
Digital Butterworth filter as preprocessing method for implementing 
Raman spectroscopy as an analytical method in downstream processing 
of biopharmaceuticals
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A B S T R A C T

For implementing Raman spectroscopy as an analytical method in downstream processing, extracting molecular 
information related to biopharmaceuticals is still challenging due to spectral variations caused by spectrometer, 
setup and fluorescence. This study explores the potential of the Butterworth filter as a preprocessing method for 
baseline correction and noise reduction in Raman spectra. We first investigate the Butterworth highpass filter’s 
working principle and its optimization by introducing disturbances to spectral baselines and assessing the cutoff 
frequency ωc’s effect on minimizing baseline variations and enhancing the linear correlation (r2) between Raman 
signals and protein concentrations. The optimal ωc range (0.004 to 0.008 cm) yields an r2 ≥ 0.85, outperforming 
the Savitzky-Golay derivative filter’s 0.68. Further, we explore a Butterworth bandpass filter, adjusting low and 
high cutoff frequencies, showing an 11.6–15 % improvement in r2 over the highpass design. Our results suggest 
the necessity of specific cutoff frequency selection when applying the bandpass design to the Raman spectra of 
individual protein molecules and the method for this selection is discussed. By applying the optimization outputs, 
we developed chemometric models linking Critical Quality Attributes to the Raman data preprocessed by the 
Butterworth bandpass filter, covering concentrations up to 25.6 mg/mL for a biopharmaceutical immunoglobulin 
G (IgG) antibody and 4.2 mg/mL for Transferrin. When validated in Cation Exchange Chromatography runs with 
gradient lengths of 5 and 10 column volume for in-line predictions, the models show high predictability, 
achieving a coefficient of determination R2 of 0.99 for IgG and 0.95 for Transferrin.

1. Introduction

The Process Analytical Technology (PAT) framework is increasingly 
being advocated in biopharmaceutical manufacturing landscape [1], 
particularly in the downstream processing (DSP) of monoclonal anti
bodies (mAbs) [2]. This shift towards PAT is driven by its potential to 
streamline process development, enhance detection of critical quality 
attributes (CQAs), and reduce time and costs [3]. Within the PAT 
framework, Raman spectroscopy has emerged as a promising analytical 
tool for monitoring quality attributes across a range of processes [4–7]. 
Unlike the ultraviolet/visible (UV/Vis) spectroscopy, which allows 
straightforward protein concentration determination at a specific 
wavelength, Raman spectroscopy has the potential to correlate to a 
broader range of CQAs but faces a challenge due to the complex nature 

of bands. This complexity necessitates the use of chemometrics models 
[8] for calibrating analytes in Raman spectroscopy. A variety of che
mometric model procedures [8,9] have been reported, highlighting the 
importance of data preprocessing. The preprocessing methods handle 
several tasks such as spectral variation removal, noise reduction, outlier 
detection and normalization. Given the high sensitivity of Raman 
acquisition to their measurement conditions, identical samples can yield 
spectra with baseline deviations due to minor variations in the config
uration of spectrometer and setup [10].

Raman signals are comprised of information about the measured 
sample as well as several side effects, such as spectral baseline, artifacts, 
and noises. These can originate from both intrinsic system and extrinsic 
sources related to the detector or environmental conditions. Charge- 
Coupled Devices (CCD) detectors, widely used in Raman spectrometer 
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for their efficiency in detecting weak Raman signals, are prone to 
capturing cosmic high-energy particles, leading to spectral artifacts in 
shape of narrow-bandwidth spikes [11]. Spectral smoothing is employed 
to effectively eliminate high-frequency noises [12] and amplify the 
signal-to-noise ratio (SNR), thereby facilitating the extraction of mo
lecular information related to a specific biopharmaceutical. A significant 
challenge in Raman signal recovery is the predominant spectral base
line, which is typically several orders of magnitude [13] stronger than 
the fingerprint peaks of biopharmaceutical samples. Various factors 
contribute to the Raman spectral baseline, including fluorescence 
background [14], thermal fluctuations in CCDs [11], variations in flow 
rates through the flow-cell [15], and increasing run time [16].

For practical application in DSP scenarios, Raman spectroscopy re
quires extensive data-driven chemometric models that are trained and 
validated across a range of DSP scales and operational setups. Consid
ering the sensitivity of Raman acquisition, which can result in fluctua
tions in the spectral baseline between datasets, it is crucial to maintain 
consistency in Raman datasets for identical samples, regardless of the 
scale or system. A comprehensive collaborative study on Raman data 
comparability [17] has highlighted that variations in setups can lead to 
discrepancies in Raman data, further emphasizing the need for consis
tent data handling and preprocessing methods.

Digital filters have shown promise in their ability to filter out back
ground interferences and to improve the characteristics of Raman 
spectroscopy. For instance, Savitzky-Golay (SG) filtering is widely 
employed in chemometric models, usually coupled with Principal 
Component Regression (PCR) or Partial Least Square Regression (PLSR) 
[18,19]. Wei and coworkers [20] showcased the capability of the SG 
derivative to eliminate spectral baseline variations caused by Raman 
spectrometers. Wang et al. [15] explored the potential of Butterworth 
highpass filter and demonstrated its efficacy in removing the effect of 
flow rate on the spectral baseline. There is a demand for a simplified 
preprocessing method to ensure Raman data consistency and also 
improve signal recovery of biopharmaceuticals from the side effects 
within a single method. This would further enhance the practical 
application of Raman spectroscopy in biopharmaceutical 
manufacturing.

In our selection of filtering techniques, the Butterworth filter was 
chosen for its distinct advantages in meeting the requirements of our 
study. Our analysis focuses on the Raman signals, which are complex 
mixtures of fluorescence interference and scattering effects from various 
components within the solution. The Butterworth highpass filter has 
proven effective in filtering low-frequency broad signals, such as fluo
rescence interference [4], which significantly improve signal quality of 
components of interests. Additionally, the bandpass design [21] of 
Butterworth filter can enhance model’s predictability based on Near 
Infrared (NIR) spectroscopic data, by suppressing certain 
high-frequency components. Furthermore, the Butterworth filter is 
designed to achieve the maximal flatness in the passband for the given 
filter order. This is particularly advantageous compared to traditional 
Fourier filtering methods, which requires extensive control to prevent 
artifacts and ripples in passband response. Despite the adaptive 
denoising capability of wavelet transform [22], it necessitates compu
tation complexity and cost on the determination of wavelet function 
type and multi-levels of decomposition. Empirical Mode Decomposition 
(EMD) [23] is a data-driven filtering technique that decomposes a signal 
into various Intrinsic Mode Functions (IMFs). However, the number of 
IMFs can increase with the spectrum complexity and complicate the 
correlation of the decomposed data with various CQAs in downstream 
processes. This article presents the first representative interpretation of 
the Butterworth filter’s capability to decompose Raman spectra of bio
pharmaceuticals into multiple Butterworth frequency regions that 
effectively filter out irrelevant frequencies, or spectral components. We 
further explored the impact of the cutoff frequency on the Butterworth 
highpass filter’s efficacy in eliminating synthetic spectral baselines. 
Through these investigations, we identified the most effective 

