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Both General Relativity and the Standard Model of particle physics are not UV complete. General Relativity
is perturbatively nonrenormalizable, while the Standard Model features Landau poles, where couplings are
predicted to diverge at finite energies, e.g., in the Abelian gauge sector. Asymptotically safe quantum gravity
may resolve both of these issues at the same time. In this paper, we assess the systematic uncertainties associated
with this scenario, in particular with the gravitationally induced UV-completion of the Abelian gauge sector.
Specifically, we study the dependence of this qualitative feature, namely the existence of a UV-complete gauge
sector, on unphysical choices like the gauge, and the regulator function. Intriguingly, in some scenarios, we find
simultaneous points of minimal sensitivity relative to both the regulator and gauge parameters, which allow for
a UV completion. This provides further indications that the simultaneous UV-completion of quantum gravity
and matter via an asymptotically safe fixed point is a robust physical feature, and that physical quantities, like
scaling exponents, can become independent of unphysical choices.
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I. MOTIVATION

The quantum nature of gravity remains one of the big
unresolved mysteries of theoretical physics. Despite over a
century of research, no consensus has emerged on a
prevailing theory. Numerous candidate approaches exist,
but the absence of experimental input makes it difficult to
evaluate their respective merits.

Instead, theoretical arguments, i.e., arguments from
consistency have to make do. For instance, a naive
quantization of General Relativity (GR) along the lines
of the Standard Model of particle physics (SM) leads to a
perturbatively nonrenormalizable theory, rendering it
unpredictive. Existing approaches to quantum gravity
propose different mechanisms for UV completions of GR.

Even without considering gravity, the SM by itself is
UV-incomplete; although perturbatively renormalizable,
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some couplings, including the Abelian gauge coupling,
diverge at finite energy scales, at so-called Landau poles
[1-4]. Avoiding these divergences requires removing the
associated interactions at all energies, rendering the theory
trivial [5], and phenomenologically inconsistent (see [6] for a
review).

The existence of the Landau poles has been proven in
dimensions d > 4 [7]. In d = 4 it has been confirmed by
nonperturbative computations using lattice [8—10] and
functional methods [11]. Thus, the triviality problem is
not an artifact of perturbative techniques, but a true
inconsistency of the theory.

The unification of the SM with gravity could also
address the triviality problem. Estimates suggest that the
Landau pole occurs at energies beyond the Planck scale
(A, ~10** GeV in the SM, reduced to A; ~ 107 GeV in
some supersymmetric extensions [4,10]). This has two key
implications. First, gravity cannot be ignored when assess-
ing the consistency of the theory. Second, the triviality
problem is expected in the deeply quantum-gravitational
regime, necessitating a quantum theory of gravity valid at
those scales to resolve it.

From another perspective, the absence of a Landau pole
in the electroweak sector can serve as a nontrivial test for
quantum-gravity models: any phenomenologically viable
theory of quantum gravity has to resolve it and allow for

Published by the American Physical Society
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finite Abelian gauge interactions to arise in the IR. It
therefore poses an important phenomenological consis-
tency test for any theory of quantum gravity.

There are different ways, in which theories of quantum
gravity could resolve the triviality problem:

(i) The gauge groups of the SM (together with gravity)
may be unified in a larger framework, e.g., a grand
unified theory, whose gauge couplings do not have a
Landau pole. This unification would be expected,
for example, in string theory [12-14];

(ii) If spacetime exhibits a minimal length or area, there
may be a physical cutoff in momentum space, which
makes it impossible to reach the Landau pole in a
physical process. Fundamental discreteness (or un-
certainty of length/area measurements) is central, e.g.,
to causal-set theory [15,16] or spinfoam models [17];

(iii) The gravitational contribution to the running of gauge
couplings may render the theory asymptotically free
or asymptotically safe [18-23], see [24] for a dis-
cussion of seeming discrepancies with perturbative
computations. Similar to the minimal-length idea, this
behavior leads to the absence of a fundamental scale
in the deeply quantum regime, a hallmark of asymp-
totically safe quantum gravity (ASQG).

In this paper we concentrate on the last point. ASQG is
based on an enhanced symmetry in the UV, namely
quantum scale symmetry. In other words, the theory is
UV-completed by an interacting fixed point in the gravi-
tational sector, the Reuter fixed point [25,26]. Unlike a
perturbative quantization of GR, ASQG is expected to have
only a finite number of relevant directions at the fixed point,
requiring a finite number of free parameters in the IR and
thus providing a predictive framework.

Evidence is mounting that such a fixed point indeed exists
and that the number of free parameters in the gravitational
sector is three [27-86]," see [87-96] for reviews. Long
standing criticism of this scenario, such as the extension
of studies in Lorentzian signature [82,97,98], and unitarity
[72,82,99—-102], are being addressed now, see also [103,104].
There is also significant evidence for a fixed point when the
SM matter content is coupled to gravity [105-110].

Intriguingly, the asymptotically safe fixed point
appears to be near-perturbative in nature, see
[42,45,62,69,70,74,111,112]. This important property sug-
gests that calculations which study operators based on their
canonical mass dimension can already produce reliable
results.

There is also mounting evidence that ASQG can induce a
UV completion of the SM [19,22,113-118], and even
provide predictions for SM parameters [19,22,113-115].

'The remaining free parameters are the cosmological constant,
the gravitational constant and a combination of the couplings of
operators quadratic in curvature.

The main goal of this paper is to test the mechanisms for
possible UV completions, focussing on the Abelian gauge
sector. Here, quantum fluctuations of the metric add an
antiscreening contribution to the scale-dependence of the
Abelian hypercharge. This contribution dominates over the
pure-matter screening contribution at small couplings, and
therefore induces asymptotic freedom for the Abelian
gauge coupling [18-24]. Higher-order induced gauge-
operators become asymptotically safe [21,24,119-121].

To assess the robustness of this possibility, we introduce
free parameters which parametrize unphysical choices
necessary in practical computations and, systematically
vary these parameters. Understanding how robust the main
qualitative feature, i.e., the possibility of a gravity-induced
UV-completion of the Abelian hypercharge is from these
unphysical choices, gives us crucial insights into whether
ASQG can indeed resolve the Landau-pole problem in the
Abelian gauge sector of the SM.

