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We investigate the long-time behavior of solutions to nonconservative nonlinear
Schrédinger equations (NLS) of the form

iu = —02u—uP, peEN,p>2.

We focus on initial data that are neither localized nor periodic. Our approach is
based on the work [13] by Jaquette, Lessard and Takayasu, where they used a
perturbative analysis around the explicit spatially homogeneous solution of the
associated ODE. Using their methods, we establish global existence results and
asymptotic decay of solutions in a general Banach algebra setting. Applications

include small data global well-posedness results for almost periodic initial data,
which seem to be the first in a nonconservative NLS framework. Applications to

(almost) periodic initial data with localized perturbations are also presented.
© 2025 The Authors. Published by Elsevier Inc. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The nonlinear Schrodinger equation (NLS) is a fundamental model in mathematical physics that describes
the evolution of complex wave functions under the influence of dispersion and nonlinearity. Traditionally
studied in conservative settings, the NLS has seen wide applications ranging from optics and quantum
mechanics to fluid dynamics (see e.g. [1], [10], [20], [24], [23]). In this work, we consider a nonconservative
variant of the NLS, given by

10 = —0%u — uP, t>0,zeR,

u(0, ) = uo(x), r€R, (1.1)
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where p > 2 is an integer. The question of global existence for such nonlinear Schrédinger equations has been
studied extensively in the past decades. Classical approaches are based on energy estimates and dispersive
properties of the Schrodinger semigroup. Pioneering contributions were given by Strauss [22], Klainerman
and Ponce [15], and Shatah [21], where global existence was proven for quadratic nonlinearities in dimensions
d >4, and in dimension d = 3 for nonlinearities of order strictly greater than two. In [8] and [9], Germain,
Masmoudi and Shatah considered Nonlinear Schrédinger Equations with quadratic nonlinearities of the
form au? + Bu? in dimensions d = 2,3. They proved global well-posedness for small and localized initial
data using the concept of space-time resonances. For further results in this setting we refer to [12], [11], and
[14].

The main focus of this paper is to investigate the well-posedness and long-time behavior of solutions to the
one-dimensional nonconservative NLS (1.1) in function spaces beyond the usual setting of L2-based Sobolev
spaces. In particular, we are interested in solutions of (1.1) with initial data that are neither decaying
nor periodic. This includes almost periodic functions and localized perturbations of periodic and almost
periodic functions. To give some motivation for the topic of localized perturbations, we refer the reader to
17), [2], [3]

Our approach is strongly based on the work [13] of Jaquette, Lessard and Takayasu. They studied the
global dynamics of the NLS on the d-dimensional torus with more general nonconservative nonlinearities.
Their approach allows us to extend the global existence theory to a variety of initial data classes that are
neither periodic nor localized. We first give a version of [13, Theorem 2.3] in a more abstract setting, see
Theorem 2.6 below.

Then we apply this abstract result to function classes of non-decaying initial data. These results are the
main contribution of the present paper. In particular, we consider almost periodic functions as well as their
localized perturbations. To the best of our knowledge, Theorem 3.7 below is the first global existence result
for almost periodic initial data in a nonconservative setting. Even in the conservative case, there are only a
few results so far. In [6], Boutet de Monvel and Egorova considered the defocusing (conservative) NLS

u(0,2) = up(x), z e R. (12)

{i@tu = —0%u+ |ul*u, t>0,z€R,
They showed global well-posedness of (1.2) in the cubic case kK = 1 with limit periodic initial data using
the complete integrability of the cubic NLS. Twenty years later, Oh showed global well-posedness of (1.2)
for arbitrary k € N with limit periodic initial data [18]. Also in the context of other complete integrable
PDEs like the KdV equation there are just few results on global existence with almost periodic initial data,
e.g. [7], [5]-

Our framework for the abstract version of [13, Theorem 2.3] in Section 2 below concentrates on the
essential ingredients of the proof, namely the boundedness properties of the Schrédinger semigroup in
function spaces that are assumed to be Banach algebras for pointwise multiplication. We adapt from [13]
the perturbative strategy around the explicit spatially homogeneous solution of the associated z-independent
ODE

2 =ik, t>0. (1.3)

In other words, we consider solutions of (1.1) that remain close to the solution z of (1.3). For the correspond-
ing initial value we then obtain, as in [13], a sort of small data global existence result and derive smallness
conditions under which the full PDE remains globally well-posed and its solutions decay asymptotically to
Zero.

