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Vitreoretinal surgery, requiring precise microscale tissue manipulation, is well-suited for robotic 
assistance. Image registration enhances surgeons’ visual perception by aligning high-resolution 
preoperative OCT images with the intraoperative environment, improving visibility of anatomical 
features not seen in microscope images. However, optical distortions from the cornea, lens, eye 
curvature, and scanning patterns challenge the use of diagnostic data in robotic navigation. This study 
introduces a novel technique for curvature-corrected retinal registration, integrating diagnostic OCT 
with instrument-integrated OCT. The pipeline comprises feature extraction, curvature correction, 
initial alignment, and fine registration. Experiments using an artificial model eye and ex vivo porcine 
eye validate the method. Curvature correction achieves accuracy comparable to existing methods, 
with deviations of 17 µm for the model eye and 460 µm for the porcine eye. Post-registration, the 
fiducial marker error reduces to 103 µm for the model eye and 318 µm for the porcine eye. Our method 
provides intraoperative diagnostic context, enabling reliable topological assistance in retinal robotic 
systems.
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Epiretinal membranes (ERM) are a common macular condition, affecting up to 12 % of the population1. ERM 
peeling is a surgical intervention aimed at removing scar tissue from the retina to surgically repair vision. 
Preoperative optical coherence tomography (OCT) is extensively utilized in ophthalmology to detect and pinpoint 
ERM, as these transparent membranes are challenging to distinguish in fundus images. The peeling procedure 
involves creating a flap and meticulously removing the ERM from the retina using circular motions2. For retinal 
surgeons, the most delicate aspects of ERM peeling are flap creation and membrane grasping without causing 
excessive indentation of the retina, which could cause irreversible retinal trauma. Robot-assisted membrane 
grasping offers potential benefits by minimizing hand tremors and enabling precise tissue manipulation3.

Instrument-integrated optical coherence tomography (iiOCT) imaging is increasingly adopted to assist 
vitreoretinal surgeons in overcoming the limited depth perception inherent in surgical microscopes4. By 
integrating an optical fiber into microsurgical tools like picks and forceps, surgeons can measure the distance 
between the instrument’s tip and the retina, facilitating flap creation and peeling5,6. Previous research has 
shown that iiOCT combined with robotics can create a topographic map of the retina’s first layer7. However, 
the reduced image resolution of iiOCT poses challenges for distinguishing tissues beyond the retinal boundary 
layer. Optimal grasping points are generally characterized by minimal discontinuities between the ERM and the 
underlying retinal nerve fiber layer8.

High-resolution OCT volume scans of the perimacular region assist in identifying specific areas, such 
as these optimal grasping points. However, the disparate coordinate systems hinder the use of preoperative 
images for surgical navigation. Extensive research exists on mono-modal registration of retinal OCT data to 
enhance image quality, expand the field of view, and conduct longitudinal studies. Multi-modal registration 
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has also been explored to fuse OCT images with other imaging techniques, such as fundus imaging9 and 
fluorescein angiography10. While Fleming et al. have examined the registration of preoperative OCT images with 
intraoperative microscope images to identify ERM edges for peeling initiation11, the registration of diagnostic 
OCT with iiOCT remains unexplored.

Volumetric transformation-based registration methods, which utilize intensity differences or cross-
correlation, are commonly employed when retinal data is generated by the same imaging protocol. In contrast, 
image-features-based registration methods use distinct anatomical features of the retina to determine the 
necessary transformation, as discussed by Pan et al.12. These features include different landmark points, curves, 
surfaces, or combination thereof, and are effectively used for both mono- and multi-modal registration due to 
their lower computational complexity. Point-based approaches utilize image features such as the fovea, optic disc, 
and blood vessel bifurcations12. Layer-based methods involve segmenting retinal layers, with the inner limiting 
membrane (ILM) and retinal pigment epithelium (RPE) being commonly segmented layers. For instance, the 
OCTRexpert algorithm employs seven retinal layers for mono-modal registration, starting with ILM and the 
RPE alignment and incrementally incorporating additional layers, as described by Pan et al.13. Rivas-Villar et 
al. perform multi-device OCT registration of longitudinal scans by using both vessel bifurcations and layer 
information14. In multi-modal registration, it is common practice to convert both modalities into a unified 
representation15. Liu et al. generated point cloud data from endoscope-integrated OCT and micro-computed 
tomography (µCT). They utilized a convolutional neural network to extract features from both point clouds, 
performed rigid matching, and employed a neural deformation pyramid network for nonrigid refinement16.

Retinal imaging data is affected by distortions caused by the optical properties of the cornea and lens, as well 
as the curvature of the eyeball. Steidle and Straub developed an optical method to correct display distortions 
in posterior segment OCT images by estimating the shape of the human eye, involving three-dimensional ray 
tracing through OCT scan optics and ocular surfaces using optical simulation17. Their eye model allows for 
adjustments of parameters such as axial eye length and corneal curvature, with tolerance analysis revealing high 
sensitivity to axial length variations, as noted by Bumstead et al.18. Conversely, Kuo et al. employ both numerical 
and analytical models to reorient the A-scans in OCT images, validating corrected images against MRI19. A 
significant limitation of optical methods is the need for customization with biometric measurements from the 
measured eye, making curvature correction sensitive and error-prone. Grytz et al. introduced an empirical 
nonlinear distortion correction method that was validated using MRI images and implanted glass beads with 
known diameters, and applied to tree shrews20.