Furthermore, we apply the principle of minimal sensi-
tivity (PMS) [49,83, 122-1271* to identify parameter values
that minimize systematic uncertainties and ensure that
results are least sensitive to regulator and gauge choices.
A complementary approach to minimize unphysical
dependences of the regularization procedure is to optimize
the shape of the regulator, see e.g., [129-131].

We indeed find such PMS-points when evaluating them
on their respective (parameter dependent) fixed-point
values for a minimal matter content, i.e., one scalar, one
fermion and one vector. These points suggest that a viable
resolution of the triviality problem may be within reach. We
then study how these PMS-points change upon addition of
more matter fields, and find that generically scalars and
gauge fields stabilize the presence of PMS-points, while
fermions remove them.

This paper is structured as follows. In Sec. II we describe
the mechanism by which the triviality problem may be
resolved in ASQG. In Sec. I1I we introduce the tools we use
to extract the scale-dependence of the Abelian gauge
coupling under the impact of gravitational fluctuations,
in particular, the functional renormalization group (FRG).
In Sec. IV we study the regulator and gauge dependence of
the critical exponent of the gauge coupling, which is closely
linked to the resolution to the triviality problem. In Sec. V
we summarize and interpret our findings.

II. THE ABELIAN HYPERCHARGE IN
ASYMPTOTICALLY SAFE QUANTUM GRAVITY

There is evidence that ASQG may induce a UV-com-
pletion of the Abelian gauge sector of the SM. This UV
completion is induced by an antiscreening contribution of
gravitational fluctuations to the scale dependence of the

*See [128] for a monograph in the context of perturbation
theory.
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Abelian hypercharge gy as

ﬂgy = _fggY +ﬁSMgsl; + O(g;), (1)

where fq\ is the one-loop contribution from charged
matter, which is screening, i.e., figm > 0, and where f,
is the gravitational contribution, parametrized by the
Newton coupling and the cosmological constant. In
ASQG this contribution is constant at high energies i.e.,
fy & const for k* > Mpyyex, While f, & 0 for k* < Mpjyexs
due to the scale-dependence of the gravitational couplings.

As Eq. (1) reveals, different signs of f, separate different
scenarios; if f, < 0, the gravitational contribution adds an
additional screening term, which worsens the Landau-pole
problem by shifting the scale of divergence to lower
energies. If f, =0, the gravitational contribution simply
vanishes, such that the Landau-pole problem of the SM
remains unchanged. Hence, if f, < 0, ASQG alone cannot
provide a UV completion of the SM. If however, f, > 0
holds, then gravitational fluctuations add an antiscreening
contribution to the scale dependence of gy, which domi-
nates for small enough gy. Hence, the Gaussian fixed point
gy = 0 becomes IR repulsive, such that finite values of gy
can be reached at low scales, while gy, = 0 is realized in
the UV. Note that for the SM, this is not necessarily a
sufficient requirement, as f; might have to be larger than a
critical value to satisfy observational consistency with the
Abelian hypercharge sector, see below for details.

The stability properties of fixed points are encoded in
critical exponents, defined as

; )

9i=9i,

which determine the directions in which a fixed point is
attractive or repulsive under flows towards the IR. In this
convention, ®; > 0 corresponds to IR repulsive, so-called
relevant directions. If the fixed point UV-completes the
theory, relevant directions come with free parameters that
need to be fixed by experiment. Conversely, ®; <0
corresponds to IR-attractive directions. Those directions
do not come with a free parameter and their IR-value is a
prediction of the UV-completion of the theory. In a simple
approximation, the gravitational contribution f, is the
critical exponent of the Abelian gauge coupling gy at
the Gaussian fixed point gy, = 0. Therefore, f, >0
indicates asymptotic freedom and a free parameter, while
S < 0 provides a prediction of the theory, which, in the
case of the Gaussian fixed point gy, = 0 corresponds to
gy = 0 at all scales.

Besides rendering the Abelian hypercharge asymptoti-
cally free, an antiscreening gravitational contribution
fq>0 can give rise to an additional fixed point
Gy sint > 0, which is IR attractive. This fixed point, if
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FIG. 1. The Abelian hypercharge gy(k) in ASQG with anti-

screening gravitational contribution f,, see (1). Any blue
(dashed) trajectories emanate from the asymptotically free fixed
point. Any trajectory emanating from that fixed point is bounded
from above by the green (solid) trajectory emanating from the
interacting fixed point. Any trajectory above the green one (red,
dotted) is not UV-complete.

realized, gives rise to one unique trajectory towards the IR,
along which the value gy (k) is a prediction of the under-
lying UV completion at all scales k [19,22], see Fig. 1 for
an illustration.

The predicted value of gy from the asymptotically safe
fixed point is compatible with the observed one, within the
estimated systematic uncertainty in determining f, [22].

Besides generating a predictive trajectory, the interacting
fixed point gy , i, also shields trajectories emanating from
gy » = 0 from becoming too large, due to its IR-attractive
nature. Hence, gy 4 ;, and the trajectory emanating from it
act as an upper bound for any gy (k) embedded in a UV-
complete quantum field theory, see Fig. 1 for an illustration.

For ASQG to be consistent with low-energy observa-
tions, gy «.inc has to be large enough to accommodate the
observed low-energy value. In the following, we will focus
on the size of f,, which in our approximation determines
gy .int- 1IN particular, observational consistency requires
that

0.096

fngg,crit:7’ (3)

see [22].

Let us briefly comment on the scheme-dependence of the
gravitational contribution f,. While f, is the critical
exponent of gy at the Gaussian fixed point,3 and should
therefore be universal, this is not necessarily the case in
small truncations, and when not evaluated at the gravita-
tional fixed point. In particular, even in perturbative studies
both f, =0 and f, > 0 are possible, depending on the

3This holds at leading order, i.e., when no induced interactions
are taken into account, see also [132] for a similar study in the
Yukawa sector beyond leading order.
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regularization scheme [133—138]. Similarly, studies using
the FRG indicate that f; > 0 holds [18-24], yet regulators
that yield f, =0 can be constructed, too [20], see
also [118] for an explicit implementation. On the other
hand, [139] argues that f, > O arises at the gravity-matter
fixed point in a limit where the FRG-regulator vanishes.
Since f, «x G, f,> 0 arises from carefully considering
both the gravitational contributions to 3, , but evaluating it
at the asymptotically safe fixed point for G, which is also
regulator dependent.

