24]. Higher-order induced gauge-
operators become asymptotically safe [21,24,119–121].
To assess the robustness of this possibility, we introduce

free parameters which parametrize unphysical choices
necessary in practical computations and, systematically
vary these parameters. Understanding how robust the main
qualitative feature, i.e., the possibility of a gravity-induced
UV-completion of the Abelian hypercharge is from these
unphysical choices, gives us crucial insights into whether
ASQG can indeed resolve the Landau-pole problem in the
Abelian gauge sector of the SM.
Furthermore, we apply the principle of minimal sensi-

tivity (PMS) [49,83,122–127]2 to identify parameter values
that minimize systematic uncertainties and ensure that
results are least sensitive to regulator and gauge choices.
A complementary approach to minimize unphysical
dependences of the regularization procedure is to optimize
the shape of the regulator, see e.g., [129–131].
We indeed find such PMS-points when evaluating them

on their respective (parameter dependent) fixed-point
values for a minimal matter content, i.e., one scalar, one
fermion and one vector. These points suggest that a viable
resolution of the triviality problem may be within reach. We
then study how these PMS-points change upon addition of
more matter fields, and find that generically scalars and
gauge fields stabilize the presence of PMS-points, while
fermions remove them.
This paper is structured as follows. In Sec. II we describe

the mechanism by which the triviality problem may be
resolved in ASQG. In Sec. III we introduce the tools we use
to extract the scale-dependence of the Abelian gauge
coupling under the impact of gravitational fluctuations,
in particular, the functional renormalization group (FRG).
In Sec. IV we study the regulator and gauge dependence of
the critical exponent of the gauge coupling, which is closely
linked to the resolution to the triviality problem. In Sec. V
we summarize and interpret our findings.

II. THE ABELIAN HYPERCHARGE IN
ASYMPTOTICALLY SAFE QUANTUM GRAVITY

There is evidence that ASQG may induce a UV-com-
pletion of the Abelian gauge sector of the SM. This UV
completion is induced by an antiscreening contribution of
gravitational fluctuations to the scale dependence of the

1The remaining free parameters are the cosmological constant,
the gravitational constant and a combination of the couplings of
operators quadratic in curvature.

2See [128] for a monograph in the context of perturbation
theory.
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Abelian hypercharge gY as

βgY ¼ −fggY þ βSMg3Y þOðg5YÞ; ð1Þ

where βSM is the one-loop contribution from charged
matter, which is screening, i.e., βSM > 0, and where fg
is the gravitational contribution, parametrized by the
Newton coupling and the cosmological constant. In
ASQG this contribution is constant at high energies i.e.,
fg ≈ const for k2 > MPlanck, while fg ≈ 0 for k2 < MPlanck,
due to the scale-dependence of the gravitational couplings.
As Eq. (1) reveals, different signs of fg separate different

scenarios; if fg < 0, the gravitational contribution adds an
additional screening term, which worsens the Landau-pole
problem by shifting the scale of divergence to lower
energies. If fg ¼ 0, the gravitational contribution simply
vanishes, such that the Landau-pole problem of the SM
remains unchanged. Hence, if fg ≤ 0, ASQG alone cannot
provide a UV completion of the SM. If however, fg > 0

holds, then gravitational fluctuations add an antiscreening
contribution to the scale dependence of gY , which domi-
nates for small enough gY . Hence, the Gaussian fixed point
gY;� ¼ 0 becomes IR repulsive, such that finite values of gY
can be reached at low scales, while gY;� ¼ 0 is realized in
the UV. Note that for the SM, this is not necessarily a
sufficient requirement, as fg might have to be larger than a
critical value to satisfy observational consistency with the
Abelian hypercharge sector, see below for details.
The stability properties of fixed points are encoded in

critical exponents, defined as

Θi ¼ −Eig
�
∂βgi
∂gj

�����
gi¼gi;

; ð2Þ

which determine the directions in which a fixed point is
attractive or repulsive under flows towards the IR. In this
convention, Θi > 0 corresponds to IR repulsive, so-called
relevant directions. If the fixed point UV-completes the
theory, relevant directions come with free parameters that
need to be fixed by experiment. Conversely, Θi < 0
corresponds to IR-attractive directions. Those directions
do not come with a free parameter and their IR-value is a
prediction of the UV-completion of the theory. In a simple
approximation, the gravitational contribution fg is the
critical exponent of the Abelian gauge coupling gY at
the Gaussian fixed point gY;� ¼ 0. Therefore, fg > 0

indicates asymptotic freedom and a free parameter, while
fg < 0 provides a prediction of the theory, which, in the
case of the Gaussian fixed point gY;� ¼ 0 corresponds to
gY ¼ 0 at all scales.
Besides rendering the Abelian hypercharge asymptoti-

cally free, an antiscreening gravitational contribution
fg > 0 can give rise to an additional fixed point
gY;�;int > 0, which is IR attractive. This fixed point, if

realized, gives rise to one unique trajectory towards the IR,
along which the value gYðkÞ is a prediction of the under-
lying UV completion at all scales k [19,22], see Fig. 1 for
an illustration.
The predicted value of gY from the asymptotically safe

fixed point is compatible with the observed one, within the
estimated systematic uncertainty in determining fg [22].
Besides generating a predictive trajectory, the interacting

fixed point gY;⋆;int also shields trajectories emanating from
gY;⋆ ¼ 0 from becoming too large, due to its IR-attractive
nature. Hence, gY;⋆;int and the trajectory emanating from it
act as an upper bound for any gYðkÞ embedded in a UV-
complete quantum field theory, see Fig. 1 for an illustration.
For ASQG to be consistent with low-energy observa-

tions, gY;⋆;int has to be large enough to accommodate the
observed low-energy value. In the following, we will focus
on the size of fg, which in our approximation determines
gY;⋆;int. In particular, observational consistency requires
that

fg ≥ fg;crit ¼
0.096
π2

; ð3Þ

see [22].
Let us briefly comment on the scheme-dependence of the

gravitational contribution fg. While fg is the critical
exponent of gY at the Gaussian fixed point,3 and should
therefore be universal, this is not necessarily the case in
small truncations, and when not evaluated at the gravita-
tional fixed point. In particular, even in perturbative studies
both fg ¼ 0 and fg > 0 are possible, depending on the

FIG. 1. The Abelian hypercharge gYðkÞ in ASQG with anti-
screening gravitational contribution fg, see (1). Any blue
(dashed) trajectories emanate from the asymptotically free fixed
point. Any trajectory emanating from that fixed point is bounded
from above by the green (solid) trajectory emanating from the
interacting fixed point. Any trajectory above the green one (red,
dotted) is not UV-complete.