Butterworth frequency region for baseline removal. We also employed 
the SG derivative filter, a common preprocessing method in Raman 
spectroscopy, and compare its performance with the Butterworth filter. 
In our interest to maximize the recovery of protein-related spectral 
features using a single preprocessing method, we evaluated the Butter
worth bandpass filter’s effectiveness in eliminating both baseline fluc
tuations and high-frequency noises. Our comprehensive screening of low 
and high cutoff frequencies revealed that a bandpass design enhances 
the linear correlation between Raman signals and protein concentra
tions by 11.6–15 %, surpassing the highpass design. Additionally, our 
research emphasized the necessity of specific cutoff frequency selection 
when applying the bandpass design to the Raman spectra of individual 
protein molecules. This finding enables the precise tuning of bandpass 
parameters, crucial for CQA specific decomposition of Raman signals, 
thereby enhancing the implementation of Raman spectroscopy in the 
downstream processing of biopharmaceuticals. A biopharmaceutical 
immunoglobulin G (IgG) antibody and Transferrin molecule represent
ing a model impurity were studied to develop calibration models for 
determination of the two molecules in Cation Exchange Chromatog
raphy (CEX). When the specific Butterworth frequencies identified from 
the screening were applied, the IgG model achieved a coefficient of 
determination R2 of 0.99, while the Transferrin model achieved a R2 of 
0.95.

2. Materials and methods

2.1. Raman spectrometer setup and two Raman detection systems

In the study, we employed a HyperFlux Pro Plus Raman spectrometer 
(Tornado Spectral Systems, Mississauga, Ontario, Canada), controlled 
by SpectralSoft 3.4. software. This spectrometer was excited by a 785 
nm emission laser, covering a wavenumber range from 200 to 3300 cm-1 

with a resolution of 1 cm-1. A Hudson Probe with a 45 µL Micro Flow Cell 
(MFC) (Tornado Spectral Systems, Mississauga, Ontario, Canada) was 
connected to the Raman spectrometer for fluidic measurement. We 
followed a consistent acquisition setup for all Raman measurements in 
this study [15]. To maximize the Raman signal intensity and 
signal-to-noise ratio, the laser was set to its maximum power of 495 mW, 
which did not cause detector saturation or sample damage. In our pre
vious studies, we found that using the maximum laser power led to 
detector saturation and distorted Raman signals during capture chro
matography process step [4]. Increased laser power can potentially 
result in heating of the sample due to high energy, especially after long 
exposure it can burn biological samples. The exposure time to 500 ms 
with 15 averages, resulting in a scan time 7.5 s/per scan. For off-line 
measurement of well-mixed samples, the Raman spectrometer was 
mounted on a Tecan Fluent 780 Liquid Handler (Tecan, Männedorf, 
Switzerland), as described in references [4,15,24]. Each 300 µL sample 
was automatically injected into the MFC, with each off-line Raman 
detection lasting 90 s and yielding 11 spectra per sample. We utilized a 
second Raman detection system for in-line measurement of elution 
samples from chromatography runs using the same spectrometer. This 
was performed on an ÄKTA Avant 25 system (Cytiva, Uppsala, Sweden) 
controlled by UNICORN™ 7.5 software. The MFC was positioned be
tween the conductivity and pH sensors for Raman detection.

2.2. Molecules and experimental designs

2.2.1. One-component dilution series of two proteins
We utilized a pharmaceutical IgG antibody, referred to in subsequent 

text as mAb1, provided by Boehringer Ingelheim Pharma GmbH & Co. 
KG (Biberach, DE), Additionally, human Transferrin (Sigma Aldrich, 
Burlington, Massachusetts, US) was employed as a model impurity. A 
mAb1 drug substance solution with 50 mg/mL was ultra-filtrated into 
purified water (Unagi, Unchained Labs, Pleasanton, California, USA), 
and diluted to a stock solution with a concentration of 19.5 mg/mL. 
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Lyophilized transferrin was dissolved in purified water and adjusted to 
20 mg/mL stock solution. Two dilution series were separately prepared 
with 11 levels, by mixing the two stock solutions with purified water. 
Each mixed sample was measured off-line, with 40 Raman spectra 
collected for each sample.

2.2.2. Three-component calibration experiments mixing two proteins with 
salt buffer

The further study of preprocessing method focused on a three- 
component system containing Transferrin, mAb1, and salt concentra
tion. For the calibration experiment, we set the mAb1 concentration 
calibration range from zero to the maximum 25.6 mg/mL, and Trans
ferrin up to a maximum 4.2 mg/mL, both tested at 11 equally spaced 
levels. The third factor, salt concentration, was regulated by adjusting 
the ratio of two solutions: Buffer A (50 mM acetate, pH 5) and Buffer B 
(50 mM acetate, pH 5, 1 M NaCl). We designed an experiment (N = 132) 
involving these three factors, ensuring minimal correlation among them 
while minimizing the protein materials. This customized design is 
graphically visualized in Figure S1a). The correlation matrix for the 
three factors is presented in Figure S1b, with all correlation coefficients 
below 0.13. The experimental window was divided into two triangular 
sections (I and II) by a diagonal line, resulting in two sub-experiments 
with each mixing three feed solutions (N1––N2=66). In the first sub- 
experiment (section I), Transferrin stock solution was added to mAb1 
drug substance solution, then ultra-filtrated into Buffer A, reaching the 
concentration of 25.2 mg/mL for mAb1 and of 4.19 mg/mL for Trans
ferrin (feed solution F1-A). Another mAb1 drug substance solution was 
directly buffer-exchanged and diluted in Buffer B to 24.02 mg/mL (feed 
solution F2-B). A 1:1 mixture of Buffer A and B was used as feed solution 
F3. Similarly, the sub-experiment (section II) mixed another feed solu
tions (F1-B, F2-A and F3). In the second sub-experiment, feed solutions 
F1-B, F2-A and F3 were mixed. F1-B was a mixture of 4.2 mg/mL 
Transferrin and 25.6 mg/mL buffer-exchanged in Buffer B. F2-A was a 
Transferrin solution diafiltrated in Buffer A at concentration of 4.15 mg/ 
mL.

Both sub-experiments utilized the Tecan Fluent 780 system for 
automatic mixing of feed solutions. The samples were then injected into 
the MFC for off-line Raman detection (Section 2.1). All samples from 
each sub-experiment were pooled post-measurement, stored at 4 ◦C until 
being reused as loading materials for the subsequent chromatography 
runs. Due to a wash step in between two measurements, the two sample 
pools were diluted with purified water. All the Raman measurements 
collected from the 130 samples are provided as the training dataset for 
calibration models of quantifying mAb1 and Transferrin concentrations.

