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Abstract

Motivation: Taxonomic classification in biodiversity studies is the process of assigning the anonymous sequences of a marker gene (bar-
code) or whole genomes (metagenomics) to a specific lineage using a reference database that contains named sequences in a known taxon-
omy. This classification is important for assessing the diversity of biological systems. Taxonomic classification faces two main challenges:
first, accuracy is critical as errors can propagate to downstream analysis results; and second, the classification time requirements can limit
study size and study design, in particular when considering the constantly growing reference databases. To address these two challenges,
we introduce raxtax, an efficient, novel taxonomic classification tool for barcodes that uses common k-mers between all pairs of query and
reference sequences. We also introduce two novel uncertainty scores which take into account the fundamental biases of refer-
ence databases.

Results: We validate raxtax on three widely-used empirical reference databases and show that it is 2.7-100 times faster than competing
state-of-the-art tools on the largest database while being equally accurate. In particular, raxtax exhibits increasing speedups with growing
query and reference sequence numbers compared to existing tools (for 700 000 and 1 000 000 query and reference sequences overall, it is 1.3
and 2.9 times faster, respectively), and therefore alleviates the taxonomic classification scalability challenge.

Availability and implementation: raxtax is available at https://github.com/noahares/raxtax under a CC-NC-BY-SA license. The scripts and
summary metrics used in our analyses are available at https://github.com/noahares/raxtax_paper_scripts. The source code, sequence data, and

summarized results of the analyses are available at https://doi.org/10.5281/zenodo.15057027.

1 Introduction

Biodiversity researchers frequently need to address the ques-
tion: Which species are present in my sample? A common so-
lution consists in identifying and subsequently sequencing a
well-conserved region of the genome which is present in all
organisms under study (Hebert ez al. 2003b, Ward et al.
20035, Schoch et al. 2012). Such regions, known as barcodes
(Hebert et al. 2003a), are then used to identify species. The
ribosomal 16S gene, the cytochrome oxidase 1 (COX1), and
the internal transcribed spacer (ITS) regions are examples of
frequently used barcodes in distinct regions of the tree of life
(see, e.g. Janssen 2006, Elbrecht et al. 2016, Yang et al.
2018). As using barcodes for DNA-based species identifica-
tion constitutes a routine analysis task, there exist several
widely-used taxonomic classification tools, such as SINTAX
(Edgar 2016), IDTAXA (Murali et al. 2018), the RDP Naive
Bayesian classifier (RDP) (Wang et al. 2007), and BayesANT
(Zito et al. 2023). These highly cited tools deploy distinct
algorithmic approaches to determine the species that are pre-
sent in a sample.

The major design and one major quality criterions for any
taxonomic classification tool are: assign sequences quickly
and correctly. Species identification accuracy is critical, as it

typically constitutes the first step in biodiversity analyses.
Therefore, errors are likely to be propagated to downstream
analyses and results. However, we are in the midst of the
next generation sequencing data avalanche which is being
further intensified by an increasing number of biodiversity
field studies (Liu et al. 2011, La Salle et al. 2016). The
amount of data being generated has outpaced Moore’s law
for the last decade (Wetterstrand 2019). Hence, we need to
perform barcoding sequence data analysis more efficiently.
Otherwise, biodiversity research will be increasingly con-
strained by the computational resources available.

To alleviate this scalability challenge we introduce a novel
tool, which we call raxtax, and demonstrate that it is at
least as accurate as the widely-used existing tools SINTAX,
IDTAXA, RDP, and BayesANT. Furthermore, we demon-
strate that raxtax is 2.7 to 100 faster in comparison to the
competing tools listed.

raxtax achieves high accuracy in conjunction with compu-
tational efficiency via a k-mer based matching approach. That
is, we formulate sequence similarity as follows: Compute the
expected number of matching k-mers between the reference
sequence and a random sampling of the k-mers of a query
sequence. The key insight is that if a query sequence is more
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similar to a reference sequence, the number of expected match-
ing k-mers will be higher. Other tools have used analogous
sampling techniques to great effect [e.g. MetaCache in the con-
text of metagenomic studies (Miiller e al. 2017, Wood et al.
2019)]. Here, instead of sampling k-mers, we devise an analyti-
cal solution. With this reformulation of the problem, we can
derive closed analytical solutions that allow for computing the
exact probability that a given reference sequence is (among) the
best matches for a random sample of query sequence k-mers.
Given a set of DNA reference sequences (each with a taxonomic
annotation), raxtax computes the best-match probabilities for
each anonymous query sequence, and reports the best matching
lineages with their per-rank confidence scores by aggregating
these probabilities at each taxonomic rank (clade). Finally, we
also use these per-rank confidence scores to compute uncer-
tainty scores for each assignment of a query to a lineage. Each
of these quantities and their interpretations are discussed in
Section 2. raxtax is available as open-source code and pre-
compiled binaries at https://github.com/noahares/raxtax under a
CC-NC-BY-5SA license.