In this paper we will further study the dependence of f,
on both regulator—by computing it using several one-
parameter families of regulators—and gauge fixing. In
particular, we will employ a PMS on f, to determine the
regulator which minimizes residual unphysical dependen-
cies for each of the families. The dependence of f, on the
individual parameters, as well as the dependence of f, on
the different regulator families evaluated at their PMS-point
yields insights into the regulator dependence, and ulti-
mately, on the question of observational consistency of and
systematic uncertainties in ASQG.

III. TECHNICAL SETUP

Our goal is to extract the scale dependence of gy, and in
particular the gravitational contribution f, employing the
FRG [140]. The FRG is based on the scale-dependent
effective action I'; and implements the Wilsonian idea of
integrating out modes according to their momentum shell.
In this sense, I'; contains all quantum fluctuations with
momenta p? > k2, and lowering k — k — &k integrates out
modes with p? ~ k2. Therefore, I'; interpolates between a
quantity akin to a classical action for k — oo, when no
quantum fluctuations are integrated out and the full
quantum 1-PT effective action I';_,; = I';p; at k — 0, when
all quantum fluctuations are integrated out.

This interpolation is implemented via a regulator func-
tion R;(p?), which enters as a masslike term (i.e.,
quadratically in the fields) in the path integral. The
regulator has to satisfy

=0 for p*=> k2,
>0 for p? <k,

Rk<p2>{ )

and

0 for k* - 0,

o for k2 - A - oo,

R(r7) = { (5)

where A is a UV-cutoff which can be removed at an RG
fixed point. Due to these properties, the regulator adds a

“The UV fixed-point action amounts to the classical action up
to an operator determinant, yielding the reconstruction problem
[141-143].

positive mass for modes with p*> < k?, and hence sup-
presses low-momentum modes in the path integral, while
modes with p? > k> are not suppressed and hence inte-
grated out.

The FRG provides a differential equation for the scale-
dependent effective action I';, which reads [25,140,144,145]

1 -1
0T = 3 STHOR(CY + Ry) ™. (6)

where 0, = kd;, is the dimensionless scale derivative, F,(f)

refers to the second functional derivative of I';, with respect to
all fields, and the STr refers to a trace over all discrete indices,
and an integration over the loop momentum, while adding
additional signs for Grassmann-valued fields. Beta functions
can be extracted from the flow equation by projecting onto the
desired field monomial. For a detailed review on the FRG and
its applications, see, e.g., [146].

The flow equation (6) is in principle exact, but practical
computations require to limit the set of operators included
in '} to a subset of the full theory. Upon these truncations
of the theory, the flow equation is not closed any more, and
even physical quantities, like critical exponents depend on
unphysical choices, like the truncation, gauge fixing, and
the chosen regulator function ;. Systematic extensions of
the truncation are required to assess the robustness of the
results in a given truncation.

In this work we are interested in the impact of gravi-
tational fluctuations on the Abelian gauge sector. To
include the impact of gravitational fluctuations, we employ
the background-field method, where we decompose the full
metric into a background metric and fluctuations, i.e.,

g;w = g/w + h;w' (7)

In principle the background metric does not have to be
specified, but specific choices are convenient for practical
computations. Our ansatz for I'; reads

=& ol (8)

and we will approximate the dynamics of the gravitational
sector by the Einstein-Hilbert action, i.e.,

1
e = — / d*x/g[=R + 222 + T (9
k 16ﬂGk—2 'x\/-a[ + ] + k ( )
where G and A are the scale-dependent but dimensionless
versions of the Newton coupling and the cosmological

constant, respectively. Furthermore, Fif’h is the gauge-
fixing action given by

gf.h _
I

4 AUV
- e / E G EF, (10)

106003-4



REGULATOR AND GAUGE DEPENDENCE OF THE ABELIAN ...

PHYS. REV. D 112, 106003 (2025)

with gauge condition
1+ﬁh o
F,= ( “DP) — 3D )h,,ﬂ. (11)

Here D denotes the covariant derivative with respect to the
background g, and «;, and f;, are gauge parameters. In this
work, we choose a; — 0, which corresponds to Landau
gauge, throughout the paper, as it is a fixed-point for both
gauge parameters [66,147], but leave /5, general.

In the following, we will expand gravitational fluctua-
tions around a flat background, i.e., g = &, and parametrize
metric fluctuations via a linear split

G = S + 1/ 162k2GZ, b, (12)

where Z; is the graviton-wave function renormalization.
The gauge fixing (10) also gives rise to Fadeev-Popov
ghosts, which only contribute directly to the running of
gravitational couplings.

We approximate the dynamics of the Abelian gauge field
as

1 Z v Lo} "
/v _TA/d“x 99 F°F,, F e + T84, (13)

where F,, = D,A, — D,A, is the field strength tensor of
the Abelian gauge field A,, and where Iy 4 is the gauge-
fixing action of the Abelian gauge field, which reads

1 _ —
Fgf.A _ E/dé‘x\/‘a(DDAy)(D”A#)’ ay — 0, (14)

where again we choose Laundau gauge for the associated
gauge parameter ay. The minimal coupling between the
Abelian gauge field and gravity arises naturally via the
inverse metric and /g in Eq. (13). This minimal coupling
ultimately gives rise to the gravitational contribution f, in
(1). To extract the scale dependence of gy, we employ Ward
identities which state [148,149]

’7A |grav
2 ’

un

. (15)

ﬂg gY:>fg

where 7, is the anomalous dimension of the gauge field,

0,Z;
zZ,’

1

n=- (16)

>The pure-matter contribution to f,, is universal at one-loop
and can therefore also be read off from gauge-scalar and gauge-
fermion vertices. The gravitational contribution f, does not need
to be universal, see [22,118,150] for a comparison.

and where 74|y, Tefers to the gravitational contribution

only, i.e., omitting pure-matter diagrams.
Finally, for the regulator R we use

k2 2
RMﬂz—m@J¢>

(17)

4=0,h,,=0.4,=0

Here, r; denotes the shape function. For the purpose of the
present paper, we work with the Litim-type [129,130] and
exponential shape functions

Litim

ri(z) = a,(1 = 2)0(1 - 2), (18)

<

E tial _—
Xponentia 1

ri(z) = ag (19)
with the free parameters a; , and ag, see [125]. These free
parameters govern which momentum shell is integrated out
when lowering k — k — 6k. The regulator-induced effective
mass, i.e., the IR cutoff, increases monotonically with
increasing ap,, ag.