This study aims to bridge the gap between preoperative diagnostic 3D imaging and intraoperative robotic 
assistance by proposing a preoperative-intraoperative registration pipeline that includes curvature correction 
(CC) of extraocular OCT. Specifically, the contributions of this work are: 

	1.	 Generation of both preoperative and intraoperative retinal point clouds of an artificial eye phantom and 
a closed-sky ex vivo porcine eye. Source point clouds are obtained through segmentation of preoperative 
OCT volumes and feature extraction, while target point clouds are acquired through intraocular instrument 
movements by a robotic system while performing iiOCT distance measurements.

	2.	 Proposal of a multi-step registration pipeline that takes source and target point clouds as input and generates 
the corresponding deformation field. This pipeline includes a novel CC method based on sphere fitting, lev-
eraging the accurate intraocularly measured retinal curvature.

	3.	 Evaluation of appropriate robotic iiOCT trajectories and required point cloud densities to achieve successful 
registration, along with assessment of the benefits of a supplemented CC step within the registration pipe-
line.

	4.	 Discussion of accuracy and time requirements that make our method applicable within the clinical workflow 
of vitreoretinal surgery.

Method
Our approach for curvature-corrected registration of diagnostic OCT with instrument-integrated OCT point 
clouds, as illustrated in Fig. 1, consists of the four key stages: feature extraction, CC, initial alignment, and fine 
registration.

The feature extraction stage is dedicated to extracting the ILM layer within the OCT data and converting it 
into a point cloud representation. The CC stage addresses any distortions present in the diagnostic OCT data, 
ensuring its geometric representation is accurate by leveraging iiOCT data. Lastly, initial alignment and fine 
registration stages work together to align the OCT data with the iiOCT data within the intraoperative robotic 
coordinate system.

Feature extraction
Feature-based registration methods typically rely on retinal vasculature or retinal layer information as key features 
for registration12. However, detecting blood vessels in iiOCT poses a considerable challenge. Additionally, iiOCT 
scans can primarily be utilized to segment the retinal boundary layer and potentially the bright RPE. Beyond 
its vasculature and layers, the healthy human retina features two consistent landmarks: the fovea and the optic 
nerve head (ONH). These landmarks exhibit minimal variation and have a predictable relative orientation based 
on whether they belong to the left or right eye. Consequently, they are utilized for the preliminary alignment of 
source and target point clouds. Following this initial alignment, the extensive retinal boundary layer is employed 
for fine registration.

Feature extraction is carried out in two distinct stages. The first stage involves extracting the retinal surface 
from both modalities and represents it as point clouds. In the second stage, we manually extract additional point 
features from the generated point clouds.
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To segment the diagnostic OCT volumes, the first white pixel encountered along the imaging direction 
of each one-dimensional A-scan within the three-dimensional C-scan is selected to represent the surface 
coordinate, thereby generating a 3D segmentation mask. In a similar manner, the iiOCT M-scan, which consists 
of temporally consecutive A-scans, is segmented to produce a 2D segmentation mask. To ensure registration 
accuracy, we manually annotated the retinal boundary layer using 3D Slicer 5. Numerous algorithms are available 
for OCT segmentation of C-scans, B-scans, and A-scans21. To transform the iiOCT boundary segmentation into 
3D space, each segmented surface point is paired with its corresponding robot pose, given that the iiOCT probe 
is attached to a robot. The i-th point in the iiOCT retinal point cloud is determined as

	
piiOCT

i = xiiOCT
i + diiOCT

i · viiOCT
i

∥viiOCT
i ∥

,� (1)

where xiiOCT
i ∈ R3 and viiOCT

i ∈ R3 denote the position and orientation of the iiOCT probe tip in the 
robot base coordinate system, respectively, and diiOCT

i ∈ R+ represents the measured distance to the retina. 
Representing the two different modalities as point clouds leverages point cloud registration methods.

Curvature correction
While the methods proposed by Steidle and Straub, and Kuo et al. necessitate information about refractive 
inidices and axial eye length17,19, the approach presented here operates independently of these measurements, by 
incorporating curvature information from iiOCT. The objective of this pipeline component is to transform the 
curvature-distorted OCT point cloud into a curvature-corrected OCT point cloud, ensuring its curvature aligns 
with that of the iiOCT point cloud.

Let {pm
i ∈ R3} denote the point cloud of OCT modality m, which can be either diagnostic OCT or 

intraoperative iiOCT, within their respective coordinate systems. The iiOCT signal is free from optical 
distortions, which allows for a sphere fit to accurately represent the true radius of the retina, as evidenced by 
previous research22. A sphere is defined by its center c ∈ R3 and radius r ∈ R+, which minimize the sum of 
squared distances of the sample points from the sphere surface S:

	
Sm : arg min

cm,rm

∑
i

(∥pm
i − cm∥ − rm)2 .� (2)

Although the eye is not a perfect sphere, it can be adequately approximated as one for the purpose of rough CC 
in this step of the pipeline23. Since the fovea lies on the optical axis and distortions around the fovea are minimal, 

Fig. 1.  The proposed method for curvature-corrected registration integrates diagnostic OCT with instrument-
integrated OCT. The CC stage utilizes the accurate curvature information provided by the iiOCT to rectify the 
curvature of the diagnostic OCT scan.
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the two spheres are aligned in the fovea. In contrast, the distances between the spheres increase toward the 
periphery, where distortion effects become more pronounced.