3This holds at leading order, i.e., when no induced interactions
are taken into account, see also [132] for a similar study in the
Yukawa sector beyond leading order.
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regularization scheme [133–138]. Similarly, studies using
the FRG indicate that fg ≥ 0 holds [18–24], yet regulators
that yield fg ¼ 0 can be constructed, too [20], see
also [118] for an explicit implementation. On the other
hand, [139] argues that fg > 0 arises at the gravity-matter
fixed point in a limit where the FRG-regulator vanishes.
Since fg ∝ G, fg > 0 arises from carefully considering
both the gravitational contributions to βgY , but evaluating it
at the asymptotically safe fixed point for G, which is also
regulator dependent.
In this paper we will further study the dependence of fg

on both regulator—by computing it using several one-
parameter families of regulators—and gauge fixing. In
particular, we will employ a PMS on fg to determine the
regulator which minimizes residual unphysical dependen-
cies for each of the families. The dependence of fg on the
individual parameters, as well as the dependence of fg on
the different regulator families evaluated at their PMS-point
yields insights into the regulator dependence, and ulti-
mately, on the question of observational consistency of and
systematic uncertainties in ASQG.

III. TECHNICAL SETUP

Our goal is to extract the scale dependence of gY , and in
particular the gravitational contribution fg employing the
FRG [140]. The FRG is based on the scale-dependent
effective action Γk and implements the Wilsonian idea of
integrating out modes according to their momentum shell.
In this sense, Γk contains all quantum fluctuations with
momenta p2 ≳ k2, and lowering k → k − δk integrates out
modes with p2 ≈ k2. Therefore, Γk interpolates between a
quantity akin to a classical action4 for k → ∞, when no
quantum fluctuations are integrated out and the full
quantum 1-PI effective action Γk→0 ¼ Γ1PI at k → 0, when
all quantum fluctuations are integrated out.
This interpolation is implemented via a regulator func-

tion Rkðp2Þ, which enters as a masslike term (i.e.,
quadratically in the fields) in the path integral. The
regulator has to satisfy

Rkðp2Þ
�¼ 0 for p2 ≳ k2;

> 0 for p2 ≲ k2;
ð4Þ

and

Rkðp2Þ →
�
0 for k2 → 0;

∞ for k2 → Λ → ∞;
ð5Þ

where Λ is a UV-cutoff which can be removed at an RG
fixed point. Due to these properties, the regulator adds a

positive mass for modes with p2 < k2, and hence sup-
presses low-momentum modes in the path integral, while
modes with p2 > k2 are not suppressed and hence inte-
grated out.
The FRG provides a differential equation for the scale-

dependent effective action Γk, which reads [25,140,144,145]

∂tΓk ¼
1

2
STr½∂tRkðΓð2Þ

k þRkÞ−1�; ð6Þ

where ∂t ¼ k∂k is the dimensionless scale derivative, Γð2Þ
k

refers to the second functional derivative ofΓk with respect to
all fields, and the STr refers to a trace over all discrete indices,
and an integration over the loop momentum, while adding
additional signs for Grassmann-valued fields. Beta functions
can be extracted from the flow equation byprojecting onto the
desired fieldmonomial. For a detailed review on the FRG and
its applications, see, e.g., [146].
The flow equation (6) is in principle exact, but practical

computations require to limit the set of operators included
in Γk to a subset of the full theory. Upon these truncations
of the theory, the flow equation is not closed any more, and
even physical quantities, like critical exponents depend on
unphysical choices, like the truncation, gauge fixing, and
the chosen regulator functionRk. Systematic extensions of
the truncation are required to assess the robustness of the
results in a given truncation.
In this work we are interested in the impact of gravi-

tational fluctuations on the Abelian gauge sector. To
include the impact of gravitational fluctuations, we employ
the background-field method, where we decompose the full
metric into a background metric and fluctuations, i.e.,

gμν ¼ ḡμν þ hμν: ð7Þ

In principle the background metric does not have to be
specified, but specific choices are convenient for practical
computations. Our ansatz for Γk reads

Γk ¼ Γgrav
k þ ΓUð1Þ

k ; ð8Þ

and we will approximate the dynamics of the gravitational
sector by the Einstein-Hilbert action, i.e.,

Γgrav
k ¼ 1

16πGk−2

Z
d4x

ffiffiffi
g

p ½−Rþ 2λk2� þ Γgf;h
k ; ð9Þ

where G and λ are the scale-dependent but dimensionless
versions of the Newton coupling and the cosmological
constant, respectively. Furthermore, Γgf;h

k is the gauge-
fixing action given by

Γgf;h
k ¼ 1

32πGαh

Z
d4x

ffiffiffī
g

p
ḡμνF μF ν; ð10Þ

4The UV fixed-point action amounts to the classical action up
to an operator determinant, yielding the reconstruction problem
[141–143].
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with gauge condition

F μ ¼
�
δðαμ D̄βÞ −

1þ βh
4

ḡαβD̄μ

�
hαβ: ð11Þ

Here D̄ denotes the covariant derivative with respect to the
background ḡ, and αh and βh are gauge parameters. In this
work, we choose αh → 0, which corresponds to Landau
gauge, throughout the paper, as it is a fixed-point for both
gauge parameters [66,147], but leave βh general.
In the following, we will expand gravitational fluctua-

tions around a flat background, i.e., ḡ ¼ δ, and parametrize
metric fluctuations via a linear split

gμν ¼ δμν þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πk−2GZh

q
hμν; ð12Þ

where Zh is the graviton-wave function renormalization.
The gauge fixing (10) also gives rise to Fadeev-Popov
ghosts, which only contribute directly to the running of
gravitational couplings.
We approximate the dynamics of the Abelian gauge field

as

ΓUð1Þ
k ¼ ZA

4

Z
d4x

ffiffiffi
g

p
gμνgρσFμρFνσ þ Γgf;A

k ; ð13Þ

where Fμν ¼ DμAν −DνAμ is the field strength tensor of
the Abelian gauge field Aμ, and where Γgf;A is the gauge-
fixing action of the Abelian gauge field, which reads

Γgf;A
k ¼ 1

2αA

Z
d4x

ffiffiffī
g

p ðD̄νAνÞðD̄μAμÞ; αA → 0; ð14Þ

where again we choose Laundau gauge for the associated
gauge parameter αA. The minimal coupling between the
Abelian gauge field and gravity arises naturally via the
inverse metric and

ffiffiffi
g

p
in Eq. (13). This minimal coupling

ultimately gives rise to the gravitational contribution fg in
(1). To extract the scale dependence of gY , we employWard
identities which state [148,149]5

βgY ¼
ηA
2
gY ⇒ fg ¼ −

ηAjgrav
2

; ð15Þ

where ηA is the anomalous dimension of the gauge field,

ηi ¼ −
∂tZi

Zi
; ð16Þ

and where ηAjgrav refers to the gravitational contribution
only, i.e., omitting pure-matter diagrams.
Finally, for the regulator R we use