The paper is organized as follows: In Section 2 we present our abstract version of the result in [13] on
global well-posedness of (1.1), see Theorem 2.6 and Corollary 2.7. In Section 3 we give a short introduction
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to almost periodic functions and apply the general result from Section 2 in this context, see Theorem 3.7
and Theorem 3.12. Finally, in Section 4, we give some more applications in the setting of periodic initial
data with localized perturbation, see Theorem 4.2.

Notation: A <

AJEL yeuny

«,, B denotes the inequality A < C(ey, ..., €,) B for a constant C' depending on €y, ..., €.
2. General theory

In this section, we follow the approach in [13], but in a more abstract setting. In the following, let
(A, |l - ]la) be a Banach space of complex-valued functions f : R — C. We assume that A is a Banach

algebra for pointwise multiplication and that A contains the constant functions. Furthermore, we assume

itd?2

that the Schrodinger semigroup S(t) = "%, ¢t > 0, is strongly continuous and bounded on A. We consider

the Nonlinear Schrédinger Equation (NLS)

i0u = —0%u — uP, t>0, 2 €R,
U(O,l‘) = UQ(",U), T e Ra

for an integer p > 2. By our assumptions there exists an M > 1 such that

1S@) flla < M| flla

for all f € A and t > 0. Furthermore we have a constant C4 > 0 with

1f9lla < Callfllallglla
for all f,g € A.
With these estimates at hand and a standard fixed point argument, one can easily prove local well-posedness
of (1.1) with initial data in A.
Theorem 2.1. Let p > 2 and ug € A. Then there exists a positive time T > 0 such that (1.1) has a unique
mild solution v € C([0,T}], A) with initial data ug:

t
u(t) = uo—l—z/S (t —s)u(s)Pds, t€][0,T]. (2.1)
0

The guaranteed time of existence T depends only on the norm ||ug||4. More precisely,

1—
T 2M,Cap ||U0||A b,

By standard arguments one gets the following blow-up alternative.
Let T* = T*(up) > 0 be the maximal time of existence for a mild solution v € C([0,T*), A) of (1.1) with
initial data ug € A. Then either T* < oo and

lim sup ||u(t)]| 4 = o0
t T

or T* = oo.
To show global well-posedness of (1.1) we first consider the spatially homogeneous problem.
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Lemma 2.2. Let zg € C and p € N with p > 2. We consider the ODE

2 =1izP, t>0,
(2.2)
2(0) = 2.
If sin ((p — 1) arg(zg)) > —1, then (2.2) has a unique global solution z : [0,00) — C, given by
20
2(t) = . >0 2.3
O = i D e =9
In particular, there is a constant Cy = Cy(arg(zo),p) > 0 with
|2(t)] < Ci20] (2.4)

for allt > 0.

Proof. We write 2 in polar coordinates zo = 7. Let sin((p — 1)) > —1. Then one can easily check
that the function z given in (2.3) solves (2.2) on [0, 00). We have

‘ZO|2(1)_1)

(021 —
B R R T

T(Q)(pfl)

T +2(p—1)sin((p — 1)90)7“87175 +(p— 1)2rg(p_1)t2

for t > 0. To estimate the denominator in (2.5) we consider two cases.
1) If sin((p — 1)6p) > 0, then we have

1+2(p— 1)sin((p — D)o)rE Mt + (p— 1)2re® V2 > 1

for all t > 0.
2) If sin((p — 1)0p) < 0, we can compute the global minimum of the denominator and get

14+2(p — 1) sin((p — 1)0o)rE ™+ (p— D22P 2 > 1 —sin®((p — 1)6p) > 0

for all ¢ > 0 due to the assumptions on zg. So in both cases, the denominator in (2.5) is bounded from below
by a positive constant depending only on p and 6y. This yields the claim. O

Remark 2.3.

i) The solution z(t) behaves like t77T as t — oo.
ii) In the case sin((p — 1) arg(zg)) > 0, the above calculation shows Cy = 1.

iii) For sin((p — 1)arg(zp)) = —1 the function z has a singularity at ¢ = ((p - 1)7"6’71) 1. Hence, there
cannot exist a global solution to (2.2) in this case.

iv) The function z also solves (1.3) for negative times. To prevent blow-up in this case, the condition on z
has to be changed to sin((p — 1) arg(z)) < 1.

v) We can also consider (2.2) with changed sign in front of the nonlinearity. Define the function Z : [0, c0) —
C, 2(t) = z(—t). If sin((p — 1) arg(20)) < 1, then Z solves the ODE

F=—im, t>0,
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Now we are interested in solutions of (1.1) that are close to the function z provided by Lemma 2.2.

