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We investigate the long-time behavior of solutions to nonconservative nonlinear 
Schrödinger equations (NLS) of the form

i∂tu = −∂2
xu− up, p ∈ N, p ≥ 2.

We focus on initial data that are neither localized nor periodic. Our approach is 
based on the work [13] by Jaquette, Lessard and Takayasu, where they used a 
perturbative analysis around the explicit spatially homogeneous solution of the 
associated ODE. Using their methods, we establish global existence results and 
asymptotic decay of solutions in a general Banach algebra setting. Applications 
include small data global well-posedness results for almost periodic initial data, 
which seem to be the first in a nonconservative NLS framework. Applications to 
(almost) periodic initial data with localized perturbations are also presented.

© 2025 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The nonlinear Schrödinger equation (NLS) is a fundamental model in mathematical physics that describes 
the evolution of complex wave functions under the influence of dispersion and nonlinearity. Traditionally 
studied in conservative settings, the NLS has seen wide applications ranging from optics and quantum 
mechanics to fluid dynamics (see e.g. [1], [10], [20], [24], [23]). In this work, we consider a nonconservative 
variant of the NLS, given by

{︄
i∂tu = −∂2

xu− up, t ≥ 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1.1)
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where p ≥ 2 is an integer. The question of global existence for such nonlinear Schrödinger equations has been 
studied extensively in the past decades. Classical approaches are based on energy estimates and dispersive 
properties of the Schrödinger semigroup. Pioneering contributions were given by Strauss [22], Klainerman 
and Ponce [15], and Shatah [21], where global existence was proven for quadratic nonlinearities in dimensions 
d ≥ 4, and in dimension d = 3 for nonlinearities of order strictly greater than two. In [8] and [9], Germain, 
Masmoudi and Shatah considered Nonlinear Schrödinger Equations with quadratic nonlinearities of the 
form αu2 + βū2 in dimensions d = 2, 3. They proved global well-posedness for small and localized initial 
data using the concept of space-time resonances. For further results in this setting we refer to [12], [11], and 
[14]. 
The main focus of this paper is to investigate the well-posedness and long-time behavior of solutions to the 
one-dimensional nonconservative NLS (1.1) in function spaces beyond the usual setting of L2-based Sobolev 
spaces. In particular, we are interested in solutions of (1.1) with initial data that are neither decaying 
nor periodic. This includes almost periodic functions and localized perturbations of periodic and almost 
periodic functions. To give some motivation for the topic of localized perturbations, we refer the reader to 
[17], [2], [3].

Our approach is strongly based on the work [13] of Jaquette, Lessard and Takayasu. They studied the 
global dynamics of the NLS on the d-dimensional torus with more general nonconservative nonlinearities. 
Their approach allows us to extend the global existence theory to a variety of initial data classes that are 
neither periodic nor localized. We first give a version of [13, Theorem 2.3] in a more abstract setting, see 
Theorem 2.6 below.

Then we apply this abstract result to function classes of non-decaying initial data. These results are the 
main contribution of the present paper. In particular, we consider almost periodic functions as well as their 
localized perturbations. To the best of our knowledge, Theorem 3.7 below is the first global existence result 
for almost periodic initial data in a nonconservative setting. Even in the conservative case, there are only a 
few results so far. In [6], Boutet de Monvel and Egorova considered the defocusing (conservative) NLS

{︄
i∂tu = −∂2

xu + |u|2ku, t ≥ 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.
(1.2)

They showed global well-posedness of (1.2) in the cubic case k = 1 with limit periodic initial data using 
the complete integrability of the cubic NLS. Twenty years later, Oh showed global well-posedness of (1.2)
for arbitrary k ∈ N with limit periodic initial data [18]. Also in the context of other complete integrable 
PDEs like the KdV equation there are just few results on global existence with almost periodic initial data, 
e.g. [7], [5].

Our framework for the abstract version of [13, Theorem 2.3] in Section 2 below concentrates on the 
essential ingredients of the proof, namely the boundedness properties of the Schrödinger semigroup in 
function spaces that are assumed to be Banach algebras for pointwise multiplication. We adapt from [13] 
the perturbative strategy around the explicit spatially homogeneous solution of the associated x-independent 
ODE

z′ = izp, t ≥ 0. (1.3)

In other words, we consider solutions of (1.1) that remain close to the solution z of (1.3). For the correspond
ing initial value we then obtain, as in [13], a sort of small data global existence result and derive smallness 
conditions under which the full PDE remains globally well-posed and its solutions decay asymptotically to 
zero.

The paper is organized as follows: In Section 2 we present our abstract version of the result in [13] on 
global well-posedness of (1.1), see Theorem 2.6 and Corollary 2.7. In Section 3 we give a short introduction 
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to almost periodic functions and apply the general result from Section 2 in this context, see Theorem 3.7
and Theorem 3.12. Finally, in Section 4, we give some more applications in the setting of periodic initial 
data with localized perturbation, see Theorem 4.2.