Rkðp2Þ ¼ k2

p2
rk

�
p2

k2

�
Γð2Þ
k

����
λ¼0;hμν¼0;Aμ¼0

: ð17Þ

Here, rk denotes the shape function. For the purpose of the
present paper, we work with the Litim-type [129,130] and
exponential shape functions

Litim rkðzÞ ¼ aLð1 − zÞΘð1 − zÞ; ð18Þ

Exponential rkðzÞ ¼ aE
z

ez − 1
; ð19Þ

with the free parameters aL, and aE, see [125]. These free
parameters govern which momentum shell is integrated out
when lowering k → k − δk. The regulator-induced effective
mass, i.e., the IR cutoff, increases monotonically with
increasing aL, aE.
Extracting ηA in this setup leads to [18–24]

ηA ¼ G
3π

Z
dq2q2 ×

�
Regh

�
−5P2TT þ

2β2h
ðβh − 3Þ2 P

2
0

�

þ RegAP2A

�
5PTT −

2β2h
ðβh − 3Þ2 P0

�

þ ReghPA

�
5P2TT −

2β2h
ðβh − 3Þ2 P

2
0

��
; ð20Þ

where we have summarized the regulator contributions in
the denominator coming from the ∂tRk insertion in (6) as

RegΦ¼ð−2þηΦÞrk
�
q2

k2

�
þ2

q2

k2
r0k

�
q2

k2

�
; Φ¼h;A; ð21Þ

and where we have introduced the three propagator
structures as

PA ¼ 1

q2 þ k2rk
	
q2

k2


 ; ð22Þ

PTT ¼ 1

q2 þ k2rk
	
q2

k2



− 2λk2

; ð23Þ

P0 ¼ −
1

k2rk
	
q2

k2



þ 4λk2 ðβ2h−3Þ

ðβh−3Þ2
; ð24Þ

which correspond to the regularized propagator of the
gauge field, the transverse-traceless mode of metric fluc-
tuations, and the scalar mode of metric fluctuations,
respectively, see [100]. Here, the loop integration over

5The pure-matter contribution to βgY is universal at one-loop
and can therefore also be read off from gauge-scalar and gauge-
fermion vertices. The gravitational contribution fg does not need
to be universal, see [22,118,150] for a comparison.
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q2 is performed explicitly after specifying the regulator
function rk.
In the following, we will employ a perturbative approxi-

mation, where we neglect the anomalous dimensions
coming from the regulator insertion, i.e., we set ηΦ ¼ 0
in (21). This approximation is valid as long as all
anomalous dimensions remain small enough, which holds
in our present analysis, as fg itself remains small (in
particular fg < 1), as we will see.

IV. REGULATOR DEPENDENCE OF THE
ABELIAN GAUGE-GRAVITY SYSTEM

We now study the regulator dependence of fg at the
asymptotically safe fixed point. The beta functions of the
gravity-gauge system including regulator and gauge
dependence up until now have only been published for
λ ¼ 0 [139], and for minimal matter content. Here, we add
the scale dependence of the cosmological constant, as well
as the general dependence on gauge parameters and matter
content.6 With these beta functions, we analyse the critical
exponents of the system evaluated at the Reuter fixed point,
and identify PMS-points. We start with a simple matter
system with Nf ¼ Ns ¼ Nv ¼ 1, and then study changes to
the results upon adding additional matter fields.

A. Fixed-point study for a minimal matter content

Structurally, in the current approximation βG and βλ are
independent of gY . Therefore, the eigendirections of the
stability matrix do not mix the gravitational couplings with
the gauge coupling. Accordingly, one eigendirection,
which corresponds to fg, is fully aligned with gY , while
the other two eigendirections mix between the two gravi-
tational couplings. In particular, their critical exponents
form a complex pair, such that we are left with two
independent, regulator-dependent critical exponents, ΘG
and fg.

7

In systems with various critical exponents, one generally
must decide to which of the critical exponents the PMS
should be applied. One could argue that the most relevant
(i.e., the largest positive) critical exponent is the one that
has most impact on the physics of the system and hence
minimizing its regulator dependence has the largest effect.
Following this argument, we would apply the PMS to ΘG.
Conversely, in systems with multiple types of degrees of
freedom—such as the gauge-gravity system at hand—it is
less clear which ones dominate the physical behavior. In

particular, in our system, changes to fg can change
qualitative aspects of the fixed point, such as its overall
predictivity, and the availability of a solution to the triviality
problem, while changes in ΘG will mostly have a quanti-
tative impact on the system.
In the following we remain agnostic on the choice of

PMS-points, and apply the PMS to both fg and ΘG to
investigate their respective properties, such as gauge
dependence. We study the Litim-type shape function and
the exponential shape function separately.

1. Litim-type shape function

In the gauge-gravity system for the Litim-type shape
function, we find the Reuter fixed point for all values of aL.
In Fig. 2 we display the real part of the critical exponents of
the Newton coupling (ΘG) and the gauge coupling (fg) as
functions of aL, and for βh ¼ 1. Both critical exponents
exhibit individual PMS-points, which albeit close, are not
at coincident values of aL. While for ΘG the PMS-point is a
global minimum of ΘGðaLÞ, the PMS-point for fg is a
global maximum.
As discussed above, in models with multiple PMS-

points, those points have to be compared by other means
than the PMS-criterion. As we gather from Fig. 2, while the
gravitational critical exponent appears stable along a rather
wide range of values for aL, fg is not.
To further investigate the gauge dependence of our

result, we plot the two critical exponents fg and ΘG
evaluated at the two PMS-points as functions of the gauge
parameter βh in Fig. 3. We find, that fg evaluated at the
PMS-points for both fg itself and for ΘG have additional
noncoincident PMS-points for the gauge dependence. The
local maxima of fgjaL;PMS

are located at βh ≈ −0.37, and
βh ≈ −0.06, respectively, see Fig. 3. This is close to the
local maximum of fg, when treating G and λ as input
parameters, see Appendix A. Thus, apart from minimizing

FIG. 2. We show the gravitational critical exponent ΘG and the
gauge critical exponent fgðg�; λ�Þ at the Reuter fixed point for the
Litim-type shape function as a function of the regulator parameter
aL for βh ¼ 1.

6We thank the authors of [139] for providing us with the more
general form of the beta-function, and in particular G. de Brito for
the beta-functions at λ ≠ 0, which have not been published yet.

