Journal of Chromatography A 1756 (2025) 466069

Contents lists available at ScienceDirect

JOURNAL OF CHROMATOGRAPHY A

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma

ELSEVIER

L))

Check for

Digital Butterworth filter as preprocessing method for implementing | e
Raman spectroscopy as an analytical method in downstream processing
of biopharmaceuticals

a,b a,b

Jingyi Chen ®", José Munoz Reyes*”, Robin Schiemer “®, Gang Wang“, Joey Studts “®,

Matthias Franzreb ™

2 Boehringer Ingelheim Pharma GmbH / Co. KG, Biberach an der Riss, Germany
b nstitute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany

ARTICLE INFO ABSTRACT

Keywords:

Therapeutic antibody
Butterworth filter

Raman spectroscopy

Process analytical technology
Data preprocessing

Machine learning

For implementing Raman spectroscopy as an analytical method in downstream processing, extracting molecular
information related to biopharmaceuticals is still challenging due to spectral variations caused by spectrometer,
setup and fluorescence. This study explores the potential of the Butterworth filter as a preprocessing method for
baseline correction and noise reduction in Raman spectra. We first investigate the Butterworth highpass filter’s
working principle and its optimization by introducing disturbances to spectral baselines and assessing the cutoff
frequency w,’s effect on minimizing baseline variations and enhancing the linear correlation (%) between Raman
signals and protein concentrations. The optimal @, range (0.004 to 0.008 cm) yields an r> > 0.85, outperforming
the Savitzky-Golay derivative filter’s 0.68. Further, we explore a Butterworth bandpass filter, adjusting low and
high cutoff frequencies, showing an 11.6-15 % improvement in r? over the highpass design. Our results suggest
the necessity of specific cutoff frequency selection when applying the bandpass design to the Raman spectra of
individual protein molecules and the method for this selection is discussed. By applying the optimization outputs,
we developed chemometric models linking Critical Quality Attributes to the Raman data preprocessed by the
Butterworth bandpass filter, covering concentrations up to 25.6 mg/mL for a biopharmaceutical immunoglobulin
G (IgG) antibody and 4.2 mg/mL for Transferrin. When validated in Cation Exchange Chromatography runs with
gradient lengths of 5 and 10 column volume for in-line predictions, the models show high predictability,
achieving a coefficient of determination R? of 0.99 for IgG and 0.95 for Transferrin.

of bands. This complexity necessitates the use of chemometrics models
[8] for calibrating analytes in Raman spectroscopy. A variety of che-

1. Introduction

The Process Analytical Technology (PAT) framework is increasingly
being advocated in biopharmaceutical manufacturing landscape [1],
particularly in the downstream processing (DSP) of monoclonal anti-
bodies (mAbs) [2]. This shift towards PAT is driven by its potential to
streamline process development, enhance detection of critical quality
attributes (CQAs), and reduce time and costs [3]. Within the PAT
framework, Raman spectroscopy has emerged as a promising analytical
tool for monitoring quality attributes across a range of processes [4-7].
Unlike the ultraviolet/visible (UV/Vis) spectroscopy, which allows
straightforward protein concentration determination at a specific
wavelength, Raman spectroscopy has the potential to correlate to a
broader range of CQAs but faces a challenge due to the complex nature
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mometric model procedures [8,9] have been reported, highlighting the
importance of data preprocessing. The preprocessing methods handle
several tasks such as spectral variation removal, noise reduction, outlier
detection and normalization. Given the high sensitivity of Raman
acquisition to their measurement conditions, identical samples can yield
spectra with baseline deviations due to minor variations in the config-
uration of spectrometer and setup [10].

Raman signals are comprised of information about the measured
sample as well as several side effects, such as spectral baseline, artifacts,
and noises. These can originate from both intrinsic system and extrinsic
sources related to the detector or environmental conditions. Charge-
Coupled Devices (CCD) detectors, widely used in Raman spectrometer
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for their efficiency in detecting weak Raman signals, are prone to
capturing cosmic high-energy particles, leading to spectral artifacts in
shape of narrow-bandwidth spikes [11]. Spectral smoothing is employed
to effectively eliminate high-frequency noises [12] and amplify the
signal-to-noise ratio (SNR), thereby facilitating the extraction of mo-
lecular information related to a specific biopharmaceutical. A significant
challenge in Raman signal recovery is the predominant spectral base-
line, which is typically several orders of magnitude [13] stronger than
the fingerprint peaks of biopharmaceutical samples. Various factors
contribute to the Raman spectral baseline, including fluorescence
background [14], thermal fluctuations in CCDs [11], variations in flow
rates through the flow-cell [15], and increasing run time [16].

For practical application in DSP scenarios, Raman spectroscopy re-
quires extensive data-driven chemometric models that are trained and
validated across a range of DSP scales and operational setups. Consid-
ering the sensitivity of Raman acquisition, which can result in fluctua-
tions in the spectral baseline between datasets, it is crucial to maintain
consistency in Raman datasets for identical samples, regardless of the
scale or system. A comprehensive collaborative study on Raman data
comparability [17] has highlighted that variations in setups can lead to
discrepancies in Raman data, further emphasizing the need for consis-
tent data handling and preprocessing methods.

Digital filters have shown promise in their ability to filter out back-
ground interferences and to improve the characteristics of Raman
spectroscopy. For instance, Savitzky-Golay (SG) filtering is widely
employed in chemometric models, usually coupled with Principal
Component Regression (PCR) or Partial Least Square Regression (PLSR)
[18,19]. Wei and coworkers [20] showcased the capability of the SG
derivative to eliminate spectral baseline variations caused by Raman
spectrometers. Wang et al. [15] explored the potential of Butterworth
highpass filter and demonstrated its efficacy in removing the effect of
flow rate on the spectral baseline. There is a demand for a simplified
preprocessing method to ensure Raman data consistency and also
improve signal recovery of biopharmaceuticals from the side effects
within a single method. This would further enhance the practical
application of Raman spectroscopy in  biopharmaceutical
manufacturing.