Notation: A ≲ϵ1,...,ϵn B denotes the inequality A ≤ C(ϵ1, ..., ϵn)B for a constant C depending on ϵ1, ..., ϵn.

2. General theory

In this section, we follow the approach in [13], but in a more abstract setting. In the following, let 
(𝒜, ∥ · ∥𝒜) be a Banach space of complex-valued functions f : R → C. We assume that 𝒜 is a Banach 
algebra for pointwise multiplication and that 𝒜 contains the constant functions. Furthermore, we assume 
that the Schrödinger semigroup S(t) = eit∂

2
x , t ≥ 0, is strongly continuous and bounded on 𝒜. We consider 

the Nonlinear Schrödinger Equation (NLS)

{︄
i∂tu = −∂2

xu− up, t ≥ 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

for an integer p ≥ 2. By our assumptions there exists an M ≥ 1 such that

∥S(t)f∥𝒜 ≤ M∥f∥𝒜

for all f ∈ 𝒜 and t ≥ 0. Furthermore we have a constant C𝒜 > 0 with

∥fg∥𝒜 ≤ C𝒜∥f∥𝒜∥g∥𝒜

for all f, g ∈ 𝒜. 
With these estimates at hand and a standard fixed point argument, one can easily prove local well-posedness 
of (1.1) with initial data in 𝒜.

Theorem 2.1. Let p ≥ 2 and u0 ∈ 𝒜. Then there exists a positive time T > 0 such that (1.1) has a unique 
mild solution u ∈ C([0, T ],𝒜) with initial data u0:

u(t) = S(t)u0 + i

t ∫︂
0 

S(t− s)u(s)pds, t ∈ [0, T ]. (2.1)

The guaranteed time of existence T depends only on the norm ∥u0∥𝒜. More precisely,

T ≳M,C𝒜,p ∥u0∥1−p
𝒜 .

By standard arguments one gets the following blow-up alternative. 
Let T ∗ = T ∗(u0) > 0 be the maximal time of existence for a mild solution u ∈ C([0, T ∗),𝒜) of (1.1) with 
initial data u0 ∈ 𝒜. Then either T ∗ < ∞ and

lim sup
t↗T∗

∥u(t)∥𝒜 = ∞,

or T ∗ = ∞. 
To show global well-posedness of (1.1) we first consider the spatially homogeneous problem.
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Lemma 2.2. Let z0 ∈ C and p ∈ N with p ≥ 2. We consider the ODE
{︄
z′ = izp, t ≥ 0,
z(0) = z0.

(2.2)

If sin ((p− 1) arg(z0)) > −1, then (2.2) has a unique global solution z : [0,∞) → C, given by

z(t) = z0

(1 − i(p− 1)zp−1
0 t)1/(p−1)

, t ≥ 0. (2.3)

In particular, there is a constant C1 = C1(arg(z0), p) > 0 with

|z(t)| ≤ C1|z0| (2.4)

for all t ≥ 0.

Proof. We write z0 in polar coordinates z0 = r0e
iθ0 . Let sin((p − 1)θ0) > −1. Then one can easily check 

that the function z given in (2.3) solves (2.2) on [0,∞). We have

|z(t)|2(p−1) = |z0|2(p−1)

|1 − i(p− 1)zp−1
0 t|2

= r
2(p−1)
0

1 + 2(p− 1) sin((p− 1)θ0)rp−1
0 t + (p− 1)2r2(p−1)

0 t2
(2.5)

for t ≥ 0. To estimate the denominator in (2.5) we consider two cases. 
1) If sin((p− 1)θ0) ≥ 0, then we have

1 + 2(p− 1) sin((p− 1)θ0)rp−1
0 t + (p− 1)2r2(p−1)

0 t2 ≥ 1

for all t ≥ 0. 
2) If sin((p− 1)θ0) ≤ 0, we can compute the global minimum of the denominator and get

1 + 2(p− 1) sin((p− 1)θ0)rp−1
0 t + (p− 1)2r2(p−1)

0 t2 ≥ 1 − sin2((p− 1)θ0) > 0

for all t ≥ 0 due to the assumptions on z0. So in both cases, the denominator in (2.5) is bounded from below 
by a positive constant depending only on p and θ0. This yields the claim. □
Remark 2.3. 

i) The solution z(t) behaves like t−
1 

p−1 as t → ∞.
ii) In the case sin((p− 1) arg(z0)) ≥ 0, the above calculation shows C1 = 1.
iii) For sin((p − 1) arg(z0)) = −1 the function z has a singularity at t =

(︂
(p− 1)rp−1

0

)︂−1
. Hence, there 

cannot exist a global solution to (2.2) in this case.
iv) The function z also solves (1.3) for negative times. To prevent blow-up in this case, the condition on z0

has to be changed to sin((p− 1) arg(z0)) < 1.
v) We can also consider (2.2) with changed sign in front of the nonlinearity. Define the function z̃ : [0,∞) →

C, z̃(t) = z(−t). If sin((p− 1) arg(z0)) < 1, then z̃ solves the ODE
{︄
z̃′ = −iz̃p, t ≥ 0,
z̃(0) = z0.
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Now we are interested in solutions of (1.1) that are close to the function z provided by Lemma 2.2.