2.2.3. CEX runs with fractionations
Three CEX runs were performed on an ÄKTA Avant 25 system for 

validating the calibration models (Section 2.3). The CEX column used 
was packed with Poros XS resin (Thermo Fisher Scientific, Waltham, 
USA) and had a diameter of 1 cm and a column volume (CV) of 17.14 
mL. The CEX runs initiated with an equilibration phase using Buffer A, 
followed by load and wash phases. During the elution phase, a salt 
gradient setup was applied, where Buffer A and B were pumped with an 

isocratic volumetric percentage from 0 % to 100 % Buffer B, over a 
specific gradient length in CV. As detailed in Table 1, a gradient length of 
10 CV was used in the Validation 1 run, while 5 CV in the two Validation 
2 and Test runs. For Validation 1 and Validation 2, two pooled solutions 
from the sub-experiments were titrated to pH 5.0 using 99 % acetic acid 
(Aug. Hedinger GmbH & Co. KG), just before loading. The loading 
masses of Transferrin and mAb1 were listed in Table 1. All runs were 
fractionated using a built-in fraction collector into fractions of 1 mL. The 
in-line Raman spectra recorded were averaged for each of the collected 
fractions. The concentrations of Transferrin and mAb1 in each fraction 
were determined by performing Ultra-performance Size Exclusion 
Chromatography (UP-SEC). This was done using an Acquity UPLC 
BEH200 SEC Column on an Acquity Premier system controlled by 
Empower 4 (all from Water Corporation, Milford, MA, USA).

2.3. Preprocessing and modelling algorithms

2.3.1. Role of cutoff frequencies in Butterworth filtering of Raman spectra
The Butterworth filter is a signal processing filter designed to ensure 

that the amplitude of the frequency response within the passband is as 
flat as possible, thereby transmitting the desired signals with minimal 
signal distortion. Depending on specific requirements, the filter can be 
designed as lowpass, highpass, bandpass, or band-stop. In the case of a 
low- or highpass design, there are two hyperparameters: cutoff fre
quency fc, which refers to a Butterworth frequency marking the half- 
power point between passband and stopband, and filter order n, which 
describes the steepness of transmission from passband to stopband. A 
Raman spectrum is a composition of spectral baseline, noise, narrow and 
broad peaks. Each of these components can be approximated using an 
arbitrarily number of periodic functions. In the context of Raman 
spectroscopy, the application of the Butterworth filter requires an un
derstanding that these waveform signals can be viewed as periodic 
functions. Regarding a waveform in Raman signal, the period of the 
function corresponds to a specific wavenumber region, denoted in units 
of cm-1. This allows us to perceive Raman signals as existing within a 
time-domain represented by the unit cm-1. In signal processing, the term 
Fourier-transformation is utilized to convert signals in time-domain to a 
discrete frequency domain. Specifically, when preprocessing Raman 
spectra, the Butterworth filter Fourier-transforms (FT) Raman signals 
from the time-domain to a frequency-domain, represented in a reverse 
unit of 1

cm− 1. Considering the entire wavenumber region totaling 3101 
variables as a single sine function, the period of the waveform is 1550.5 
cm-1 and the corresponding Butterworth frequency is the inverse 
equaling 0.00064 1

cm− 1 To simplify the term “frequency” and avoid 
confusion with the unit [cm], we use a normalized frequency f/fs 
throughout the text. Here, fs represents the sampling frequency in unit of 

1
cm− 1, as we sample a Raman spectrum at an interval of 1 cm-1. To un
derstand the behavior of the cutoff frequencies on Raman spectra, the 40 
raw spectra of 20 mg/mL Transferrin stock solution (Section 2.2.1) were 
Butterworth-filtered, applying low- and highpass with n = 5 (ten-pole) 
[15] and varied cutoff frequencies [0.002, 0.006, 0.02, 0.2]fs. The 
whole study was programmed using Python 3.9, and all the 

Table 1 
Process parameters of the calibration, validation, and test experiments.

Runs Setup Transferrin 
[mg]

mAb1 
[mg]

Gradient length 
[CV]

Usage Sample numbers

Calibration Tecan 
(off-line)

– – – Training 132

Validation 1 ÄKTA 
(in-line)

41.9 492.2 10 Validation, Hyperparameter screening 60

Validation 2 ÄKTA 
(in-line)

83.5 256 5 51

Test ÄKTA 
(in-line)

40 225 5 Final model test 54
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preprocessing methods were applied using packages NumPy and SciPy.

2.3.2. Assessing the Butterworth filter’s robustness against disturbances in 
spectral baseline

Numerical experiments were conducted on the two protein dilution 
series (Section 2.2.1, mAb1 and Transferrin) to assess the impact of 
cutoff frequencies on baseline removal, and to evaluate the Butterworth 
filter’s robustness against synthetic disturbances added in spectral 
baseline. Synthetic disturbances were generated by replacing random 
data points located in baseline with varied values. In Raman data, real 
variations in baseline can manifest as fluctuations and intensity shift in 
the low wavenumber range of 400 to 1800 cm-1. To simulate these real 
variations, 20 data points (1.4 %) were randomly selected within the 
[400, 1800] cm-1 range from the baseline. For each Raman spectrum, its 
baseline was estimated using a fourth-degree Improved Modified Poly
nomial fit [25]. The magnitude of the added variations was sampled 
from a uniform distribution of [0.8,1.2] of their original value [26]. The 
resulting 20 new points were subsequently fitted with a new four-degree 
polynomial, and a disturbance was defined as the difference between the 
original and disturbed baselines. This disturbance was then added to the 
original spectrum, obtaining a disturbed spectrum. For baseline 
removal, the highpass Butterworth filter was applied to both original 
and disturbed spectra, with a filter order of 5 (ten-pole) and varying 
cutoff frequencies in the range from 0.001 to 0.020 fs with a step size of 
0.001 fs To account for randomness, at each concentration, the numer
ical experiment was independently repeated 40 times for each spectrum. 
A second-derivative SG filter was applied as a reference using a window 
length of 11 and a 2nd order polynomial [20].

The robustness of the highpass Butterworth filter against baseline 
variations was assessed by comparing the disturbed and undisturbed 
spectra after treatment with the filter, using two different metrics: the 
cosine similarity θ and the averaged squared Pearson correlation coef
ficient r2. The cosine similarity [27,28] is defined as the dot product 
between spectra divided by the product of their Euclidean norms as 
follows: 

θ =

(
xci (ν), x̃ci (ν)

)

‖ xci (ν)‖2‖x̃ci (ν)‖2
, (1) 

where xci and x̃ci are the preprocessed spectra of raw spectrum and 
disturbed spectrum at a single concentration ci, respectively. ν is one 
single wavenumber in the Raman spectrum and m the total number of 
wavenumber variables. The use of cosine similarity aims to quantify the 
overlap between the two processed spectra xci and x̃ci with and without 
disturbances. To verify the degree of how the protein concentration 
signals were attenuated, we took the averaged squared Pearson corre
lation coefficient correlation r2 across all wavenumbers as a measure of 
averaged concentration-dependence, regarding raw or preprocessed 
spectra. The r2 was defined as follows: 

r2 =
1
m

∑m

j=1
rj

2 =
1
m

∑m

j=1

⎡

⎢
⎣

∑
ci

(
xci ,j − xj

)
(ci − c)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

ci

(
xci ,j − xJ

)2∑
ci
(ci − c)2

√

⎤

⎥
⎦

2

, (2) 

where xci indicates one investigated spectrum (raw or preprocessed) at a 
concentration ci.We measured the linear correlation r between the 
concentration vector and their corresponding spectra. This was con
ducted by comparing the concentrations and signal intensities at a same 
wavenumber j from total variable numbers m. Then, squared correlation 
rj

2 was summed and averaged across all wavenumbers.