7Strictly speaking, the critical exponents will only form a
complex pair for ai ≲ 2, after which they split up. However, in the
regime beyond the split of the complex pair, there are no
additional PMS-points, at least for the gauge- and regulator
choices we explicitly checked.
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the regulator dependence of either ΘG or fg, we can further
minimize the gauge dependence of fg. We also find that
there is no value βh for which the PMS-points with respect
to aL for ΘG or fg coincide. To see whether qualitative
changes are expected from applying the PMS on
one critical exponent over the other, we compare the
relative changes of ΘG and fg at the PMS-points of their
respective counterparts, i.e., d logΘi=daLðaL;PMSðΘjÞÞ
with Θi;j ∈ ðΘG; fgÞ, as functions of the gauge parameter
βh, see Fig. 4. While we find a relative change of more than
300% for fg at the PMS ofΘG, it stays below 80% forΘG at
the PMS relative to fg. Hence, one could argue that the
system at the PMS-point of fg is less regulator dependent
overall than at the PMS-point of ΘG.

2. Exponential shape function

As for the Litim-type shape function, we find the Reuter
fixed point for all values of aE. In Fig. 5 we show the two
critical exponents ΘG and fg for βh ¼ 1 as a function of the
regulator parameter aE. In contrast to the case of the Litim-
type shape function, fg does not feature a PMS-point, but
increases towards aE → ∞. However, ΘG still features a
local minimum, where the regulator dependence can be

minimized. Hence, in contrast to the Litim-type shape
function, for the exponential shape function, the choice for
a PMS is unambiguous.
We show both critical exponents evaluated at the PMS-

value for aE in Fig. 6 as a function of the gauge-fixing
parameter βh. As for the Litim-type shape function, we find
a local maximum of fg, where both residual regulator and
gauge dependence of fg can be minimized. The gauge-
parameter that maximizes fg is βh ≈ −0.56.
In a nutshell, despite some differences between both

shape-functions, we find a PMS-point for both for at least
one critical exponent. Further, we find that the gauge-
dependence of fg evaluated at this PMS-point for the
regulator parameter ai can also be minimized. In particular,
both the PMS-point for the regulator parameter ai and the
PMS-point for the gauge-parameter βh are local maxima of
fg. Notably, the gauge-parameter that maximizes fg is
comparable between both shape functions, and to the case
where G and λ are treated as input parameters, see

FIG. 3. We show the critical exponents at the PMS-point for fg
(upper panel) and ΘG (lower panel) with Litim-type shape
function.

FIG. 4. We show the relative deviation of the critical exponents
ΘG and fg, when evaluated at the PMS-point of aL of the
respective other critical exponent.

FIG. 5. We show the gravitational critical exponent ΘG and the
gauge critical exponent fgðG⋆; λ⋆Þ for the exponential shape
function with minimal matter content at the Reuter fixed point as
a function of the regulator parameter aE at βh ¼ 1.
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Appendix A. In light of a possible gravitational
UV-completion of the Abelian gauge sector, this is impor-
tant, since fg sets an upper bound on the low-energy value
of the Abelian hypercharge that can be reached from a
UV-completion, see the discussion in Sec. II.
The result that fg increases by minimizing residual

gauge and regulator parameters provides tentative evidence
that ASQG could offer a viable UV completion of the
Abelian gauge sector. In the following, we will study how
this feature changes under the impact of additional matter
fields, to ultimately study the physically relevant case of
SM-matter content.

B. Adding matter degrees of freedom

For both shape functions, the Reuter fixed point persists
in the presence of SM matter (Nf ¼ 22.5, Ns ¼ 4 and
Nv ¼ 12). However, in both cases it features a large
graviton-anomalous dimension (at least for αi ¼ 1), indi-
cating that the current truncation might not be reliable. In
particular, studies lifting the background-field approxima-
tion find a gravitational fixed point with SM-matter content
and small anomalous dimensions, see [118] and [94] for
a discussion of differences. To obtain more conclusive
results, future studies should extend the truncation or go
beyond the background-field approximation.
While these are relevant points, here we focus on the

qualitative effect which matter has on the PMS-point and
the resulting critical exponent. For completeness, we report
the SM results in Appendix C, but caution, regarding their
robustness. As before, we examine both shape functions
individually, followed by a comparison of shared features.

1. Litim-type shape function

We begin by examining how the inclusion of bosons and
fermions alters the picture compared to minimal matter
content, i.e., Ns ¼ Nf ¼ Nv ¼ 1. We focus on βh ¼ 1.

When adding scalars and gauge fields to the system, we
observe several changes: i) the maximum of fg in Fig. 2 is
shifted towards larger aL, and the curve flattens such that
aLitim;PMSðfgÞ increases, while the value fgðaLitim;PMSÞ
decreases; ii) the minimum of ΘG in Fig. 2 moves towards
larger aL and the whole function is lifted such that
aLitim;PMSðΘGÞ and ΘGðaLitim;PMSÞ increase together. In
short, both PMS-points shift to larger aL, but the local
extrema become more shallow; iii) the slope ofΘG for large
aL is reduced; iv) the value of aL, where the gravitational
critical exponents cease to form a complex pair, increases.
Conversely, when adding fermions,8 we observe the

exact opposite effects, namely that i) local extrema of both
ΘG and fg in Fig. 2 are shifted to smaller aL such that
aLitim;PMS is reduced for both critical exponents; ii) both
curves in Fig. 2 are getting more pronounces such that local
extrema are steeper. Already for Nf ¼ 2, both PMS-points
disappear, i.e., they are shifted beyond aL → 0.
Furthermore, the gravitational critical exponents are no
longer complex pairs for Nf ≥ 3 for any value of aL.

2. Exponential shape function

We begin again with minimal matter content,
Ns ¼ Nf ¼ Nv ¼ 1, where the gravitational critical expo-
nents form a complex pair. The real part exhibits a
PMS-point, see Fig. 5. As before, we focus on βh ¼ 1.
When increasing the number of scalars beyond the

minimal matter content, i) the steep decrease of the critical
exponent of the gauge coupling fg at small aE in Fig. 5 is
moved towards larger aE while the overall value of fg
decreases, i.e., the curve fgðaEÞ shifts towards large aE and
downwards; ii) the pole ofΘG at small aL and the following
minimum in Fig. 5 move to larger aE, and the overall curve
becomes flatter. Finally, at Ns ¼ 2, the local extremum
disappears.
Gauge fields have a qualitatively similar effect to scalars,

but the shift of both ΘG and fg is larger than for scalars.
In contrast, when increasing the number of fermions,

i) the slope of fg at small aE decreases, and fg itself slightly
increases, while for large aE, fg remains unchanged; ii) the
steep section of ΘG moves to smaller aE, and the curve
becomes more pronounced, deepening the local minimum.
For large aE, ΘG remains unchanged. Between Nf ¼ 1.1
and Nf ¼ 1.2 the complex pair splits up; iii) The critical
exponent mostly aligned with λ completely flattens and
moves towards Θλ ¼ 4; iv) the critical exponent mostly
aligned withGmoves to lower values. Already atNf ¼ 1.2,
there is no local extremum in critical exponents present.
In short, for both shape functions with SM matter

content, we do not find any PMS-point, see Appendix C
for details. Nevertheless, we were able to investigate the

FIG. 6. We show the critical exponents for minimal matter
content at the PMS-point for ΘG with exponential shape function
as a function of βh.