Extracting 7, in this setup leads to [18-24]

G 22
=— [ d¢’q® x |Reg, | =5P3; + ——L_ P2
Na 371/ qa-q { egh( TT+(ﬁh_3)z 0

2
+ RegAPZA (SPTT - 7(ﬂh ﬂh3) P())
2
+ Reg,PA <5P%T 7 bi h3) P2>] (20)

where we have summarized the regulator contributions in
the denominator coming from the d,R; insertion in (6) as

*\ | 4, (4
Regq)—(—Z—i—nq,)rk(p) —|—2k2r'<P), d):h,A, (21)

and where we have introduced the three propagator
structures as

1
PA — 5 5 N (22)
7+ ()

P ! (23)
TT - 9
¢+ k() - 2

Py = 1 (24)
Tk (8) vawe B
(/jh )

which correspond to the regularized propagator of the
gauge field, the transverse-traceless mode of metric fluc-
tuations, and the scalar mode of metric fluctuations,
respectively, see [100]. Here, the loop integration over
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g* is performed explicitly after specifying the regulator
function ry.

In the following, we will employ a perturbative approxi-
mation, where we neglect the anomalous dimensions
coming from the regulator insertion, i.e., we set 7g = 0
in (21). This approximation is valid as long as all
anomalous dimensions remain small enough, which holds
in our present analysis, as f, itself remains small (in
particular f, < 1), as we will see.

IV. REGULATOR DEPENDENCE OF THE
ABELIAN GAUGE-GRAVITY SYSTEM

We now study the regulator dependence of f, at the
asymptotically safe fixed point. The beta functions of the
gravity-gauge system including regulator and gauge
dependence up until now have only been published for
A =01139], and for minimal matter content. Here, we add
the scale dependence of the cosmological constant, as well
as the general dependence on gauge parameters and matter
content.® With these beta functions, we analyse the critical
exponents of the system evaluated at the Reuter fixed point,
and identify PMS-points. We start with a simple matter
system with Ny = Ng = N, = 1, and then study changes to
the results upon adding additional matter fields.

A. Fixed-point study for a minimal matter content

Structurally, in the current approximation f; and f3; are
independent of gy. Therefore, the eigendirections of the
stability matrix do not mix the gravitational couplings with
the gauge coupling. Accordingly, one eigendirection,
which corresponds to f, is fully aligned with gy, while
the other two eigendirections mix between the two gravi-
tational couplings. In particular, their critical exponents
form a complex pair, such that we are left with two
independent, regulator-dependent critical exponents, ®g;
and f g.7

In systems with various critical exponents, one generally
must decide to which of the critical exponents the PMS
should be applied. One could argue that the most relevant
(i.e., the largest positive) critical exponent is the one that
has most impact on the physics of the system and hence
minimizing its regulator dependence has the largest effect.
Following this argument, we would apply the PMS to O.
Conversely, in systems with multiple types of degrees of
freedom—such as the gauge-gravity system at hand—it is
less clear which ones dominate the physical behavior. In

®We thank the authors of [139] for providing us with the more
general form of the beta-function, and in particular G. de Brito for
the beta-functions at 4 # 0, which have not been published yet.

Strictly speaking, the critical exponents will only form a
complex pair for a; < 2, after which they split up. However, in the
regime beyond the split of the complex pair, there are no
additional PMS-points, at least for the gauge- and regulator
choices we explicitly checked.

particular, in our system, changes to f, can change
qualitative aspects of the fixed point, such as its overall
predictivity, and the availability of a solution to the triviality
problem, while changes in ®; will mostly have a quanti-
tative impact on the system.

In the following we remain agnostic on the choice of
PMS-points, and apply the PMS to both f, and O to
investigate their respective properties, such as gauge
dependence. We study the Litim-type shape function and
the exponential shape function separately.

1. Litim-type shape function

In the gauge-gravity system for the Litim-type shape
function, we find the Reuter fixed point for all values of a; .
In Fig. 2 we display the real part of the critical exponents of
the Newton coupling (®) and the gauge coupling (f,) as
functions of ay, and for 5, = 1. Both critical exponents
exhibit individual PMS-points, which albeit close, are not
at coincident values of a; . While for ® the PMS-point is a
global minimum of ©¢(ay ), the PMS-point for f, is a
global maximum.

As discussed above, in models with multiple PMS-
points, those points have to be compared by other means
than the PMS-criterion. As we gather from Fig. 2, while the
gravitational critical exponent appears stable along a rather
wide range of values for ap, f, is not.

To further investigate the gauge dependence of our
result, we plot the two critical exponents f, and ©g;
evaluated at the two PMS-points as functions of the gauge
parameter f3, in Fig. 3. We find, that f; evaluated at the
PMS-points for both f, itself and for ©; have additional
noncoincident PMS-points for the gauge dependence. The
local maxima of f, are located at 3, ~ —0.37, and
P =~ —0.06, respectively, see Fig. 3. This is close to the
local maximum of f,, when treating G and 4 as input
parameters, see Appendix A. Thus, apart from minimizing

| ar pms

4

-= Qg = 20 f,(G.,\)

0.5 1 1.5 2

ar,
FIG. 2. We show the gravitational critical exponent ®; and the
gauge critical exponent f(g*, A*) at the Reuter fixed point for the

Litim-type shape function as a function of the regulator parameter
ar, for ﬂ n = 1.
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3l O¢ Qar, pus(s,)

15 * fg @ aL,PMS(fg)

2.8} == O¢Qay pusen)

15 * fy, Qay, pums(oe)

26

24t

-10 -8 —6 —4 -2 0
Bn

FIG. 3. We show the critical exponents at the PMS-point for f,
(upper panel) and ®; (lower panel) with Litim-type shape
function.

the regulator dependence of either © or f, we can further
minimize the gauge dependence of f,. We also find that
there is no value f3;, for which the PMS-points with respect
to a;, for O or f, coincide. To see whether qualitative
changes are expected from applying the PMS on
one critical exponent over the other, we compare the
relative changes of © and f, at the PMS-points of their
respective counterparts, i.e., dlog®;/day (a;pus(©;))
with ©; ; € (0. f,), as functions of the gauge parameter
P, see Fig. 4. While we find a relative change of more than
300% for f, at the PMS of @, it stays below 80% for ©; at
the PMS relative to f,. Hence, one could argue that the
system at the PMS-point of f; is less regulator dependent
overall than at the PMS-point of ©g.