2 Materials and methods

Given a sequence S (consisting of characters from the set
{a,C,G,T}), a k-mer is a sub-sequence S[i..i+k],i € [|S| - k]
of length k. The set of k-mers, Q, associated with S includes
all unique k-mers of S. For our current implementation of
raxtax, we fix k := 8 to allow for some computational opti-
mizations (see Section 3.1), but in principle the method can
be adapted to any k.

Strictly matching all k-mers of each query sequence against
all reference sequences is not only time and memory inten-
sive, but also highly sensitive to sequencing errors (Ma et al.
2002). On the other hand, only matching a small random
sample of k-mers does not constitute an appropriate solution
either. In particular, if the reference sequences are highly
similar and/or share a large fraction of k-mers, numerous
repetitions with small random samples will be required to
distinguish between plausible assignments and therefore
increase run-times. Instead, we use a combinatorial approach
for selecting a random subset of k-mers from the query to
match against the reference. This allows to obtain accurate
results while being computationally efficient at the same time.

Assume that we are given the set of all k-mers Q which
have been extracted from a query sequence and that we in-
tend to match them against a set of reference sequences
D ={D,...,D,}. For each D; there exists a corresponding
set of all k-mers contained therein, denoted by K;. Let K =
{K1,...,K,} be the set of all k-mer sets. To find the best
matching K; for a given Q, we need to identify the K; which
maximizes the expected number of matches from a random
sampling of ¢ k-mers from Q. We label this sample as S;(Q).
Define P; as the probability that the reference k-mer set K;
has the most k-mers in common with a random sampling of
Q, or more formally:

ICiﬂSz(Q)Z’C,'ﬂSt(Q)V’Cj e K. (1)

Our method for computing this probability is described in
Sections 3.3 and 3.4.

Define the probability that a reference k-mer set K; has
m matching k-mers with S;(Q) as

Wahl et al.

pi(m) := P(|Ki N $,(Q)| = m), (2)

which is a probability mass function (PMF). Using this defini-
tion, we can now compute the cumulative mass function
(CMF) by marginalizing over the possible match sizes that
are indexed by I. Then, we take the product over the other
references indexed by j to compute the probability of no
other reference having more than » matches,

ci(m) =] (Z p,~<l>>. (3)

j#i \I<m

The probability that K; is among the best matches, given a
sample size # then is

Pi:=3_,, <, Pilm)ci(m). (4)

Additionally, we normalize the values in P via the L1 norm
in order to compute confidence (scores). This operation sim-
plifies the subsequent confidence accumulation at different
taxonomic ranks. As a result, the reported values are not,
strictly speaking, probabilities. Instead, they report the confi-
dence regarding the relative ranking of reference for matching
a query.

Given a clade B of the reference taxonomy, we define the
confidence of B being among the best matches relative to
other clades of the same rank as

P;

D,eB ||PH1 .

L(B) := (5)

To simplify the notation, we define £(D;) as the lineage
confidence vector for reference sequence D;. £L(D;) is a se-
quence of L(-) values for the taxonomic lineage, where A; is a
series of nested partitions (clades) of the reference sequences
(Di=ApC...C A C...CD). An example lineage tree with
a lineage confidence vector for a reference sequence Dy is
shown in Fig. 1.

2.1 Uncertainty scores

The per-rank confidence values L(-) that we compute with
raxtax will be biased by the taxonomic distribution of refer-
ence sequences in the database. Because the values at high-
level ranks are the sum over all per-sequence values within
those ranks, interpreting a confidence value of 0.5 requires
knowledge about the relative frequency of that clade in the
reference database. For instance, consider the case that one
family represents 50% of the database. In this case, by chance
alone, a substantial proportion of the total confidence score
will be assigned to reference sequences in this over-
represented family. Therefore, to better interpret the confi-
dence values relative to the reference database properties, we
report two additional uncertainty scores.

