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Abstract
Motivation: Taxonomic classification in biodiversity studies is the process of assigning the anonymous sequences of a marker gene (bar
code) or whole genomes (metagenomics) to a specific lineage using a reference database that contains named sequences in a known taxon
omy. This classification is important for assessing the diversity of biological systems. Taxonomic classification faces two main challenges: 
first, accuracy is critical as errors can propagate to downstream analysis results; and second, the classification time requirements can limit 
study size and study design, in particular when considering the constantly growing reference databases. To address these two challenges, 
we introduce raxtax, an efficient, novel taxonomic classification tool for barcodes that uses common k-mers between all pairs of query and 
reference sequences. We also introduce two novel uncertainty scores which take into account the fundamental biases of refer
ence databases.
Results: We validate raxtax on three widely-used empirical reference databases and show that it is 2.7–100 times faster than competing 
state-of-the-art tools on the largest database while being equally accurate. In particular, raxtax exhibits increasing speedups with growing 
query and reference sequence numbers compared to existing tools (for 100 000 and 1 000 000 query and reference sequences overall, it is 1.3 
and 2.9 times faster, respectively), and therefore alleviates the taxonomic classification scalability challenge.
Availability and implementation: raxtax is available at https://github.com/noahares/raxtax under a CC-NC-BY-SA license. The scripts and 
summary metrics used in our analyses are available at https://github.com/noahares/raxtax_paper_scripts. The source code, sequence data, and 
summarized results of the analyses are available at https://doi.org/10.5281/zenodo.15057027.

1 Introduction
Biodiversity researchers frequently need to address the ques
tion: Which species are present in my sample? A common so
lution consists in identifying and subsequently sequencing a 
well-conserved region of the genome which is present in all 
organisms under study (Hebert et al. 2003b, Ward et al. 
2005, Schoch et al. 2012). Such regions, known as barcodes 
(Hebert et al. 2003a), are then used to identify species. The 
ribosomal 16S gene, the cytochrome oxidase 1 (COX1), and 
the internal transcribed spacer (ITS) regions are examples of 
frequently used barcodes in distinct regions of the tree of life 
(see, e.g. Janssen 2006, Elbrecht et al. 2016, Yang et al. 
2018). As using barcodes for DNA-based species identifica
tion constitutes a routine analysis task, there exist several 
widely-used taxonomic classification tools, such as SINTAX 
(Edgar 2016), IDTAXA (Murali et al. 2018), the RDP Naive 
Bayesian classifier (RDP) (Wang et al. 2007), and BayesANT 
(Zito et al. 2023). These highly cited tools deploy distinct 
algorithmic approaches to determine the species that are pre
sent in a sample.

The major design and one major quality criterions for any 
taxonomic classification tool are: assign sequences quickly 
and correctly. Species identification accuracy is critical, as it 

typically constitutes the first step in biodiversity analyses. 
Therefore, errors are likely to be propagated to downstream 
analyses and results. However, we are in the midst of the 
next generation sequencing data avalanche which is being 
further intensified by an increasing number of biodiversity 
field studies (Liu et al. 2011, La Salle et al. 2016). The 
amount of data being generated has outpaced Moore’s law 
for the last decade (Wetterstrand 2019). Hence, we need to 
perform barcoding sequence data analysis more efficiently. 
Otherwise, biodiversity research will be increasingly con
strained by the computational resources available.