Proposition 2.4. Let z : [0,∞) → C be given by (2.3) with z0 ∈ C \ {0} and u ∈ C([0, T ],𝒜) be a mild 
solution of (1.1) with initial data u0 ∈ 𝒜. We define ũ ∈ C([0, T ],𝒜) by

u(t) = z(t) + z(t)pũ(t).

Then ũ satisfies the modified Duhamel formula

ũ(t) = S(t)ũ(0) + i

t ∫︂
0 

S(t− s)
p ∑︂

m=2

(︃
p 
m

)︃
z(s)m(p−1)ũ(s)mds (2.6)

for all t ∈ [0, T ].

Proof. Due to z0 ̸= 0 and the algebra property of 𝒜 we have that ũ and the right-hand side of (2.6) are 
well defined. To prove the claim, we set

v(t) = S(−t)u(t), ṽ(t) = S(−t)ũ(t) (2.7)

for all t ∈ [0, T ]. One can easily check the identity

v(t) = z(t) + z(t)pṽ(t) (2.8)

for all t ∈ [0, T ]. Applying S(−t) on both sides of the Duhamel formula (2.1) and respecting (2.7) yields us

v(t) = u0 + i

t ∫︂
0 

S(−s)u(s)pds.

So we see that v ∈ C1([0, T ],𝒜) with

∂tv(t) = iS(−t)up(t) = iS(−t) (z(t) + z(t)pũ(t))p (2.9)

= iz(t)p + ipz(t)2p−1S(−t)ũ(t) + iz(t)pS(−t)
p ∑︂

m=2

(︃
p 
m

)︃
z(t)m(p−1)ũ(s)m

for all t ∈ [0, T ]. Here, we used the definition of ũ. On the other hand, equation (2.8) yields us

∂tv(t) = z′(t) + pz(t)p−1z′(t)ṽ(t) + z(t)p∂tṽ(t)

= iz(t)p + ipz(t)2p−1ṽ(t) + z(t)p∂tṽ(t) (2.10)

for all t ∈ [0, T ] where we used that z solves (2.2). If we now compare equations (2.9) and (2.10), we obtain 
that ṽ solves the equation

∂tṽ(t) = iS(−t)
p ∑︂

m=2

(︃
p 
m

)︃
z(t)m(p−1)ũ(s)m

for all t ∈ [0, T ]. By writing this in a mild formulation, we get
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ṽ(t) = ṽ(0) + i

t ∫︂
0 

S(−s)
p ∑︂

m=2

(︃
p 
m

)︃
z(s)m(p−1)ũ(s)mds.

Applying S(t) on both sides yields the claim. □
To formulate our next theorem, we need some definitions.

Definition 2.5. Let r, ρ0, ρ1 > 0 and p ∈ N with p ≥ 2. We define the sets

B(ρ0) := {z ∈ C \ {0} : sin((p− 1) arg(z)) > −1, |z| ≤ ρ0} ,
B(ρ0, ρ1) := {z0 + ϕ ∈ 𝒜 : z0 ∈ B(ρ0), ∥ϕ∥𝒜 ≤ ρ1|z0|p} .

Furthermore, we define the positive constants

P (r, ρ0) :=
p ∑︂

m=2

(︃
p 
m

)︃(︂
rρp−1

0

)︂m−1

and

C2(θ, p) :=
∞ ∫︂
0 

1 
1 + 2 sin((p− 1)θ)s + s2 ds (2.11)

for all θ ∈ R with sin((p− 1)θ) > −1.

As a concrete example, we have C2 = π
2 if sin((p− 1)θ) = 0 and C2 ≤ π

2 if sin((p− 1)θ) ≥ 0. Note that 
the integral in (2.11) diverges for sin((p− 1)θ) close to −1. 
The following theorem extends Theorem 2.3 in [13] to arbitrary Banach algebras and forms the basis for 
our main result.

Theorem 2.6. Let ρ0, ρ1 > 0 and p ∈ N with p ≥ 2. Furthermore, let u0 = z0 + ϕ ∈ B(ρ0, ρ1) and 
u ∈ C([0, T ∗),𝒜) be a maximal mild solution of (1.1) with initial data u0. Assume that there exists some 
r > 0 such that

Mρ1 exp
{︃
MCp−1

𝒜 C
(p−2)(p−1)
1 C2

P (r, ρ0)
p− 1 

}︃
< r, (2.12)

where C1 = C1(arg(z0), p) and C2 = C2(arg(z0), p) are given by Lemma 2.2 and (2.11). Then we have 
T ∗ = ∞ and limt→∞ ∥u(t)∥𝒜 = 0. More specifically, let z : [0,∞) → C be given by (2.3). Then the estimate

∥u(t) − z(t)∥𝒜 ≤ r|z(t)|p

holds for all t ≥ 0.

