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Abstract

Extreme weather conditions have caused significant losses in the agricultural sector. This
has been evident in several countries across Europe, where previously unseen weather and
climate extremes have led to record declines in crop yields. In this context, stakeholders
and policy makers require a deeper understanding of how weather and climate influ-
ence crop production in order to design effective, crop- and location-specific adaptation
strategies. Statistical models offer valuable insights in this regard, as they can uncover
previously unknown interactions and identify the most influential weather and climate
drivers behind substantial yield reductions (factors closely linked to food insecurity and
economic instability). However, the interpretation, performance, and robustness of such
models can vary significantly depending on the selection of weather and climate predic-
tors, as well as data availability. This thesis employs statistical models that addresses the
spatial variability of in-season climate drivers in Europe in the context of abrupt yield
losses. The resulting insights are then used to identify the most frequent drivers in present
and future climate scenarios.

First, this thesis investigates to what extent variable definition enhance predictability in
statistical modeling. The first analysis focuses on abrupt drops in silage maize yield, re-
ferred to throughout this thesis as "yield shock", in Germany, and employs two statistical
modelling approaches: the Least Absolute Shrinkage and Selection Operator (LASSO), a
parametric-based method, and Random Forest, a non-parametric, machine learning-based
method. Results show that when using LASSO, models that integrate both simple and
complex variables demonstrate superior predictive skill. In contrast, Random Forest does
not exhibit a clear advantage when pre-selecting between simple and complex variables.
Random Forest can capture non-linear interactions between predictors and the target
variable, reducing the necessity for complex variable formulations. Furthermore, the find-
ings indicate that a combination of cold temperatures in April and hot, dry conditions in
July significantly increases the likelihood of silage maize yield shock in Germany. These
insights support the development of adaptation strategies such as improved irrigation
practices and adjustments to planting dates.

In addition to this, an ensemble of Random Forest models is implemented to identify the
most important in-season weather and climate drivers of maize and wheat yield shocks
across European countries. The further analyses centers on key European maize and
wheat producers: France, Romania, and Spain for maize, and France, Germany, Poland,
Romania, Spain, and the UK for winter wheat. The Global Data of Historical Yields
(GDHY), a global gridded crop data, is used, which provides a larger sample size per
country and enhancing the robustness of the developed models. An ensemble of Ran-



Abstract

dom Forest is employed to individual crop-country domain to identify key drivers under
highly variable climatic conditions for each case. The findings reveal pronounced spatial
variability in the in-season climate drivers of maize and winter wheat yield shocks. For
maize, high temperatures and dry conditions are the main triggers in France and Roma-
nia, while in Spain, a lack of precipitation in March emerges as the most critical factor.
In the case of winter wheat, yield shocks are driven by a range of in-season conditions,
including high and low temperatures as well as extremes in precipitation, depending on
the country. In France, warm conditions in December and April are key triggers, whereas
in Germany, both cold and warm temperatures in December, along with elevated temper-
atures in June, increase the likelihood of yield shocks. In Romania and Spain, dry and
hot spring conditions are particularly influential, while in the UK, elevated precipitation
events in June significantly raise the risk of losses.

Finally, the influence of global warming on yield shock is investigated. The study ex-
amines how future climate change scenarios influence yield shocks by using a suite of
EUROCORDEX regional climate models, followed by bias correction through various ad-
justment techniques. By applying present-climate crop yield shock models, the analysis
identifies key drivers of future yield losses. For maize, weak trends and higher uncer-
tainty in projected losses stem from low model agreement on future precipitation patterns.
Nonetheless, under 2°C and 3°C warmer climate scenarios, drier conditions persist as the
dominant driver of yield shock. In contrast, winter wheat exhibits a clearer signal, with
rising shock probabilities in countries such as France, Germany, Romania, and Spain,
while Poland and the UK see stable or declining risks. Warming trends, projected with
high confidence, are likely to reduce cold-related yield shocks, particularly in Germany,
Poland, and Romania. However, this warming may increase winter losses in France and
Germany, especially in December, and elevate spring and early summer risks across much
of Europe. In Spain and the UK, uncertain precipitation projections lead to little change
in average loss probabilities.