To alleviate this scalability challenge we introduce a novel 
tool, which we call raxtax, and demonstrate that it is at 
least as accurate as the widely-used existing tools SINTAX, 
IDTAXA, RDP, and BayesANT. Furthermore, we demon
strate that raxtax is 2.7 to 100 faster in comparison to the 
competing tools listed.
raxtax achieves high accuracy in conjunction with compu

tational efficiency via a k-mer based matching approach. That 
is, we formulate sequence similarity as follows: Compute the 
expected number of matching k-mers between the reference 
sequence and a random sampling of the k-mers of a query 
sequence. The key insight is that if a query sequence is more 
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similar to a reference sequence, the number of expected match
ing k-mers will be higher. Other tools have used analogous 
sampling techniques to great effect [e.g. MetaCache in the con
text of metagenomic studies (M€uller et al. 2017, Wood et al. 
2019)]. Here, instead of sampling k-mers, we devise an analyti
cal solution. With this reformulation of the problem, we can 
derive closed analytical solutions that allow for computing the 
exact probability that a given reference sequence is (among) the 
best matches for a random sample of query sequence k-mers. 
Given a set of DNA reference sequences (each with a taxonomic 
annotation), raxtax computes the best-match probabilities for 
each anonymous query sequence, and reports the best matching 
lineages with their per-rank confidence scores by aggregating 
these probabilities at each taxonomic rank (clade). Finally, we 
also use these per-rank confidence scores to compute uncer
tainty scores for each assignment of a query to a lineage. Each 
of these quantities and their interpretations are discussed in 
Section 2. raxtax is available as open-source code and pre- 
compiled binaries at https://github.com/noahares/raxtax under a 
CC-NC-BY-SA license.

2 Materials and methods
Given a sequence S (consisting of characters from the set 
fA;C;G;Tg), a k-mer is a sub-sequence S½i::iþk�; i 2 ½jSj− k�
of length k. The set of k-mers, Q, associated with S includes 
all unique k-mers of S. For our current implementation of 
raxtax, we fix k :¼ 8 to allow for some computational opti
mizations (see Section 3.1), but in principle the method can 
be adapted to any k.

Strictly matching all k-mers of each query sequence against 
all reference sequences is not only time and memory inten
sive, but also highly sensitive to sequencing errors (Ma et al. 
2002). On the other hand, only matching a small random 
sample of k-mers does not constitute an appropriate solution 
either. In particular, if the reference sequences are highly 
similar and/or share a large fraction of k-mers, numerous 
repetitions with small random samples will be required to 
distinguish between plausible assignments and therefore 
increase run-times. Instead, we use a combinatorial approach 
for selecting a random subset of k-mers from the query to 
match against the reference. This allows to obtain accurate 
results while being computationally efficient at the same time.

Assume that we are given the set of all k-mers Q which 
have been extracted from a query sequence and that we in
tend to match them against a set of reference sequences 
D¼ fD1; . . . ;Dng. For each Di there exists a corresponding 
set of all k-mers contained therein, denoted by Ki. Let K¼
fK1; . . . ;Kng be the set of all k-mer sets. To find the best 
matching Ki for a given Q, we need to identify the Ki which 
maximizes the expected number of matches from a random 
sampling of t k-mers from Q. We label this sample as StðQÞ. 
Define Pi as the probability that the reference k-mer set Ki 

has the most k-mers in common with a random sampling of 
Q, or more formally: 

Ki \ StðQÞ≥Kj \ StðQÞ 8Kj 2 K: (1) 

Our method for computing this probability is described in 
Sections 3.3 and 3.4.

Define the probability that a reference k-mer set Ki has 
m matching k-mers with StðQÞ as 

piðmÞ :¼ PðjKi \ StðQÞj ¼ mÞ; (2) 

which is a probability mass function (PMF). Using this defini
tion, we can now compute the cumulative mass function 
(CMF) by marginalizing over the possible match sizes that 
are indexed by l. Then, we take the product over the other 
references indexed by j to compute the probability of no 
other reference having more than m matches, 

ciðmÞ :¼
Y

j6¼i

X

l≤m

pjðlÞ
� �

: (3) 

The probability that Ki is among the best matches, given a 
sample size t then is 

Pi :¼
P

m≤ t piðmÞciðmÞ: (4) 

Additionally, we normalize the values in P via the L1 norm 
in order to compute confidence (scores). This operation sim
plifies the subsequent confidence accumulation at different 
taxonomic ranks. As a result, the reported values are not, 
strictly speaking, probabilities. Instead, they report the confi
dence regarding the relative ranking of reference for matching 
a query.

