KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved single particle ICP-MS assessment using a novel Python-based data processing algorithm (Sparta) for nanoparticle quantification

Hellmann, Steffen ; Gil-Díaz, Teba ORCID iD icon 1; Corte-Rodríguez, Mario; Merten, Dirk; Montes-Bayón, María; Schäfer, Thorsten
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract:

Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is a valuable tool to characterise nanoparticles (NPs) regarding their element-specific mass, size and particle number concentration (PNC). However, spICP-MS still suffers from a lack of harmonised and transparent data processing algorithms, resulting in little user-flexibility in adapting parameters, when working with e.g. the manufacturer software. In this study, we present a transparent Python-based algorithm (called ‘Sparta’), validated and critically compared with existing data processing methods (SPCal and an in-house Excel method as well as two commercial instrument software), applied for measurements of ∼30 nm Au, ∼74 nm TiO$_2$ and ∼50, ∼100 and ∼300 nm SiO2 NPs, using instruments from two different manufacturers using milli vs. microsecond dwell times. Sparta is capable of correcting baseline drift, determining the particle detection threshold (PDT) via the Poisson and iterative Gaussian method, performing a peak summation necessary for microsecond dwell times, and even extracting specific mass or size distributions from e.g. polydisperse materials via a Gaussian peak-fitting. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000188755
Veröffentlicht am 16.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 0267-9477, 1364-5544
KITopen-ID: 1000188755
Erschienen in Journal of Analytical Atomic Spectrometry
Verlag Royal Society of Chemistry (RSC)
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page