2.3.3. Screening low and high cutoff frequencies of a Butterworth bandpass 
filter

A further investigation on Butterworth bandpass design was carried 
out using the two protein dilution series. The purpose of this design was 
to remove not just spectral baseline, but also high-frequency noise, 

thereby maximizing the extraction of protein-related spectral features. A 
bandpass Butterworth filter can remove Butterworth frequencies that 
are either lower than a specific low cutoff frequency fc,low/fs or higher 
than a certain high cutoff frequencyfc,high/fs. For both proteins, the 
spectra consisting of 11 concentration levels underwent treatment with 
various bandpass filters with n = 10 (ten-pole). But the low frequency 
varied between 0.001 and 0.014 fs in a step of 0.0005 fs, while the high 
frequency ranged from 0.015 to 0.5 fs in a step of 0.01 fs The effec
tiveness of recovering protein-related features was assessed using the 
same averaged r2 mentioned in Section 2.3.2.

2.3.4. Performance evaluation of the Butterworth bandpass filter in real 
downstream process

To assess the performance of the Butterworth bandpass filter in a 
downstream process, a calibration experiment along with two CEX runs 
were carried out to collect training data (Section 2.2.2) and two vali
dation datasets (Section 2.2.3). The objective was to evaluate the ability 
of preprocessing method to manage baseline variations caused by in
struments and systems. Ham et al. [21] recommend evaluating the 
effectiveness of preprocessing method by executing the complete 
workflow instead of a single preprocessing step. Alterations in the 
workflow can lead to different model outputs. Therefore, we first con
ducted a comprehensive workflow screening that included spectral 
variable truncation, preprocessing method, and regression models. As 
listed in Table 2, various options of each step were tested along with 
their hyperparameters. This included 780 Butterworth bandpass filters 
and 800 SG filters, and 20 negative controls (no preprocessing), result
ing in 1610 workflow candidates for predicting concentrations of mAb1 
and Transferrin. A 20-fold cross validation procedure was employed to 
internally evaluate the performance. The score was computed using 
Root-mean-square deviation (RMSE) [15] and Coefficient of determi
nation (R2) [24]. Each model was subsequently validated using the two 
external validation datasets. Regarding protein concentration predic
tion, the model performance was evaluated by the R2 for training dataset 
and the coefficient of prediction Q2 for two validation datasets. There
fore, to rank the candidates in a simplified manner, we choose the lowest 
value among the three coefficients as a single new figure of merit f, 
which describes the most tolerable model performance within the three 
datasets. All the regression models were built using package scikit-learn.

Normalization is necessary to handle multiplicative effects that arise 
from variations in laser power, spectrometer drift, inherent intensity 
variability of the sample, or alterations in the medium’s refractive index 
[29]. During the final model tuning, we applied an additional normal
ization procedure using a weighted multiplicative scatter correction 
(MSC) algorithm [30–32]. In this normalization algorithm, we assigned 

Table 2 
Category and the approach choices in the workflow screening.

Category Choice Hyperparameter

Wavenumber 
Truncation

Full range: 200 to 3300 cm-1

Range 2: 800 to 1800 cm-1

Preprocessing Butterworth Bandpass filter 
(Ntotal= 780)

fc,low/fs = [0.002,0.009] in 
0.001
fc,high/fs = [0.02,0.11] in 
0.01
5-order (10-pole)

Savitzky-Golay derivative 
(Ntotal= 800)

Wl = [11, 51] in a step of 2
npoly = 2 or 3
nderivative = 1 or 2

Control: no preprocessing 
(Ntotal= 20)

​

Model regression Partial Least Square 
Regression 
(Ntotal= 960)

ncomponent = 3, 4, 5

Support Vector Regression 
(polynomial) 
(Ntotal= 640)

C = 1000 or 100
ε = 0.01, degree = 3
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a weight of 1 to the region between 2100 and 2400 cm-1. These weights 
were determined using a variable sorting for normalization (VSN) al
gorithm (refer to Supplementary methods). The Support Vector 
Regression (SVR) with a polynomial kernel was chosen as the model 
regressor. The polynomial kernel function has a degree of three, with an 
epsilon (ε) value of 0.01, and a regularization parameter (C) of 1000.

3. Results and discussion

3.1. The capability of the Butterworth filter on Raman spectra 
decomposition

Different low- and highpass Butterworth filters were used to pre
process the raw spectrum of a 20 mg/mL human Transferrin solution in 
purified water, using four different cutoff 
frequencies[0.002, 0.006, 0.02, 0.2] fs and ten-pole. This aims to 
investigate the working principle of Butterworth filter with low- and 
high-pass designs and the effect of the cutoff frequency. Fig. 1 represents 
the behavior of a Butterworth filter with low- and highpass designs, 
displaying the results using different cutoff frequencies in rows from A to 
D. The second column displays lowpass components with varied cutoff 
frequencies, using a raw spectrum as a reference. The third column 
presents highpass components. The last column in Fig. 1 represents the 
power plot of FT data, displaying the signals in the Butterworth fre
quency domain. The signal power is the squared amplitude of the sine 
function at each Butterworth frequency. For the limit case of a filter with 
an ideal cutoff behavior (n→∞), the decomposition of the spectra can be 
simplified as: raw spectrum = lowpass component signals + highpass 
component signals.

Taking the example of a filter with frequency of 0.002 fs (row A), by 
passing through the Butterworth frequencies below the frequency value, 
a lowpass component is shown and it can be considered a baseline in a 
broad waveform with low Butterworth frequency region (A2). A high
pass design improves the resolution of significant Raman peaks by 
filtering out the lowpass component i.e. baseline and reducing the order 

of baseline’s magnitudes (A3). Similarly, in the power plot (A4), we 
observe a significant amplitude drop in the low Butterworth frequency 
range below 0.002 fs, relative to the raw spectrum. The orange profile 
behaviors sharper and more intensive than the blue, suggesting that the 
remaining Raman data is amplified post-filtering. The data within the 
mid-range between 0.002 and 0.1 fs could potentially contain abundant 
protein information, and this amplification could contribute to model 
enhancement. Although the region above 0.1 fs, which primarily con
tains spectral noise data, is also amplified, it is at least four orders of 
magnitudes weaker than the true peaks and can therefore be ignored.