Given a clade B of the reference taxonomy, we define the 
confidence of B being among the best matches relative to 
other clades of the same rank as 

LðBÞ :¼
X

Di2B

Pi

jjPjj1
: (5) 

To simplify the notation, we define LðDiÞ as the lineage 
confidence vector for reference sequence Di. LðDiÞ is a se
quence of Lð�Þ values for the taxonomic lineage, where Ai is a 
series of nested partitions (clades) of the reference sequences 
(Di ¼A0 � . . .�Ai � . . .�D). An example lineage tree with 
a lineage confidence vector for a reference sequence D4 is 
shown in Fig. 1.

2.1 Uncertainty scores
The per-rank confidence values Lð�Þ that we compute with 
raxtax will be biased by the taxonomic distribution of refer
ence sequences in the database. Because the values at high- 
level ranks are the sum over all per-sequence values within 
those ranks, interpreting a confidence value of 0.5 requires 
knowledge about the relative frequency of that clade in the 
reference database. For instance, consider the case that one 
family represents 50% of the database. In this case, by chance 
alone, a substantial proportion of the total confidence score 
will be assigned to reference sequences in this over- 
represented family. Therefore, to better interpret the confi
dence values relative to the reference database properties, we 
report two additional uncertainty scores.

Let �P :¼ 1
n ; . . . ; 1

n

� �
be the expected confidence vector for a 

sequence that is highly dissimilar (i.e. k-mer set intersections 
will be of approximately the same size) to all reference 
sequences. In analogy to using L for P values (Equation (5)), 
we define �L as the expected confidence of obtaining a higher- 
level rank assignment based on �P. This means that the 
expected values of higher-level ranks represent the potential 
database bias. We will use these values to derive an uncer
tainty score for the global (per-sequence) and local (per-rank) 
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assignment signals, i.e. the deviation of the observed confi
dence values from the expected values based on the reference 
database bias.

The local assignment signal 

slðDiÞ :¼

�
�
�
�
�

LðDiÞ

kLðDiÞk1
−

�LðDiÞ

k�LðDiÞk1

�
�
�
�
�

2

; (6) 

quantifies the uncertainty in LðDiÞ as the Euclidean distance 
between the computed and expected per-rank confidence val
ues (with normalization). Analogously, we define the global 
assignment signal 

sg :¼ kP − �Pk2 (7) 

to quantify the reference sequence level confidence scores 
as the Euclidean distance between the computed and 
expected per-sequence confidence values. We describe how 
to interpret and use the local and global assignment signals 
in Supplement 5, available as supplementary data at 
Bioinformatics online.

3 Implementation
raxtax is written in Rust (compiled with version 1.76) and 
is parallelized over the query sequences using the rayon li
brary (https://github.com/rayon-rs/rayon). In this section, we 
describe the algorithmic techniques and data structures we 
use to optimize raxtax.

3.1 Calculating intersection sizes
To compute the match scores for all query-reference pairs, 
we need to compute the intersection of the two k-mer sets. 
Because computing intersection sizes accounts for at least 
half of the processing time of a query it is important to opti
mize them. A naïve implementation requires computing 
OðnmÞ intersections, where n is the number of query sequen
ces, and m is the number of reference sequences. The best 
case run time for a sorted set intersection of sets A and B is 
OðminðjAj; jBjÞÞ via a linear scan when A� B.

While there exist numerous fast set intersection algorithms 
(Schlegel et al. 2011), most pairs of k-mer sets satisfy 
jA\Bj �minðjAj; jBjÞ. Hence, it will be more efficient to ask 
which reference sequences contain a specific k-mer and store 
these results in a lookup table. This lookup table is computed 
once for all k-mers and reference sequences and is 
query-independent. It can therefore be saved for any analyses 
that use the same reference database. Given this lookup table, 
we simply perform a lookup of the k-mers in the query 
sequence to compute the intersection of a query-reference 
pair. Thereby, we reduce the work for one query-reference 
pair from OðminðjAj; jBjÞÞ to OðjA\BjÞ, where A and B are 
the respective k-mer sets.