Let P := (%, ... ,%) be the expected confidence vector for a
sequence that is highly dissimilar (i.e. k-mer set intersections
will be of approximately the same size) to all reference
sequences. In analogy to using L for P values (Equation (5)),
we define L as the expected confidence of obtaining a higher-
level rank assignment based on P. This means that the
expected values of higher-level ranks represent the potential
database bias. We will use these values to derive an uncer-
tainty score for the global (per-sequence) and local (per-rank)

G20z Jequiadag g} Uo Jasn Oy sBnig J1edued NZ9 Aq 86282E8/0ZVEIN/Z L/ 1 /aI0IHE/SONEBWLIOJUIOIG/ WO N0 dlWapEede//:sdly Wolj papeojumoq


https://github.com/noahares/raxtax

raxtax

D, D, Dy D,
P, =03

P, =0.05 P, =0.1 P3; =0.05

Ds Dg D,

Ps =0.15 P;=0.1
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Figure 1. A simple lineage showing how a £L-vector is constructed. The contributors to £(D.) are highlighted.

assignment signals, i.e. the deviation of the observed confi-
dence values from the expected values based on the reference
database bias.

The local assignment signal

L(D:;) LD
1£D)lly  II1£(Da)lly )

si(Di) := (6)

quantifies the uncertainty in £(D;) as the Euclidean distance
between the computed and expected per-rank confidence val-
ues (with normalization). Analogously, we define the global
assignment signal

sg = |[P=P]|, (7)

to quantify the reference sequence level confidence scores
as the Fuclidean distance between the computed and
expected per-sequence confidence values. We describe how
to interpret and use the local and global assignment signals
in Supplement 5, available as supplementary data at
Bioinformatics online.

3 Implementation

raxtax is written in Rust (compiled with version 1.76) and
is parallelized over the query sequences using the rayon li-
brary (https://github.com/rayon-rs/rayon). In this section, we
describe the algorithmic techniques and data structures we
use to optimize raxtax.

3.1 Calculating intersection sizes

To compute the match scores for all query-reference pairs,
we need to compute the intersection of the two k-mer sets.
Because computing intersection sizes accounts for at least
half of the processing time of a query it is important to opti-
mize them. A naive implementation requires computing
O(nm) intersections, where 7 is the number of query sequen-
ces, and m is the number of reference sequences. The best
case run time for a sorted set intersection of sets A and B is
O(min(|A|,|B|)) via a linear scan when A C B.

While there exist numerous fast set intersection algorithms
(Schlegel er al. 2011), most pairs of k-mer sets satisfy
|A N B| < min(|Al,|B|). Hence, it will be more efficient to ask
which reference sequences contain a specific k-mer and store
these results in a lookup table. This lookup table is computed
once for all k-mers and reference sequences and is
query-independent. It can therefore be saved for any analyses
that use the same reference database. Given this lookup table,
we simply perform a lookup of the k-mers in the query
sequence to compute the intersection of a query-reference
pair. Thereby, we reduce the work for one query-reference
pair from O(min(|A|,|B|)) to O(|AN B|), where A and B are
the respective k-mer sets.

Because we discard k-mers that include gaps and ambigu-
ous characters, they can be represented in a memory-efficient
manner by only using two bits per DNA character. By setting
k:=8, we can thus uniquely store an 8-mer in a 16-bit
unsigned integer (u16) by using its corresponding bit repre-
sentation. While parsing the reference sequences, we create a
lookup table that for each 8-mer (represented as a ul6) holds
a sorted list of reference sequences that contain it. When
extracting the k-mers from a query sequence later-on, we can
use this lookup table to rapidly identify those reference
sequences that contain each query sequence k-mer. This
allows to efficiently create an array of intersection sizes with
all reference sequences on demand.

3.2 Post-order lineage tree

The core of raxtax is a multi-furcating tree data structure
that reflects the entire lineage tree of the reference sequence
set D. For each query, we create a new array A of size |D| to
hold the normalized confidence scores from Equation (4).
The indices of A correspond to the leaves of the tree in post-
order. Each inner node B of the tree also stores an integer
pair (a, b) that contains the index interval of A that belongs
to the rank associated with this node. After computing the
confidence scores as described in Section 2 and storing them
in A, we compute their prefix sum A,. To subsequently deter-
mine the clade confidence score L(B) (see Equation (3)) for
any clade B of the tree, we calculate it via A, [b] — Ap[a] as can
be seen Fig. 2.
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D, Do D3 D,
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Figure 2. A simple lineage showing the prefix sum A, and inner nodes indices. An example for node B'is given.