This thesis shows that the added value of using simple and complex variables is entangled
with the statistical method chosen. While parametric methods like LASSO and complex
variables can enhance the predictability skill of the model, they may not be necessary when
considering more flexible approaches like Random Forest. The strong spatial variability
of climate drivers in present and future reveals the necessity to implement adaptation
strategies specifically for each crop and country.
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Zusammenfassung

Extreme Wetterbedingungen haben zu erheblichen Verlusten im Agrarsektor gefiihrt. Dies
ist in mehreren Landern Europas deutlich geworden, in dem zuvor unbekannte Wetter-
und Klimaextreme zu rekordverdichtigen Riickgdngen der Ernteertriage gefithrt haben. In
diesem Zusammenhang benotigen Entscheidungstréger:innen und politische Akteur:innen
ein tieferes Verstandnis dariiber, wie Wetter und Klima die landwirtschaftliche Produktion
beeinflussen, um wirksame, auf bestimmte Kulturen und Standorte zugeschnittene An-
passungsstrategien zu entwickeln. Statistische Modelle bieten in dieser Hinsicht wertvolle
Einblicke, da sie bislang unbekannte Zusammenhénge aufdecken und die einflussreich-
sten Wetter- und Klilmafaktoren identifizieren kénnen. Diese Faktoren stehen mit er-
heblichen Etragsverlusten in Verbindung und sind eng mit En&hrungssicherheit sowie
wirtschaftlicher Instabilitdt verkniipft. Die Interpretation, Leistungsfahigkeit und Belast-
barkeit solcher Modelle kénnen jedoch stark von der Definition der Wetter- und Klima-
parameter sowie der Datenverfiigharkeit abhéngen. In dieser Arbeit werden statistis-
che Modelle verwendet, um die rdumliche Variabilitdt von klimatischen Einflussfaktoren
wahrend der Vegetationsperiode in Europa im Zusammenhang mit abrupten Ertragsver-
lusten zu untersuchen. Die daraus gewonnenen Erkenntnisse dienen dazu, die haufigsten
Einflussfaktoren in aktuellen und zukiinftigen Klimaszenarien zu identifizieren.

Zunichst untersucht diese Arbeit, inwieweit die Definition von Variablen die Vorhersage-
genauigkeit in der statistischen Modellierung verbessert. Die Analyse konzentriert sich
ausschlieflich auf abrupte Riickgdnge der Silomaisertrage in Deutschland, die im weiteren
Verlauf dieser Arbeit als ,Ertragsschocks* bezeichnet werden. Die Arbeit verwendet zwei
statistische Modellierungsansétze: den Least Absolute Shrinkage and Selection Operator
(LASSO), eine parametrische Methode, sowie Random Forest, eine nichtparametrische,
auf maschinellem Lernen basierende Methode. Die Ergebnisse zeigen, dass bei der Anwen-
dung von LASSO Modelle mit einer Kombination aus einfachen und komplexen Variablen
eine bessere Vorhersagegenauigkeit aufweisen. Im Gegensatz dazu zeigt Random Forest
keinen klaren Vorteil bei der Vorauswahl zwischen einfachen und komplexen Variablen.
Random Forest ist in der Lage, nichtlineare Wechselwirkungen zwischen Pradiktoren und
der Zielvariablen zu erfassen, was die Notwendigkeit komplexer Variablenformulierun-
gen reduziert. Dariiber hinaus deuten die Ergebnisse darauf hin, dass eine Kombination
aus kalten Temperaturen im April sowie heifen und trockenen Bedingungen im Juli die
Wahrscheinlichkeit eines Silomais-Ertragsschocks in Deutschland deutlich erhoht. Diese
Erkenntnisse unterstiitzen die Entwicklung von Anpassungsstrategien wie verbesserte Be-
wasserungspraktiken und Anpassungen der Aussaattermine.
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Zusammenfassung

Dariiber hinaus wird ein Ensemble von Random-Forest-Modellen implementiert, um die
wichtigsten witterungs- und klimabedingten Einflussfaktoren wahrend der Vegetation-
speriode auf Ertragsschocks bei Mais und Winterweizen in verschiedenen europaischen
Landern zu identifizieren. Die Analyse konzentriert sich auf zentrale européaische Produk-
tionslander: Frankreich, Ruménien und Spanien fiir Mais sowie Frankreich, Deutschland,
Polen, Ruménien, Spanien und das Vereinigte Konigreich fiir Winterweizen. Verwen-
det wird der ,Global Data of Historical Yields“ (GDHY)-Datensatz, ein globales, raster-
basiertes Ertragsdatensatz, das eine grofiere Stichprobengrofse pro Land aufweist und so
die Robustheit der entwickelten Modelle erhoht. Fiir jede Kombination aus Kulturpflanze
und Land wird ein Ensemble von Random-Forest-Modellen angewendet, um unter stark
variierenden klimatischen Bedingungen die wichtigsten Einflussfaktoren zu ermitteln. Die
Ergebnisse zeigen eine ausgepriagte rdumliche Variabilitdt der klimatischen Einflussfak-
toren wihrend der Vegetationsperiode auf Ertragsschocks bei Mais und Winterweizen.
Bei Mais sind hohe Temperaturen und Trockenheit die Hauptausloser in Frankreich und
Ruménien, wahrend in Spanien ein Mangel an Niederschlag im Marz als kritischster Faktor
hervorgeht. Im Fall von Winterweizen werden, je nach Land, Ertragsschocks durch eine
Vielzahl von Bedingungen wéhrend der Vegetationsperiode verursacht, darunter sowohl
hohe als auch niedrige Temperaturen sowie extreme Niederschlagsereignisse. In Frankreich
sind warme Wetterbedingungen im Dezember und April entscheidende Ausléser, wihrend
in Deutschland sowohl kalte als auch warme Temperaturanomalien im Dezember sowie
erhohte Temperaturen im Juni die Wahrscheinlichkeit von Ertragsschocks erhchen. In
Ruménien und Spanien wirken sich insbesondere trockene und heifte Friihjahrsbedingun-
gen stark aus, wahrend im Vereinigten Konigreich starke Niederschlagsereignisse im Juni
das Risiko von Winterweizen-Ertragsschocks deutlich erhohen.