Proof. For the proof, we write z0 = r0e
iθ0 with sin((p− 1)θ0) > −1 and r0 ≤ ρ0. We consider the solution 

ũ of the modified Duhamel formula (2.6). In this context, we have ϕ = zp0 ũ(0). Using the boundedness of 
the semigroup and the algebra property of 𝒜 we get

∥ũ(t)∥𝒜 ≤ M∥ũ(0)∥𝒜 + MCp−1
𝒜

t ∫︂
0 

p ∑︂
m=2

(︃
p 
m

)︃
|z(s)|m(p−1)∥ũ(s)∥m𝒜ds.
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Now we choose an r > 0 according to the assumption and define

T := sup{t ≥ 0 : ∥ũ(t)∥𝒜 ≤ r}.

By the choice of r and ϕ we have

∥ũ(0)∥𝒜 = |z0|−p∥ϕ∥𝒜 ≤ ρ1 < r,

where the last inequality follows from (2.12). This guaranties T > 0. Combining this with estimate (2.4)
and r0 ≤ ρ0 we obtain

∥ũ(t)∥𝒜 ≤ Mρ1 + MCp−1
𝒜

t ∫︂
0 

p ∑︂
m=2

(︃
p 
m

)︃
|z(s)|(m−2)(p−1)|z(s)|2(p−1)∥ũ(s)∥m𝒜ds

≤ Mρ1 + MCp−1
𝒜

t ∫︂
0 

p ∑︂
m=2

(︃
p 
m

)︃
(C1ρ0)(m−2)(p−1)|z(s)|2(p−1)rm−1∥ũ(s)∥𝒜ds

≤ Mρ1 + MCp−1
𝒜 C

(p−2)(p−1)
1 ρ

−(p−1)
0 P (r, ρ0)

t ∫︂
0 

|z(s)|2(p−1)∥ũ(s)∥𝒜ds

for all t ∈ [0, T ], where we used the definition of P (r, ρ0). At this point, we want to apply Grönwall’s 
inequality. With the calculations from the proof of Lemma 2.2 and r0 ≤ ρ0 we compute

ρ
−(p−1)
0 P (r, ρ0)

t ∫︂
0 

|z(s)|2(p−1)ds

≤ρ
−(p−1)
0 P (r, ρ0)

∞ ∫︂
0 

r
2(p−1)
0

1 + 2(p− 1) sin((p− 1)θ0)rp−1
0 s + (p− 1)2r2(p−1)

0 s2
ds

=ρ
−(p−1)
0

P (r, ρ0)
p− 1 

∞ ∫︂
0 

rp−1
0

1 + 2 sin((p− 1)θ0)s + s2 ds

≤P (r, ρ0)
p− 1 

C2.

Thus we obtain

∥ũ(t)∥𝒜 ≤ Mρ1 exp
{︃
MCp−1

𝒜 C
(p−2)(p−1)
1 C2

P (r, ρ0)
p− 1 

}︃

for all t ∈ [0, T ]. So, by assumption (2.12) we have ∥ũ(t)∥𝒜 < r for all t ∈ [0, T ]. The definition of T and 
the blow-up alternative thus imply T = T ∗ = ∞. In particular, we have

∥u(t) − z(t)∥𝒜 = |z(t)|p∥ũ(t)∥𝒜 ≤ r|z(t)|p

for all t ≥ 0 which implies limt→∞ ∥u(t)∥𝒜 = 0 due to limt→∞ z(t) = 0. □
Now we can state the main abstract result which should be interpreted as a generalization of Theorem 

1.3 in [13].
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Corollary 2.7. Let p ∈ N with p ≥ 2 and z0 ∈ C \ {0} with sin((p− 1) arg(z0)) > −1. We define

C(arg(z0)) := M−1 exp
{︃
−MCp−1

𝒜 C
(p−2)(p−1)
1 C2

2p − p− 1
p− 1 

}︃
(2.13)

with C1 = C1(arg(z0), p) and C2 = C2(arg(z0), p) as in Theorem 2.6. If u0 ∈ 𝒜 satisfies

∥u0 − z0∥𝒜 < C(arg(z0))|z0|,

then the initial value problem (1.1) has a unique global solution u ∈ C([0,∞),𝒜) with limt→∞ ∥u(t)∥𝒜 = 0. 
More specifically, let z : [0,∞) → C be given by (2.3). Then the estimate

∥u(t) − z(t)∥𝒜 ≤ |z0|−p+1|z(t)|p

holds for all t ≥ 0.