8Specifically we add fermions at Ns ¼ 1, and Nv ¼ 4, where
the Reuter fixed point exists for several fermions.
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qualitative effect of different matter-types on the existence
and properties of PMS-points for both shape functions. To
study the full SM-matter content in a robust way likely
requires more converged gravitational beta-functions,
potentially based on fluctuation computations, see [92].

V. CONCLUSION

The triviality problem challenges the consistency of
renormalizable quantum field theories like the SM when-
ever they are neither asymptotically free nor asymptotically
safe. Here, we investigate whether ASQG, when coupled to
matter, may also induce a UV completion in the matter
sector.
There is growing qualitative evidence from FRG com-

putations that ASQG at the same time provides a UV fixed
point for matter. We have investigated systematic uncer-
tainties of the approximation scheme underlying this
evidence. In the FRG, systematic uncertainties are encoded
in unphysical dependences of universal quantities like
critical exponents on the artificial regulator and the gravi-
tational gauge fixing. We have studied the regulator and the
gauge dependence, by introducing a scaling parameter in
the regulator and keeping one gravitational gauge param-
eter-free. Furthermore, we have fixed the shape function of
the regulator to be either of Litim-type or exponential.
The dependence of universal quantities on unphysical

parameters is minimized at extrema relative to these
parameters, i.e., points of minimal sensitivity. We have
searched for such PMS-points for the Einstein-Hilbert term
coupled to an Abelian gauge field.
From the perspective of the approximated RG-flow, there

are two different ways of studying the influence of gravity
on matter: Either the gravitational couplings are evaluated
at their non-Gaussian fixed point in the UV. Alternatively,
one can assume such a fixed point for gravity to exist, and
leave the fixed-point values of the gravitational couplings
as free parameters, and hence parametrize a possible
UV-completion in the matter sector. We have focused on
the first method here, and refer the reader to Appendix A
for a discussion of the second method.
We find the following key results:
(i) For minimal matter content (Nf ¼ Ns ¼ Nv ¼ 1),

and at the gravitational fixed point, for both the
Litim-type and the exponential shape function, we
find a point of minimal sensitivity of fg in both βh
and aLðaEÞ. This point is a global maximum and in
quantitative agreement between the two shape
functions.

(ii) Generically, adding bosons to the system tends to
reduce the overall regulator dependence and shifts
features such as PMS-points to larger values of aL
and aE. Conversely, fermions enhance the regulator
dependence and shift such features to smaller values
of the regulator parameters. The large number of
fermions in the SM pushes the PMS-points to values

of aL; aE < 0, removing them from the physical
regime.

In short, our results provide further evidence in favor of
ASQG resolving the triviality problem. Yet, our analysis
also indicates that systematic uncertainties are still large
especially when adding many matter fields. Besides addi-
tional systematic uncertainties, the precision of the trunca-
tion we have studied is not sufficient to conclude that
ASQG definitely resolves the triviality problem. Larger
truncations and the connection to lattice studies will
hopefully allow to resolve these issues. This is the subject
of future work.
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APPENDIX A: GRAVITATIONAL COUPLINGS AS
REGULATOR-INDEPENDENT INPUT

PARAMETERS

In this appendix, we treat the gravitational couplings as
free parameters, independent of regulator and gauge. This
contrasts with Sec. IV, where we evaluate them at their
respective fixed-point values. On the one hand, those fixed-
point values are not physical and hence regulator and gauge
dependent themselves, which affects the overall regulator
dependence of the critical exponents. On the other hand, the
precise fixed-point values of the gravitational couplings are
truncation dependent and will change in larger truncations.
Hence, the results presented in this appendix are comple-
mentary to our findings presented in Sec. IV, and can be
understood to parametrize systematic uncertainties related
to extensions of the truncation in the gravitational sector.
Both parametrized studies as well as the evaluation on
gravitational fixed points have their respective merits.
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As a first observation we note that fg ∝ G holds in our
approximation, such that we rewrite

fg ¼ Gf̃gðλÞ; ðA1Þ

where f̃g only depends on the cosmological constant, and
possibly on unphysical parameters.
WhenG is treated as an input parameter, all regulator and

gauge dependence of fg is contained in f̃g. From (20), we
can see that for βh ¼ 0, only the transverse-traceless mode
contributes to ηA. Furthermore, for βh ¼ 1 both gravita-
tional modes feature the same pole structure, see (23) and
(24). Since the scalar and transverse-traceless mode have
the same relative prefactor in all three contributions in (20),
this implies that ηAðβh ¼ 0Þ ¼ 10

9
ηAðβh ¼ 1Þ for any regu-

lator, if G and λ are kept fixed. Therefore, when inves-
tigating the regulator dependence for different gauge
choices, we do not discuss βh ¼ 1 and βh ¼ 0 separately.
We begin with the case λ ¼ 0, as it allows for an analytic

integration over the loop momentum in (20) for both the
Litim-type and exponential shape functions (18) and (19),
with a general gauge parameter βh. We then turn to the case
λ ≠ 0. In this case, we treat the Limit-type and exponential
shape functions separately. For each shape function, we
apply the PMS to their respective parameters (i.e., aL, aE).

1. The case λ = 0

For λ ¼ 0, (20) implies that f̃g simplifies to

f̃g¼2
15þðβh−10Þβh

ðβh−3Þ2π
Z

∞

0

dzz
½z−rkðzÞ�½zr0kðzÞ−rkðzÞ�

ðzþrkðzÞÞ3
:

ðA2Þ

Thus, the gauge dependence and the regulator dependence
factorize. Independently of the regulator, the gauge depend-
ence is minimized for βh ¼ 0, where the gauge-dependent
prefactor is maximized. This PMS-point is a global
maximum of f̃g, which decreases by 40% towards
βh → −∞, and towards zero at βh ≈ 1.84 (cf. Fig. 7).
For the Litim-type and exponential shape functions [see

(18) and (19)], we obtain

f̃g;Lit¼
ð15þðβh−10ÞβhÞ

ðβh−3Þ2π
aLð2−2aLþð1þaLÞLog½aL�Þ

ðaL−1Þ3 ;

ðA3Þ

f̃g;Exp¼
ð15þðβh−10ÞβhÞ

ðβh−3Þ2π
aEðaE−1−Log½aE�Þ

ðaE−1Þ2 ; ðA4Þ

respectively. These expressions have previously been
studied for aL → 0 (and aE → 0) in [139].
From Eqs. (A3) and (A4), we can already read off some

key similarities and differences between the two shape

functions: For the Litim-type function, f̃g has the limits

f̃g;Lit → 0; for aL → 0; ðA5Þ

f̃g;Lit → 0; for aL → ∞: ðA6Þ

In contrast, for the exponential function f̃g has the limits

f̃g;Exp → 0; for aE → 0; ðA7Þ

f̃g;Exp →
15þ ðβh − 10Þβh

ðβh − 3Þ2π ; for aE → ∞: ðA8Þ

Combining this with f̃g ≠ 0 for aL > 0 automatically
implies that there is at least one PMS-point at finite aL for
the Litim-type shape function, while this is not guaranteed
for the exponential shape function. In fact, we find that