We stop computing further L(-) values when the confi-
dence of a node drops below a threshold of 0.005 to avoid an
unnecessary evaluation of the entire tree. Thereby, we only
report relevant lineages.

3.3 The probability of exactly m matching k-mers

We defined the PMF p;(m) of a reference k-mer set X; having
exactly 7 out of ¢ matches in Equation (2). If we expand this,
we obtain

(Qﬁ’Ci|+m-1>(IICiI-IQﬂiCiH(t-m)-l)

m t—m

pi(m) = O +7-1
t
(8)

Note that for a given query, the divisor is fixed and only
depends on the size of the k-mer set O of the query sequence
and ¢, i.e. the number of k-mers to be sampled. Also note that
we need to calculate the numerator for each m <# with m be-
ing the only variable. By utilizing the equivalence

n+1 n\n+1
<k+1>:<k>m’ ®)

we can iteratively compute both binomial coefficients in the
numerator by only using a single multiplication and division
per each value of m.

3.4 Caching PMF and CMF values
We define

Clm) =[] >_ i), (10)

j€lA] Ie[m]

where the inner sum is the CMF over p; for a reference k-mer
set Kj. Therefore, C(m) is the product over all CMFs for
some match count 7. Given this definition, we can compute

Pi= " pi(m) e (11)

via 2¢ additional operations. Computing all PMF and CMF
values has complexity O(|D|t?). Using Equation (11)
decreases the additional time complexity for computing P
from O(|D|*t) to O(|D|t). That is, the computation of best-
match probabilities is reduced by a factor of |D|. For all but
the smallest reference databases, ¢ < | D], so this caching sub-
stantially accelerates the computation.

3.5 Improving runtime for repeated execution with
the same reference sequences

The lineage tree (cf. Section 3.2) and k-mer-to-sequence map-
ping (cf. Section 3.1) are independent of any queries and can
therefore be shared between runs using the same reference
sequences. To this end, we save the reference database in a bi-
nary file using bincode (https:/github.com/bincode-org/bin
code) which conducts encoding and decoding via a tiny bi-
nary serialization strategy. This file can initially be generated
and then used for further queries at a later time. Often, this
saves a substantial amount of time on reference databases
that comprise a large amount of sequences and/or long
sequences. In our experiments with the BOLD database
(Ratnasingham and Hebert 2007), using the binary file cre-
ated by bincode is two times faster than parsing the origi-
nal input.

4 Experimental evaluation

We use three datasets from widely-used databases: UNITE
ITS (Abarenkov et al. 2024), Greengenes 16S (McDonald
et al. 2024), BOLD COX1 (Ratnasingham and Hebert 2007).
In each dataset, we only retained entries with complete
taxonomic information and also removed duplicate sequen-
ces (Table 1). Further details about the databases can be
found in Supplement 1, available as supplementary data at
Bioinformatics online. We conducted additional experiments
with real-world Operational Taxonomic units (OTUs) from a
large experiment of meta-barcoding data from insect traps
across Germany (Buchner et al. 2025) and evaluated the frac-
tion of equivalent identifications between the different tools.
Among the tools, raxtax showed the highest agreement,
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with 97.66% of its classifications shared with at least one
other tool. This evaluation can be found in Supplement 6,
available as supplementary data at Bioinformatics online.

We compare raxtax (v1.2.2) against four other taxo-
nomic assignment tools: SINTAX (vsearch v2.28.1), RDP
(v2.14-0), IDTAXA  (DECIPHER  v3.2.0), and
BayesANT (v1.0).

The experiments were conducted on a 2-socket machine
with 2x Intel(R) Xeon Platinum 8260 CPUs @ 2.40 GHz with
48 physical cores (96 threads) in total. Each tool was exe-
cuted with 48 threads (except RDP, which can only use two
threads) to avoid hyper-threading, unless stated otherwise.

4.1 Cross-validation benchmarks

To evaluate raxtax, we performed a 10-fold cross-validation
with random splits of the databases into 90% reference and
10% query sequences, and calculated the F; score to assess
the accuracy (TP=True Positives, MC=Missclassified,
FN=False Negatives, FP=False Positives) at different taxo-
nomic ranks

Table 1. Databases.