Proof. We set ϕ = u0 − z0. Due to ∥ϕ∥𝒜 < C(arg(z0))|z0|, we find a ρ1 > 0 with

∥ϕ∥𝒜 ≤ ρ1|z0|p < C(arg(z0))|z0|. (2.14)

Furthermore, we set ρ0 = |z0| and r = ρ−p+1
0 . By that choice, we have u0 ∈ B(ρ0, ρ1) and P (r, ρ0) =

P (1, 1) = 2p − p− 1 which implies

Mρ1 exp
{︃
MCp−1

𝒜 C
(p−2)(p−1)
1 C2

P (r, ρ0)
p− 1 

}︃
= ρ1C(arg(z0))−1 < |z0|−p+1 = r

where we used (2.14). The claim now follows from Theorem 2.6. □
We mention that if sin((p− 1) arg(z0)) ≥ 0, then we have

C(arg(z0)) ≥ M−1 exp
{︃
−MCp−1

𝒜
π

2 
2p − p− 1

p− 1 

}︃

in (2.13).

Remark 2.8. 

i) We can also consider negative times. As mentioned in Remark 2.3 the assumption sin((p−1) arg(z0)) >
−1 then has to be changed to sin((p − 1) arg(z0)) < 1. Moreover, the Schrödinger semigroup S(t) has 
to be strongly continuous and bounded for t ≤ 0. Then, by the same arguments we get a version 
similar to Theorem 2.7 for negative times (with modified constants C1 and C2). In particular, if sin((p−
1) arg(z0)) ∈ (−1, 1) we can concatenate both solutions and get a unique global solution u ∈ C(R,𝒜)
of (1.1) with limt→±∞ ∥u(t)∥𝒜 = 0. We omit the details.

ii) Using the function z̃ from Remark 2.3 we can do the same analysis again and get global solutions to 
(1.1) with changed sign in front of the nonlinearity

{︄
i∂tu = −∂2

xu + up, t ≥ 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

We omit the details.



R. Hirsch, P. Kunstmann / J. Math. Anal. Appl. 556 (2026) 130260 9

Remark 2.9. To prove Theorem 2.7, we only used the boundedness of the Schrödinger semigroup and the 
algebra property of 𝒜. So, the above theory can immediately be generalized to an arbitrary bounded C0
semigroup (T (t))t≥0 with generator iA and an arbitrary complex Banach algebra ℬ with a neutral element. 
Thus, we obtain global solutions for the general initial value problem

{︄
i∂tu = −Au− up, t ≥ 0,
u(0) = u0,

for an integer p ≥ 2, where the power-type nonlinearity up is understood in the sense of the multiplication 
operation in ℬ. The modifications we mentioned in Remark 2.8 also work in this general case, of course.

3. Application to almost periodic functions

In this section we want to apply the abstract results of section 2 in the context of almost periodic 
functions. We will show global well-posedness of (1.1) using the boundedness of the Schrödinger semigroup 
S(t) = eit∂

2
x , t ≥ 0, and the respective algebraic structure. Furthermore, we will consider almost periodic 

initial data with localized perturbation.

3.1. Almost periodic functions

A function f : R → C of the form

f(x) =
n ∑︂

k=1

cke
iξkx, x ∈ R,

where ck are complex numbers and ξk real numbers for all 1 ≤ k ≤ n, is called a trigonometric polynomial.

Definition 3.1. We call a function f : R → C almost periodic, if it can be uniformly approximated by 
trigonometric polynomials. More precisely, given any ϵ > 0, there exists a trigonometric polynomial Pϵ such 
that

sup 
x∈R

|f(x) − Pϵ(x)| < ϵ.

We write AP (R) to denote the space of almost periodic functions.

One can easily check that almost periodic functions are continuous and bounded on R (Theorem 1.2 in 
[4]). We now introduce the Fourier series of an almost periodic function.

Definition 3.2. Let f ∈ AP (R). We define the Fourier coefficients of f by

f̂(ξ) := lim 
L→∞

1 
L

L ∫︂
0 

f(x)e−iξxdx

for ξ ∈ R.

We note that f̂(ξ) is well defined for all ξ ∈ R and that there exist at most countable many ξ ∈ R with 
f̂(ξ) ̸= 0 (Theorem 1.12 and 1.15 in [4]). We define the frequency set of f by σ(f) := {ξ ∈ R : f̂(ξ) ̸= 0}
and write
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f(x) ∼
∑︂

ξ∈σ(f)

f̂(ξ)eiξx,

where the right hand side is called the Fourier series associated to f . In general, the Fourier series does not 
converge uniformly to f . Nevertheless, there are relations between f and its associated Fourier series, that 
hold for arbitrary f ∈ AP (R).