FIG. 7. We define N ðβhÞ ¼ ð15þ ðβh − 10ÞβhÞ=ðβh − 3Þ2.
Upper panel: We show the ai-dependent part of f̃g for both
Litim-type and exponential shape functions at λ ¼ 0. We see that
for the Litim-type shape function, f̃g always admits a local
maximum at aL ¼ 1, while for the exponential shape function f̃g
is maximized for aE → ∞. Lower panel: We show the βh-
dependent part of f̃g, which is maximized for βh ¼ 0.
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∂f̃g;Lit
∂aL

→ 0; for aL → 1; ðA9Þ

∂f̃g;Exp
∂aE

→ 0; for aE → ∞; ðA10Þ

which are the only extrema, as can be checked explicitly,
see Fig. 7. As we will see below, the PMS-point for aL
varies with λ and βh, while the location of the maximum for
aE remains unchanged. While the limit aE → ∞ minimizes
the regulator dependence of f̃g;Exp., we do not consider this
limit as a proper PMS-point, since the regulator parameters
are constrained to ai ∈ ð0;∞Þ, to provide a well-defined
FRG regulator.
By inspecting the βh-independent part of (A3)

and (A4), we see that they do not change sign as a function
of aL (aE). Hence, at fixed βh, the sign of f̃g;Lit (f̃g;Exp) is
independent of the choices of shape function studied here.
Thus, in the truncation in which λ ¼ 0 and for the shape
functions we consider, the qualitative properties of the
gravitationally induced UV-completion are solely depen-
dent on the gauge. In that vein, f̃g changes sign when

ð15þ ðβh − 10ÞβhÞ ¼ 0. Hence, for βh < 5 −
ffiffiffiffiffi
10

p
≈ 1.84,

f̃g is positive, allowing for a UV completion, for any aL
(aE), while it is negative otherwise. Note that βh < 3 is
additionally required, since the gauge-fixing condition is
singular at βh ¼ 3. Hence, it is unclear if the sign-change at
βh ≈ 1.84 is an artefact of the singularity, or stable.
In short, while the value βh ¼ 0 is a PMS-point inde-

pendent of the shape function, whether the regulator
dependence can be minimized is shape-function dependent.
Yet, our results indicate that, at least for λ ¼ 0, the
availability of a gravitationally induced UV-completion
of the gauge coupling is (somewhat) gauge dependent, but
does not vary between the shape functions we study in this
paper. As we will see in the following, this picture is
modified for nonvanishing λ, due to more complicated
gauge and regulator dependences.

2. The case λ ≠ 0

We now generalize the results of the previous subsection
to finite values of λ. While the corresponding generalization
of (A2) can be given in closed form, we do not display it
here. By virtue of this closed-form expression, it can be
shown analytically that f̃g still features a PMS point for the
gauge dependence, independent of the choice of regulator.
As for the case λ ¼ 0, the gauge dependence is minimized
at βh ¼ 0. Note that even when evaluated at the (regulator-
dependent) gravitational fixed points, fg features a
PMS-point at βh ≃ 0 (cf. Fig. 3). Thus, this feature appears
robust.

Since the regulator dependence is more subtle and shape-
function dependent, we treat the Litim-type shape function
and exponential shape function separately in the following.

a. Litim-type shape function

For the Litim-type shape function (18), the integration
over the loop momentum q2 in (20) can be performed
analytically for general regulator parameter aL ∈ ð0;∞Þ.
In Fig. 8 we show the rescaled critical exponent f̃g of the

Gaussian fixed point gY;� ¼ 0 as a function of the cosmo-
logical constant λ and the regulator parameter aL for
βh ¼ 0. We see that f̃g is maximal in a region around
λ ≈ 0 and aL ≈ 1. We furthermore observe that f̃g decreases
for large aL, when keeping λ fixed. Besides, we find a
PMS-point at arbitrary but fixed λ, which moves towards
larger aL when decreasing λ. In the regions marked white in
Fig. 8, the gauge coupling remains irrelevant at the
Gaussian fixed point in our approximation.9 Similarly to
the previously studied cases at aL ¼ 1, we see that this
happens for positive λ. However, for aL > 1, this region
moves to larger λ, i.e., closer to the pole at λ ¼ 1=2.
Besides the value of f̃g in the λ − aL plane, in Fig. 8 we

also show the PMS value of aL, and encode the value of the

FIG. 8. We show the critical exponent f̃g of the Gaussian fixed
point gY;⋆ ¼ 0 for the Litim-type shape function as a function of
the cosmological constant λ and the regulator parameter aL for
βh ¼ 0. The PMS of aL as a function of λ is displayed as a white,
dashed line. In all regions that are shown as white, the gauge
coupling is irrelevant at gY;⋆ ¼ 0.

9Note that [23] have shown for aL ¼ 1 that this region can be
removed when the momentum-dependence of fg is taken into
account.
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critical exponent f̃g at this point in the color. First, we
observe that for each value of the cosmological constant,
there is a PMS-point. Especially towards negative values of
the cosmological constant, the PMS-point aL;PMS differs
significantly from aL ¼ 1, at which previous computations
were performed. Furthermore, we observe that f̃g remains
positive all the way to λ ¼ 1=2. This is achieved by an
increasing aL;PMS for λ > 0. Therefore, we find that, if
evaluated at a regulator that minimizes the residual regu-
lator dependence, a UV-completion of the Abelian gauge
sector can be achieved for any value of the cosmological
constant. For fixed λ, f̃g determines the lower bound on the
Newton coupling Gcrit, for which the UV completion is
observationally viable.
The gauge dependence of the critical exponent f̃g at the

PMS-point for aL is mild, with a deviation at percent level
between the choices βh ¼ 0 and βh ¼ −1, and a ∼10%
difference between the choices βh ¼ 0 and βh ¼ 1—cor-
responding to fgðβh ¼ 0Þ ¼ 10

9
fgðβh ¼ 1Þ as motivated in

the introduction of this appendix.

b. Exponential shape function

In contrast to the Litim-type shape function, the expo-
nential shape function (19) does not allow to integrate over
the loop momentum q2 in (20) analytically. Instead, we
revert to numerical techniques.