To correct a specific distorted OCT point pOCT
i , a line Li(t) = pOCT

i + t(cOCT − pOCT
i ), t ∈ R is drawn 

from the point pOCT
i  toward the center cOCT of the sphere fitted to the distorted OCT point cloud. Next, 

the intersections jOCT
i ∈ R3 and jiiOCT

i ∈ R3 between line Li and the lower hemispheres of the OCT sphere 
and the iiOCT sphere are computed. The differences ϵi = jiiOCT

i − jOCT
i ∈ R3 between these intersections 

constitute the deformation field {ϵi}. A point pOCT
i  is corrected by adding the corresponding deformation 

vector:

	 pOCT*
i = pOCT

i + ϵi .� (3)

It is important to note that this approach does not project points onto spheres; rather, it preserves features 
present in the original point cloud through deformation.

Initial alignment
The diagnostic OCT data is initially aligned with the iiOCT data within the robot’s coordinate system, ensuring 
that both point clouds are oriented to open upward. This alignment lays the groundwork for more precise fine 
registration.

First, the OCT point cloud is translated so that the fovea points coincide. Next, the imaging directions are aligned 
through a point cloud tilt correction. The two vectors nOCT = cOCT − pOCT

f  and niiOCT = ciiOCT − piiOCT
f , 

which point from the foveas to their respective sphere centers, are aligned using Rodrigues’ rotation formula. 
Lastly, the OCT point cloud {pOCT

i } is rotated around the z-axis, which represents the visual axis, as follows:

	 pOCT′

i = Rz(ϕ) · pOCT
i .� (4)

This rotation aligns the ONHs pOCT
o  and piiOCT

o , where Rz(ϕ) is the rotation matrix around the z-axis and

	
ϕ = arccos

(
pOCT

o · piiOCT
o

∥pOCT
o ∥∥piiOCT

o ∥

)
� (5)

is the angle between the ONHs. This rotation, restricted to the x-y plane, is intended to prevent the introduction 
of a tilt, as the distance in z-direction between the ONHs can be significant, even after CC. General methods, 
such as random sample consensus (RANSAC), may fail during coarse registration due to the lack of distinctive 
features and the differences in curvature.

Fine registration
Iterative closest point (ICP) is a widely used algorithm for aligning 3D point clouds given an initial guess of the 
rigid transformation24. In this work, ICP is employed in combination with CC, enabling the OCT point cloud 
to be first deformed and subsequently transformed to achieve the best rigid alignment with the iiOCT point 
cloud. Point-to-plane ICP is a variant of ICP that utilizes the normal vectors of the target points to minimize the 
distances between source and target clouds, demonstrating faster convergence compared to the original point-
to-point version. ICP establishes correspondences between points a of the source point cloud A and points b of 
the target point cloud B using a closest point criterion, which seeks to find the closest point in the target cloud 
for each point of the source cloud. If the distance between points is below a certain threshold, a correspondence 
is established, and the pair is added to the set of corresponding points K = {(a, b)}. Next, the transformation 
(R, t) that minimizes the error metric

	
E(R, t) =

∑
(a,b)∈K

((b − (Ra + t)) · nb)2
� (6)

is computed, where nb is the normal of the respective target point b. ICP is terminated when either a maximum 
number of iterations, set to j = 100, is reached or when an experimentally defined relative root mean square 
error of 10−6 is achieved. For this work, a correspondence distance threshold of 20 µm is used.

Additionally, we explore whether the nonlinear transformations computed by nonrigid coherent point drift 
(CPD) can serve as an alternative to CC. Furthermore, given the time differences between diagnosis and surgery, 
non-rigid methods may be advantageous even in the absence of curvature distortions, as they can accomodate 
changes in intraocular pressure or intraoperative lesions. CPD models the points a ∈ A as a Gaussian mixture 
model (GMM), meaning that each point a is represented as a Gaussian kernel, while the target points b ∈ B are 
treated as data points25. The method maximizes the log-likelihood of the data points belonging to the GMM. 
Additionally, the deformation field is regularized to prevent extreme deformations and to ensure a smooth 
transformation field. Given that nonrigid CPD is computationally demanding, the OCT source point cloud 
is downsampled to a spacing of 300 µm. When applying the deformation to the dense source point cloud, 
the four nearest neighbors in the downsampled cloud are identified using a k-d tree search. Subsequently, the 
corresponding four translation vectors are weighted and averaged.

Experimental validation
Experiments validate the method using an artificial model eye and an ex vivo porcine eye, utilizing two distinct 
experimental setups for specific validation scenarios (Fig. 2). The GEYEDANCE surgical system, designed for 
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vitreoretinal surgery, facilitates experiments in realistic surgical conditions, while the industrial robot offers 
enhanced precision.