In our selection of filtering techniques, the Butterworth filter was
chosen for its distinct advantages in meeting the requirements of our
study. Our analysis focuses on the Raman signals, which are complex
mixtures of fluorescence interference and scattering effects from various
components within the solution. The Butterworth highpass filter has
proven effective in filtering low-frequency broad signals, such as fluo-
rescence interference [4], which significantly improve signal quality of
components of interests. Additionally, the bandpass design [21] of
Butterworth filter can enhance model’s predictability based on Near
Infrared (NIR) spectroscopic data, by suppressing certain
high-frequency components. Furthermore, the Butterworth filter is
designed to achieve the maximal flatness in the passband for the given
filter order. This is particularly advantageous compared to traditional
Fourier filtering methods, which requires extensive control to prevent
artifacts and ripples in passband response. Despite the adaptive
denoising capability of wavelet transform [22], it necessitates compu-
tation complexity and cost on the determination of wavelet function
type and multi-levels of decomposition. Empirical Mode Decomposition
(EMD) [23] is a data-driven filtering technique that decomposes a signal
into various Intrinsic Mode Functions (IMFs). However, the number of
IMFs can increase with the spectrum complexity and complicate the
correlation of the decomposed data with various CQAs in downstream
processes. This article presents the first representative interpretation of
the Butterworth filter’s capability to decompose Raman spectra of bio-
pharmaceuticals into multiple Butterworth frequency regions that
effectively filter out irrelevant frequencies, or spectral components. We
further explored the impact of the cutoff frequency on the Butterworth
highpass filter’s efficacy in eliminating synthetic spectral baselines.
Through these investigations, we identified the most effective
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Butterworth frequency region for baseline removal. We also employed
the SG derivative filter, a common preprocessing method in Raman
spectroscopy, and compare its performance with the Butterworth filter.
In our interest to maximize the recovery of protein-related spectral
features using a single preprocessing method, we evaluated the Butter-
worth bandpass filter’s effectiveness in eliminating both baseline fluc-
tuations and high-frequency noises. Our comprehensive screening of low
and high cutoff frequencies revealed that a bandpass design enhances
the linear correlation between Raman signals and protein concentra-
tions by 11.6-15 %, surpassing the highpass design. Additionally, our
research emphasized the necessity of specific cutoff frequency selection
when applying the bandpass design to the Raman spectra of individual
protein molecules. This finding enables the precise tuning of bandpass
parameters, crucial for CQA specific decomposition of Raman signals,
thereby enhancing the implementation of Raman spectroscopy in the
downstream processing of biopharmaceuticals. A biopharmaceutical
immunoglobulin G (IgG) antibody and Transferrin molecule represent-
ing a model impurity were studied to develop calibration models for
determination of the two molecules in Cation Exchange Chromatog-
raphy (CEX). When the specific Butterworth frequencies identified from
the screening were applied, the IgG model achieved a coefficient of
determination R? of 0.99, while the Transferrin model achieved a R? of
0.95.

2. Materials and methods
2.1. Raman spectrometer setup and two Raman detection systems

In the study, we employed a HyperFlux Pro Plus Raman spectrometer
(Tornado Spectral Systems, Mississauga, Ontario, Canada), controlled
by SpectralSoft 3.4. software. This spectrometer was excited by a 785
nm emission laser, covering a wavenumber range from 200 to 3300 cm’
with a resolution of 1 cm™. A Hudson Probe with a 45 L Micro Flow Cell
(MFC) (Tornado Spectral Systems, Mississauga, Ontario, Canada) was
connected to the Raman spectrometer for fluidic measurement. We
followed a consistent acquisition setup for all Raman measurements in
this study [15]. To maximize the Raman signal intensity and
signal-to-noise ratio, the laser was set to its maximum power of 495 mW,
which did not cause detector saturation or sample damage. In our pre-
vious studies, we found that using the maximum laser power led to
detector saturation and distorted Raman signals during capture chro-
matography process step [4]. Increased laser power can potentially
result in heating of the sample due to high energy, especially after long
exposure it can burn biological samples. The exposure time to 500 ms
with 15 averages, resulting in a scan time 7.5 s/per scan. For off-line
measurement of well-mixed samples, the Raman spectrometer was
mounted on a Tecan Fluent 780 Liquid Handler (Tecan, Mannedorf,
Switzerland), as described in references [4,15,24]. Each 300 pL sample
was automatically injected into the MFC, with each off-line Raman
detection lasting 90 s and yielding 11 spectra per sample. We utilized a
second Raman detection system for in-line measurement of elution
samples from chromatography runs using the same spectrometer. This
was performed on an AKTA Avant 25 system (Cytiva, Uppsala, Sweden)
controlled by UNICORN™ 7.5 software. The MFC was positioned be-
tween the conductivity and pH sensors for Raman detection.

2.2. Molecules and experimental designs

2.2.1. One-component dilution series of two proteins

We utilized a pharmaceutical IgG antibody, referred to in subsequent
text as mAbl, provided by Boehringer Ingelheim Pharma GmbH & Co.
KG (Biberach, DE), Additionally, human Transferrin (Sigma Aldrich,
Burlington, Massachusetts, US) was employed as a model impurity. A
mAb1 drug substance solution with 50 mg/mL was ultra-filtrated into
purified water (Unagi, Unchained Labs, Pleasanton, California, USA),
and diluted to a stock solution with a concentration of 19.5 mg/mL.
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Lyophilized transferrin was dissolved in purified water and adjusted to
20 mg/mL stock solution. Two dilution series were separately prepared
with 11 levels, by mixing the two stock solutions with purified water.
Each mixed sample was measured off-line, with 40 Raman spectra
collected for each sample.

2.2.2. Three-component calibration experiments mixing two proteins with
salt buffer

The further study of preprocessing method focused on a three-
component system containing Transferrin, mAb1, and salt concentra-
tion. For the calibration experiment, we set the mAbl concentration
calibration range from zero to the maximum 25.6 mg/mL, and Trans-
ferrin up to a maximum 4.2 mg/mlL, both tested at 11 equally spaced
levels. The third factor, salt concentration, was regulated by adjusting
the ratio of two solutions: Buffer A (50 mM acetate, pH 5) and Buffer B
(50 mM acetate, pH 5, 1 M NaCl). We designed an experiment (N = 132)
involving these three factors, ensuring minimal correlation among them
while minimizing the protein materials. This customized design is
graphically visualized in Figure Sla). The correlation matrix for the
three factors is presented in Figure S1b, with all correlation coefficients
below 0.13. The experimental window was divided into two triangular
sections (I and II) by a diagonal line, resulting in two sub-experiments
with each mixing three feed solutions (N;=N3=66). In the first sub-
experiment (section I), Transferrin stock solution was added to mAbl
drug substance solution, then ultra-filtrated into Buffer A, reaching the
concentration of 25.2 mg/mL for mAbl and of 4.19 mg/mL for Trans-
ferrin (feed solution F1-A). Another mAb1 drug substance solution was
directly buffer-exchanged and diluted in Buffer B to 24.02 mg/mL (feed
solution F2-B). A 1:1 mixture of Buffer A and B was used as feed solution
F3. Similarly, the sub-experiment (section II) mixed another feed solu-
tions (F1-B, F2-A and F3). In the second sub-experiment, feed solutions
F1-B, F2-A and F3 were mixed. F1-B was a mixture of 4.2 mg/mL
Transferrin and 25.6 mg/mL buffer-exchanged in Buffer B. F2-A was a
Transferrin solution diafiltrated in Buffer A at concentration of 4.15 mg/
mL.