Database UNITE Greengenes BOLD

Highest taxonomic rank Fungi Bacteria
No. of sequences 47 154 187 329
No. of unique species 31479 629

Arthropoda
1254059
136 622

Classifier =

TP
Recall = 5 e N (12)
. TP
Precision = TP TP (13)
Fi—2 Recall * Precision (14)

* - 11 -~ - -
Recall + Precision

Each tool provides a confidence score for the result of each
query assignment and for each taxonomic rank that ranges
between 0 and 100. We evaluated our algorithm against the
competing tools by setting a continuous confidence cutoff
thresholds that labels all results below the respective cutoff as
“not classified”. In this context, “misclassified” means that a
sequence was assigned to the wrong lineage with a confidence
score higher than the threshold. We then calculate the F,
score for each confidence cutoff value (Figs 3 and 4).

Figure 3 shows that on the UNITE database, raxtax,
RDP, and SINTAX perform equally well at all taxonomic lev-
els. Further, raxtax and RDP are indistinguishable at the
family and genus level. IDTAXA was developed to circum-
vent over-classification. Hence, once the confidence threshold
approaches values of 25-50 the computed F; scores rapidly
decline as a consequence of this conservative approach.
BayesANT is only competitive at the species level.

For sequences from the BOLD database (Fig. 4) only
raxtax and SINTAX finished all 10 cross-validations within
the 48h time limit, so we compare only their F; scores.

bayeasnt === idtaxa === raxtax === rdp sintax

1.00 A

0.751

0.50 4

0.25+

0.00 1

Anwey

1.00

0.501

F1

0.254

0.00 4

snueg

1.00 4

0.751

0.50 4

0.25+

0.00 1

saadg

75 100

Confidence

Figure 3. F; scores (y-axis) for classification of UNITE sequences at the family, genus, and species level (top to bottom) where the reported confidence

exceeds the confidence cutoff (x-axis).
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raxtax === sintax

0.9754

0.9504

0.925+

0.9004

B E———

Anwey

0.9754

0.9504

F1

0.925+

0.900 4

snusg

0.9754

0.950+

0.9254

0.900 4

salpadg

50 75 100

Confidence

Figure 4. F, scores (y-axis) for classification of BOLD sequences at the family, genus, and species level (top to bottom) where the reported confidence

exceeds the confidence cutoff (x-axis).

Partial results including RDP and IDTAXA can be found
in Supplement 3, available as supplementary data at
Bioinformatics online. The raxtax F; score is consistently
better at the family and genus level. At species level, the differ-
ence is statistically significant under the Wilcoxon signed-rank
test with the alternative hypothesis that raxtax has higher F;
scores, and the matched pairs rank-biserial correlation (RBC,
effect size) is large (Wilcoxon 1992) (p=6.3680x10""7,
RBC: 0.6763). The standardized mean difference (Cohen’s d,
(Cohen, 1988)) is medium sized (d = 0.5549), indicating that
while the F; scores of raxtax are consistently higher, the dif-
ferences are only marginal. In general, both tools perform ex-
ceptionally well at classifying these sequences. However, as we
show in the following sections, raxtax is 2.7 times faster
than SINTAX for the comparatively large BOLD database and
exhibits growing speedups as we simultaneously increase the
number of query and reference sequences.

Results for the Greengenes database can be found in
Supplement 2, available as supplementary data at Bioinformatics
online.

4.2 Performance benchmarks

We measured the runtime and memory requirements of each
tool for a single test (i.e. one out of the 10 cross-validations)
on each dataset (Table 2). We set a time limit of 48 h—a com-
mon job time limit on clusters—to accommodate for trade-
offs between accuracy and time requirements. On the BOLD
dataset, only raxtax, SINTAX, and RDP completed within
the memory and time limits. We observed that RDP and

Table 2. Time and memory requirements for a single cross-validation.

Database UNITE Greengenes BOLD?

Resource T(s) M(GB) T(s) M(GiB) T(m) M(GiB)

raxtax 2 0.53 237 3.17 13 9.93

SINTAX 12 0.13 94 1.25 35 3.78

RDP 399 10.99 166 0.61 1302 50.52
b

IDTAXA 2202 3.69 3643 5.40
BayesANT 320 3.52 217 9.61 €

* Run-times on BOLD are in minutes instead of seconds.
b Exceeded time limit (48 h).
¢ Reerror (attempt to make table with >2! elements).

BayesANT require more resources as a function of the unique
species number in the reference, while SINTAX and IDTAXA
performance depends on the number of query and reference
sequences. Datasets will continue to grow over time, both, in
terms of the species diversity they cover, and the number of
query as well as reference sequences they contain. Hence, we
expect that the computational resource requirements of some
of the tools we tested might prohibit their future deployment.