Data acquisition
Two different test eyes are employed to evaluate the proposed registration pipeline. The Lankenau model 
(Modell-Augen Manufaktur Dr. Eva Lankenau) is a model eye with realistic geometry specifically designed for 
OCT recordings. The anterior half of the model eye consists of a cornea and lens made of silicone. The posterior 
half contains the retina, which includes anatomical features such as blood vessels, the foveal pit, the ONH, 
and multiple retinal layers. The two halves can be assembled and filled with water to facilitate realistic closed-
sky scanning. The model exhibits geometry, refractive power, and retinal structure that closely resemble those 
of a healthy and rigid human eye. Conversely, porcine eyes are frequently used as surrogates for human eyes 
in research due to their availability and similar anatomy, which includes the cornea, lens, retinal layers, and 
ONH. A significant difference, however, is the absence of a macula and fovea26. Additionally, ex vivo eyes often 
exhibit post-mortem mobile retinal detachments, which complicate accurate registration. The porcine eyes were 
sourced from a local butcher. Under closed-sky conditions, the anterior part of the eye, including the lens and 
cornea, is left intact to preserve the natural barriers. To prevent the cornea from drying out, a viscoelastic agent is 
applied. In contrast, open-sky conditions, which involve the removal of the anterior part, are frequently observed 
in research to avoid imaging distortions and to allow direct access to the vitreous and retina.

In this work, two distinct experimental setups are utilized, each specifically designed for either open-sky and 
closed-sky data acquisition (Fig. 2). For experiments involving an artificial model eye, the robotic manipulator 
used is the Meca500® (Mecademic Robotics, Montreal, Canada), a six-arm industrial robot with a position 
repeatability of 5 µm. Originally developed as a Fourier-domain OCT for biometry, the IOLMaster 700® (Carl 
Zeiss Meditec AG, Jena, Germany) is adapted for iiOCT sensing in this study. Within the open-sky Lankenau eye, 
the end-effector tip is maneuvered over a 10 mm × 10 mm grid, with a spacing between points of approximately 
50 µm. The 2D grid is projected onto a sphere with a radius of 10 mm, which closely matches the radius of 
the Lankenau model. This projection ensures that the fiber tip positions remain close to the retinal surface 
throughout the entire recording, thereby maintaining sufficient signal strength.

For the ex vivo tests, the GEYEDANCE surgical system27, specifically designed for intraocular surgery, is 
employed. It consits of a customized 4-DoF robotic manipulator with a hardware-defined remote center of 
motion (RCM) and a high-resolution fiber-based OCT setup. The GEYEDANCE OCT system features a working 
distance of 12.8 mm and an A-scan depth of 1024 pixels, resulting in a resolution of 12.5 µm. While the sampling 
rate is adaptable, an update rate of 50 Hz is used in this study. As for the Lankenau experiment, a 10 mm × 10 

Fig. 2.  The ARTEVO 800 microscope-integrated OCT system captures diagnostic OCT volumes. (a) The 
Meca500 industrial robot is used for experiments involving the (b) artificial Lankenau eye phantom. (c) The 
modified IOL Master 700 provides real-time, dual-path OCT measurements. (d) The GEYEDANCE robotic 
manipulator, specifically designed for vitreoretinal surgery, is used for (e) porcine eye experiments. (f) A 
custom-built OCT engine is utilized for common-path iiOCT sensing.
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mm end-effector grid with a spacing of approximately 50 µm is implemented. This trajectory is executed under 
closed-sky conditions with the RCM constraint, as would be typical in realistic clinical settings. The porcine eye 
data corresponds to the reconstructed porcine eye point cloud used in our modeling work7, which focused on 
modeling the local retinal geometry.

Closed-sky C-scans are acquired with the ZEISS ARTEVO  800 RESCAN® (Carl Zeiss Meditec AG, Jena, 
Germany) microscope-integrated OCT, which serves as a substitute for a diagnostic OCT device. The scan field 
is adjusted to coincide with the scanned area of the iiOCT, consisting of 512 × 128 A-scans, each comprising 
1024 pixels, with an imaging depth of 2.9 mm in tissue. This choice of imaging depth results in cut-off corners in 
the Lankenau experiment but enhances the resolution δz. The scan field is determined by counting the number 
of voxels between fiducial markers of known distance, as the nominal scan field is only applicable for flat surfaces. 
The ZEISS ARTEVO system’s model scales the point cloud based on the entry angle; however, microscope-
integrated OCT faces challenges due to unknown factors, such as the inaccurate optical path, including the wide 
field lens28. Alternatively, feature points, such as the fovea and ONH, could be utilized to match the fovea-ONH-
distances in both point clouds. The resulting voxel dimensions are δxL = 24.4 µm, δxp =31.3 µm, δyL = 97.6 
µm, and δyp = 125 µm for the lateral dimensions, with an axial dimension of δz = 2.8 µm. The lateral voxel 
dimensions of porcine eye scan are increased compared to the the Lankenau model due to the larger scan field.

A Dell laptop with Windows 11, equipped with a 12th Gen Intel(R) Core(TM) i5-1245U 1.60 GHz processor 
and 16GB of RAM, serves as the computing platform used to control the robot and execute the registration 
algorithms programmed in Python.

Data processing
Various robotic trajectories are assessed to determine the extent to which data acquisition can be minimized - 
thereby saving valuable operating room time - without compromising registration performance. Additionally, 
different spacings between scans are evaluated to explore the effects of increased instrument tip velocities. For a 
fixed iiOCT frequency, higher velocities result in larger spacings. In total, two distinct trajectory types, each with 
three different point spacings, are synthetically derived from dense grid scans with a spacing of approximately 50 
µm. This approach ensures highly resolved fiducial markers for all robot trajectories and enhances comparability.