Proposition 2.4. Let z : [0,00) — C be given by (2.3) with zo € C \ {0} and u € C([0,T],.A) be a mild
solution of (1.1) with initial data ug € A. We define @ € C(]0,T], A) by

ult) = () + 2(t)Pa(t).

Then @ satisfies the modified Duhamel formula

a(t) = S(t)a(0) + i/S’(t —9) Z (p)z(s)m(pl)ﬂ(s)mds (2.6)

for allt € [0,T].

Proof. Due to 2zp # 0 and the algebra property of A we have that @ and the right-hand side of (2.6) are
well defined. To prove the claim, we set

v(t) = S(—t)u(t), o(t) = S(—t)a(t) (2.7)
for all t € [0,T]. One can easily check the identity
v(t) = z(t) + z(t)Po(t) (2.8)

for all t € [0, T]. Applying S(—t) on both sides of the Duhamel formula (2.1) and respecting (2.7) yields us

v(t) = ug + Z'/S(—s)u(s)pds.
0

So we see that v € C1([0, 7], A) with
O(t) =iS(—t)uP(t) = iS(—t) (2(t) + z(t)Pa(t))” (2.9)

= iz(t)? +ipz(t)** ' S(—t)ult) + iz(t)PS(—t) > (:1 >z(t)m(p_1)ﬁ(s)m

m=2

for all ¢t € [0, T)]. Here, we used the definition of &. On the other hand, equation (2.8) yields us

wv(t) = 2/ (t) + pz(t)P 12 (#)0(t) + 2(t)POyo(t)
= iz(t)P +ipz(t)*P~Lo(t

N
+
I
~—
~
N
el
&
s
—~
~
=

(2.10)

for all ¢ € [0, T] where we used that z solves (2.2). If we now compare equations (2.9) and (2.10), we obtain
that ¥ solves the equation

for all ¢t € [0, T]. By writing this in a mild formulation, we get
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p P
5() = & ; _ p m(p—1) 5 ( g\m
o(t) = 9(0) + ZO/S( s) mz::Q (m>z(s) a(s)™ds.
Applying S(t) on both sides yields the claim. O
To formulate our next theorem, we need some definitions.

Definition 2.5. Let 7, pg, p1 > 0 and p € N with p > 2. We define the sets

B(po) := {z € C\ {0} :sin((p — 1) arg(z)) > —1, |2 < po},
B(po,p1) :={20 +¢ € A: 20 € B(po),ll¢lla < prlz0|"} .

Furthermore, we define the positive constants

P(r, po) = Zp: <:1) (Tpg,l)m—l

and

8

1

Co(0,p) :/1+281n((p—1)9)s+52d8
0

(2.11)

for all # € R with sin((p — 1)8) > —1.

As a concrete example, we have Cy = 7 if sin((p — 1)0) = 0 and Cy < 7 if sin((p — 1)¢) > 0. Note that
the integral in (2.11) diverges for sin((p — 1)) close to —1.
The following theorem extends Theorem 2.3 in [13] to arbitrary Banach algebras and forms the basis for
our main result.

Theorem 2.6. Let pg,p1 > 0 and p € N with p > 2. Furthermore, let ug = zo + ¢ € B(po,p1) and
u € C([0,T%), A) be a mazimal mild solution of (1.1) with initial data ug. Assume that there exists some
r > 0 such that

) (p— P
M, exp {MCilCﬁp 2)(p 1)02%} <7, (2.12)

where Cy = Ci(arg(z0),p) and C2 = Ca(arg(zg),p) are given by Lemma 2.2 and (2.11). Then we have
T* = 00 and limy—s o0 |Ju(t)|| 4 = 0. More specifically, let z : [0,00) — C be given by (2.3). Then the estimate

u(t) = z()lla < rlz()P
holds for all t > 0.