2. Exponential shape function

As for the Litim-type shape function, we find the Reuter
fixed point for all values of ag. In Fig. 5 we show the two
critical exponents O and f, for 5, = 1 as a function of the
regulator parameter ag. In contrast to the case of the Litim-
type shape function, f, does not feature a PMS-point, but
increases towards ag — oo. However, O still features a
local minimum, where the regulator dependence can be

3F /_
506 M
9(1 ar, pms(fg)) fg

[N}
T

ar, pms(©9c))

B

FIG. 4. 'We show the relative deviation of the critical exponents
Og and f,, when evaluated at the PMS-point of a;, of the
respective other critical exponent.

4_: == Og = 10% f,(G., \)
b
1
3
L]
o
1¢F
0 0.5 1 L5 2

ag

FIG.5. We show the gravitational critical exponent ®; and the
gauge critical exponent f,(G,,4,) for the exponential shape
function with minimal matter content at the Reuter fixed point as
a function of the regulator parameter ag at f§, = 1.

minimized. Hence, in contrast to the Litim-type shape
function, for the exponential shape function, the choice for
a PMS is unambiguous.

We show both critical exponents evaluated at the PMS-
value for ap in Fig. 6 as a function of the gauge-fixing
parameter f3;,. As for the Litim-type shape function, we find
a local maximum of f,, where both residual regulator and
gauge dependence of f, can be minimized. The gauge-
parameter that maximizes f, is f, = —0.56.

In a nutshell, despite some differences between both
shape-functions, we find a PMS-point for both for at least
one critical exponent. Further, we find that the gauge-
dependence of f, evaluated at this PMS-point for the
regulator parameter a; can also be minimized. In particular,
both the PMS-point for the regulator parameter a; and the
PMS-point for the gauge-parameter /3, are local maxima of
fg4- Notably, the gauge-parameter that maximizes f, is
comparable between both shape functions, and to the case
where G and A are treated as input parameters, see
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FIG. 6. We show the critical exponents for minimal matter
content at the PMS-point for ®; with exponential shape function
as a function of f;,.

Appendix A. In light of a possible gravitational
UV-completion of the Abelian gauge sector, this is impor-
tant, since f, sets an upper bound on the low-energy value
of the Abelian hypercharge that can be reached from a
UV-completion, see the discussion in Sec. II.

The result that f, increases by minimizing residual
gauge and regulator parameters provides tentative evidence
that ASQG could offer a viable UV completion of the
Abelian gauge sector. In the following, we will study how
this feature changes under the impact of additional matter
fields, to ultimately study the physically relevant case of
SM-matter content.

B. Adding matter degrees of freedom

For both shape functions, the Reuter fixed point persists
in the presence of SM matter (N; =22.5, Ny =4 and
N, = 12). However, in both cases it features a large
graviton-anomalous dimension (at least for a; = 1), indi-
cating that the current truncation might not be reliable. In
particular, studies lifting the background-field approxima-
tion find a gravitational fixed point with SM-matter content
and small anomalous dimensions, see [118] and [94] for
a discussion of differences. To obtain more conclusive
results, future studies should extend the truncation or go
beyond the background-field approximation.

While these are relevant points, here we focus on the
qualitative effect which matter has on the PMS-point and
the resulting critical exponent. For completeness, we report
the SM results in Appendix C, but caution, regarding their
robustness. As before, we examine both shape functions
individually, followed by a comparison of shared features.

1. Litim-type shape function

We begin by examining how the inclusion of bosons and
fermions alters the picture compared to minimal matter
content, i.e., Ny = N; = N, = 1. We focus on 3, = 1.

When adding scalars and gauge fields to the system, we
observe several changes: 1) the maximum of f, in Fig. 2 is
shifted towards larger a;, and the curve flattens such that
ariimpms(fy) increases, while the value f,(apiimpwms)
decreases; ii) the minimum of @ in Fig. 2 moves towards
larger a; and the whole function is lifted such that
arigmpms (@) and Og(apiimpms) increase together. In
short, both PMS-points shift to larger a;, but the local
extrema become more shallow; iii) the slope of @ for large
ay, 1s reduced; iv) the value of a;, where the gravitational
critical exponents cease to form a complex pair, increases.

Conversely, when adding fermions,8 we observe the
exact opposite effects, namely that 1) local extrema of both
O¢ and f, in Fig. 2 are shifted to smaller a; such that
apiimpms 18 reduced for both critical exponents; ii) both
curves in Fig. 2 are getting more pronounces such that local
extrema are steeper. Already for Ny = 2, both PMS-points
disappear, i.e., they are shifted beyond a; — 0.
Furthermore, the gravitational critical exponents are no
longer complex pairs for Ny > 3 for any value of a; .

2. Exponential shape function

We begin again with minimal matter content,
N, = N; = N, = 1, where the gravitational critical expo-
nents form a complex pair. The real part exhibits a
PMS-point, see Fig. 5. As before, we focus on f, = 1.

When increasing the number of scalars beyond the
minimal matter content, i) the steep decrease of the critical
exponent of the gauge coupling f, at small ag in Fig. 5 is
moved towards larger ag while the overall value of f,
decreases, i.e., the curve f,(ag) shifts towards large ag and
downwards; ii) the pole of @4 at small g;, and the following
minimum in Fig. 5 move to larger ag, and the overall curve
becomes flatter. Finally, at N; = 2, the local extremum
disappears.

Gauge fields have a qualitatively similar effect to scalars,
but the shift of both O and f, is larger than for scalars.

In contrast, when increasing the number of fermions,
i) the slope of f, at small ag decreases, and f , itself slightly
increases, while for large ag, f, remains unchanged; ii) the
steep section of ®; moves to smaller ag, and the curve
becomes more pronounced, deepening the local minimum.
For large ag, ®; remains unchanged. Between N; = 1.1
and Ny = 1.2 the complex pair splits up; iii) The critical
exponent mostly aligned with A completely flattens and
moves towards ©®; = 4; iv) the critical exponent mostly
aligned with G moves to lower values. Already at Ny = 1.2,
there is no local extremum in critical exponents present.