Trajectory T1 is the 10 mm × 10 mm grid pattern that covers the fovea at its center and the ONH in the 
periphery. Trajectory T2 is a 5 mm × 5 mm grid pattern that also centers on the fovea. Additionally, a 2 mm × 
2 mm grid pattern is centered at the ONH location. An additional spiral trajectory starts at the center above the 
fovea and extends with 5 coils to a final radius of 5 mm. The different spacings - S1, S2, and S3 - have intervals 
of approximately 50 µm, 150 µm, and 300 µm, between consecutive spiral points, respectively, and are obtained 
through subsampling. In total, the combinations of trajectory and point spacing result in six combinations 
(Fig. 3).

Given a robotic velocity of v = 2 mms and a scanning frequency of 40 Hz for S1, the resulting spacing is 50 µ
m. Under these conditions, the acquisition times are 344 s for T2 and 1010 s for T1. By increasing the spacing, it 
is possible to achieve higher speeds, which reduces the acquisition times to 16 s for T2 and 29 s for T1.

Validation method
In similar studies, the positions of anatomical landmarks in both modalities are compared after registration 
to evaluate registration accuracy. However, the fovea and ONH are the only visible landmarks in the iiOCT 
and are utilized for registration. Therefore, fiducial markers are placed in the test eyes to provide additional 
validation points. The fiducial markers are not used for the registration process. An alternative approach is the 
calibration approach by Zhou et al., which involves localizing the instrument tip within the OCT volume and 
subsequently determining the transformation between the coordinate system of the microscope-integrated OCT 
and the robot’s coordinate system29. However, this validation would not be applicable if a preoperative OCT 
device were used.

Fig. 3.  The combinations of trajectory (grid, spiral plus feature patches) and point spacing (50 µm, 150 µm, 
300 µm) yield six distinct configurations.

 

Scientific Reports |        (2025) 15:42933 6| https://doi.org/10.1038/s41598-025-28922-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The fiducial markers in the Lankenau eye consist of three tungsten wires, each 50 µm thick and 5 mm long, 
which are clearly visible in both modalities. These wires are arranged in a triangular formation within the 
macular area, which is the region of interest for ERM peeling (see Fig. 4a). The intersections of the three wires, 
forming the corners of the triangle, define the validation points.

In the porcine eye, seven wires, each with a thickness of 100 µm and a length of 2 mm, are stitched toward the 
intraocular space from the back of the eye. This is illustrated in Fig. 4b, where retinal points are colored blue and 
wire points are colored magenta. The central wire serves as a substitute for the fovea, which is absent in porcine 
eyes but essential for our registration pipeline.

The mean fiducial marker error (MFME) serves as an indicator of how accurately a specific point, 
preoperatively planned in the diagnostic OCT point cloud, can be located within the robot’s coordinate system. 
This metric enables the evaluation, whether the necessary accuracy is achieved for automated grasping at 
preoperatively planned grasping points. The MFME is expressed as follows:

	
MFME = 1

N

N∑
i=1

√
(xiiOCT

i − xOCT
i )2 + (yiiOCT

i − yOCT
i )2 + (ziiOCT

i − zOCT
i )2 ,� (7)

where N is the number of fiducial marker points, and (xiiOCT
i , yiiOCT

i , ziiOCT
i ) and (xOCT

i , yOCT
i , zOCT

i ) 
represent the coordinates of the fiducial markers in the iiOCT point cloud and in the OCT point cloud after 
registration, respectively.

The Chamfer distance (CD) is particularly useful for assessing the overall alignment quality between two 
point clouds, as it considers the distribution of all points rather than just specific landmarks. This metric provides 
a global evaluation, extending beyond specific areas such as the macula, where the fiducial marker are located. 
Moreover, precisely locating the fiducial marker can be challenging and may introduce errors in the MFME. In 
contrast, the CD is independent of such annotations, making it a robust measure. The CD calculates the average 
distances from each point in one point cloud to its nearest neighbor in the other point cloud, and vice versa. It 
is calculated as follows:

	
CD = 1

2|POCT|
∑

pOCT∈POCT

min
piiOCT∈PiiOCT

∥pOCT − piiOCT∥ + 1
2|PiiOCT|

∑
piiOCT∈PiiOCT

min
pOCT∈POCT

∥piiOCT − pOCT∥ ,� (8)

where POCT is the set of points in the OCT point cloud and PiiOCT the set of points in the iiOCT point cloud. 
If, in certain areas, the point clouds do not overlap, these regions can distort the CD, resulting in outcomes that 
appear worse than they actually are. This issue is mitigated by cropping the point clouds to a z-axis aligned 
cylinder of maximum radius, ensuring complete overlap.

Results
For the Lankenau model eye, the radius of curvature determined via iiOCT is 9.356 mm, which is consistent with 
the manufacturer’s specification of approximately 10 mm. In contrast, the radius obtained using standard OCT 
prior to correction is 20.6 mm, while post-correction, it measures 9.373 mm. The absolute difference between 
the iiOCT curvature and the corrected OCT curvature is minimal, at 0.017 mm. In the case of the porcine 
eye, the radius of curvature measured using iiOCT is 10.706 mm. The OCT measurement before correction 

Fig. 4.  (a) The Lankenau eye model features geometric landmarks such as the fovea and the ONH, which are 
visible in the B-scan. This model allows for the placement of a triangular arrangement of 5 mm fiducial marker 
wires on the retina. (b) An intact porcine eye lacks a fovea and accessibility, necessitating the use of stitched 
wires as markers. The image displays fiducial markers alongside the segmented porcine eye iiOCT point cloud.
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is considerably higher, at 28.8 mm, whereas the radius after correction is 11.166 mm. The absolute difference 
between the iiOCT radius and the corrected OCT radius for the porcine eye is larger, at 0.460 mm, indicating 
that the correction is less effective compared to the Lankenau model eye. Overall, these findings highlight the 
effectiveness in improving the accuracy of OCT measurements, as curvature errors are maintained within the 
sub-millimeter range.