Because we discard k-mers that include gaps and ambigu
ous characters, they can be represented in a memory-efficient 
manner by only using two bits per DNA character. By setting 
k :¼ 8, we can thus uniquely store an 8-mer in a 16-bit 
unsigned integer (u16) by using its corresponding bit repre
sentation. While parsing the reference sequences, we create a 
lookup table that for each 8-mer (represented as a u16) holds 
a sorted list of reference sequences that contain it. When 
extracting the k-mers from a query sequence later-on, we can 
use this lookup table to rapidly identify those reference 
sequences that contain each query sequence k-mer. This 
allows to efficiently create an array of intersection sizes with 
all reference sequences on demand.

3.2 Post-order lineage tree
The core of raxtax is a multi-furcating tree data structure 
that reflects the entire lineage tree of the reference sequence 
set D. For each query, we create a new array A of size jDj to 
hold the normalized confidence scores from Equation (4). 
The indices of A correspond to the leaves of the tree in post- 
order. Each inner node B of the tree also stores an integer 
pair (a, b) that contains the index interval of A that belongs 
to the rank associated with this node. After computing the 
confidence scores as described in Section 2 and storing them 
in A, we compute their prefix sum Ap. To subsequently deter
mine the clade confidence score LðBÞ (see Equation (5)) for 
any clade B of the tree, we calculate it via Ap½b�−Ap½a� as can 
be seen Fig. 2.

Figure 1. A simple lineage showing how a L-vector is constructed. The contributors to LðD4Þ are highlighted.
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We stop computing further Lð�Þ values when the confi
dence of a node drops below a threshold of 0.005 to avoid an 
unnecessary evaluation of the entire tree. Thereby, we only 
report relevant lineages.

3.3 The probability of exactly m matching k-mers
We defined the PMF piðmÞ of a reference k-mer set Ki having 
exactly m out of t matches in Equation (2). If we expand this, 
we obtain 

piðmÞ :¼

jQ \ Kij þm − 1

m

 !
jKij− jQ \ Kij þ ðt − mÞ− 1

t − m

 !

jQj þ t − 1

t

 ! :

(8) 

Note that for a given query, the divisor is fixed and only 
depends on the size of the k-mer set Q of the query sequence 
and t, i.e. the number of k-mers to be sampled. Also note that 
we need to calculate the numerator for each m≤ t with m be
ing the only variable. By utilizing the equivalence 

nþ1
kþ1

 !

¼
n
k

 !
nþ1
kþ1

; (9) 

we can iteratively compute both binomial coefficients in the 
numerator by only using a single multiplication and division 
per each value of m.

3.4 Caching PMF and CMF values
We define 

CðmÞ :¼
Y

j2½n�

X

l2½m�

pjðlÞ; (10) 

where the inner sum is the CMF over pj for a reference k-mer 
set Kj. Therefore, CðmÞ is the product over all CMFs for 
some match count m. Given this definition, we can compute 

Pi ¼
X

m2½t�

pi mð Þ
CðmÞ
ciðmÞ

(11) 

via 2t additional operations. Computing all PMF and CMF 
values has complexity OðjDjt2Þ. Using Equation (11)
decreases the additional time complexity for computing P 
from OðjDj2tÞ to OðjDjtÞ. That is, the computation of best- 
match probabilities is reduced by a factor of jDj. For all but 
the smallest reference databases, t� jDj, so this caching sub
stantially accelerates the computation.