Proposition 3.3 (Theorem 1.18-1.20 in [4]). Let f ∈ AP (R). Then the following statements are true.

a) We have Parseval’s equality

lim 
L→∞

1 
L

L ∫︂
0 

|f(x)|2dx =
∑︂

ξ∈σ(f)

|f̂(ξ)|2.

b) If the Fourier series of f is uniformly convergent, then it converges to f .
c) Let g ∈ AP (R) with f ̸= g. Then f and g have distinct Fourier series.

Now, we want to classify almost periodic functions depending on the frequency set. Consider a countable 
set of real numbers Ω = {ω1, ω2, ...}. We say that Ω is linearly independent (over the rational numbers Q) 
if any relation of the form:

n ∑︂
j=1 

rjωj = 0, rj ∈ Q, n ∈ N, n ≤ |Ω|,

implies that rj = 0 for all 1 ≤ j ≤ n. Observe that we get an equivalent definition if we only require rj ∈ Z

here. Furthermore, we define Ω by

Ω :=

⎧⎨
⎩ξ ∈ R : ξ =

n ∑︂
j=1 

rjωj with rj ∈ Z, n ∈ N, n ≤ |Ω|

⎫⎬
⎭ ,

which is still a countable set.

Definition 3.4. Let Λ ⊂ R and Ω ⊂ R be linearly independent. We say that Ω constitutes a basis for the set 
Λ if Λ ⊂ Ω.

One can easily check that every countable set of real numbers contains a basis. In particular, for every 
f ∈ AP (R) there is a basis Ω of the frequency set σ(f). If this Ω can be chosen such that it contains just one 
element, then the function f is periodic. If Ω can be chosen as a finite set, then we call f a quasi-periodic 
function. 
In the following, we will consider a special type of almost periodic functions.

Definition 3.5. Let Ω ⊂ R be linearly independent. We define the space

𝒜Ω :=
{︁
f ∈ AP (R) : σ(f) ⊂ Ω and ∥f∥𝒜Ω < ∞

}︁
,

where the 𝒜Ω-norm is given by

∥f∥𝒜Ω :=
∑︂
ξ∈Ω

|f̂(ξ)|.
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We present some basic properties of 𝒜Ω.

Lemma 3.6 (Lemma 2.1 in [19]). Let f ∈ 𝒜Ω. Then we have

f(x) =
∑︂
ξ∈Ω

f̂(ξ)eiξx,

where the sum converges uniformly in x ∈ R. Moreover 𝒜Ω is a Banach algebra with algebra constant 
C𝒜Ω = 1.

For f ∈ 𝒜Ω, the linear propagator S(t) = eit∂
2
x is given by

S(t)f :=
∑︂
ξ∈Ω

f̂(ξ)e−iξ2teiξ·, t ∈ R.

A simple calculation shows that (S(t))t∈R is a strongly continuous group on 𝒜Ω with

∥S(t)f∥𝒜Ω =
∑︂
ξ∈Ω

⃓⃓⃓
f̂(ξ)e−iξ2t

⃓⃓⃓
=

∑︂
ξ∈Ω

|f̂(ξ)| = ∥f∥𝒜Ω (3.1)

for all t ∈ R. So, by Lemma 3.6 and (3.1) all assumptions for the general result in Section 2 are satisfied 
(C𝒜 = M = 1) and we can apply Theorem 2.7 for positive and negative times.

Theorem 3.7. Let Ω ⊂ R be linearly independent, p ∈ N with p ≥ 2 and z0 ∈ C\{0} with sin((p−1) arg(z0)) >
−1. We define

C(arg(z0)) := exp
{︃
−C

(p−2)(p−1)
1 C2

2p − p− 1
p− 1 

}︃

with C1 = C1(arg(z0), p) and C2 = C2(arg(z0), p) as in Theorem 2.6. If u0 ∈ 𝒜Ω satisfies

∥u0 − z0∥𝒜Ω < C(arg(z0))|z0|,

then the initial value problem (1.1) has a unique global solution u ∈ C([0,∞),𝒜Ω) with limt→∞ ∥u(t)∥𝒜Ω =
0. More specifically, let z : [0,∞) → C be given by (2.3). Then the estimate

∥u(t) − z(t)∥𝒜Ω ≤ |z0|−p+1|z(t)|p

holds for all t ≥ 0.

Remark 3.8. Via Remark 2.8 we obtain a similar result for negative times if sin((p− 1) arg(z0)) < 1.

3.2. Almost periodic functions with localized perturbation

Now we want to consider almost periodic initial data with an additional localized perturbation. To do 
that we will define a space of localized functions similar to 𝒜Ω from the previous subsection. 
Let 𝒮(R) denote the space of Schwartz functions. The Fourier transform of f ∈ 𝒮(R) is defined by

ℱ(f)(ξ) := f̂(ξ) :=
∫︂
R 

e−2πiξxf(x)dx, ξ ∈ R. (3.2)
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Let 𝒮 ′(R) denote the space of tempered distributions. The Fourier transform of T ∈ 𝒮 ′(R) is defined by

ℱ(T )(f) := T̂ (f) := T (f̂), f ∈ 𝒮(R).