Focussing on the gauge βh ¼ 0, we display the rescaled
critical exponent f̃g of the Gaussian fixed point gY;� ¼ 0 as
a function of the cosmological constant λ and the regulator
parameter aE in Fig. 9. In contrast to the Litim-type shape
function, f̃g does not exhibit extrema for finite aE
irrespective of the value of λ. Thus, there is no PMS-point.
Similarly to the Litim-type shape function, the white

region, indicating the UV-incomplete sector tends to larger
values of λ for increasing aE. Indeed, the pole itself is
shifted beyond λ ¼ 1=2 for aE > 1. Since we do not find
any PMS point for aE, we do not further investigate gauge
dependence of f̃g in this setting.

APPENDIX B: PMS AT G� FOR λ= 0

In this appendix, we specify to ASQG as the UV-
completion of the theory, where the fixed-point value of
G is obtained from an FRG equation, and hence regulator
dependent. However, in contrast to Sec. IVA, we restrict
our analysis to λ ¼ 0. This marks a step between our study
in Appendix A, where no gravitational coupling was
evaluated at the fixed point, and Sec. IVA, where both
gravitational couplings are evaluated at their fixed points.
With this intermediate step we can retain some analytical
features discussed in Appendix A, while moving towards
the physically more interesting case discussed in the main
part of the paper.
As before, we use the beta function, βG, from [139]. The

system at hand now features two couplings, G and gY , and
hence there are two critical exponents ΘG and fg which in
this truncation depend on the regulator parameters.
However, due to the specific setup used in [139] to compute
βG, in particular, the use of the background-field approxi-
mation, ΘG ¼ 2 is fixed. Therefore, fg is the only critical
exponent with nontrivial regulator and gauge dependence,
to which we will apply the PMS.
In Fig. 10 we show the critical exponent fg both for the

Litim-type (upper panel) and exponential shape function
(lower panel) for different choices of the gauge parameter
βh for Nf ¼ Ns ¼ Nv ¼ 1, see also [139]. For given βh, fg
agrees between both shape functions in the limit ai → 0,
see [139], and fg → 0 for ai → ∞ for any gauge. We see
that the (shape-function independent) limit ai → 0 is a
maximum for fg (and a minimum for βh⪆1.84, as dis-
cussed above) and that there are no local extrema. In fact,
one can show that fgðaLÞ is monotonically decreasing for
βh < 2, indicating that there is no PMS-point for fg, when
the regulator dependence of G� is also considered.
Accordingly, in the gauge-gravity system with λ ¼ 0

fixed, only ΘG is (trivially) regulator independent, while
fg remains regulator dependent, for any choice
of ai ∈ ð0;∞Þ.

FIG. 9. We show the critical exponent f̃g of the Gaussian fixed
point gY;⋆ ¼ 0 for the exponential shape function as a function of
the cosmological constant λ and the regulator parameter aE for
βh ¼ 0. In all regions that are shown as white, the RG flow
crosses a well known pole beyond which it cannot be continued.
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APPENDIX C: FIXED-POINT STUDY FOR
STANDARD-MODEL MATTER CONTENT

In this appendix, we extrapolate the analysis of Sec. IV B
to the full matter content of the SM (Nf ¼ 22.5,Ns ¼ 4 and
Nv ¼ 12). We examine both shape functions individually.
However, as indicated in Sec. IV B, we caution regarding
the robustness of these results due to the large graviton
anomalous dimension at the Reuter fixed point in our
truncation and the background-field approximation.

1. Litim-type shape function

Due to the large number of fermions in the SM, the
fermionic effect discussed in Sec. IV B dominates over the
bosonic one. In Fig. 11 we show all three critical exponents
at the SM matter content, as a function of aL, and for
βh ¼ 1. We see that neither fg nor ΘG feature any local
extrema, and behave qualitatively similar. However, the
opposite effect of bosonic and fermionic matter on Θλ at
large aL balances, to give rise to a new local maximum. For
βh ¼ 1 it is located at aL ≈ 4.5.

Next, we track the behavior of the PMS-point under
changes in βh. This reveals that only for some values of βh
the PMS-point exists, while for others the fixed point
diverges or moves into the complex plane before any local
extremum is reached. In Fig. 12 we show all three critical
exponents at the PMS-point of Θλ in aL. As we can see, Θλ

varies only marginally with βh. Furthermore, both fg and
ΘG feature a local maximum as a function of βh, which is
located at βh ≈ 0.66 and βh ≈ 1, respectively. Hence, also
for the SM matter content, we can significantly reduce the
regulator and gauge dependence of the system by choosing
preferred parameters. However, in contrast to the minimal
matter content, we do not have the choice to minimize the
regulator dependence of fg.

2. Exponential shape function

As for the Litim-type shape function, the effect of
fermions dominates due to their large number. In Fig. 13

FIG. 10. We show the critical exponent fg of the Abelian gauge
coupling evaluated at the asymptotically safe fixed point G⋆ for
the Litim-type (upper panel) and exponential shape functions
(lower panel) and for a choice of gauge parameters βh.

FIG. 11. We show all critical exponents for the Litim-type
shape function with SM matter content at βh ¼ 1.

FIG. 12. We show all critical exponents for the Litim-type
shape function with SMmatter content at the PMS-point forΘλ as
a function of βh.
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we show the resulting critical exponents; Θλ ≈ 4 is almost
constant for any aE. Conversely, ΘG < 2 for any aE, and
monotonically decreases with aE. The change of slope of fg
caused by fermions also dominates, such that fg is
monotonically increasing for the SM matter content.
Ultimately, we do not find any local extremum of any of
the critical exponents of the system.
Furthermore, ΘG changes sign for aE ∼ 50, beyond

which and λ is an irrelevant direction. If taken at face
value, this would imply that physical properties depend
on the choice of regulator. We do not interpret this
as a genuine physical effect, but rather as a further
sign that the truncation is unreliable at SM matter
content—consistent with the large anomalous dimensions
observed.
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[105] P. Donà, A. Eichhorn, and R. Percacci, Phys. Rev. D 89,
084035 (2014).