Figure 5 illustrates the qualitative registration performance on the Lankenau model data. In comparison to 
T2, the trajectory length is further reduced by decreasing the foveal patch size to a square with a side length of 
2 mm. Within the macular region, the registration is successful for both curvature-corrected and curvature-
uncorrected point clouds, as illustrated in Fig.  5a and b. However, in peripheral regions, the absence of CC 
results in a gap between the source and target point clouds. This discrepancy is particularly noticeable in the side 
view, as depicted in Fig. 5c.

Moreover, the registered point clouds depicted in Fig.  5d demonstrate that our CC method effectively 
preserves retinal features, including the fovea and the ONH, while simultaneously correcting the curvature.

Figure 6a presents the qualitative registration performance on the porcine eye using the combination T1 S1. 
Overall, the figure shows a good alignment of the point clouds, including at bumps, vessels, and the optic disc.

The color-coded heatmap in Fig. 6b demonstrates an overall good alignment, with the majority of distances 
being less than 1 mm. In the central area, most points are green, signifying a difference from the target point 
cloud of less than 100 µm. The occasional blue points represent intersections between source and target point 
clouds. It is noteworthy that the error in the ONH located in the upper right corner is relatively high. The 
heatmap displays dark red hues in the top left and bottom right areas, which are solely attributed to the absence 
of iiOCT scanning in those regions, thereby justifying the cropping prior to calculating the CD. The bottom left 
section of the heatmap clearly indicates suboptimal registration results, characterized by an axial offset between 
the source and target point clouds.

Figure 7 illustrates the distribution of the distances that constitute the CD. For each point in the two point 
clouds, the nearest point in the other point cloud is identified, and the corresponding distance is calculated. The 
histograms on the left display the distance density distributions for the Lankenau model, while the distributions 
on the right pertain to the porcine eye, each with and without CC. For the Lankenau eye, the histogram associated 
with uncorrected registration reveals a high variance in distances, whereas the CC effectively concentrates 
the distance distribution to values below 150 µm. A similar effect is observed with the porcine eye, albeit less 
pronounced. For curvature-corrected registration on the ex vivo tissue, very few distances exceed 0.5 mm, while 
without CC, the distribution extends up to 1.5 mm.

We conducted paired per-point comparisons of these minimum distances both before (baseline) and after 
applying our CC to test our hypothesis that CC enhances registration accuracy. For the Lankenau eye, the mean 
difference of 443 µm with a standard deviation of 317 µm from these comparisons indicates a clear improvement. 
The p-value, p < 10−18, from the paired t-test confirms strong statistical significance. This improvement is also 
evident in the porcine eye, where the mean enhancement is 697 µm with a standard deviation of 761 µm.

Table 1 offers a comprehensive overview of the registration results acquired for both the Lankenau eye and 
biological tissue, assessed with and without CC.

Generally, the registration results show improvement with an increase in trajectory length (from T2 to 
T1) and with a greater number of data points (transitioning from S3 to S1). Nevertheless, the registration 

Fig. 5.  Qualitative registration performance on the Lankenau model data with and without CC. Mint color 
represents the diagnostic OCT data, while blue color represents the iiOCT data.
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 Metrics

Lankenau model eye Porcine eye

Without CC With CC
Error 
reduction Without CC With CC

Error 
reduction

MFME
[µm]

CD
[µm]

MFME
[µm]

CD
[µm]

MFME
[%]

CD
[%]

MFME
[µm]

CD
[µm]

MFME
[µm]

CD
[µm]

MFME
[%]

CD
[%]

T1 S1 134 357 105 58.9 -21.6 -83.5 318 395 320 243 +0.63 -38.5

T1 S2 138 363 118 59.1 -14.5 -83.7 333 400 339 234 +1.80 -41.5

T1 S3 9100 1630 146 84.9 -98.4 -94.8 361 407 323 236 -10.5 -42.0

T2 S1 185 356 103 54.7 -44.3 -84.6 352 408 356 359 +1.42 -12.0

T2 S2 2340 333 178 89.0 -92.4 -73.3 360 396 350 263 -2.78 -33.6

T2 S3 209 371 123 53.3 -41.2 -85.6 333 397 335 256 +0.60 -35.5

Table 1.  Quantitative registration performance, measured by MFME and CD, is evaluated for various 
trajectories and subsampling configurations on both the Lankenau model and porcine eye data, with and 
without CC.  Bold numerals are used to indicate which of the six configurations achieved the minimal error.

 

Fig. 7.  Comparison of distance distributions for T1 S1 presented for both the Lankenau model (left) and 
porcine eye data (right), each analyzed with and without CC.