Proof. For the proof, we write zg = g€’ with sin((p — 1)) > —1 and 79 < py. We consider the solution
@ of the modified Duhamel formula (2.6). In this context, we have ¢ = z§4(0). Using the boundedness of
the semigroup and the algebra property of A we get

Ja0lla < daO) L+ e [ 3 (L) ace) s
0 m=2
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Now we choose an r > 0 according to the assumption and define

T :=sup{t > 0: [[a(t)]a <7}
By the choice of r and ¢ we have

[2(0)[[a = [20] [0l < p1 <,

where the last inequality follows from (2.12). This guaranties T' > 0. Combining this with estimate (2.4)
and rg < py we obtain

p m— — ~ m
la(t)lla < Mpy + MCY! / (m> )| (72 E= 2 (s) 20D flas) | 4 ds

m=2
~ (p

> (m) (C1p0) =D () PO fi(s) | adls
m=2

t
< Mp; +MC§(1/
0

t
< Mpy + MCY P 2P0 p 0D p(r g / [2(5) 21| a(5)]| ads
0

for all ¢t € [0,T], where we used the definition of P(r, pg). At this point, we want to apply Gronwall’s
inequality. With the calculations from the proof of Lemma 2.2 and ry < pg we compute

t
0Pl ) [ 12(5) PP Vs

To(p 1)

: -1 2(p—1) ds
14+2(p—1)sin((p—1)bo)ry s+ (p— 1)%rg 52

p—1
"o

d
1+ 2sin((p — 1)6p)s + s? 8

Thus we obtain

||ﬂ(t)||A§Mp1exp{ Mer e, %}

for all ¢ € [0,T]. So, by assumption (2.12) we have ||@(t)||.4 < r for all ¢ € [0,T]. The definition of T" and
the blow-up alternative thus imply T'= T™ = oco. In particular, we have

[ut) = z(®)lla = [z [[a®)]a < =)
for all ¢ > 0 which implies lim;_, o ||u(t)]l.4 = 0 due to lim;, o 2(t) =0. O

Now we can state the main abstract result which should be interpreted as a generalization of Theorem
1.3 in [13].
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Corollary 2.7. Let p € N with p > 2 and zy € C \ {0} with sin((p — 1) arg(z0)) > —1. We define

—9)(p— 2P —p—1
C(arg(z)) := M 'exp {—MCﬁ_lep 2 1)02%} (2.13)

with C1 = Cy(arg(zo),p) and Cy = Cy(arg(zo),p) as in Theorem 2.6. If ug € A satisfies

luo — 20lla < C(arg(zo))|zol,

then the initial value problem (1.1) has a unique global solution u € C([0,00),.A) with lim;_, o ||u(t)||4 = 0.
More specifically, let z : [0,00) — C be given by (2.3). Then the estimate

lu(t) = 2(#)]la < |20 P 2(2)[P
holds for all t > 0.

Proof. We set ¢ = ug — z9. Due to ||¢||4 < C(arg(z0))|z0|, we find a p; > 0 with

[6ll.a < prlz0f” < C(arg(z0))]|zol- (2.14)

Furthermore, we set py = |z9| and r = papH. By that choice, we have ug € B(pg, p1) and P(r,pg) =
P(1,1) = 2 — p — 1 which implies

—9)(p— P
Mpy exp {MOZ*C%” o T;—”l)} = piC(arg(0)) ™" < [0 P =1

where we used (2.14). The claim now follows from Theorem 2.6. O

We mention that if sin((p — 1) arg(z¢)) > 0, then we have

Py
C(arg(zg)) > M~ exp {MC’ilg%}

in (2.13).
Remark 2.8.

i) We can also consider negative times. As mentioned in Remark 2.3 the assumption sin((p — 1) arg(zg)) >
—1 then has to be changed to sin((p — 1) arg(zp)) < 1. Moreover, the Schrédinger semigroup S(¢) has
to be strongly continuous and bounded for ¢ < 0. Then, by the same arguments we get a version
similar to Theorem 2.7 for negative times (with modified constants Cy and Cs). In particular, if sin((p —
1)arg(zp)) € (—1,1) we can concatenate both solutions and get a unique global solution u € C(R,.A)
of (1.1) with lim; 4 ||u(t)]|.4 = 0. We omit the details.

ii) Using the function Z from Remark 2.3 we can do the same analysis again and get global solutions to
(1.1) with changed sign in front of the nonlinearity

i0yu = —02u + uP, t>0,z€eR,
u(0,x) = up(x), z € R.