Both sub-experiments utilized the Tecan Fluent 780 system for
automatic mixing of feed solutions. The samples were then injected into
the MFC for off-line Raman detection (Section 2.1). All samples from
each sub-experiment were pooled post-measurement, stored at 4 °C until
being reused as loading materials for the subsequent chromatography
runs. Due to a wash step in between two measurements, the two sample
pools were diluted with purified water. All the Raman measurements
collected from the 130 samples are provided as the training dataset for
calibration models of quantifying mAb1 and Transferrin concentrations.

2.2.3. CEX runs with fractionations

Three CEX runs were performed on an AKTA Avant 25 system for
validating the calibration models (Section 2.3). The CEX column used
was packed with Poros XS resin (Thermo Fisher Scientific, Waltham,
USA) and had a diameter of 1 cm and a column volume (CV) of 17.14
mL. The CEX runs initiated with an equilibration phase using Buffer A,
followed by load and wash phases. During the elution phase, a salt
gradient setup was applied, where Buffer A and B were pumped with an

Table 1
Process parameters of the calibration, validation, and test experiments.
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isocratic volumetric percentage from 0 % to 100 % Buffer B, over a
specific gradient length in CV. As detailed in Table 1, a gradient length of
10 CV was used in the Validation 1 run, while 5 CV in the two Validation
2 and Test runs. For Validation 1 and Validation 2, two pooled solutions
from the sub-experiments were titrated to pH 5.0 using 99 % acetic acid
(Aug. Hedinger GmbH & Co. KG), just before loading. The loading
masses of Transferrin and mAbl were listed in Table 1. All runs were
fractionated using a built-in fraction collector into fractions of 1 mL. The
in-line Raman spectra recorded were averaged for each of the collected
fractions. The concentrations of Transferrin and mAb1 in each fraction
were determined by performing Ultra-performance Size Exclusion
Chromatography (UP-SEC). This was done using an Acquity UPLC
BEH200 SEC Column on an Acquity Premier system controlled by
Empower 4 (all from Water Corporation, Milford, MA, USA).

2.3. Preprocessing and modelling algorithms

2.3.1. Role of cutoff frequencies in Butterworth filtering of Raman spectra

The Butterworth filter is a signal processing filter designed to ensure
that the amplitude of the frequency response within the passband is as
flat as possible, thereby transmitting the desired signals with minimal
signal distortion. Depending on specific requirements, the filter can be
designed as lowpass, highpass, bandpass, or band-stop. In the case of a
low- or highpass design, there are two hyperparameters: cutoff fre-
quency f, which refers to a Butterworth frequency marking the half-
power point between passband and stopband, and filter order n, which
describes the steepness of transmission from passband to stopband. A
Raman spectrum is a composition of spectral baseline, noise, narrow and
broad peaks. Each of these components can be approximated using an
arbitrarily number of periodic functions. In the context of Raman
spectroscopy, the application of the Butterworth filter requires an un-
derstanding that these waveform signals can be viewed as periodic
functions. Regarding a waveform in Raman signal, the period of the
function corresponds to a specific wavenumber region, denoted in units
of cm’l. This allows us to perceive Raman signals as existing within a
time-domain represented by the unit cm™.. In signal processing, the term
Fourier-transformation is utilized to convert signals in time-domain to a
discrete frequency domain. Specifically, when preprocessing Raman
spectra, the Butterworth filter Fourier-transforms (FT) Raman signals
from the time-domain to a frequency-domain, represented in a reverse
unit of _L;. Considering the entire wavenumber region totaling 3101
variables as a single sine function, the period of the waveform is 1550.5
em! and the corresponding Butterworth frequency is the inverse
equaling 0.00064 _;
confusion with the unit [cm], we use a normalized frequency f/f;
throughout the text. Here, f; represents the sampling frequency in unit of
-+, as we sample a Raman spectrum at an interval of 1 em™. To un-
derstand the behavior of the cutoff frequencies on Raman spectra, the 40
raw spectra of 20 mg/mL Transferrin stock solution (Section 2.2.1) were
Butterworth-filtered, applying low- and highpass with n = 5 (ten-pole)
[15] and varied cutoff frequencies [0.002, 0.006, 0.02, 0.2]f;. The
whole study was programmed using Python 3.9, and all the

To simplify the term “frequency” and avoid

Runs Setup Transferrin mAb1 Gradient length Usage Sample numbers
[mg] [mg] [cv]
Calibration Tecan - - - Training 132
(off-line)
Validation 1 AKTA 41.9 492.2 10 Validation, Hyperparameter screening 60
(in-line)
Validation 2 AKTA 83.5 256 5 51
(in-line)
Test AKTA 40 225 5 Final model test 54

(in-line)
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preprocessing methods were applied using packages NumPy and SciPy.

2.3.2. Assessing the Butterworth filter’s robustness against disturbances in
spectral baseline

Numerical experiments were conducted on the two protein dilution
series (Section 2.2.1, mAbl and Transferrin) to assess the impact of
cutoff frequencies on baseline removal, and to evaluate the Butterworth
filter’s robustness against synthetic disturbances added in spectral
baseline. Synthetic disturbances were generated by replacing random
data points located in baseline with varied values. In Raman data, real
variations in baseline can manifest as fluctuations and intensity shift in
the low wavenumber range of 400 to 1800 cm™’. To simulate these real
variations, 20 data points (1.4 %) were randomly selected within the
[400, 1800] em’! range from the baseline. For each Raman spectrum, its
baseline was estimated using a fourth-degree Improved Modified Poly-
nomial fit [25]. The magnitude of the added variations was sampled
from a uniform distribution of [0.8,1.2] of their original value [26]. The
resulting 20 new points were subsequently fitted with a new four-degree
polynomial, and a disturbance was defined as the difference between the
original and disturbed baselines. This disturbance was then added to the
original spectrum, obtaining a disturbed spectrum. For baseline
removal, the highpass Butterworth filter was applied to both original
and disturbed spectra, with a filter order of 5 (ten-pole) and varying
cutoff frequencies in the range from 0.001 to 0.020 f; with a step size of
0.001 f; To account for randomness, at each concentration, the numer-
ical experiment was independently repeated 40 times for each spectrum.
A second-derivative SG filter was applied as a reference using a window
length of 11 and a 2nd order polynomial [20].

The robustness of the highpass Butterworth filter against baseline
variations was assessed by comparing the disturbed and undisturbed
spectra after treatment with the filter, using two different metrics: the
cosine similarity 6 and the averaged squared Pearson correlation coef-
ficient 2. The cosine similarity [27,28] is defined as the dot product
between spectra divided by the product of their Euclidean norms as
follows:

g (xa0). %) o

e @)2lxe @)1

where x., and X, are the preprocessed spectra of raw spectrum and
disturbed spectrum at a single concentration c;, respectively. v is one
single wavenumber in the Raman spectrum and m the total number of
wavenumber variables. The use of cosine similarity aims to quantify the
overlap between the two processed spectra x., and X, with and without
disturbances. To verify the degree of how the protein concentration
signals were attenuated, we took the averaged squared Pearson corre-
lation coefficient correlation r? across all wavenumbers as a measure of
averaged concentration-dependence, regarding raw or preprocessed
spectra. The r?> was defined as follows:
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where x,, indicates one investigated spectrum (raw or preprocessed) at a
concentration ¢;.We measured the linear correlation r between the
concentration vector and their corresponding spectra. This was con-
ducted by comparing the concentrations and signal intensities at a same
wavenumber j from total variable numbers m. Then, squared correlation
r;i> was summed and averaged across all wavenumbers.