By increasing the cutoff frequency from 0.002 fs to 0.2 fs (row from A 
to D), the lowpass component profile tends to overlap the original 
spectrum, while the highpass component profile has a transition from 
broad true peaks to artificial spikes or noises. Those artifacts or noises, 
which are extremely narrow and sharp peaks, are Fourier-transformed 
into the high Butterworth frequency region. The subfigure D3, a high
pass filter with a frequency of 0.2 fs, represents its highpass component 
composed of almost only noise and/or residuals of those sharp and 
narrow Raman peaks, such as the sapphire peak at 418 cm- 1. As for its 
power plot (D4), true spectral peaks here disappear, and their values are 
forced to be a certain constant, resulting in predominant spectral noises. 
For a frequency of 0.006 fs (row B), the lowpass component (B2) tends to 
penetrate wider peaks like the water peak at 1640 cm-1 while leaving 
sharper peaks like the sapphire peak at 418 cm-1 unchanged. For a fre
quency of 0.02 fs (row C), the lowpass components (C2) penetrates even 
sharp and intense peaks. Broad spectral peaks that have relative low 
Butterworth frequencies are attenuated, such as power signals in a range 
between 0.002 fs and 0.01 fs

The Raman spectrum is represented as the sum of the pure Raman 
signal of measured sample, the spectral baseline, and noise or artifacts 
along all the wavenumbers or Raman shifts. In the context of Raman 
spectroscopy, the use of a Butterworth filter facilitates the Fourier 
transformation of Raman signals from the wavenumber domain to the 
inverse Butterworth frequency domain. This transformation to the fre
quency domain decomposes the original signals into multiple frequency 

Fig. 1. Working principle of the Butterworth filter for spectral preprocessing. A raw spectrum of a Transferrin sample at 20 mg/mL was taken as an example and 
truncated to the region between 400 and 2000 cm-1. This spectrum was preprocessed by Butterworth filters with varied cutoff frequencies in range of [0.002, 0.006,
0.02, 0.2] f s, from row A to D, respectively. Each row corresponds to a Butterworth filter applying an order of 10 and one cutoff frequencies. Different response and 

filter components of a Butterworth filter are represented along the columns. The first column shows the filter amplitude responses of the respective Butterworth filter 
using high- and low-pass. The second column shows the lowpass components applying lowpass design with varied cutoff frequencies. An original raw spectrum is 
provided as a reference. The third column shows the highpass components applying high pass design with varied cutoff frequencies. The fourth column shows the 
spectra of the highpass component and raw data in form of power, cataloged by reciprocal Raman shift or Butterworth frequency in cm.
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categories and facilitates the filtering of irrelevant Butterworth fre
quencies. Consequently, a frequency sequence can be hypothesized, 
ascending from low to high values, that can be classified as follows: 
spectral baseline < broad peaks < narrow and sharp peaks < noises. By 
changing the cutoff frequency on the identical raw Transferrin spec
trum, the undesirable signals can be effectively removed by preventing 
their corresponding frequencies from passing through. Thus, the selec
tion of an optimal threshold or cutoff frequency is critical for baseline 
removal and smoothing in the application of the Butterworth filter.

3.2. Cutoff frequency selection for robust and efficient baseline removal

On two dilution series (mAb1 and Transferrin), we aim to choose the 
optimal cutoff frequency of Butterworth highpass filter for filtering out 
baseline. The experiment is based on synthetic disturbances randomly 
added to the baseline of raw spectra, which results in baseline-disturbed 
spectra. The cosine similarity θ is used to evaluate the preprocessing 
method’s ability and robustness in filtering out the disturbed baseline. 
At each protein concentration, the synthetic baseline disturbances were 
randomly replicated for 40 times and the average cosine similarity θ are 
computed over all the concentrations. The averaged squared Pearson 
correlation coefficient r2 is another metric used to assess the correlation 
between protein concentration and a given dataset. A higher r2 value 
indicates a stronger dependence of the dataset on protein concentration.

Fig. 2 presents the average cosine similarity and averaged Pearson 
correlation coefficients for the cutoff frequency in a range of 0.001 to 
0.02 fs After an initial increase from 0.4 to 0.8 fs for cutoff frequencies 
smaller than 0.005 fs, the mean r2 shows a plateau at approximately 0.9 
for mAb1 for frequency in the range of 0.007 and 0.015 fs, while for 
transferrin a maximum of 0.85 is reached in the range of 0.01 and 0.015. 
In Fig. 2a, a significant r2 drop occurs from a cutoff frequency of 0.015 fs 
for both proteins. In the given cut off frequency range of 0.001 to 0.02 fs, 
mAb1 shows a higher r2 value than Transferrin. In contrast, the SG 
derivative filter was applied on the identical datasets but obtains a lower 
r2 value, approximately 0.68. Fig. 2b illustrates a sharp increase in the 
mean cosine similarity as the frequency rises to 0.005 fs After this, the 
mean cosine similarity reaches a maximum exceeding 0.999. The SG 
derivative filter also shows a high cosine similarity above 0.999. Fig. 3
visualizes the effect of baseline removal using Transferrin as an example. 
It displays both the undisturbed and disturbed spectra, along with their 
spectra preprocessed using a Butterworth highpass with a cutoff fre
quency of 0.005 fs and a second-derivative SG filter. In Fig. 3a and d, we 
observe large deviations in the undisturbed and disturbed spectra at 
varying concentrations (indicated by colors). These deviations are vastly 

eliminated or removed after preprocessing, as shown in Fig. 3e and f. 
The preprocessed data displayed in Fig. 3b and e (or Fig. 3c and f) are 
nearly identical, making them comparable at each concentration. When 
applied to the undisturbed raw data, the Butterworth filter improves the 
mean r2 value from 0.771 to 0.851 (+10.4 %), whereas the SG filter 
decreases the value to 0.762 (− 1.2 %). Despite the addition of synthetic 
disturbances to the baseline reducing the value to 0.396, the Butter
worth filter achieves a comparable value of 0.797 (+101.3 %) close to 
0.851. The SG filter also reaches a comparable value of 0.734 (+85.4 %).

In our analysis of two proteins, mAb1 and Transferrin, ranging from 
zero to ca. 20 mg/mL, the Butterworth highpass filter effectively 
removed the random numerical perturbations added to the baseline of 
the original spectra (Fig. 2, Fig. 3). Within the cutoff frequency range of 
0.001 to 0.015 fs, choosing an increasing cutoff frequency enhances the 
linear dependency between signals and protein concentration. It could 
recover the signals that were distorted by artificial perturbations, as 
shown by the rising r2 value. However, the r2 profile is not monotonic. 
The linear correlation starts to decrease significantly when the cutoff 
frequency reaches 0.015 fs Interestingly, at a frequency of 0.005 fs, the r2 

profiles of two proteins diverge, suggesting a difference in their protein 
molecular information at this point. The Butterworth frequency range 
from 0.005 to 0.015 fs could be a transitional zone. In this zone, the 
primary information source might shift from the spectral baseline to the 
protein molecular structure.