We omit the details.
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Remark 2.9. To prove Theorem 2.7, we only used the boundedness of the Schrédinger semigroup and the
algebra property of A. So, the above theory can immediately be generalized to an arbitrary bounded Cjy-
semigroup (7T'(t)),, with generator A and an arbitrary complex Banach algebra B with a neutral element.
Thus, we obtain gTobal solutions for the general initial value problem

10u = —Au—uP, t>0,
u(0) = wo,

for an integer p > 2, where the power-type nonlinearity u? is understood in the sense of the multiplication
operation in B. The modifications we mentioned in Remark 2.8 also work in this general case, of course.

3. Application to almost periodic functions

In this section we want to apply the abstract results of section 2 in the context of almost periodic
functions. We will show global well-posedness of (1.1) using the boundedness of the Schrodinger semigroup
S(t) = 6“83, t > 0, and the respective algebraic structure. Furthermore, we will consider almost periodic
initial data with localized perturbation.

3.1. Almost periodic functions

A function f: R — C of the form
fl@) =Y e zeR,
k=1

where ¢ are complex numbers and & real numbers for all 1 < k < n, is called a trigonometric polynomial.

Definition 3.1. We call a function f : R — C almost periodic, if it can be uniformly approximated by
trigonometric polynomials. More precisely, given any € > 0, there exists a trigonometric polynomial P, such
that

sup |f(z) — P.(z)] <e.
zeR

We write AP(R) to denote the space of almost periodic functions.

One can easily check that almost periodic functions are continuous and bounded on R (Theorem 1.2 in
[4]). We now introduce the Fourier series of an almost periodic function.

Definition 3.2. Let f € AP(R). We define the Fourier coefficients of f by

for £ € R.

We note that f(€) is well defined for all £ € R and that there exist at most countable many ¢ € R with
f(€) # 0 (Theorem 1.12 and 1.15 in [4]). We define the frequency set of f by o(f) := {€ € R : f(£) # 0}
and write
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fa)~ 3 fee,

§€a(f)

where the right hand side is called the Fourier series associated to f. In general, the Fourier series does not
converge uniformly to f. Nevertheless, there are relations between f and its associated Fourier series, that
hold for arbitrary f € AP(R).

Proposition 3.3 (Theorem 1.18-1.20 in [4]). Let f € AP(R). Then the following statements are true.

a) We have Parseval’s equality

2

L
1 PN
i 1 [ @Pas = 3 1760
0

g€a(f)

b) If the Fourier series of f is uniformly convergent, then it converges to f.
c) Let g € AP(R) with f # g. Then f and g have distinct Fourier series.

Now, we want to classify almost periodic functions depending on the frequency set. Consider a countable
set of real numbers = {wy,ws,...}. We say that  is linearly independent (over the rational numbers Q)
if any relation of the form:

n
erwj =0, r;€eQ,neN,n<|Q
j=1

implies that r; = 0 for all 1 < j < n. Observe that we get an equivalent definition if we only require r; € Z
here. Furthermore, we define Q by

Q.= §€R:§:erwj withr; € Z,ne N,n < |Q] 3,
j=1
which is still a countable set.

Definition 3.4. Let A C R and Q2 C R be linearly independent. We say that {2 constitutes a basis for the set
Aif A C Q.

One can easily check that every countable set of real numbers contains a basis. In particular, for every
f € AP(R) there is a basis Q of the frequency set o(f). If this Q can be chosen such that it contains just one
element, then the function f is periodic. If Q can be chosen as a finite set, then we call f a quasi-periodic
function.
In the following, we will consider a special type of almost periodic functions.

Definition 3.5. Let 2 C R be linearly independent. We define the space
Ag:={f € APR):0(f) C Qand ||f||a, < oo},
where the Ag-norm is given by

1 lae =D IFE).

e
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We present some basic properties of Ag.

Lemma 3.6 (Lemma 2.1 in [19]). Let f € Aq. Then we have

@) =3 feere,

ceq

where the sum converges uniformly in © € R. Moreover Aq is a Banach algebra with algebra constant
Cy, =1.