2.3.3. Screening low and high cutoff frequencies of a Butterworth bandpass
filter

A further investigation on Butterworth bandpass design was carried
out using the two protein dilution series. The purpose of this design was
to remove not just spectral baseline, but also high-frequency noise,
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thereby maximizing the extraction of protein-related spectral features. A
bandpass Butterworth filter can remove Butterworth frequencies that
are either lower than a specific low cutoff frequency f ;o /f; or higher
than a certain high cutoff frequencyf. pin/fs. For both proteins, the
spectra consisting of 11 concentration levels underwent treatment with
various bandpass filters with n = 10 (ten-pole). But the low frequency
varied between 0.001 and 0.014 f; in a step of 0.0005 f;, while the high
frequency ranged from 0.015 to 0.5 f; in a step of 0.01 f; The effec-
tiveness of recovering protein-related features was assessed using the
same averaged > mentioned in Section 2.3.2.

2.3.4. Performance evaluation of the Butterworth bandpass filter in real
downstream process

To assess the performance of the Butterworth bandpass filter in a
downstream process, a calibration experiment along with two CEX runs
were carried out to collect training data (Section 2.2.2) and two vali-
dation datasets (Section 2.2.3). The objective was to evaluate the ability
of preprocessing method to manage baseline variations caused by in-
struments and systems. Ham et al. [21] recommend evaluating the
effectiveness of preprocessing method by executing the complete
workflow instead of a single preprocessing step. Alterations in the
workflow can lead to different model outputs. Therefore, we first con-
ducted a comprehensive workflow screening that included spectral
variable truncation, preprocessing method, and regression models. As
listed in Table 2, various options of each step were tested along with
their hyperparameters. This included 780 Butterworth bandpass filters
and 800 SG filters, and 20 negative controls (no preprocessing), result-
ing in 1610 workflow candidates for predicting concentrations of mAb1l
and Transferrin. A 20-fold cross validation procedure was employed to
internally evaluate the performance. The score was computed using
Root-mean-square deviation (RMSE) [15] and Coefficient of determi-
nation (R%) [24]. Each model was subsequently validated using the two
external validation datasets. Regarding protein concentration predic-
tion, the model performance was evaluated by the R? for training dataset
and the coefficient of prediction Q? for two validation datasets. There-
fore, to rank the candidates in a simplified manner, we choose the lowest
value among the three coefficients as a single new figure of merit f,
which describes the most tolerable model performance within the three
datasets. All the regression models were built using package scikit-learn.

Normalization is necessary to handle multiplicative effects that arise
from variations in laser power, spectrometer drift, inherent intensity
variability of the sample, or alterations in the medium’s refractive index
[29]. During the final model tuning, we applied an additional normal-
ization procedure using a weighted multiplicative scatter correction
(MSC) algorithm [30-32]. In this normalization algorithm, we assigned

Table 2
Category and the approach choices in the workflow screening.
Category Choice Hyperparameter
Wavenumber Full range: 200 to 3300 cm™®
Truncation Range 2: 800 to 1800 cm™!
Preprocessing Butterworth Bandpass filter  f o /fs = [0.002,0.009] in
(Neotar= 780) 0.001
fenign/fs = [0.02,0.11] in
0.01

5-order (10-pole)

W, = [11, 51] in a step of 2
Npoly = 2 or 3

DNderivative = 1 OF 2

Savitzky-Golay derivative
(Niotai= 800)

Control: no preprocessing
(Neota1= 20)

Partial Least Square
Regression

(Neota= 960)

Model regression Dcomponent = 3, 4, 5

Support Vector Regression
(polynomial)
(Niotar= 640)

C = 1000 or 100
& =0.01, degree = 3
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a weight of 1 to the region between 2100 and 2400 cm™'. These weights
were determined using a variable sorting for normalization (VSN) al-
gorithm (refer to Supplementary methods). The Support Vector
Regression (SVR) with a polynomial kernel was chosen as the model
regressor. The polynomial kernel function has a degree of three, with an
epsilon (¢) value of 0.01, and a regularization parameter (C) of 1000.

3. Results and discussion

3.1. The capability of the Butterworth filter on Raman spectra
decomposition

Different low- and highpass Butterworth filters were used to pre-
process the raw spectrum of a 20 mg/mL human Transferrin solution in
purified water, using four different cutoff
frequencies[0.002, 0.006, 0.02, 0.2] f; and ten-pole. This aims to
investigate the working principle of Butterworth filter with low- and
high-pass designs and the effect of the cutoff frequency. Fig. 1 represents
the behavior of a Butterworth filter with low- and highpass designs,
displaying the results using different cutoff frequencies in rows from A to
D. The second column displays lowpass components with varied cutoff
frequencies, using a raw spectrum as a reference. The third column
presents highpass components. The last column in Fig. 1 represents the
power plot of FT data, displaying the signals in the Butterworth fre-
quency domain. The signal power is the squared amplitude of the sine
function at each Butterworth frequency. For the limit case of a filter with
an ideal cutoff behavior (n—o0), the decomposition of the spectra can be
simplified as: raw spectrum = lowpass component signals + highpass
component signals.

Taking the example of a filter with frequency of 0.002 f; (row A), by
passing through the Butterworth frequencies below the frequency value,
a lowpass component is shown and it can be considered a baseline in a
broad waveform with low Butterworth frequency region (A2). A high-
pass design improves the resolution of significant Raman peaks by
filtering out the lowpass component i.e. baseline and reducing the order
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of baseline’s magnitudes (A3). Similarly, in the power plot (A4), we
observe a significant amplitude drop in the low Butterworth frequency
range below 0.002 f;, relative to the raw spectrum. The orange profile
behaviors sharper and more intensive than the blue, suggesting that the
remaining Raman data is amplified post-filtering. The data within the
mid-range between 0.002 and 0.1 f; could potentially contain abundant
protein information, and this amplification could contribute to model
enhancement. Although the region above 0.1 f;, which primarily con-
tains spectral noise data, is also amplified, it is at least four orders of
magnitudes weaker than the true peaks and can therefore be ignored.

