KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards fair decentralized benchmarking of healthcare AI algorithms with the Federated Tumor Segmentation (FeTS) challenge

Zenk, Maximilian; Baid, Ujjwal; Pati, Sarthak; Linardos, Akis; Edwards, Brandon; Sheller, Micah; Foley, Patrick; Aristizabal, Alejandro; Zimmerer, David; Gruzdev, Alexey; Martin, Jason; Shinohara, Russell T.; Reinke, Annika; Isensee, Fabian; Parampottupadam, Santhosh; Parekh, Kaushal; Floca, Ralf; Kassem, Hasan; Baheti, Bhakti; ... mehr

Abstract (englisch):

Computational competitions are the standard for benchmarking medical image analysis algorithms, but they typically use small curated test datasets acquired at a few centers, leaving a gap to the reality of diverse multicentric patient data. To this end, the Federated Tumor Segmentation (FeTS) Challenge represents the paradigm for real-world algorithmic performance evaluation. The FeTS challenge is a competition to benchmark (i) federated learning aggregation algorithms and (ii) state-of-the-art segmentation algorithms, across multiple international sites. Weight aggregation and client selection techniques were compared using a multicentric brain tumor dataset in realistic federated learning simulations, yielding benefits for adaptive weight aggregation, and efficiency gains through client sampling. Quantitative performance evaluation of state-of-the-art segmentation algorithms on data distributed internationally across 32 institutions yielded good generalization on average, albeit the worst-case performance revealed data-specific modes of failure. Similar multi-site setups can help validate the real-world utility of healthcare AI algorithms in the future.


Verlagsausgabe §
DOI: 10.5445/IR/1000188759
Veröffentlicht am 16.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000188759
Erschienen in Nature Communications
Verlag Nature Research
Band 16
Heft 1
Seiten 6274
Vorab online veröffentlicht am 08.07.2025
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 17 – Partnerschaften zur Erreichung der Ziele
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page