4.3 Snapshot benchmark

In order to validate our algorithm via a more realistic setting,
we used two different BOLD database snapshots that were
generated 11 months apart from each other. We taxonomi-
cally classified the sequences that were added during these
11 months by treating them as query sequences and subse-
quently compared the inferred annotation results with the
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Figure 5. F; scores (y-axis) for the classification of BOLD snapshots at the family, genus, and species level (top to bottom) where the reported

confidence exceeds the confidence cutoff (x-axis).
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Figure 6. Time (y-axis) for classification of BOLD samples of different sizes (x-axis). 90% of the sample is the reference, the remaining 10% are the

queries (three random samples per sample size).

respective “true” taxonomic annotation. Given the data vol-
ume of this analysis, only raxtax and SINTAX were able to
terminate within the 48 h time limit using 48 threads. The F;
scores are shown in Fig. 5. As for the 10-fold cross-validation

on the BOLD database (Fig. 4), raxtax and SINTAX are
equally accurate. raxtax again outperforms SINTAX at the
family and genus level. However, the difference at species
level is not statistically significant in this test. Both the effect
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Figure 8. Strong self-relative efficiency and standard deviation (y-axis) over increasing thread numbers (x-axis). The reference database size is fixed at
450 000 sequences with 50 000 queries (90-10 split), and we randomly sample five times.

size (Wilcoxon with two-sided alternative, p = 0.7635, RBC:
0.0349) and the standardized mean difference (d =0.1427)
are small. Here, raxtax is 5.62 times faster than SINTAX.

4.4 Time and memory scaling

Figure 6 shows super-linear runtime scaling for both tools
when we simultaneously increase the number of reference
and query sequences. The number of threads for both tools is
again fixed to 48. raxtax clearly scales better when we in-
crease the number of query and reference sequences. Going

from 100 000 to 1000 000 total sequences the speedup over
SINTAX increases from 1.3 to 2.9.

In terms of memory requirements (Fig. 7), both tools ex-
hibit a linear memory scaling as the total dataset size (no. of
query and reference sequences) increases. The main memory
requirements of raxtax (and presumably SINTAX as well)
are dominated by the data structures that hold the reference
database. Hence, this linear scaling is expected. SINTAX
exhibits lower memory requirements and better scaling when
we increase the total number of sequences. However, even
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for the whole BOLD database raxtax’s memory require-
ments remain below 10 GiB (see Table 2), so we argue that
this is a favorable resource tradeoff for using raxtax be-
cause of faster run times. BOLD currently contains the largest
amount of barcodes for meta-barcoding projects and the
memory consumption of raxtax increases by roughly 1 GB
per 150000 sequences. Therefore, we believe that raxtax
can be used without issues on mid-range laptops for the fore-
seeable future.

We also measure strong parallel efficiency for raxtax for
a varying number of threads on samples from the BOLD
database. Figure 8 shows a gradual decline in parallel
efficiency from two threads (efficiency: 0.87) to 24 threads
(efficiency: 0.74) compared to the baseline with one thread.
Thereafter, parallel efficiency continues to rapidly deteriorate
with increasing number of threads.

We use explicit thread-pinning to avoid executing threads
on the same physical core and schedule threads to the same
socket if possible (up to 24 threads). Therefore, the more
rapid decline in parallel efficiency at 32 and 48 threads is to
be expected as cross-socket communication overhead is intro-
duced. See Supplement 4, available as supplementary data at
Bioinformatics online, for more details and discussion about
thread-pinning and weak parallel speedup.

5 Conclusion

We have presented a novel analytical approach for classifying
unlabeled sequences based on k-mer matching and derive the
equations of our match scoring function for determining the
best matching taxonomic lineage. Our method also introdu-
ces two additional uncertainty scores that are sensitive to an
unbalanced distribution of ranks in the reference database
and thereby provide users more context for drawing in-
formed conclusions. We implemented this approach in rax-
tax as open-source software. Further, we conducted a
thorough code optimization to ensure that the tool is fast and
efficient. An extensive evaluation of raxtax in conjunction
with a comparison to existing tools demonstrates that we at-
tain better or equivalent classification accuracy based on F;
scores. Further, raxtax can handle the ever-increasing data-
set sizes in taxonomic classification and can efficiently use all
available computational resources on modern hardware. We
argue that the increased memory requirements compared to
SINTAX are an acceptable tradeoff for the reduced run-
times. In the future, we aim to deploy raxtax as part of
a comprehensive meta-barcoding pipeline for real-world
queries and adapt our approach in order to apply it beyond
short barcoding sequences. Finally, we intend to investigate
the design of a distributed memory parallelization.
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