By increasing the cutoff frequency from 0.002 f; to 0.2 f; (row from A
to D), the lowpass component profile tends to overlap the original
spectrum, while the highpass component profile has a transition from
broad true peaks to artificial spikes or noises. Those artifacts or noises,
which are extremely narrow and sharp peaks, are Fourier-transformed
into the high Butterworth frequency region. The subfigure D3, a high-
pass filter with a frequency of 0.2 f;, represents its highpass component
composed of almost only noise and/or residuals of those sharp and
narrow Raman peaks, such as the sapphire peak at 418 cm™ . As for its
power plot (D4), true spectral peaks here disappear, and their values are
forced to be a certain constant, resulting in predominant spectral noises.
For a frequency of 0.006 f; (row B), the lowpass component (B2) tends to
penetrate wider peaks like the water peak at 1640 cm™ while leaving
sharper peaks like the sapphire peak at 418 cm™ unchanged. For a fre-
quency of 0.02 f; (row C), the lowpass components (C2) penetrates even
sharp and intense peaks. Broad spectral peaks that have relative low
Butterworth frequencies are attenuated, such as power signals in a range
between 0.002 f; and 0.01 f;

The Raman spectrum is represented as the sum of the pure Raman
signal of measured sample, the spectral baseline, and noise or artifacts
along all the wavenumbers or Raman shifts. In the context of Raman
spectroscopy, the use of a Butterworth filter facilitates the Fourier
transformation of Raman signals from the wavenumber domain to the
inverse Butterworth frequency domain. This transformation to the fre-
quency domain decomposes the original signals into multiple frequency

el
o
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Fig. 1. Working principle of the Butterworth filter for spectral preprocessing. A raw spectrum of a Transferrin sample at 20 mg/mL was taken as an example and
truncated to the region between 400 and 2000 cm™. This spectrum was preprocessed by Butterworth filters with varied cutoff frequencies in range of [0.002, 0.006,
0.02, 0.2] f,, from row A to D, respectively. Each row corresponds to a Butterworth filter applying an order of 10 and one cutoff frequencies. Different response and
filter components of a Butterworth filter are represented along the columns. The first column shows the filter amplitude responses of the respective Butterworth filter
using high- and low-pass. The second column shows the lowpass components applying lowpass design with varied cutoff frequencies. An original raw spectrum is
provided as a reference. The third column shows the highpass components applying high pass design with varied cutoff frequencies. The fourth column shows the
spectra of the highpass component and raw data in form of power, cataloged by reciprocal Raman shift or Butterworth frequency in cm.
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categories and facilitates the filtering of irrelevant Butterworth fre-
quencies. Consequently, a frequency sequence can be hypothesized,
ascending from low to high values, that can be classified as follows:
spectral baseline < broad peaks < narrow and sharp peaks < noises. By
changing the cutoff frequency on the identical raw Transferrin spec-
trum, the undesirable signals can be effectively removed by preventing
their corresponding frequencies from passing through. Thus, the selec-
tion of an optimal threshold or cutoff frequency is critical for baseline
removal and smoothing in the application of the Butterworth filter.

3.2. Cutoff frequency selection for robust and efficient baseline removal

On two dilution series (mAb1 and Transferrin), we aim to choose the
optimal cutoff frequency of Butterworth highpass filter for filtering out
baseline. The experiment is based on synthetic disturbances randomly
added to the baseline of raw spectra, which results in baseline-disturbed
spectra. The cosine similarity 6 is used to evaluate the preprocessing
method’s ability and robustness in filtering out the disturbed baseline.
At each protein concentration, the synthetic baseline disturbances were
randomly replicated for 40 times and the average cosine similarity 0 are
computed over all the concentrations. The averaged squared Pearson
correlation coefficient r? is another metric used to assess the correlation
between protein concentration and a given dataset. A higher r? value
indicates a stronger dependence of the dataset on protein concentration.

Fig. 2 presents the average cosine similarity and averaged Pearson
correlation coefficients for the cutoff frequency in a range of 0.001 to
0.02 f; After an initial increase from 0.4 to 0.8 f; for cutoff frequencies
smaller than 0.005 f;, the mean r> shows a plateau at approximately 0.9
for mAb1 for frequency in the range of 0.007 and 0.015 f;, while for
transferrin a maximum of 0.85 is reached in the range of 0.01 and 0.015.
In Fig. 2a, a significant r? drop occurs from a cutoff frequency of 0.015 f;
for both proteins. In the given cut off frequency range of 0.001 to 0.02 f,
mAb1 shows a higher r? value than Transferrin. In contrast, the SG
derivative filter was applied on the identical datasets but obtains a lower
r? value, approximately 0.68. Fig. 2b illustrates a sharp increase in the
mean cosine similarity as the frequency rises to 0.005 f; After this, the
mean cosine similarity reaches a maximum exceeding 0.999. The SG
derivative filter also shows a high cosine similarity above 0.999. Fig. 3
visualizes the effect of baseline removal using Transferrin as an example.
It displays both the undisturbed and disturbed spectra, along with their
spectra preprocessed using a Butterworth highpass with a cutoff fre-
quency of 0.005 f; and a second-derivative SG filter. In Fig. 3a and d, we
observe large deviations in the undisturbed and disturbed spectra at
varying concentrations (indicated by colors). These deviations are vastly
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eliminated or removed after preprocessing, as shown in Fig. 3e and f.
The preprocessed data displayed in Fig. 3b and e (or Fig. 3¢ and f) are
nearly identical, making them comparable at each concentration. When
applied to the undisturbed raw data, the Butterworth filter improves the
mean 2 value from 0.771 to 0.851 (+10.4 %), whereas the SG filter
decreases the value to 0.762 (—1.2 %). Despite the addition of synthetic
disturbances to the baseline reducing the value to 0.396, the Butter-
worth filter achieves a comparable value of 0.797 (+101.3 %) close to
0.851. The SG filter also reaches a comparable value of 0.734 (+85.4 %).

In our analysis of two proteins, mAb1 and Transferrin, ranging from
zero to ca. 20 mg/mL, the Butterworth highpass filter effectively
removed the random numerical perturbations added to the baseline of
the original spectra (Fig. 2, Fig. 3). Within the cutoff frequency range of
0.001 to 0.015 f;, choosing an increasing cutoff frequency enhances the
linear dependency between signals and protein concentration. It could
recover the signals that were distorted by artificial perturbations, as
shown by the rising 2 value. However, the r? profile is not monotonic.
The linear correlation starts to decrease significantly when the cutoff
frequency reaches 0.015 f; Interestingly, at a frequency of 0.005 f;, the r
profiles of two proteins diverge, suggesting a difference in their protein
molecular information at this point. The Butterworth frequency range
from 0.005 to 0.015 f; could be a transitional zone. In this zone, the
primary information source might shift from the spectral baseline to the
protein molecular structure.