3.5 Improving runtime for repeated execution with 
the same reference sequences
The lineage tree (cf. Section 3.2) and k-mer-to-sequence map
ping (cf. Section 3.1) are independent of any queries and can 
therefore be shared between runs using the same reference 
sequences. To this end, we save the reference database in a bi
nary file using bincode (https://github.com/bincode-org/bin 
code) which conducts encoding and decoding via a tiny bi
nary serialization strategy. This file can initially be generated 
and then used for further queries at a later time. Often, this 
saves a substantial amount of time on reference databases 
that comprise a large amount of sequences and/or long 
sequences. In our experiments with the BOLD database 
(Ratnasingham and Hebert 2007), using the binary file cre
ated by bincode is two times faster than parsing the origi
nal input.

4 Experimental evaluation
We use three datasets from widely-used databases: UNITE 
ITS (Abarenkov et al. 2024), Greengenes 16S (McDonald 
et al. 2024), BOLD COX1 (Ratnasingham and Hebert 2007). 
In each dataset, we only retained entries with complete 
taxonomic information and also removed duplicate sequen
ces (Table 1). Further details about the databases can be 
found in Supplement 1, available as supplementary data at 
Bioinformatics online. We conducted additional experiments 
with real-world Operational Taxonomic units (OTUs) from a 
large experiment of meta-barcoding data from insect traps 
across Germany (Buchner et al. 2025) and evaluated the frac
tion of equivalent identifications between the different tools. 
Among the tools, raxtax showed the highest agreement, 

Figure 2. A simple lineage showing the prefix sum Ap and inner nodes indices. An example for node B is given.
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with 97.66% of its classifications shared with at least one 
other tool. This evaluation can be found in Supplement 6, 
available as supplementary data at Bioinformatics online.

We compare raxtax (v1.2.2) against four other taxo
nomic assignment tools: SINTAX (vsearch v2.28.1), RDP 
(v2.14–0), IDTAXA (DECIPHER v3.2.0), and 
BayesANT (v1.0).

The experiments were conducted on a 2-socket machine 
with 2x Intel(R) Xeon Platinum 8260 CPUs @ 2.40 GHz with 
48 physical cores (96 threads) in total. Each tool was exe
cuted with 48 threads (except RDP, which can only use two 
threads) to avoid hyper-threading, unless stated otherwise.

4.1 Cross-validation benchmarks
To evaluate raxtax, we performed a 10-fold cross-validation 
with random splits of the databases into 90% reference and 
10% query sequences, and calculated the F1 score to assess 
the accuracy (TP¼True Positives, MC¼Missclassified, 
FN¼False Negatives, FP¼False Positives) at different taxo
nomic ranks 

Recall ¼
TP

TPþMCþ FN
(12) 

Precision ¼
TP

TPþFP
(13) 

F1 ¼ 2 �
Recall � Precision
Recallþ Precision

(14) 

Each tool provides a confidence score for the result of each 
query assignment and for each taxonomic rank that ranges 
between 0 and 100. We evaluated our algorithm against the 
competing tools by setting a continuous confidence cutoff 
thresholds that labels all results below the respective cutoff as 
“not classified”. In this context, “misclassified” means that a 
sequence was assigned to the wrong lineage with a confidence 
score higher than the threshold. We then calculate the F1 

score for each confidence cutoff value (Figs 3 and 4).
Figure 3 shows that on the UNITE database, raxtax, 

RDP, and SINTAX perform equally well at all taxonomic lev
els. Further, raxtax and RDP are indistinguishable at the 
family and genus level. IDTAXA was developed to circum
vent over-classification. Hence, once the confidence threshold 
approaches values of 25–50 the computed F1 scores rapidly 
decline as a consequence of this conservative approach. 
BayesANT is only competitive at the species level.

For sequences from the BOLD database (Fig. 4) only 
raxtax and SINTAX finished all 10 cross-validations within 
the 48 h time limit, so we compare only their F1 scores. 

Table 1. Databases.