This disturbance numerical experiment clearly demonstrates the 
capability of Butterworth filter in removing baseline and its distur
bances. It also reveals that a Butterworth frequency larger than 0.015 fs 
does not bring about significant improvements in the two metrics and 
may even lower the protein concentration dependence. Therefore, to 
maximize the spectral discrepancies in pharmaceutical structures, the 
right cutoff frequencies are critical. Our findings suggest that the low to 
middle range, specifically 0.004 to 0.008 fs, is optimal for removing the 
Raman spectral baseline and baseline disturbances. Based on these 
findings, we decided to conduct a further study using a bandpass But
terworth filter. In the previous study, a cutoff frequency of 0.004 fs (a 
coefficient of 2) was identified as optimal for eliminating the baseline 
effect caused by flow rate [15]. Our current research expanded on this 
by evaluating the full frequency range, rather than limiting to the three 
frequencies of 0.001, 0.004 and 0.008 fs This broader evaluation 
confirmed that the 0.004 fs significantly outperformed the 0.001 fs and 
demonstrated comparable performance to the 0.008 fs

The SG filter also demonstrated robust performance in baseline 
removal (with an 85.4 % improvement), even when handling synthetic 
baseline deviations that rarely manifest in practical scenarios. However, 

Fig. 2. The effect of Butterworth highpass cutoff frequencies on baseline-disturbance removal. The computation was carried out on two dilution series of mAb1 and 
Transferrin respectively. Average r2 a) and cosine similarity b) were computed between the Butterworth filtered data of the baseline-disturbed and -undisturbed 
spectra, at different concentrations with standard deviation.
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the Butterworth filter outperformed the SG filter in achieving a stronger 
linear dependency between signals and protein concentration in this 
study. The specific reasons for this difference remain unclear, but po
tential contributing factors could include the selection of window size 
and polynomial order for the SG filter, which may not have been optimal 
for the dataset used in this study. Future studies could involve a sys
tematic evaluation of filtering techniques, focusing on their impact on 
specific spectral peak and band such as relative peak height and location 
after filtering [33].

3.3. Butterworth bandpass parameter screening

Unlike the highpass design that employs a single cutoff frequency, 
the bandpass design utilizes both low and high cutoff frequencies. This is 
done to extract only the middle frequency region. In our use-case, the 
goal is not just to remove baseline interferences, but also to avoid 
amplifying noises at high frequencies. Fig. 4 presents the averaged r2 

results obtained from screening the low and high cutoff frequencies 
across the two protein dilution series. The low cutoff frequency was 

tested within a range of 0.001 to 0.014 fs, where the high cutoff fre
quency was examined in a broad range of [0.015, 0.5] fs. Only results 
from the [0.015, 0.4] fs and [0.015, 0.1] fs regions are displayed for 
mAb1 and Transferrin, respectively. Analogous to Fig. 2, the mean r2, 
represented in various colors, measures the protein concentration de
pendency post the preprocessing step. Despite the identical buffer 
composition and comparable concentration ranges up to 20 mg/mL 
(mAb1) and 19.5 mg/mL (Transferrin), the two screenings yielded 
different patterns for the two proteins. Moreover, mAb1 maximizes the 

averaged r2 at
(

fc,low, fc,high

)
= (0.008, 0.016)fs (in Fig. 4a), while 

Transferrin achieves r2 maximum near the point (0.004, 0.07) fs (in 
Fig. 4b). A decreasing trend of averaged r2 along the low cutoff fre
quency is observed, starting from 0.008fs for mAb1 and 0.005 fs for 
Transferrin. In general, mAb1 has a higher value than Transferrin. These 
findings closely align with the curves in Fig. 2a, emphasizing the middle 
range of low frequency as crucial for effective preprocessing. When 
compared to the r2 maximums in Fig. 2a, the optimized bandpass design 
results in an improvement of 11.6 % (from 0.86 to 0.96) for mAb1, and 

Fig. 3. Schematic representation of baseline distribution and correction by a high-pass Butterworth filter. Raw spectra of Transferrin samples in range from 0 to 20 g/ 
L were used for investigation. a) Raw spectra. b) Raw spectra baseline corrected by a highpass Butterworth filter with n = 10 and a cutoff frequency of 0.005 f s c) 
Spectra disturbed by random polynomial baseline disturbance. d) Disturbed spectra baseline corrected by the same Butterworth filter as for b). With refer to con
centrations, all spectra were plotted in different colors. Average r2 is given in every plot.

Fig. 4. Preprocessing performances of low and high cutoff frequencies of a band-pass Butterworth filter design. The computed average r2 for a) mAb1 and b) 
Transferrin under varied high and low cutoff frequencies, applying bandpass Butterworth filters with n = 10.
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15 % (from 0.80 to 0.92) for Transferrin. The different patterns and 
maximums underscore the importance of selecting specific cutoff fre
quencies when implementing the Butterworth bandpass filter for Raman 
spectra of individual protein molecules.

This line of experiments demonstrated that the bandpass design is 
more effective than the highpass design in extracting protein concen
tration dependence from raw Raman spectra. This could be due to the 
bandpass design’s ability to separate high-frequency noise [34] from the 
Raman data by filtering out specific frequency regions. The Butterworth 
filter treats one spectral signal as a diversity of periodic waves, each with 
distinct frequencies or periods. In the bandpass design, only those waves 
with frequencies or periods below the high cutoff frequency remained 
post-filtering. Specifically, the optimal cutoff frequency used was from 
0.008 to 0.016 fs for mAb1, corresponding to a wave period of from 62.5 
to 125 cm-1, compared to a broader region from 0.004 to 0.07 fs (or from 
14.3 to 250 cm-1) for Transferrin. Given the complex nature of biological 
molecules, the precise assignment and interpretation of Raman bands 
linked to proteins poses a challenge. For example, a common feature of 
biomolecules is the strong sharp band resulting from the vibration of the 
symmetric ring in phenylalanine, typically observed at 1000–1006 cm-1 

[35]. The Amide III region, ranging from 1225 to 1280 cm-1, includes 
common protein secondary structures: random coil (1225–1240 cm-1), 
beta sheet (1240–1260 cm-1) and alpha-helix (1260–1280 cm-1) [35]. In 
our study, mAb1 showed more intense and broader Amide III response 
compared to Transferrin. To isolate and amplify the broad band in the 
Amide III region, varying the high cutoff threshold could be a strategy. 
By applying a 4-times higher frequency from 0.016 to 0.07 fs, it’s 
possible to divide this overlapping band of 55 cm-1 (1225–1280 cm-1) 
into smaller segments, potentially achieving a resolution of 14.3 cm-1. 
This approach could help in distinguishing between the closely over
lapping features, thereby enhancing the analysis of protein secondary 
structures. Nevertheless, not all values in the screening range for the 
bandpass design prove effective. Different patterns, each with their 
unique optima, were identified in the r2 plots of the two proteins. In the 
previous study, Wang et al. [4] suggested the augmentation of multiple 
Butterworth highpass filters across a wide range of cutoff frequencies to 
generate a 2D Raman image dataset. Their success of predicting multiple 
CQAs might result from the 2D Raman image dataset, which could 
potentially include the patterns of different CQAs. While the earlier 
studies determined the cutoff threshold through empirical experience 
[4] or by screening within a training dataset [24], our approach employs 
a screening strategy grounded in experiments with pure protein. This 
approach not only reduces computational costs but also minimizes the 
need for extensive wet-lab work, making it a more practical and efficient 
alternative.