Definition 3.9. We define the space

𝒜(R) :=
{︂
T ∈ 𝒮 ′(R) : T̂ ∈ L1(R)

}︂
,

with the norm ∥T∥𝒜(R) := ∥T̂∥L1(R).

By the Lemma of Riemann-Lebesgue, we see that every f ∈ 𝒜(R) can be represented by a continuous 
function that vanishes at infinity. We denote this function again by f . 
To apply our theory we need the following algebra property.

Proposition 3.10. Let f, g ∈ 𝒜(R). Then we have fg ∈ 𝒜(R) with

∥fg∥𝒜(R) ≤ ∥f∥𝒜(R)∥g∥𝒜(R). (3.3)

Proof. By the above remark, fg is well-defined as the product of two continuous functions vanishing at 
infinity. In particular, fg is again a tempered distribution. By standard Fourier analysis we get ℱ(fg) = f̂ ∗ĝ
which lies in L1(R). So we can calculate

∥fg∥𝒜(R) = ∥f̂ ∗ ĝ∥L1(R) ≤ ∥f̂∥L1(R)∥ĝ∥L1(R) = ∥f∥𝒜(R)∥g∥𝒜(R)

using Young’s convolution inequality. □
Let Ω ⊂ R be linearly independent. Since 𝒜(R) and 𝒜Ω have trivial intersection, we can define the sum 

space

𝒜Ω(R) := 𝒜(R) + 𝒜Ω

with norm ∥f + g∥AΩ(R) = ∥f∥𝒜(R) + ∥g∥𝒜Ω .

Proposition 3.11. Let f ∈ 𝒜(R) and g ∈ 𝒜Ω. Then the product fg is also in 𝒜(R) with

∥fg∥𝒜(R) ≤ ∥f∥𝒜(R)∥g∥𝒜Ω . (3.4)

In particular 𝒜Ω(R) is a Banach algebra with algebra constant C𝒜Ω(R) = 1.

Proof. Since f and g are both continuous and bounded on R, the product fg defines again a tempered 
distribution. By Lemma 3.6 we know that the Fourier series of g converges uniformly to g. In particular we 
have

ℱ(fg) =
∑︂
ξ∈Ω

ĝ(ξ)ℱ
(︁
feiξ·

)︁
=

∑︂
ξ∈Ω

ĝ(ξ)f̂
(︃
· − ξ

2π

)︃

in the sense of distributions. So we can compute
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∥fg∥𝒜(R) = ∥ℱ(fg)∥L1(R) ≤
∑︂
ξ∈Ω

|ĝ(ξ)|
⃦⃦⃦
⃦f̂

(︃
· − ξ

2π

)︃⃦⃦⃦
⃦
L1(R)

=
∑︂
ξ∈Ω

|ĝ(ξ)|∥f̂∥L1(R)

= ∥f∥𝒜(R)∥g∥𝒜Ω

which proves (3.4). The second claim now follows immediately by Lemma 3.6, (3.3) and (3.4). □
For f + g ∈ 𝒜Ω(R), the linear propagator S(t) = eit∂

2
x is given by

S(t)(f + g) = ℱ−1
(︂
e−iξ2tf̂

)︂
+

∑︂
ξ∈Ω

ĝ(ξ)e−iξ2teiξ·, t ∈ R.

As in (3.1) we have

∥S(t)(f + g)∥𝒜Ω(R) = ∥f + g∥𝒜Ω(R)

for all t ∈ R and together with Proposition 3.11, all assumptions in Section 2 are satisfied (C𝒜 = M = 1). 
So, we can apply Theorem 2.7 also in this case for positive and negative times.

Theorem 3.12. Let Ω ⊂ R be linearly independent, p ∈ N with p ≥ 2 and z0 ∈ C \ {0} with sin((p −
1) arg(z0)) > −1. We define

C(arg(z0)) := exp
{︃
−C

(p−2)(p−1)
1 C2

2p − p− 1
p− 1 

}︃

with C1 = C1(arg(z0), p) and C2 = C2(arg(z0), p) as in Theorem 2.6. If u0 ∈ 𝒜Ω(R) satisfies

∥u0 − z0∥𝒜Ω(R) < C(arg(z0))|z0|,

then the initial value problem (1.1) has a unique global solution u ∈ C([0,∞),𝒜Ω(R)) with limt→∞ ∥u(t)∥𝒜Ω(R) =
0. More specifically, let z : [0,∞) → C be given by (2.3). Then the estimate

∥u(t) − z(t)∥𝒜Ω(R) ≤ |z0|−p+1|z(t)|p

holds for all t ≥ 0.

Remark 3.13. Via Remark 2.8 we obtain a similar result for negative times if sin((p− 1) arg(z0)) < 1.