In short, for both shape functions with SM matter
content, we do not find any PMS-point, see Appendix C
for details. Nevertheless, we were able to investigate the

8Specifically we add fermions at Ny = 1, and N, = 4, where
the Reuter fixed point exists for several fermions.
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qualitative effect of different matter-types on the existence
and properties of PMS-points for both shape functions. To
study the full SM-matter content in a robust way likely
requires more converged gravitational beta-functions,
potentially based on fluctuation computations, see [92].

V. CONCLUSION

The triviality problem challenges the consistency of
renormalizable quantum field theories like the SM when-
ever they are neither asymptotically free nor asymptotically
safe. Here, we investigate whether ASQG, when coupled to
matter, may also induce a UV completion in the matter
sector.

There is growing qualitative evidence from FRG com-
putations that ASQG at the same time provides a UV fixed
point for matter. We have investigated systematic uncer-
tainties of the approximation scheme underlying this
evidence. In the FRG, systematic uncertainties are encoded
in unphysical dependences of universal quantities like
critical exponents on the artificial regulator and the gravi-
tational gauge fixing. We have studied the regulator and the
gauge dependence, by introducing a scaling parameter in
the regulator and keeping one gravitational gauge param-
eter-free. Furthermore, we have fixed the shape function of
the regulator to be either of Litim-type or exponential.

The dependence of universal quantities on unphysical
parameters is minimized at extrema relative to these
parameters, i.e., points of minimal sensitivity. We have
searched for such PMS-points for the Einstein-Hilbert term
coupled to an Abelian gauge field.

From the perspective of the approximated RG-flow, there
are two different ways of studying the influence of gravity
on matter: Either the gravitational couplings are evaluated
at their non-Gaussian fixed point in the UV. Alternatively,
one can assume such a fixed point for gravity to exist, and
leave the fixed-point values of the gravitational couplings
as free parameters, and hence parametrize a possible
UV-completion in the matter sector. We have focused on
the first method here, and refer the reader to Appendix A
for a discussion of the second method.

We find the following key results:

(i) For minimal matter content (N; = Ny =N, = 1),
and at the gravitational fixed point, for both the
Litim-type and the exponential shape function, we
find a point of minimal sensitivity of f, in both f3,
and a; (ag). This point is a global maximum and in
quantitative agreement between the two shape
functions.

(i) Generically, adding bosons to the system tends to
reduce the overall regulator dependence and shifts
features such as PMS-points to larger values of aj,
and ag. Conversely, fermions enhance the regulator
dependence and shift such features to smaller values
of the regulator parameters. The large number of
fermions in the SM pushes the PMS-points to values

of a;,ag <0, removing them from the physical

regime.
In short, our results provide further evidence in favor of
ASQG resolving the triviality problem. Yet, our analysis
also indicates that systematic uncertainties are still large
especially when adding many matter fields. Besides addi-
tional systematic uncertainties, the precision of the trunca-
tion we have studied is not sufficient to conclude that
ASQG definitely resolves the triviality problem. Larger
truncations and the connection to lattice studies will
hopefully allow to resolve these issues. This is the subject
of future work.
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APPENDIX A: GRAVITATIONAL COUPLINGS AS
REGULATOR-INDEPENDENT INPUT
PARAMETERS

In this appendix, we treat the gravitational couplings as
free parameters, independent of regulator and gauge. This
contrasts with Sec. IV, where we evaluate them at their
respective fixed-point values. On the one hand, those fixed-
point values are not physical and hence regulator and gauge
dependent themselves, which affects the overall regulator
dependence of the critical exponents. On the other hand, the
precise fixed-point values of the gravitational couplings are
truncation dependent and will change in larger truncations.
Hence, the results presented in this appendix are comple-
mentary to our findings presented in Sec. IV, and can be
understood to parametrize systematic uncertainties related
to extensions of the truncation in the gravitational sector.
Both parametrized studies as well as the evaluation on
gravitational fixed points have their respective merits.
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As a first observation we note that f, o< G holds in our

approximation, such that we rewrite

fg: Gfg(ﬂ)’ (Al)

where fg only depends on the cosmological constant, and
possibly on unphysical parameters.

When G is treated as an input parameter, all regulator and
gauge dependence of f, is contained in j‘g. From (20), we
can see that for 3, = 0, only the transverse-traceless mode
contributes to 7,. Furthermore, for f, = 1 both gravita-
tional modes feature the same pole structure, see (23) and
(24). Since the scalar and transverse-traceless mode have
the same relative prefactor in all three contributions in (20),
this implies that 1, (8, = 0) = L1, (8, = 1) for any regu-
lator, if G and A are kept fixed. Therefore, when inves-
tigating the regulator dependence for different gauge
choices, we do not discuss 8, = 1 and f, = O separately.

We begin with the case 4 = 0, as it allows for an analytic
integration over the loop momentum in (20) for both the
Litim-type and exponential shape functions (18) and (19),
with a general gauge parameter 3,. We then turn to the case
A # 0. In this case, we treat the Limit-type and exponential
shape functions separately. For each shape function, we
apply the PMS to their respective parameters (i.e., a, ag).

1. The case A=0
For 4 = 0, (20) implies that ]‘g simplifies to

o IS =108, [ [z—r(2)][zr(z) = ri(2)]
Lo =23 A“‘“ c+n@)?

(A2)

Thus, the gauge dependence and the regulator dependence
factorize. Independently of the regulator, the gauge depend-
ence is minimized for f;, = 0, where the gauge-dependent
prefactor is maximized. This PMS-point is a global
maximum of fg, which decreases by 40% towards
p — —oo, and towards zero at 3, ~ 1.84 (cf. Fig. 7).

For the Litim-type and exponential shape functions [see
(18) and (19)], we obtain

= _(5+(Bn=10)py) aL(2—=2a, + (1 +a )Loglar])
o (By=3)z (aL—1)° ’
(A3)

> _ (154 (8~ 10)8)) ap(ag—1~Log|ag])
g.Exp (ﬁh_3)2” ((lE—l)z ’

respectively. These expressions have previously been
studied for ¢;, — 0 (and ag — 0) in [139].