This disturbance numerical experiment clearly demonstrates the
capability of Butterworth filter in removing baseline and its distur-
bances. It also reveals that a Butterworth frequency larger than 0.015 f;
does not bring about significant improvements in the two metrics and
may even lower the protein concentration dependence. Therefore, to
maximize the spectral discrepancies in pharmaceutical structures, the
right cutoff frequencies are critical. Our findings suggest that the low to
middle range, specifically 0.004 to 0.008 f;, is optimal for removing the
Raman spectral baseline and baseline disturbances. Based on these
findings, we decided to conduct a further study using a bandpass But-
terworth filter. In the previous study, a cutoff frequency of 0.004 f; (a
coefficient of 2) was identified as optimal for eliminating the baseline
effect caused by flow rate [15]. Our current research expanded on this
by evaluating the full frequency range, rather than limiting to the three
frequencies of 0.001, 0.004 and 0.008 f; This broader evaluation
confirmed that the 0.004 f; significantly outperformed the 0.001 f; and
demonstrated comparable performance to the 0.008 f;

The SG filter also demonstrated robust performance in baseline
removal (with an 85.4 % improvement), even when handling synthetic
baseline deviations that rarely manifest in practical scenarios. However,
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Fig. 2. The effect of Butterworth highpass cutoff frequencies on baseline-disturbance removal. The computation was carried out on two dilution series of mAbl and
Transferrin respectively. Average r? a) and cosine similarity b) were computed between the Butterworth filtered data of the baseline-disturbed and -undisturbed

spectra, at different concentrations with standard deviation.
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Fig. 3. Schematic representation of baseline distribution and correction by a high-pass Butterworth filter. Raw spectra of Transferrin samples in range from 0 to 20 g/
L were used for investigation. a) Raw spectra. b) Raw spectra baseline corrected by a highpass Butterworth filter with n = 10 and a cutoff frequency of 0.005 f; c)
Spectra disturbed by random polynomial baseline disturbance. d) Disturbed spectra baseline corrected by the same Butterworth filter as for b). With refer to con-
centrations, all spectra were plotted in different colors. Average r? is given in every plot.

the Butterworth filter outperformed the SG filter in achieving a stronger
linear dependency between signals and protein concentration in this
study. The specific reasons for this difference remain unclear, but po-
tential contributing factors could include the selection of window size
and polynomial order for the SG filter, which may not have been optimal
for the dataset used in this study. Future studies could involve a sys-
tematic evaluation of filtering techniques, focusing on their impact on
specific spectral peak and band such as relative peak height and location
after filtering [33].

3.3. Butterworth bandpass parameter screening

Unlike the highpass design that employs a single cutoff frequency,
the bandpass design utilizes both low and high cutoff frequencies. This is
done to extract only the middle frequency region. In our use-case, the
goal is not just to remove baseline interferences, but also to avoid
amplifying noises at high frequencies. Fig. 4 presents the averaged r?
results obtained from screening the low and high cutoff frequencies
across the two protein dilution series. The low cutoff frequency was
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tested within a range of 0.001 to 0.014 f;, where the high cutoff fre-
quency was examined in a broad range of [0.015, 0.5] f;. Only results
from the [0.015, 0.4] f; and [0.015, 0.1] f; regions are displayed for
mAb1 and Transferrin, respectively. Analogous to Fig. 2, the mean 72,
represented in various colors, measures the protein concentration de-
pendency post the preprocessing step. Despite the identical buffer
composition and comparable concentration ranges up to 20 mg/mL
(mAbl) and 19.5 mg/mL (Transferrin), the two screenings yielded
different patterns for the two proteins. Moreover, mAbl maximizes the

averaged % at(f.iow, femign) = (0.008, 0.016)f; (in Fig. 4a), while
5 »nigl

Transferrin achieves r?> maximum near the point (0.004, 0.07) f; (in
Fig. 4b). A decreasing trend of averaged r? along the low cutoff fre-
quency is observed, starting from 0.008f; for mAbl and 0.005 f; for
Transferrin. In general, mAb1 has a higher value than Transferrin. These
findings closely align with the curves in Fig. 2a, emphasizing the middle
range of low frequency as crucial for effective preprocessing. When
compared to the 7> maximums in Fig. 2a, the optimized bandpass design
results in an improvement of 11.6 % (from 0.86 to 0.96) for mAb1, and
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Fig. 4. Preprocessing performances of low and high cutoff frequencies of a band-pass Butterworth filter design. The computed average r? for a) mAbl and b)
Transferrin under varied high and low cutoff frequencies, applying bandpass Butterworth filters with n = 10.
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15 % (from 0.80 to 0.92) for Transferrin. The different patterns and
maximums underscore the importance of selecting specific cutoff fre-
quencies when implementing the Butterworth bandpass filter for Raman
spectra of individual protein molecules.

This line of experiments demonstrated that the bandpass design is
more effective than the highpass design in extracting protein concen-
tration dependence from raw Raman spectra. This could be due to the
bandpass design’s ability to separate high-frequency noise [34] from the
Raman data by filtering out specific frequency regions. The Butterworth
filter treats one spectral signal as a diversity of periodic waves, each with
distinct frequencies or periods. In the bandpass design, only those waves
with frequencies or periods below the high cutoff frequency remained
post-filtering. Specifically, the optimal cutoff frequency used was from
0.008 to 0.016 f; for mAb1, corresponding to a wave period of from 62.5
to 125 cm™, compared to a broader region from 0.004 to 0.07 f; (or from
14.3 to 250 cm'!) for Transferrin. Given the complex nature of biological
molecules, the precise assignment and interpretation of Raman bands
linked to proteins poses a challenge. For example, a common feature of
biomolecules is the strong sharp band resulting from the vibration of the
symmetric ring in phenylalanine, typically observed at 1000-1006 cm™!
[35]. The Amide III region, ranging from 1225 to 1280 cm’}, includes
common protein secondary structures: random coil (1225-1240 cm'l),
beta sheet (1240-1260 cm™) and alpha-helix (1260-1280 cm™) [35]. In
our study, mAbl showed more intense and broader Amide III response
compared to Transferrin. To isolate and amplify the broad band in the
Amide III region, varying the high cutoff threshold could be a strategy.
By applying a 4-times higher frequency from 0.016 to 0.07 f;, it’s
possible to divide this overlapping band of 55 cm™ (1225-1280 cm™)
into smaller segments, potentially achieving a resolution of 14.3 cm’l.
This approach could help in distinguishing between the closely over-
lapping features, thereby enhancing the analysis of protein secondary
structures. Nevertheless, not all values in the screening range for the
bandpass design prove effective. Different patterns, each with their
unique optima, were identified in the r? plots of the two proteins. In the
previous study, Wang et al. [4] suggested the augmentation of multiple
Butterworth highpass filters across a wide range of cutoff frequencies to
generate a 2D Raman image dataset. Their success of predicting multiple
CQAs might result from the 2D Raman image dataset, which could
potentially include the patterns of different CQAs. While the earlier
studies determined the cutoff threshold through empirical experience
[4] or by screening within a training dataset [24], our approach employs
a screening strategy grounded in experiments with pure protein. This
approach not only reduces computational costs but also minimizes the
need for extensive wet-lab work, making it a more practical and efficient
alternative.