REGULATOR AND GAUGE DEPENDENCE OF THE ABELIAN … PHYS. REV. D 112, 106003 (2025)

106003-15

https://doi.org/10.1016/j.physletb.2013.11.025
https://doi.org/10.1103/PhysRevD.86.024018
https://doi.org/10.1103/PhysRevD.86.024018
https://arXiv.org/abs/1301.4191
https://doi.org/10.1088/0264-9381/31/1/015024
https://doi.org/10.1088/0264-9381/31/1/015024
https://doi.org/10.1088/0264-9381/30/11/115016
https://doi.org/10.1088/0264-9381/30/11/115016
https://doi.org/10.1103/PhysRevD.93.104022
https://doi.org/10.1103/PhysRevD.89.081701
https://doi.org/10.1103/PhysRevD.89.081701
https://doi.org/10.1103/PhysRevD.93.044036
https://doi.org/10.1007/JHEP08(2015)113
https://doi.org/10.1007/JHEP08(2015)113
https://doi.org/10.1103/PhysRevD.92.084020
https://doi.org/10.1103/PhysRevD.92.084020
https://doi.org/10.1103/PhysRevD.92.121501
https://doi.org/10.1140/epjc/s10052-016-3895-1
https://doi.org/10.1140/epjc/s10052-016-3895-1
https://doi.org/10.1103/PhysRevD.92.061501
https://doi.org/10.1103/PhysRevD.92.061501
https://doi.org/10.1103/PhysRevD.92.124057
https://doi.org/10.1007/JHEP04(2015)096
https://doi.org/10.1103/PhysRevLett.116.211302
https://doi.org/10.1103/PhysRevLett.116.211302
https://doi.org/10.1140/epjc/s10052-018-5806-0
https://doi.org/10.1140/epjc/s10052-018-5806-0
https://doi.org/10.1103/PhysRevD.95.086013
https://doi.org/10.1103/PhysRevD.95.086013
https://doi.org/10.1103/PhysRevD.94.084005
https://doi.org/10.1088/1361-6382/aac440
https://doi.org/10.1007/JHEP03(2018)118
https://doi.org/10.1103/PhysRevD.97.046007
https://doi.org/10.1103/PhysRevD.97.086006
https://doi.org/10.1140/epjc/s10052-017-5046-8
https://doi.org/10.1140/epjc/s10052-017-5046-8
https://doi.org/10.1103/PhysRevD.96.126016
https://doi.org/10.1007/JHEP12(2017)121
https://doi.org/10.1007/JHEP12(2017)121
https://doi.org/10.1103/PhysRevD.96.065020
https://doi.org/10.1088/1361-6382/aabaa0
https://doi.org/10.1103/PhysRevD.98.026027
https://doi.org/10.1016/j.physletb.2019.01.071
https://doi.org/10.1103/PhysRevD.99.126015
https://doi.org/10.1103/PhysRevD.99.126015
https://doi.org/10.1103/PhysRevLett.123.101301
https://doi.org/10.1103/PhysRevLett.123.101301
https://doi.org/10.1088/1361-6382/ab4a53
https://doi.org/10.1088/1361-6382/ab4a53
https://doi.org/10.1016/j.physletb.2020.135773
https://doi.org/10.1016/j.physletb.2020.135773
https://doi.org/10.1103/PhysRevD.108.026005
https://doi.org/10.1103/PhysRevD.108.026005
https://doi.org/10.21468/SciPostPhysCore.4.3.020
https://doi.org/10.21468/SciPostPhys.12.1.001
https://doi.org/10.3390/universe7080294
https://doi.org/10.1007/JHEP03(2022)130
https://doi.org/10.1007/JHEP03(2022)130
https://doi.org/10.1007/JHEP01(2022)041
https://doi.org/10.1007/JHEP01(2022)041
https://doi.org/10.1393/ncc/i2022-22028-5
https://doi.org/10.1393/ncc/i2022-22028-5
https://doi.org/10.1016/j.aop.2022.168822
https://doi.org/10.1016/j.aop.2022.168822
https://doi.org/10.1103/PhysRevLett.130.081501
https://arXiv.org/abs/2312.03831
https://doi.org/10.1007/JHEP09(2023)064
https://doi.org/10.1007/JHEP09(2023)064
https://doi.org/10.1103/PhysRevD.107.126025
https://doi.org/10.1103/PhysRevD.107.126025
https://doi.org/10.1103/16c5-73q2
https://doi.org/10.1103/16c5-73q2
https://doi.org/10.1007/s10701-018-0196-6
https://arXiv.org/abs/1904.07042
https://doi.org/10.22323/1.384.0005
https://doi.org/10.3389/fphy.2020.551848
https://doi.org/10.3389/fphy.2020.551848
https://doi.org/10.1393/ncc/i2022-22029-4
https://arXiv.org/abs/2212.07456
https://arXiv.org/abs/2302.14152
https://arXiv.org/abs/2309.10785
https://doi.org/10.1103/PhysRevD.109.066012
https://doi.org/10.1103/PhysRevD.111.106007
https://doi.org/10.1103/PhysRevD.111.106007
https://doi.org/10.1016/j.physletb.2020.135911
https://doi.org/10.1016/j.physletb.2020.135911
https://doi.org/10.3390/universe7070216
https://doi.org/10.1007/JHEP09(2022)167
https://doi.org/10.1103/PhysRevD.111.106005
https://doi.org/10.3389/fphy.2020.00056
https://doi.org/10.3389/fphy.2020.00269
https://doi.org/10.3389/fphy.2020.00269
https://doi.org/10.1103/PhysRevD.89.084035
https://doi.org/10.1103/PhysRevD.89.084035


[106] J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev.
D 93, 084035 (2016).

[107] J. Biemans, A. Platania, and F. Saueressig, J. High Energy
Phys. 05 (2017) 093.

[108] N. Alkofer and F. Saueressig, Ann. Phys. (Amsterdam)
396, 173 (2018).

[109] C. Wetterich and M. Yamada, Phys. Rev. D 100, 066017
(2019).

[110] G. Korver, F. Saueressig, and J. Wang, Phys. Lett. B 855,
138789 (2024).

[111] A. Eichhorn, P. Labus, J. M. Pawlowski, and M. Reichert,
SciPost Phys. 5, 031 (2018).

[112] A. Eichhorn, S. Lippoldt, and M. Schiffer, Phys. Rev. D
99, 086002 (2019).

[113] M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683, 196
(2010).

[114] A. Eichhorn and A. Held, Phys. Lett. B 777, 217
(2018).

[115] A. Eichhorn and A. Held, Phys. Rev. Lett. 121, 151302
(2018).

[116] R. Alkofer, A. Eichhorn, A. Held, C. M. Nieto, R.
Percacci, and M. Schröfl, Ann. Phys. (Amsterdam) 421,
168282 (2020).

[117] K. Kowalska, S. Pramanick, and E. M. Sessolo, J. High
Energy Phys. 08 (2022) 262.

[118] Á. Pastor-Gutiérrez, J. M. Pawlowski, and M. Reichert,
SciPost Phys. 15, 105 (2023).

[119] A. Eichhorn, J. H. Kwapisz, and M. Schiffer, Phys. Rev. D
105, 106022 (2022).

[120] B. Knorr and A. Platania, J. High Energy Phys. 03 (2025)
003.

[121] A. Eichhorn, M. Schiffer, and A. O. Pedersen, Eur. Phys. J.
C 85, 733 (2025).

[122] L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal, Phys.
Rev. D 67, 065004 (2003).

[123] L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal, Phys.
Rev. B 68, 064421 (2003).

[124] C. Duclut and B. Delamotte, Phys. Rev. E 95, 012107
(2017).
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