This study also suggests that a specific parameter configuration 
might be necessary to extract the most relevant data for training a 
predictive model of an individual protein molecule. To develop a pre
dictive model of a single molecule, the optimal bandpass configuration 
can be determined by performing a dilution series of the desired mole
cule. This approach aims to identify the configuration that best isolates 
the spectral features of interest, enhancing the model’s predictability. 
However, these optimized parameters for the model impurity cannot be 
simply transferred to real downstream related CQAs due to their 
different Raman bands. Successfully applying this approach on more 
complex matrices with interfering species requires a high purity of the 
molecule. For example, dilution series can be easily made on buffer 
excipients. In the real downstream processing, achieving high purity and 
quality of process-related impurities, such as high and low molecular 
weight species (H/LMWs), can be challenging but can be done by con
ducting preparative size exclusion chromatography. Specific recombi
nant host cell proteins can also be purified through capture and size 
exclusion chromatography steps [36]. Additionally, H/LMWs are size 
variants of the target protein with structure changes. This change might 
be less pronounced than those observed in Transferrin, leading to 

unsatisfactory optimization. Furthermore, the complexity of peak 
assignment and interpretation can significantly increase after applying 
filtering techniques. Proper interpretation of these peaks could lead to a 
deep understanding of the true features versus redundant signals, 
thereby simplifying the preprocessing method.

3.4. Workflow screening and final model tuning

In the study, the same Raman spectrometer was used to measure all 
Raman spectra. This spectrometer was mounted on a Tecan system to 
perform off-line measurements of the mixed samples (Section 2.2.2). 
The spectrometer was then transferred to an ÄKTA system to gather in- 
line Raman data for all CEX runs (Section 2.2.3). The raw Raman spectra 
from these measurements are overlapped and plotted in Figure S2. 
However, due to the use of different Tecan and ÄKTA systems, the 
spectra measured off-line and in-line show significant differences in 
their baselines. The training data displays strongly shifted spectral 
baselines, where the intensities are higher than the rest of the data. In 
contrast, no significant discrepancy is observed between the two sets of 
validation data (Figure S2a, S2b). This demonstrated the variation in 
spectral baseline when the same spectrometer is used on different sys
tems. In Figure S2c, the baseline shape of test data (shown in yellow) is 
slightly pulled towards the upper right compared to the training data 
(shown in black). A significant drop, approximately 1000 counts, is 
detected in the Raman shift region between 400 and 1720 cm-1. Addi
tionally, in the region from 2000 to 3000 cm-1, the intensities greatly 
exceed those of the training data. This could be due to the Raman 
spectrometer’s declining performance or instrumental interferences, 
such as an unstable detector and laser power. This requires a normali
zation procedure to correct datasets. To successfully implement Raman- 
based models in downstream processing, it is crucial to ensure data 
comparability across spectra with deviated baselines. Any variations or 
inconsistencies in the instrument and system can affect the data 
comparability, posing challenges to the development of robust regres
sion models. Therefore, a robust data preprocessing workflow should be 
used to harmonize the data.

Different parameter configurations can be applied to a preprocessing 
method. However, if the parameters are not configured correctly, the 
model’s predictability may be unsuccessful. To test various pre
processing parameter configurations, we performed a workflow 
screening, coupled with different model regression algorithms. The 
model performance of this screening is presented in Fig. 5, using two key 
metrics, f1 for Transferrin and f2 for mAb1. Out of 1620 workflow 
screenings, only 162 (10 %) workflow candidates yielded both positive 
results for both f1 and f2. The remaining 90 % of workflows failed to 
predict protein concentrations with negative f1 or f2. This low success 
rate of 10 % highlights the importance of an appropriate workflow that 
include the preprocessing method and model regression, to ensure 
successful modelling and data comparability. In Fig. 5a, the utopia 
point, where f1 = f2 = 1, serves as a reference for the ideal scenario. The 
six Pareto front candidates, indicated by red circles, are considered the 
best candidates. Fig. 5b shows that among the workflows with positive 
results, those using the Butterworth filter (green dots) outperformed 
those using the SG filter. The Butterworth filter was used in 89 work
flows (55 %), while the SG filter was used in 73 workflows (45 %). 
Although the workflows using the SG filters showed promising results in 
estimating mAb1 concentration with f2 > 0.95, their performance in 
predicting Transferrin concentration was unsatisfactory. The majority of 
workflows using SG filter were characterized by f1 value below 0.7. This 
underperformance can be attributed to the suboptimal preprocessing by 
the SG filter for Transferrin, which serves as a model impurity. It is 
potentially because of the low concentration in the experimental design 
(max. 4.2 mg/mL, Section 2.2.2). While these workflows are prone to 
accurately predict the concentration of the primary molecule, mAb1, 
due to its intense signals, they have less capability in detecting impu
rities hat are present at low concentration in the bioproduct. In contrast, 
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only the workflows using Butterworth filter showed high performance 
for both mAb1 and Transferrin. This was evident in the performance 
plot, where both evaluation metrics, f1 and f2, exceed 0.8.

Of the six pareto front candidates, the highest value achieved for f1 
was 0.9022, while for f2 it was 0.9825. All these six candidates have both 
their metrics exceeding 0.7. Five of these candidates employed the 
Butterworth bandpass filter but with different hyperparameters. This 
observation underlines the Butterworth bandpass filter’s ability to 
harmonize the spectral datasets with baseline deviations, therefore 
enhancing data comparability and model performance. In these five 
candidates, full-range spectral variables and the SVR were paired with 
the Butterworth bandpass filter. It was observed that the Butterworth- 
filtered data showed a better fit with the SVR with a polynomial 
kernel than with the PLS regressor. Furthermore, the five top candidates 
shared a common low cutoff frequency of 0.005 fs, a finding that aligns 
with the previous results shown in Figs. 2 and 3. Detailed performance 
metrics and corresponding workflows for these candidates can be found 
in Table 3.