Database UNITE Greengenes BOLD

Highest taxonomic rank Fungi Bacteria Arthropoda
No. of sequences 47 154 187 329 1 254 059
No. of unique species 31 479 629 136 622

Figure 3. F1 scores (y-axis) for classification of UNITE sequences at the family, genus, and species level (top to bottom) where the reported confidence 
exceeds the confidence cutoff (x-axis).
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Partial results including RDP and IDTAXA can be found 
in Supplement 3, available as supplementary data at 
Bioinformatics online. The raxtax F1 score is consistently 
better at the family and genus level. At species level, the differ
ence is statistically significant under the Wilcoxon signed-rank 
test with the alternative hypothesis that raxtax has higher F1 

scores, and the matched pairs rank-biserial correlation (RBC, 
effect size) is large (Wilcoxon 1992) (p¼ 6:3680×10− 77, 
RBC: 0.6763). The standardized mean difference (Cohen’s d, 
(Cohen, 1988)) is medium sized (d¼ 0:5549), indicating that 
while the F1 scores of raxtax are consistently higher, the dif
ferences are only marginal. In general, both tools perform ex
ceptionally well at classifying these sequences. However, as we 
show in the following sections, raxtax is 2.7 times faster 
than SINTAX for the comparatively large BOLD database and 
exhibits growing speedups as we simultaneously increase the 
number of query and reference sequences.

Results for the Greengenes database can be found in 
Supplement 2, available as supplementary data at Bioinformatics 
online.

4.2 Performance benchmarks
We measured the runtime and memory requirements of each 
tool for a single test (i.e. one out of the 10 cross-validations) 
on each dataset (Table 2). We set a time limit of 48 h—a com
mon job time limit on clusters—to accommodate for trade
offs between accuracy and time requirements. On the BOLD 
dataset, only raxtax, SINTAX, and RDP completed within 
the memory and time limits. We observed that RDP and 

BayesANT require more resources as a function of the unique 
species number in the reference, while SINTAX and IDTAXA 
performance depends on the number of query and reference 
sequences. Datasets will continue to grow over time, both, in 
terms of the species diversity they cover, and the number of 
query as well as reference sequences they contain. Hence, we 
expect that the computational resource requirements of some 
of the tools we tested might prohibit their future deployment.

4.3 Snapshot benchmark
In order to validate our algorithm via a more realistic setting, 
we used two different BOLD database snapshots that were 
generated 11 months apart from each other. We taxonomi
cally classified the sequences that were added during these 
11 months by treating them as query sequences and subse
quently compared the inferred annotation results with the 

Figure 4. F1 scores (y-axis) for classification of BOLD sequences at the family, genus, and species level (top to bottom) where the reported confidence 
exceeds the confidence cutoff (x-axis).

Table 2. Time and memory requirements for a single cross-validation.

Database UNITE Greengenes BOLDa

Resource T (s) M (GiB) T (s) M (GiB) T (m) M (GiB)

raxtax 2 0.53 237 3.17 13 9.93
SINTAX 12 0.13 94 1.25 35 3.78
RDP 399 10.99 166 0.61 1302 50.52
IDTAXA 2202 3.69 3643 5.40 b

BayesANT 320 3.52 217 9.61 c

a Run-times on BOLD are in minutes instead of seconds.
b Exceeded time limit (48 h).
c R error (attempt to make table with ≥231 elements).
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respective “true” taxonomic annotation. Given the data vol
ume of this analysis, only raxtax and SINTAX were able to 
terminate within the 48 h time limit using 48 threads. The F1 
scores are shown in Fig. 5. As for the 10-fold cross-validation 

on the BOLD database (Fig. 4), raxtax and SINTAX are 
equally accurate. raxtax again outperforms SINTAX at the 
family and genus level. However, the difference at species 
level is not statistically significant in this test. Both the effect 

Figure 5. F1 scores (y-axis) for the classification of BOLD snapshots at the family, genus, and species level (top to bottom) where the reported 
confidence exceeds the confidence cutoff (x-axis).