This study also suggests that a specific parameter configuration
might be necessary to extract the most relevant data for training a
predictive model of an individual protein molecule. To develop a pre-
dictive model of a single molecule, the optimal bandpass configuration
can be determined by performing a dilution series of the desired mole-
cule. This approach aims to identify the configuration that best isolates
the spectral features of interest, enhancing the model’s predictability.
However, these optimized parameters for the model impurity cannot be
simply transferred to real downstream related CQAs due to their
different Raman bands. Successfully applying this approach on more
complex matrices with interfering species requires a high purity of the
molecule. For example, dilution series can be easily made on buffer
excipients. In the real downstream processing, achieving high purity and
quality of process-related impurities, such as high and low molecular
weight species (H/LMWs), can be challenging but can be done by con-
ducting preparative size exclusion chromatography. Specific recombi-
nant host cell proteins can also be purified through capture and size
exclusion chromatography steps [36]. Additionally, H/LMWs are size
variants of the target protein with structure changes. This change might
be less pronounced than those observed in Transferrin, leading to
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unsatisfactory optimization. Furthermore, the complexity of peak
assignment and interpretation can significantly increase after applying
filtering techniques. Proper interpretation of these peaks could lead to a
deep understanding of the true features versus redundant signals,
thereby simplifying the preprocessing method.

3.4. Workflow screening and final model tuning

In the study, the same Raman spectrometer was used to measure all
Raman spectra. This spectrometer was mounted on a Tecan system to
perform off-line measurements of the mixed samples (Section 2.2.2).
The spectrometer was then transferred to an AKTA system to gather in-
line Raman data for all CEX runs (Section 2.2.3). The raw Raman spectra
from these measurements are overlapped and plotted in Figure S2.
However, due to the use of different Tecan and AKTA systems, the
spectra measured off-line and in-line show significant differences in
their baselines. The training data displays strongly shifted spectral
baselines, where the intensities are higher than the rest of the data. In
contrast, no significant discrepancy is observed between the two sets of
validation data (Figure S2a, S2b). This demonstrated the variation in
spectral baseline when the same spectrometer is used on different sys-
tems. In Figure S2c, the baseline shape of test data (shown in yellow) is
slightly pulled towards the upper right compared to the training data
(shown in black). A significant drop, approximately 1000 counts, is
detected in the Raman shift region between 400 and 1720 cm™. Addi-
tionally, in the region from 2000 to 3000 cm™, the intensities greatly
exceed those of the training data. This could be due to the Raman
spectrometer’s declining performance or instrumental interferences,
such as an unstable detector and laser power. This requires a normali-
zation procedure to correct datasets. To successfully implement Raman-
based models in downstream processing, it is crucial to ensure data
comparability across spectra with deviated baselines. Any variations or
inconsistencies in the instrument and system can affect the data
comparability, posing challenges to the development of robust regres-
sion models. Therefore, a robust data preprocessing workflow should be
used to harmonize the data.

Different parameter configurations can be applied to a preprocessing
method. However, if the parameters are not configured correctly, the
model’s predictability may be unsuccessful. To test various pre-
processing parameter configurations, we performed a workflow
screening, coupled with different model regression algorithms. The
model performance of this screening is presented in Fig. 5, using two key
metrics, f; for Transferrin and f, for mAbl. Out of 1620 workflow
screenings, only 162 (10 %) workflow candidates yielded both positive
results for both f; and fs. The remaining 90 % of workflows failed to
predict protein concentrations with negative f; or fo. This low success
rate of 10 % highlights the importance of an appropriate workflow that
include the preprocessing method and model regression, to ensure
successful modelling and data comparability. In Fig. 5a, the utopia
point, where f; = fa = 1, serves as a reference for the ideal scenario. The
six Pareto front candidates, indicated by red circles, are considered the
best candidates. Fig. 5b shows that among the workflows with positive
results, those using the Butterworth filter (green dots) outperformed
those using the SG filter. The Butterworth filter was used in 89 work-
flows (55 %), while the SG filter was used in 73 workflows (45 %).
Although the workflows using the SG filters showed promising results in
estimating mAb1 concentration with f, > 0.95, their performance in
predicting Transferrin concentration was unsatisfactory. The majority of
workflows using SG filter were characterized by f; value below 0.7. This
underperformance can be attributed to the suboptimal preprocessing by
the SG filter for Transferrin, which serves as a model impurity. It is
potentially because of the low concentration in the experimental design
(max. 4.2 mg/mL, Section 2.2.2). While these workflows are prone to
accurately predict the concentration of the primary molecule, mAbl,
due to its intense signals, they have less capability in detecting impu-
rities hat are present at low concentration in the bioproduct. In contrast,
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Fig. 5. Workflow screening and optimization results. f;, f, were calculated and used as model performance evaluation. All the workflows of positive f;, f, are
shown on the (f,, f,) plane in both plots. a) The pareto front points are shown in red diamond. b) the workflows using the Butterworth filter are highlighted in green.

The utopia point, where f;, f, equal 1, is highlighted in red cross as reference.

only the workflows using Butterworth filter showed high performance
for both mAb1 and Transferrin. This was evident in the performance
plot, where both evaluation metrics, f; and f», exceed 0.8.

Of the six pareto front candidates, the highest value achieved for f;
was 0.9022, while for f, it was 0.9825. All these six candidates have both
their metrics exceeding 0.7. Five of these candidates employed the
Butterworth bandpass filter but with different hyperparameters. This
observation underlines the Butterworth bandpass filter’s ability to
harmonize the spectral datasets with baseline deviations, therefore
enhancing data comparability and model performance. In these five
candidates, full-range spectral variables and the SVR were paired with
the Butterworth bandpass filter. It was observed that the Butterworth-
filtered data showed a better fit with the SVR with a polynomial
kernel than with the PLS regressor. Furthermore, the five top candidates
shared a common low cutoff frequency of 0.005 f;, a finding that aligns
with the previous results shown in Figs. 2 and 3. Detailed performance
metrics and corresponding workflows for these candidates can be found
in Table 3.

As mentioned earlier, the spectral baseline in Test data has a sig-
nificant shift (Figure S2¢) and necessitates a normalization procedure

Table 3
The applied approaches and model outputs of nine workflow candidates.