 

Fig. 6.  (a) Source (diagnostic OCT in mint color) and target (iiOCT T1 S1 in blue color) porcine eye 
point clouds after undergoing curvature-corrected registration. (b) Color-coded difference map illustrating 
the disparities between the OCT point cloud and the iiOCT point cloud following curvature-corrected 
registration.
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performance remains relatively stable across the different iiOCT input data, indicating the potential to further 
reduce data acquisition times without compromising accuracy. While the MFME exhibits a slight but consistent 
improvement with CC for the Lankenau experiment, the CD shows an error reduction from 333 µm in the best 
case without CC to below 89 µm for all cases with CC. An MFME of 103 µm and a CD of 54.7 µm is achieved for 
T2 S1, representing an improvement of 82 µm and 301 µm, respectively. Moreover, CC stabilizes the registration 
performance, preventing divergences as large as 9.1 mm during optimization, as observed for T1 S3. For T2 S2, 
the overall alignment of the point clouds is good, but the large MFME indicates an incorrect rotation around the 
z-axis. The optimizer converged to a local minimum that produces a worse MFME in comparison to the initial 
alignment that preceded it.

In the porcine eye experiments, the MFME is not consistently affected by CC. Although the MFME increases 
slightly in four out of six configurations, for T1 S3, it decreased by 11 % from 361 µm to 323 µm. Conversely, 
the CD consistently demonstrates an error reduction of 135 µm on average, equating to 33.8 %. The porcine eye 
registration achieves an MFME of 320 µm and a CD of 243 µm for T1S1.

To evaluate whether nonrigid CPD could potentially replace CC, experiments with varying levels of 
nonrigidity are conducted. The parameter α, which dictates the coherence of nonrigid CPD, is systematically 
adjusted. A higher α results in greater coherence and increased rigidity, whereas a lower alpha leads to reduced 
coherence and increased nonrigidity. The impact of this parameter sweep is illustrated in Fig. 8.

With a relatively large coherence of α = 2, nonrigid CPD is unable to modify the curvature of the OCT 
point cloud effectively, as illustrated in Fig. 8a. As nonrigidity increases, i.e., with smaller α values, the overall 
alignment improves because CPD is afforded more flexibility. However, a small coherence parameter of 
α = 0.00005 introduces discontinuities in the registered OCT point cloud, as OCT points remain uncorrected 
when no iiOCT points are nearby. This issue is particularly visible at the corners of the OCT point cloud shown 
in Fig. 8c. As shown in Fig. 8b, in the Lankenau experiment, a coherence parameter of α = 0.0003 represents 
the optimal trade-off between alignment and fidelity. This parameter setting balances between the flexibility 
required for effective nonrigid registration and the preservation of the structural integrity of the point cloud. For 
the porcine eye, setting α = 0.00001 produces the optimal results, achieving an MFME of 748 µm and a CD of 
245 µm. Even with the optimized α value, our proposed curvature-corrected rigid registration delivers superior 
results compared to non-rigid registration with CPD.

The mean computation time for ICP varies from 1.54 s for T2 S3 to 5.29 s for T1 S1. In contrast, the mean 
computation time for nonrigid CPD ranges from 7.90 s for T2 S2 to 63.20 s for T1 S1. The time required to 
compute the registration is negligible when compared to the duration of up to 17 min needed for robotic data 
acquisition.

Discussion
Curvature correction
The disparity in curvatures observed between OCT and iiOCT primarily arises from the scanning geometry 
utilized in OCT. Conversely, the C-scan image is generated by aligning A-scans in parallel. This method introduces 
a misalignment between the actual scan geometry and the representation displayed, which contributes to a 
flattened appearance of the retina17.

The curvature-corrected point clouds derived from both the Lankenau model and the porcine eye offer 
a more authentic depiction of the retina’s true anatomical structure. The greater variance between the target 
and actual radius observed in the porcine eye, post-correction, is likely due to its intricate anatomical features, 
deviation from a spherical form, and the less precise experimental setup. In the case of the Lankenau model, the 
least squares residuals from the sphere fitting measure 0.21 mm, whereas the porcine eye displays least squares 
residuals of 1.82 mm. Considering that the retina’s shape is not ideally spherical, the correction method could 
be refined by employing alternative fitting methods, such as ellipsoidal fitting. Nonetheless, when compared to 
advanced methodologies, such as the technique developed by Kuo et al.19, our CC technique exhibits competitive 
performance.

Registration
The accuracy attained by our ICP-based curvature-corrected registration pipeline, measured at 103 µm, is 
noteworthy. This level of precision could be adequate for addressing the use case of grasping at preoperatively 
defined grasping points. Given that the lateral spacing between iiOCT scans is approximately 50 µm, this 
indicates that the achieved accuracy falls within the range of two voxels. The registration accuracy in the 

Fig. 8.  Registration results for nonrigid CPD with a varied coherence parameter α for the Lankenau model 
eye, along with the corresponding MFME, are presented. Nonrigidity is increased from left to right.
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Lankenau model surpasses that of the porcine eye, likely due to the controlled experimental conditions. In the 
Lankenau model, the iiOCT data acquisition was conducted in an open-sky setup, where the robotic system 
operates without mechanical attachment to the eye. In contrast, the porcine eye experiment is conducted in 
a closed-sky configuration, where even minor deviations of the RCM could adversely impact the accuracy of 
data recordings. Furthermore, the signal quality in the porcine eye data is lower, as illustrated in Fig. 4. The 
reduced signal quality of the iiOCT, resulting from the beam divergence, is further affected by the medium 
through which the light waves propagate. In the Lankenau model, the medium is air, while in the porcine eye, 
the medium is vitreous humor, which exhibits greater attenuation compared to air. Additionally, obtaining high-
quality OCT scans from ex vivo porcine eyes presents challenges due to the rapid degradation of the lens and 
cornea, which can lead to cloudiness.