Figure 6. Time (y-axis) for classification of BOLD samples of different sizes (x-axis). 90% of the sample is the reference, the remaining 10% are the 
queries (three random samples per sample size).
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size (Wilcoxon with two-sided alternative, p¼ 0:7635, RBC: 
0.0349) and the standardized mean difference (d¼ 0:1427) 
are small. Here, raxtax is 5.62 times faster than SINTAX.

4.4 Time and memory scaling
Figure 6 shows super-linear runtime scaling for both tools 
when we simultaneously increase the number of reference 
and query sequences. The number of threads for both tools is 
again fixed to 48. raxtax clearly scales better when we in
crease the number of query and reference sequences. Going 

from 100 000 to 1 000 000 total sequences the speedup over 
SINTAX increases from 1.3 to 2.9.

In terms of memory requirements (Fig. 7), both tools ex
hibit a linear memory scaling as the total dataset size (no. of 
query and reference sequences) increases. The main memory 
requirements of raxtax (and presumably SINTAX as well) 
are dominated by the data structures that hold the reference 
database. Hence, this linear scaling is expected. SINTAX 
exhibits lower memory requirements and better scaling when 
we increase the total number of sequences. However, even 

Figure 7. Maximum memory usage in GiB (y-axis) for classification of BOLD samples of different sizes (x-axis). 90% of the sample is the reference, the 
remaining 10% are the queries (three random samples per sample size).

Figure 8. Strong self-relative efficiency and standard deviation (y-axis) over increasing thread numbers (x-axis). The reference database size is fixed at 
450 000 sequences with 50 000 queries (90–10 split), and we randomly sample five times.
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for the whole BOLD database raxtax’s memory require
ments remain below 10 GiB (see Table 2), so we argue that 
this is a favorable resource tradeoff for using raxtax be
cause of faster run times. BOLD currently contains the largest 
amount of barcodes for meta-barcoding projects and the 
memory consumption of raxtax increases by roughly 1 GB 
per 150 000 sequences. Therefore, we believe that raxtax 
can be used without issues on mid-range laptops for the fore
seeable future.

We also measure strong parallel efficiency for raxtax for 
a varying number of threads on samples from the BOLD 
database. Figure 8 shows a gradual decline in parallel 
efficiency from two threads (efficiency: 0.87) to 24 threads 
(efficiency: 0.74) compared to the baseline with one thread. 
Thereafter, parallel efficiency continues to rapidly deteriorate 
with increasing number of threads.

We use explicit thread-pinning to avoid executing threads 
on the same physical core and schedule threads to the same 
socket if possible (up to 24 threads). Therefore, the more 
rapid decline in parallel efficiency at 32 and 48 threads is to 
be expected as cross-socket communication overhead is intro
duced. See Supplement 4, available as supplementary data at 
Bioinformatics online, for more details and discussion about 
thread-pinning and weak parallel speedup.

5 Conclusion
We have presented a novel analytical approach for classifying 
unlabeled sequences based on k-mer matching and derive the 
equations of our match scoring function for determining the 
best matching taxonomic lineage. Our method also introdu
ces two additional uncertainty scores that are sensitive to an 
unbalanced distribution of ranks in the reference database 
and thereby provide users more context for drawing in
formed conclusions. We implemented this approach in rax
tax as open-source software. Further, we conducted a 
thorough code optimization to ensure that the tool is fast and 
efficient. An extensive evaluation of raxtax in conjunction 
with a comparison to existing tools demonstrates that we at
tain better or equivalent classification accuracy based on F1 

scores. Further, raxtax can handle the ever-increasing data
set sizes in taxonomic classification and can efficiently use all 
available computational resources on modern hardware. We 
argue that the increased memory requirements compared to 
SINTAX are an acceptable tradeoff for the reduced run- 
times. In the future, we aim to deploy raxtax as part of 
a comprehensive meta-barcoding pipeline for real-world 
queries and adapt our approach in order to apply it beyond 
short barcoding sequences. Finally, we intend to investigate 
the design of a distributed memory parallelization.
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