Candidate  Truncation  Preprocessing

workflow

Regressor  f; f2

Butterworth SVR* 0.9022 0.8745
bandpass
(10-pole, [0.005,
0.04] ;)
Butterworth
bandpass
(10-pole, [0.005,
0.06] £,)
Butterworth
bandpass
(10-pole, [0.005,
0.07]1 f5)
Butterworth
bandpass
(10-pole, [0.005,
0.08] f;)
Butterworth
bandpass
(10-pole, [0.005,
0.09]1 f;)

SavGol derivative
(ndiff = 2, window =
89, npory = 3)

1 Full-range

2 Full-range SVR* 0.9007  0.8921

3 Full-range SVR* 0.8881  0.8953

4 Full-range SVR* 0.8344  0.8996

5 Full-range SVR* 0.7700  0.9027

9 Range 2 PLSR** 0.7288 0.9825

SVR*: Support Vector Regression, C = 1000, epsilon = 0.01, degree = 3.
PLSR**: Partial Least Square Regression, number of components = 5.

for correction [29]. Consequently, during the final model tuning, we
applied an additional normalization procedure. Based on the screening
results, full spectral variables and the SVR with a polynomial kernel
were used to develop single-output models. These models were designed
to predict concentrations of Transferrin and mAb1 in the CEX runs. The
final tuning tested the best bandpass configurations derived from pre-
vious study results (Section 3.3). In the final models, the optimal con-
figurations identified in the bandpass screening (Fig. 4) were applied.
The mAb1 model utilized a low cutoff frequency of 0.008 f; and a high
cutoff frequency of 0.016 f; For the Transferrin model, a low cutoff
frequency of 0.004 f; and a high cutoff frequency of 0.07f; were used.
This confirms that the optimal configurations are both promising and
effective, as evidenced not only in the r? plots but in model develop-
ment. It suggests that the averaged r?> may be a meaningful represen-
tation for the spectral extraction of relevant data. Therefore, using the r2
value could be a promising approach to identify the optimal parameter.

Fig. 6 presents the in-line predictions given by the final model for
two validation and test datasets over the elution time. In Fig. 6a, cand e,
the concentration predictions for mAb1 (in blue) and Transferrin (in red)
are shown. These predictions are displayed in form of chromatograms
alongside off-line concentrations, in-line pH, and conductivity profiles.
The in-line prediction curves for both proteins align well with the off-
line measurements. Fig. 6b, d and f show a parity plot, which com-
pares the off-line measured concentrations with the model predictions
for each dataset. As annotated in these figures, the R? or @ values reach
the highest at 0.99 for mAb1 (Fig. 6b) and 0.95 for Transferrin (Fig. 6d).
In all three datasets, the mAbl model demonstrated robust predict-
ability, with R? and Q? values exceeding 0.95. Despite precisely pre-
dicting the concentration profiles that closely match off-line
measurements, the Transferrin model exhibits weaker predictability as
shown in Fig. 6b and 6f. In Validation 2, the reduction in salt gradient
length led to earlier elution from the column and narrowed protein
profiles. This caused a significant overlap of proteins between the 6 to 9
min, a region specifically targeted to test the model’s ability to differ-
entiate the protein mixture. In this scenario, the Transferrin model made
accurate predictions. However, the mAbl model failed to accurately
predict this high overlap, unexpectedly revealing a mAb1 peak from 4 to
7 min. As the Transferrin concentration here exceeded the calibration
range of 4.2 mg/mL, we replicated Validation 2 using same experimental
setup, but with a reduced amount of Transferrin. In this replication,
referred to as the Test experiment, the mAbl model predicted the
overlap with greater accuracy, without showing the unexpected peak.
Furthermore, the Test experiment greatly improved due to the normal-
ization procedure, which effectively corrected the baseline shift.

For evaluating the feasibility of the three preprocessing methods for
real-time monitoring, we also assessed their computational based on the
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Fig. 6. Chromatograms of three chromatography experiments and comparison of their in-line Raman predictions and off-line measurements. The three rows show
the results of validation 1, validation 2, test experiments, respectively, from top to bottom. On the left side, their chromatograms are represented with off-line
measurements (filled area), in-line Raman predictions (line with dots), in-line conductivity (in pink) and in-line pH (in green). Right next to each chromatogram,
the off-line observation concentrations were compared with the in-line Raman predictions in a single plot with refer to Transferrin (in red) and mAb11 (in blue). A

diagonal line is shown as reference.

in-line Raman data collected from the three chromatography runs. The
SG filter demonstrated the lowest computational cost, with an average
processing time of 27.8 ms per spectrum. The Butterworth bandpass
filter required slightly more time, averaging 30.8 ms per spectrum. In
contrast, the Butterworth highpass filter had a higher computational
cost, with an average processing time of 37.9 ms per spectrum. Including
the model prediction time of approx. 20 — 70 ms, the total processing
time ranged from 50 to 100 ms, significantly faster than the spectrum
acquisition of 7.5 s. This suggests that the integration of these methods
into real-time Raman analysis would not pose a computational
bottleneck.

4. Conclusion

The study successfully illustrated the potential of the Butterworth
filter for decomposing Raman spectra in the downstream processing of
biopharmaceuticals. A detailed investigation was conducted on the
highpass design to understand the basics of cutoff frequency and the
frequency domain. This investigation focused on the impact of the cutoff

10

frequency on filtering performance and the extraction of protein-related
Raman data. This digital filter is able to decompose original Raman
signals into multiple frequency categories, enabling the filtering out of
irrelevant frequencies by preventing them from passing through. It was
found that the spectral baseline could be transformed into a middle
range of cutoff frequency, specially from 0.004 to 0.008 f; This range is
crucial for baseline removal when decomposing Raman spectra of bio-
pharmaceuticals. This finding is also in line with the optimal cutoff
frequency of 0.004 f; in eliminating flowrate effect in previous study
[15]. The study also revealed that a cutoff frequency of 0.005 f; is an
optimal threshold. This enhances protein signal recovery and model
predictability in chromatography runs.

Following the understanding of highpass, the study delved into the
bandpass design. This design filters out not only the baseline but also
high-frequency noises, though the screening of low and high cutoff
frequencies. The findings indicate that the Butterworth bandpass filter
outperforms the highpass design in improving the linear correlation
between Raman signals and protein concentrations. The study also un-
derscores the importance of specific cutoff frequency selection when
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applying the bandpass design to the Raman spectra of individual protein
molecules. Our approach determines the parameter configuration using
experiments with pure protein, offering a practical and efficient alter-
native to empirical methods or computationally intensive screening,
with reduced costs and minimal lab work. The optimal configurations
identified through screening was successfully validated in real down-
stream chromatography scenarios. Directly applying these optimal
configurations in developing predictive models, high coefficients of
determination were achieved for IgG (R? = 0.99) and Transferrin (R =
0.95). Efficient bandpass parameter tuning can provide precise fre-
quency configuration for the post modeling step, thereby enhancing the
implementation of Raman spectroscopy in the downstream processing of
biopharmaceuticals. While the proposed Butterworth bandpass with a
screening strategy delivers an efficient refinement on developing che-
mometric models for proteins in downstream processes, its trans-
ferability to real CQAs has to be further studied and verified, gaining
more comprehensive understanding on the peak assignment and
interpretation.
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