From Egs. (A3) and (A4), we can already read off some
key similarities and differences between the two shape

(A4)

— 0.3} = Litim == Exp. IR kbbb
=
= ;
= ;
,
= 0.2} ,
e ,
I !
= ’
= ,
s 0.1¢ ,

a;

= 4

1.5¢ A

N(Br)

0.5t

T L

0 L L L L L L L L L L
—100—90 —80 —70 —60 —50 —40 —30 —20 —10 0
/Bh

FIG. 7. We define N(8,) = (15+ (B, — 10)8,)/ (B, — 3)%.
Upper panel: We show the a;-dependent part of fg for both
Litim-type and exponential shape functions at A = 0. We see that
for the Litim-type shape function, fg always admits a local
maximum at a; = 1, while for the exponential shape function f‘g
is maximized for ag — oo. Lower panel: We show the f-

dependent part of fg, which is maximized for g, = 0.

functions: For the Litim-type function, fg has the limits

fori = 0, forag =0, (AS5)

Sforie = 0, for ap — oo.

(A6)
In contrast, for the exponential function fg has the limits

fopxp = 0, for ag — 0, (A7)

15+ (B, — 10)4,
By =37

j‘g,Exp for ag — oo. (A8)

Combining this with fg # 0 for a; > 0 automatically
implies that there is at least one PMS-point at finite a; for
the Litim-type shape function, while this is not guaranteed
for the exponential shape function. In fact, we find that
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f gi

% -0, fora, -1, (A9)

0f g.Ex

g _, 0, for ag — oo, (A10)
aaE

which are the only extrema, as can be checked explicitly,
see Fig. 7. As we will see below, the PMS-point for aj,
varies with 4 and f3;,, while the location of the maximum for
ag remains unchanged. While the limit ag — co minimizes
the regulator dependence of fg’Exp., we do not consider this
limit as a proper PMS-point, since the regulator parameters
are constrained to a; € (0, 00), to provide a well-defined
FRG regulator.

By inspecting the f),-independent part of (A3)
and (A4), we see that they do not change sign as a function
of ay, (ag). Hence, at fixed f3;,, the sign of fg,ut (fg’Exp) is
independent of the choices of shape function studied here.
Thus, in the truncation in which 4 = 0 and for the shape
functions we consider, the qualitative properties of the
gravitationally induced UV-completion are solely depen-
dent on the gauge. In that vein, ]‘g changes sign when

(15 + (B, — 10)B,) = 0. Hence, for #, < 5 — /10~ 1.84,
fg is positive, allowing for a UV completion, for any ay,
(ag), while it is negative otherwise. Note that f, < 3 is
additionally required, since the gauge-fixing condition is
singular at #;,, = 3. Hence, it is unclear if the sign-change at
P~ 1.84 is an artefact of the singularity, or stable.

In short, while the value f, = 0 is a PMS-point inde-
pendent of the shape function, whether the regulator
dependence can be minimized is shape-function dependent.
Yet, our results indicate that, at least for A =0, the
availability of a gravitationally induced UV-completion
of the gauge coupling is (somewhat) gauge dependent, but
does not vary between the shape functions we study in this
paper. As we will see in the following, this picture is
modified for nonvanishing A, due to more complicated
gauge and regulator dependences.

2. The case A # 0

We now generalize the results of the previous subsection
to finite values of 1. While the corresponding generalization
of (A2) can be given in closed form, we do not display it
here. By virtue of this closed-form expression, it can be
shown analytically that fg still features a PMS point for the
gauge dependence, independent of the choice of regulator.
As for the case 1 = 0, the gauge dependence is minimized
at 5, = 0. Note that even when evaluated at the (regulator-
dependent) gravitational fixed points, f, features a
PMS-point at 8, ~ 0 (cf. Fig. 3). Thus, this feature appears
robust.

10F,

ar,

-2 -1.5 -1 —0.5 0

A

FIG. 8.  'We show the critical exponent ]‘g of the Gaussian fixed
point gy, = 0 for the Litim-type shape function as a function of
the cosmological constant A and the regulator parameter a; for
P, = 0. The PMS of gy as a function of 4 is displayed as a white,
dashed line. In all regions that are shown as white, the gauge
coupling is irrelevant at gy , = 0.

Since the regulator dependence is more subtle and shape-
function dependent, we treat the Litim-type shape function
and exponential shape function separately in the following.

a. Litim-type shape function

For the Litim-type shape function (18), the integration
over the loop momentum ¢ in (20) can be performed
analytically for general regulator parameter a; € (0, o).

In Fig. 8 we show the rescaled critical exponent fg of the
Gaussian fixed point gy, = 0 as a function of the cosmo-
logical constant A and the regulator parameter a; for
pr = 0. We see that fg is maximal in a region around

A= 0and a; = 1. We furthermore observe that fg decreases
for large a;, when keeping A fixed. Besides, we find a
PMS-point at arbitrary but fixed 4, which moves towards
larger a; when decreasing 4. In the regions marked white in
Fig. 8, the gauge coupling remains irrelevant at the
Gaussian fixed point in our approximation.9 Similarly to
the previously studied cases at a; = 1, we see that this
happens for positive 4. However, for a;, > 1, this region
moves to larger 4, i.e., closer to the pole at A = 1/2.
Besides the value of ]’g in the 4 — gy plane, in Fig. 8§ we
also show the PMS value of ¢; , and encode the value of the

Note that [23] have shown for a; = 1 that this region can be
removed when the momentum-dependence of f, is taken into
account.
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10

ag

FIG. 9. We show the critical exponent fg of the Gaussian fixed
point gy , = 0 for the exponential shape function as a function of
the cosmological constant A and the regulator parameter ag for
P =0. In all regions that are shown as white, the RG flow
crosses a well known pole beyond which it cannot be continued.

critical exponent fg at this point in the color. First, we
observe that for each value of the cosmological constant,
there is a PMS-point. Especially towards negative values of
the cosmological constant, the PMS-point a; pys differs
significantly from a; = 1, at which previous computations
were performed. Furthermore, we observe that fg remains
positive all the way to A = 1/2. This is achieved by an
increasing a; pys for A > 0. Therefore, we find that, if
evaluated at a regulator that minimizes the residual regu-
lator dependence, a UV-completion of the Abelian gauge
sector can be achieved for any value of the cosmological
constant. For fixed A, j‘g determines the lower bound on the
Newton coupling G, for which the UV completion is
observationally viable.