As mentioned earlier, the spectral baseline in Test data has a sig
nificant shift (Figure S2c) and necessitates a normalization procedure 

for correction [29]. Consequently, during the final model tuning, we 
applied an additional normalization procedure. Based on the screening 
results, full spectral variables and the SVR with a polynomial kernel 
were used to develop single-output models. These models were designed 
to predict concentrations of Transferrin and mAb1 in the CEX runs. The 
final tuning tested the best bandpass configurations derived from pre
vious study results (Section 3.3). In the final models, the optimal con
figurations identified in the bandpass screening (Fig. 4) were applied. 
The mAb1 model utilized a low cutoff frequency of 0.008 fs and a high 
cutoff frequency of 0.016 fs For the Transferrin model, a low cutoff 
frequency of 0.004 fs and a high cutoff frequency of 0.07fs were used. 
This confirms that the optimal configurations are both promising and 
effective, as evidenced not only in the r2 plots but in model develop
ment. It suggests that the averaged r2 may be a meaningful represen
tation for the spectral extraction of relevant data. Therefore, using the r2 

value could be a promising approach to identify the optimal parameter.
Fig. 6 presents the in-line predictions given by the final model for 

two validation and test datasets over the elution time. In Fig. 6a, c and e, 
the concentration predictions for mAb1 (in blue) and Transferrin (in red) 
are shown. These predictions are displayed in form of chromatograms 
alongside off-line concentrations, in-line pH, and conductivity profiles. 
The in-line prediction curves for both proteins align well with the off- 
line measurements. Fig. 6b, d and f show a parity plot, which com
pares the off-line measured concentrations with the model predictions 
for each dataset. As annotated in these figures, the R2 or Q2 values reach 
the highest at 0.99 for mAb1 (Fig. 6b) and 0.95 for Transferrin (Fig. 6d). 
In all three datasets, the mAb1 model demonstrated robust predict
ability, with R2 and Q2 values exceeding 0.95. Despite precisely pre
dicting the concentration profiles that closely match off-line 
measurements, the Transferrin model exhibits weaker predictability as 
shown in Fig. 6b and 6f. In Validation 2, the reduction in salt gradient 
length led to earlier elution from the column and narrowed protein 
profiles. This caused a significant overlap of proteins between the 6 to 9 
min, a region specifically targeted to test the model’s ability to differ
entiate the protein mixture. In this scenario, the Transferrin model made 
accurate predictions. However, the mAb1 model failed to accurately 
predict this high overlap, unexpectedly revealing a mAb1 peak from 4 to 
7 min. As the Transferrin concentration here exceeded the calibration 
range of 4.2 mg/mL, we replicated Validation 2 using same experimental 
setup, but with a reduced amount of Transferrin. In this replication, 
referred to as the Test experiment, the mAb1 model predicted the 
overlap with greater accuracy, without showing the unexpected peak. 
Furthermore, the Test experiment greatly improved due to the normal
ization procedure, which effectively corrected the baseline shift.

For evaluating the feasibility of the three preprocessing methods for 
real-time monitoring, we also assessed their computational based on the 

Fig. 5. Workflow screening and optimization results. f1, f2 were calculated and used as model performance evaluation. All the workflows of positive f1, f2 are 
shown on the (f1, f2) plane in both plots. a) The pareto front points are shown in red diamond. b) the workflows using the Butterworth filter are highlighted in green. 
The utopia point, where f1, f2 equal 1, is highlighted in red cross as reference.

Table 3 
The applied approaches and model outputs of nine workflow candidates.

Candidate Truncation Preprocessing 
workflow

Regressor f1 f2

1 Full-range Butterworth 
bandpass 
(10-pole, [0.005, 
0.04] fs)

SVR* 0.9022 0.8745

2 Full-range Butterworth 
bandpass 
(10-pole, [0.005, 
0.06] fs)

SVR* 0.9007 0.8921

3 Full-range Butterworth 
bandpass 
(10-pole, [0.005, 
0.07] fs)

SVR* 0.8881 0.8953

4 Full-range Butterworth 
bandpass 
(10-pole, [0.005, 
0.08] fs)

SVR* 0.8344 0.8996

5 Full-range Butterworth 
bandpass 
(10-pole, [0.005, 
0.09] fs)

SVR* 0.7700 0.9027

9 Range 2 SavGol derivative 
(ndiff = 2, window =
89, npoly = 3)

PLSR** 0.7288 0.9825

SVR*: Support Vector Regression, C = 1000, epsilon = 0.01, degree = 3.
PLSR**: Partial Least Square Regression, number of components = 5.
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in-line Raman data collected from the three chromatography runs. The 
SG filter demonstrated the lowest computational cost, with an average 
processing time of 27.8 ms per spectrum. The Butterworth bandpass 
filter required slightly more time, averaging 30.8 ms per spectrum. In 
contrast, the Butterworth highpass filter had a higher computational 
cost, with an average processing time of 37.9 ms per spectrum. Including 
the model prediction time of approx. 20 – 70 ms, the total processing 
time ranged from 50 to 100 ms, significantly faster than the spectrum 
acquisition of 7.5 s. This suggests that the integration of these methods 
into real-time Raman analysis would not pose a computational 
bottleneck.

4. Conclusion

The study successfully illustrated the potential of the Butterworth 
filter for decomposing Raman spectra in the downstream processing of 
biopharmaceuticals. A detailed investigation was conducted on the 
highpass design to understand the basics of cutoff frequency and the 
frequency domain. This investigation focused on the impact of the cutoff 

frequency on filtering performance and the extraction of protein-related 
Raman data. This digital filter is able to decompose original Raman 
signals into multiple frequency categories, enabling the filtering out of 
irrelevant frequencies by preventing them from passing through. It was 
found that the spectral baseline could be transformed into a middle 
range of cutoff frequency, specially from 0.004 to 0.008 fs This range is 
crucial for baseline removal when decomposing Raman spectra of bio
pharmaceuticals. This finding is also in line with the optimal cutoff 
frequency of 0.004 fs in eliminating flowrate effect in previous study 
[15]. The study also revealed that a cutoff frequency of 0.005 fs is an 
optimal threshold. This enhances protein signal recovery and model 
predictability in chromatography runs.

Following the understanding of highpass, the study delved into the 
bandpass design. This design filters out not only the baseline but also 
high-frequency noises, though the screening of low and high cutoff 
frequencies. The findings indicate that the Butterworth bandpass filter 
outperforms the highpass design in improving the linear correlation 
between Raman signals and protein concentrations. The study also un
derscores the importance of specific cutoff frequency selection when 

Fig. 6. Chromatograms of three chromatography experiments and comparison of their in-line Raman predictions and off-line measurements. The three rows show 
the results of validation 1, validation 2, test experiments, respectively, from top to bottom. On the left side, their chromatograms are represented with off-line 
measurements (filled area), in-line Raman predictions (line with dots), in-line conductivity (in pink) and in-line pH (in green). Right next to each chromatogram, 
the off-line observation concentrations were compared with the in-line Raman predictions in a single plot with refer to Transferrin (in red) and mAb11 (in blue). A 
diagonal line is shown as reference.
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applying the bandpass design to the Raman spectra of individual protein 
molecules. Our approach determines the parameter configuration using 
experiments with pure protein, offering a practical and efficient alter
native to empirical methods or computationally intensive screening, 
with reduced costs and minimal lab work. The optimal configurations 
identified through screening was successfully validated in real down
stream chromatography scenarios. Directly applying these optimal 
configurations in developing predictive models, high coefficients of 
determination were achieved for IgG (R2 = 0.99) and Transferrin (R2 =

0.95). Efficient bandpass parameter tuning can provide precise fre
quency configuration for the post modeling step, thereby enhancing the 
implementation of Raman spectroscopy in the downstream processing of 
biopharmaceuticals. While the proposed Butterworth bandpass with a 
screening strategy delivers an efficient refinement on developing che
mometric models for proteins in downstream processes, its trans
ferability to real CQAs has to be further studied and verified, gaining 
more comprehensive understanding on the peak assignment and 
interpretation.
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