Remark 3.14. We can also consider almost periodic functions f : Rd → C in higher dimensions. The spaces 
𝒜Ω,𝒜(R) and 𝒜Ω(R) can be generalized in an obvious way, and this does not change our arguments at all. 
So, equivalent versions of Theorems 3.7 and 3.12 also hold in higher dimensions. We omit the details.

4. Further applications

We add some more examples for periodic initial data with localized perturbation. At this point, we want 
to mention the works [17], [2] and [3] again, where the authors considered the classical NLS in the so-called 
“tooth spaces'' Hr(R) + Hs(T ) defined below. 
Let T := R/Z be the one-dimensional torus and ⟨ξ⟩ =

(︁
1 + ξ2)︁ 1

2 the Japanese bracket. For s ≥ 0, the 
Sobolev spaces Hs(T ) are defined by
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Hs(T ) :=

⎧⎨
⎩f ∈ L2(T ) : ∥f∥Hs(T) :=

(︄∑︂
k∈Z

⟨k⟩2s|f̂(k)|2
)︄ 1

2

< ∞

⎫⎬
⎭ ,

where the Fourier transform of a periodic function f : T → C is given by

f̂(k) :=
1 ∫︂

0 

e−2πikxf(x)dx, k ∈ Z.

We consider functions on T as 1-periodic functions on R. Analogously, for r ≥ 0, the Sobolev spaces Hr(R)
are defined by

Hr(R) :=

⎧⎪⎨
⎪⎩f ∈ L2(R) : ∥f∥Hr(R) :=

⎛
⎝∫︂

R 

⟨ξ⟩2r|f̂(ξ)|2dξ

⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭ ,

where the Fourier transform of a function f : R → C is given by (3.2).
Similarly as in the previous Section, we shall apply our theory to the sum spaces

𝒜(R) + Hs(T ), for s > 1
2 ,

Hr(R) + Hs(T ), for s ≥ r >
1
2 .

It is well known that Hs(T ) and Hr(R) are Banach algebras for s, r > 1
2 . We will prove that the above sum 

spaces have this property as well.

Proposition 4.1. Let g ∈ Hs(T ) for some s > 1
2 .

(i) Let f ∈ 𝒜(R). Then the product fg is again in 𝒜(R) with

∥fg∥𝒜(R) ≲s ∥f∥𝒜(R)∥g∥Hs(T). (4.1)

In particular 𝒜(R) + Hs(T ) is a Banach algebra.
(ii) Let f ∈ Hr(R) for some 1

2 < r ≤ s. Then the product fg is again in Hr(R) with

∥fg∥Hr(R) ≲r ∥f∥Hr(R)∥g∥Hs(T). (4.2)

In particular, Hr(R) + Hs(T ) is a Banach algebra.

Proof. First let f ∈ 𝒜(R). By the same calculations as in the proof of Proposition 3.11 we get

∥fg∥𝒜(R) ≤ ∥f∥𝒜(R)
∑︂
k∈Z

|ĝ(k)|.

Due to s > 1
2 we can apply the Cauchy-Schwarz inequality to get

∑︂
k∈Z

|ĝ(k)| =
∑︂
k∈Z

⟨k⟩−2s⟨k⟩2s|ĝ(k)| ≲s ∥g∥Hs(T).

This proves (4.1). Now let f ∈ Hr(R). By Lemma 4.5 in [16] we have
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∥fg∥Hr(R) ≲s ∥f∥Hr(R)∥g∥Hr(T).

So, (4.2) follows by the trivial bound ∥g∥Hr(T) ≤ ∥g∥Hs(T) due to r ≤ s. □
In both cases, the linear propagator S(t) = eit∂

2
x is given by

S(t)(f + g) = ℱ−1
(︂
e−iξ2tf̂

)︂
+

∑︂
k∈Z

ĝ(k)e−ik2teik·, t ∈ R.

As in (3.1), we get that S(t) is an isometry for all t ∈ R. Hence, all assumptions for the general result in 
Section 2 are satisfied again (M = 1) and we can apply Theorem 2.7 to both cases.

Theorem 4.2. Let 1
2 < r ≤ s and 𝒜 ∈ {𝒜(R) + Hs(T ), Hr(R) + Hs(T )}. Then the assertion of Theorem 2.7

holds with M = 1.

Remark 4.3. 

i) In these cases, the algebra constant C𝒜 depends on the parameters r and s and diverges for r, s close 
to 1

2 .
ii) We can also consider periodic functions with localized perturbation in higher dimensions. The spaces 

Hs(Td), Hr(Rd) and 𝒜(Rd) are defined analogously and by the same arguments we get a corresponding 
version of Theorem 4.2 in higher dimensions. Only the condition on the parameters r and s changes to 
d
2 < r ≤ s to guarantee the algebra property. We omit the details.
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