The gauge dependence of the critical exponent ]”g at the
PMS-point for a;, is mild, with a deviation at percent level
between the choices f, =0 and 3, = —1, and a ~10%
difference between the choices 3, = 0 and f, = 1—cor-
responding to f,(B, = 0) = f,(#, = 1) as motivated in
the introduction of this appendix.

b. Exponential shape function

In contrast to the Litim-type shape function, the expo-
nential shape function (19) does not allow to integrate over
the loop momentum ¢ in (20) analytically. Instead, we
revert to numerical techniques.

Focussing on the gauge f, = 0, we display the rescaled
critical exponent fg of the Gaussian fixed point gy, = 0 as
a function of the cosmological constant 4 and the regulator
parameter ag in Fig. 9. In contrast to the Litim-type shape
function, fg does not exhibit extrema for finite ag
irrespective of the value of A. Thus, there is no PMS-point.

Similarly to the Litim-type shape function, the white
region, indicating the UV-incomplete sector tends to larger
values of A for increasing ap. Indeed, the pole itself is
shifted beyond A = 1/2 for ag > 1. Since we do not find
any PMS point for ag, we do not further investigate gauge
dependence of ]‘g in this setting.

APPENDIX B: PMS AT G, FOR A=0

In this appendix, we specify to ASQG as the UV-
completion of the theory, where the fixed-point value of
G is obtained from an FRG equation, and hence regulator
dependent. However, in contrast to Sec. [VA, we restrict
our analysis to 4 = 0. This marks a step between our study
in Appendix A, where no gravitational coupling was
evaluated at the fixed point, and Sec. IVA, where both
gravitational couplings are evaluated at their fixed points.
With this intermediate step we can retain some analytical
features discussed in Appendix A, while moving towards
the physically more interesting case discussed in the main
part of the paper.

As before, we use the beta function, i, from [139]. The
system at hand now features two couplings, G and gy, and
hence there are two critical exponents ® and f, which in
this truncation depend on the regulator parameters.
However, due to the specific setup used in [139] to compute
Pc, in particular, the use of the background-field approxi-
mation, ®g = 2 is fixed. Therefore, f, is the only critical
exponent with nontrivial regulator and gauge dependence,
to which we will apply the PMS.

In Fig. 10 we show the critical exponent f, both for the
Litim-type (upper panel) and exponential shape function
(lower panel) for different choices of the gauge parameter
pp for Ny = Ny = N, = 1, see also [139]. For given 3, f,
agrees between both shape functions in the limit a; — 0,
see [139], and f, — O for a; — oo for any gauge. We see
that the (shape-function independent) limit a; — 0 is a
maximum for f, (and a minimum for prz1.84, as dis-
cussed above) and that there are no local extrema. In fact,
one can show that f, () is monotonically decreasing for
Br < 2, indicating that there is no PMS-point for f,, when
the regulator dependence of G, is also considered.
Accordingly, in the gauge-gravity system with A =10
fixed, only @ is (trivially) regulator independent, while
fy remains regulator dependent, for any choice
of a; (S (O, OO)
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FIG. 10.  We show the critical exponent f, of the Abelian gauge
coupling evaluated at the asymptotically safe fixed point G, for
the Litim-type (upper panel) and exponential shape functions
(lower panel) and for a choice of gauge parameters f,.

APPENDIX C: FIXED-POINT STUDY FOR
STANDARD-MODEL MATTER CONTENT

In this appendix, we extrapolate the analysis of Sec. [V B
to the full matter content of the SM (N; = 22.5, N, = 4 and
N, = 12). We examine both shape functions individually.
However, as indicated in Sec. IV B, we caution regarding
the robustness of these results due to the large graviton
anomalous dimension at the Reuter fixed point in our
truncation and the background-field approximation.

1. Litim-type shape function

Due to the large number of fermions in the SM, the
fermionic effect discussed in Sec. IV B dominates over the
bosonic one. In Fig. 11 we show all three critical exponents
at the SM matter content, as a function of a;, and for
pn = 1. We see that neither f, nor O feature any local
extrema, and behave qualitatively similar. However, the
opposite effect of bosonic and fermionic matter on ®; at
large a;, balances, to give rise to a new local maximum. For
pr =11t is located at q;, ~ 4.5.

-- (._))\

== O = 30 £,(Gi \)

ay,

FIG. 11. We show all critical exponents for the Litim-type
shape function with SM matter content at 3, = 1.

Next, we track the behavior of the PMS-point under
changes in f3;,. This reveals that only for some values of 3,
the PMS-point exists, while for others the fixed point
diverges or moves into the complex plane before any local
extremum is reached. In Fig. 12 we show all three critical
exponents at the PMS-point of ®; in a; . As we can see, O,
varies only marginally with f3,. Furthermore, both f, and
O feature a local maximum as a function of 3, which is
located at 3, ~ 0.66 and S, ~ 1, respectively. Hence, also
for the SM matter content, we can significantly reduce the
regulator and gauge dependence of the system by choosing
preferred parameters. However, in contrast to the minimal
matter content, we do not have the choice to minimize the
regulator dependence of f .

2. Exponential shape function

As for the Litim-type shape function, the effect of
fermions dominates due to their large number. In Fig. 13

. == 0,0 ar, pMsS — 60 * fg @ ar, PMS

4 - Q*GG@GL,PMS

0 02 04 06 08 1 12
Bn

FIG. 12. We show all critical exponents for the Litim-type
shape function with SM matter content at the PMS-point for ®, as
a function of f,,.
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we show the resulting critical exponents; ®; ~ 4 is almost
constant for any ag. Conversely, ®; < 2 for any ag, and
monotonically decreases with ag. The change of slope of f,
caused by fermions also dominates, such that f, is
monotonically increasing for the SM matter content.
Ultimately, we do not find any local extremum of any of
the critical exponents of the system.

Furthermore, ®; changes sign for ag ~ 50, beyond
which and 1 is an irrelevant direction. If taken at face
value, this would imply that physical properties depend
on the choice of regulator. We do not interpret this
as a genuine physical effect, but rather as a further
sign that the truncation is unreliable at SM matter
content—consistent with the large anomalous dimensions
observed.

4b
3t
2t - @)\ - @G i 100*fg(G*,/\*)
d
1 - ~ - - . -
0 10 20 30 40
aE
FIG. 13. We show all critical exponents for the exponential

shape function with SM matter content at 3, = 1.
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