2

For f € Ag, the linear propagator S(t) = €% is given by

Stf =Y fee e, teR.
£eq
A simple calculation shows that (S(t)),.g is a strongly continuous group on Agq with

IS0l = 3 |F©@e | = D17 = 1fllaa (3.1)

€eq ceq

for all ¢ € R. So, by Lemma 3.6 and (3.1) all assumptions for the general result in Section 2 are satisfied
(Ca =M =1) and we can apply Theorem 2.7 for positive and negative times.

Theorem 3.7. Let Q C R be linearly independent, p € N with p > 2 and zo € C\{0} with sin((p—1) arg(zo)) >
—1. We define

—9)(p— 2P —p—1
C(arg(zp)) := exp {—C’ip 2 1)02p7p1}

with C1 = C1(arg(z0),p) and Co = Ca(arg(zo),p) as in Theorem 2.0. If ug € Aq satisfies
luo = 20ll40 < Clarg(20))|20l,

then the initial value problem (1.1) has a unique global solution u € C([0,00), Aq) with lim;_, ||u(t)|| 4o =
0. More specifically, let z : [0,00) — C be given by (2.3). Then the estimate

lu(t) = 2(t)]laa < |20l P 2(2)[P
holds for all t > 0.
Remark 3.8. Via Remark 2.8 we obtain a similar result for negative times if sin((p — 1) arg(z)) < 1.
8.2. Almost periodic functions with localized perturbation
Now we want to consider almost periodic initial data with an additional localized perturbation. To do

that we will define a space of localized functions similar to Aq from the previous subsection.
Let S(R) denote the space of Schwartz functions. The Fourier transform of f € S(R) is defined by

fm@:ﬂﬁ:/ﬂmWWMéER (3.2)

R
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Let §'(R) denote the space of tempered distributions. The Fourier transform of T' € §'(R) is defined by

FIO)(f) =T(f) =T(f), feSR).
Definition 3.9. We define the space
A(R) = {T cS'R):T e Ll(R)} ,
with the norm || T ag) = |17 m)-
By the Lemma of Riemann-Lebesgue, we see that every f € A(R) can be represented by a continuous
function that vanishes at infinity. We denote this function again by f.

To apply our theory we need the following algebra property.

Proposition 3.10. Let f,g € A(R). Then we have fg € A(R) with

[ fallaw) < If[l.a)llgll.aw)- (3.3)
Proof. By the above remark, fg is well-defined as the product of two continuous functions vanishing at

infinity. In particular, fg is again a tempered distribution. By standard Fourier analysis we get F(fg) = f *Q
which lies in L}(R). So we can calculate

1 £gllay = I1F * llr @) < Il @yllalor @) = 1 la)lgllae)
using Young’s convolution inequality. 0O

Let 2 C R be linearly independent. Since A(R) and Ag have trivial intersection, we can define the sum
space

Aq(R) := AR) + Ag
with norm [|f + gllag®) = [ flla®w) + 9]l 4q-
Proposition 3.11. Let f € A(R) and g € Aq. Then the product fg is also in A(R) with
1fgllam) < Ifll.am)llgllag- (3.4)
In particular Aq(R) is a Banach algebra with algebra constant C 4, wr) = 1.
Proof. Since f and g are both continuous and bounded on R, the product fg defines again a tempered

distribution. By Lemma 3.6 we know that the Fourier series of g converges uniformly to ¢g. In particular we
have

F(fg) = _4(OF (')
£eq

|
Q>
—~
oy
S~—
>
N
\
[N}
¥
~__

in the sense of distributions. So we can compute
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Ifollaw = FG Dl < 1ot |7 (- £)

£eq

| =S @i
LR ¢en

= [Ifllam)llgll.aq
which proves (3.4). The second claim now follows immediately by Lemma 3.6, (3.3) and (3.4). O

For f + g € Aq(R), the linear propagator S(t) = et9% is given by

SO +9)=F 1 (7€) + 3 g()e e, ter.

ceq
As in (3.1) we have
IS@ S + Dl aamw) = IIf + 9laqm)

for all ¢ € R and together with Proposition 3.11, all assumptions in Section 2 are satisfied (C4 = M = 1).
So, we can apply Theorem 2.7 also in this case for positive and negative times.