The suboptimal performance of nonrigid CPD, which can result in incorrect curvature or discontinuities 
(see Fig. 8), could be enhanced by incorporating constraints within the expectation-maximization framework, 
specifically by penalizing lateral displacement. This approach would favor deformation in the z-direction to 
correct curvature while preserving a high level of coherence. Moreover, advancements in hardware could facilitate 
novel registration techniques. A higher-quality iiOCT system or OCT angiography could potentially capture 
vessel information, offering crucial features for improved registration. Additionally, integrating segmentation of 
the RPE layer could be advantageous. Existing implementations of colored ICP could leverage distinct labeling 
of the retinal surface and RPE to enhance registration accuracy.

For successful initial alignment, it is essential that both the fovea and the ONH are present in the recording, 
which is typically achievable in central OCT scans with a width of exceeding 10 mm. The inaccuracies observed, 
particularly in the porcine eye experiment, may stem from errors in the annotation process. Variability in 
pinpointing the center of the ONH, which has an approximate diameter of 2 mm, could affect registration 
accuracy. This issue could be mitigated by annotating the optic disc boundary rather than selecting a single 
point. Additionally, automating the feature extraction step could help eliminate human errors30. In scenarios 
where the foveal pit is absent due to disease, an alternative landmark, such as a macular hole, could be utilized 
for alignment.

Validation method
The main method we use to evaluate the registration pipeline is the MFME, which is specifically designed to 
assess accuracy within the region of interest. This metric evaluates three or six distinct locations that represent 
points of interest, such as those where an ERM flap might be created. A limitation of this approach is the manual 
selection of fiducial marker points from the set of measured points, which means that the evaluation can be 
influenced by the resolution of the scans. In future work, this error could be substantially reduced by estimating 
wire crossovers instead of selecting actual points. Assessing registration accuracy in a closed-sky scenario 
presents particular challenges. Improving the resolution of the OCT system and reducing wire thickness could 
significantly enhance the results. An alternative to using wires involves the utilization of ceramic spheres, as 
demonstrated by Li et al.28. The desired number of spheres of known size can be strategically placed on the retina 
at specific positions. In their study, the smallest sphere had a diameter of 0.8 mm, which is clearly visible in both 
the OCT and the iiOCT imaging.

Clinical applicability
Regarding the clinical applicability of our method, the time required for preoperative-intraoperative registration 
is a crucial factor for adoption. In clinical practice, diagnostic OCT and its screening are conducted preoperatively, 
which means the post-processing time is not critical. In contrast, tasks performed during surgery are time-
sensitive and must be completed promptly to avoid disrupting the surgical workflow. The most time-consuming 
prerequisite for registration is the robotic acquisition of iiOCT data. This study evaluated various trajectories 
and subsampling methods, including a grid pattern, and a spiral configuration, supplemented by patches over 
the fovea and ONH. Prior to the peeling of the ERM, a vitrectomy is typically performed, which involves 
considerable movement within the eye. This step could be leveraged to obtain a random sparse scan of the retina’s 
structure. To improve our trajectories, it could be advantageous to capture smaller patches that concentrate on 
both the fovea and the ONH, as shown in Fig. 5. In contrast, the total acquisition time for T1, which ranges from 
approximately range0.5 min to 17 min depending on the spacing, is impractical. Consequently, it is essential to 
further decrease the point spacing and shorten the trajectory length.

In vivo registration precision will be affected by retinal movements due to respiration and heartbeat31. Cereda 
et al. found repetitive movement patterns with amplitudes of 10 µm for heartbeat and 20 µm for breathing4. 
While models can adjust for predictable movements32, unexpected non-periodic movements, like skipped 
heartbeats or snoring, remain challenging33. Furthermore, in vivo iiOCT sensing will be impacted by pathologies 
and disturbances such as bleeding and artifacts, necessitating sophisticated signal processing algorithms.

Conclusion
This study introduced a pioneering pipeline for registering diagnostic OCT data with intraoperative iiOCT data, 
incorporating distortion correction of the OCT data by utilizing the geometrically precise iiOCT information. 
The proposed methods were rigorously validated using both an artificial model eye and an ex vivo porcine eye. 
The pipeline markedly improved the registration outcomes. Specifically, for the Lankenau model, the fiducial 
marker error was reduced to 103.0 µm, and the Chamfer distance was decreased to 54.7 µm. In the case of 
porcine eyes, while curvature correction did not improve the fiducial marker error, it did achieve an average 
reduction in Chamfer distance by 135 µm. Further improvements could be realized through the adoption of more 
sophisticated validation techniques or the deployment of advanced hardware. This work represents a significant 
advancement in the realm of robot-assisted vitreoretinal surgery by seamlessly integrating diagnostic OCT with 
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intraoperative iiOCT, thereby offering surgeons precise representations of the retina’s structure. This integration 
facilitates a suite of advanced robotic assistance functions, enhancing surgical precision and outcomes.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Code availability
The code is available from the corresponding author on reasonable request.
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