Theorem 3.12. Let @ C R be linearly independent, p € N with p > 2 and zp € C \ {0} with sin((p —
1)arg(zo)) > —1. We define

—9)(p— 2 —p—1
C(arg(zo)) := exp {_Cgp A 1)02p+1}

with C1 = Cy(arg(zo),p) and Cy = Cy(arg(zo),p) as in Theorem 2.6. If ug € Aq(R) satisfies

[uo — 20l aq®) < C(arg(2o))l20l,

then the initial value problem (1.1) has a unique global solution u € C([0,00), Aq(R)) with lim; o0 [|u(t)|| 4o ®r) =
0. More specifically, let z : [0,00) — C be given by (2.3). Then the estimate

lu(t) = 2(t)l aq®) < |20/ 7P [2(1)7
holds for all t > 0.
Remark 3.13. Via Remark 2.8 we obtain a similar result for negative times if sin((p — 1) arg(zo)) < 1.

Remark 3.14. We can also consider almost periodic functions f : R — C in higher dimensions. The spaces
Agq, A(R) and Aq(R) can be generalized in an obvious way, and this does not change our arguments at all.
So, equivalent versions of Theorems 3.7 and 3.12 also hold in higher dimensions. We omit the details.

4. Further applications

We add some more examples for periodic initial data with localized perturbation. At this point, we want
to mention the works [17], [2] and [3] again, where the authors considered the classical NLS in the so-called
“tooth spaces” H"(R) + H*(T) defined below.

Let T := R/Z be the one-dimensional torus and (¢) = (1+ 52)% the Japanese bracket. For s > 0, the
Sobolev spaces H*(T) are defined by
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H*(T) = { f € L(T) : | fllzz=(r) := <Z<k>25|f(k)l2> < oo,

keZ

where the Fourier transform of a periodic function f: T — C is given by

1

f(k) = /e_%ikxf(x)dx, keZ.

0

We consider functions on T as 1-periodic functions on R. Analogously, for » > 0, the Sobolev spaces H" (R)
are defined by

(SIS

H'(R) = { f € 2R) : |[fllirr) = /<f>2"|f<s)|2df <00,

R

where the Fourier transform of a function f: R — C is given by (3.2).
Similarly as in the previous Section, we shall apply our theory to the sum spaces

1

AR) + HX(T), for s>,
1
H"(R)+ H*(T), f0r327’>§.

It is well known that H*(T) and H"(R) are Banach algebras for s,r > % We will prove that the above sum
spaces have this property as well.

Proposition 4.1. Let g € H*(T) for some s > %
(i) Let f € A(R). Then the product fg is again in A(R) with

I fallary Ss I1f1lawyllgll s (T)- (4.1)

In particular A(R) + H*(T) is a Banach algebra.
(ii) Let f € H"(R) for some 3 <r <s. Then the product fg is again in H"(R) with

||fg||H7'(]R) S ||f||Hv-(R)||9||Hs(T)- (4~2)

In particular, H"(R) + H*(T) is a Banach algebra.
Proof. First let f € A(R). By the same calculations as in the proof of Proposition 3.11 we get

I1£9lla®) < 1fllar) > l9(k)].

keZ

Due to s > % we can apply the Cauchy-Schwarz inequality to get

Dol =D k)7 k> 19(k)] Ss llgllee (.

kEZ keZ

This proves (4.1). Now let f € H"(R). By Lemma 4.5 in [16] we have
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Il faller®) Ss @) N9l (T)-
So, (4.2) follows by the trivial bound [|g|| g+(T) < ||gl|#+(T) due tor <s. O

In both cases, the linear propagator S(t) = eitd: is given by

SO +9) = F 7 (71F) + 3 ae e, ter.
keZ

As in (3.1), we get that S(¢) is an isometry for all ¢ € R. Hence, all assumptions for the general result in
Section 2 are satisfied again (M = 1) and we can apply Theorem 2.7 to both cases.

Theorem 4.2. Let 3 < r < s and A € {A(R) + H*(T),H"(R) + H*(T)}. Then the assertion of Theorem 2.7
holds with M = 1.

Remark 4.3.

i) In these cases, the algebra constant C'4 depends on the parameters r and s and diverges for r, s close
to L.
2

ii) We can also consider periodic functions with localized perturbation in higher dimensions. The spaces
H*(T?), H"(RY) and A(R?) are defined analogously and by the same arguments we get a corresponding
version of Theorem 4.2 in higher dimensions. Only the condition on the parameters r and s changes to
% < r < s to guarantee the algebra property. We omit the details.
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