Abschliefsend wird der Einfluss der globalen Erwdrmung auf Ertragsschocks untersucht.
Die Thesis analysiert, wie zukiinftige Klimawandelszenarien Ertragsschocks beeinflussen,
basierend auf einer Reihe regionaler Klimamodelle des EURO-CORDEX-Projekts, gefolgt
von einer Bias-Korrektur. Durch die Anwendung von Ertragsschock-Modellen auf Basis
des heutigen Klimas werden die wichtigsten Einflussfaktoren zukiinftiger Ertragsverluste
identifiziert. Bei Mais zeigen sich nur schwache Trends und eine hohe Unsicherheit in
den Projektionen, was auf geringe Ubereinstimmung der Modelle hinsichtlich zukiinftiger
Niederschlagsmuster zuriickzufiihren ist. Dennoch bleiben unter Szenarien mit 2°C und
3°C Erwéarmung trockenere Bedingungen der dominierende Treiber von Ertragsschocks.
Im Gegensatz dazu zeigt Winterweizen ein klareres Signal, mit steigender Wahrschein-
lichkeit von Ertragsschocks in Léndern wie Frankreich, Deutschland, Ruménien und
Spanien, wahrend in Polen und dem Vereinigten Konigreich stabile oder riicklaufige
Risiken zu beobachten sind. Erwarmungstrends, die mit hoher Sicherheit prognostiziert
werden, diirften insbesondere in Deutschland, Polen und Ruménien zu einer Abnahme
kiltebedingter Ertragsschocks fithren. Gleichzeitig konnte diese Erwarmung jedoch die
Winterverluste in Frankreich und Deutschland, insbesondere im Dezember, erhohen und
das Risiko im Friihjahr und Frithsommer in weiten Teilen Europas steigern. In Spanien
und dem Vereinigten Konigreich fiihren unsichere Niederschlagsprognosen zu nur geringen
Verdnderungen der durchschnittlichen Verlustwahrscheinlichkeiten.

Diese Arbeit zeigt, dass der Mehrwert durch die Verwendung einfacher und komplexer
Variablen stark mit der Wahl der statistischen Methode verkniipft ist. Wahrend parametrische
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Zusammenfassung

Methoden wie LASSO und komplexe Variablen die Vorhersagefahigkeit des Modells verbessern
konnen, sind sie bei flexibleren Ansétzen wie Random Forest moglicherweise nicht er-
forderlich. Die starke rdumliche Variabilitdt klimatischer Einflussfaktoren im heutigen
und zukiinftigen Klima verdeutlicht die Notwendigkeit, Anpassungsstrategien spezifisch
fiir jede Kulturpflanze und jedes Land zu entwickeln.
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1 Introduction

Agriculture is the primary source of food security. Originating around 20,000 B.C. in
the first sedentary civilizations of the Near East (Flannery, 1973), it served as one of
the main drivers of urban civilization development (Kluyver, 2013). Today, agriculture
plays a crucial role on both local and global economic development (Food and Agriculture
Organization of the United Nations, FAO et al., 2023). In 2014, approximately 14% of the
world’s ice-free land area was dedicated to crop production (Figure 1.1) with almost 10%
of expansion in the last two decades (Potapov et al., 2022). Climate variability represents
a major factor influencing crop production (Ray et al., 2015) and has historically acted
as a key driver of both societal prosperity and collapse (Butzer and Endfield, 2012).

In recent decades, there has been a substantial increase in production in the agricultural
sector (Figure 1.2a, FAO, 2024a). Technological developments (e.g. plant breeding, ma-
chinery, fertilization among others) have contributed to the outstanding growth in crop
production per area, also referred as yield (Figure 1.2b). On the other hand, climate
change has altered expected agricultural trends, primarily by augmenting variability and
the frequency of abrupt losses (Lobell et al., 2011). Due to growing frequency and mag-
nitude of extreme weather events (Intergovernmental Panel on Climate Change, IPCC,
2023), global warming has caused food insecurity increase, price volatility, malnutrition
and, ultimately, a decline in quality of life (Kalkuhl et al., 2016).

The impact of extreme weather on the agricultural sector are also evident in Europe
(Ben-Ari et al., 2018; Webber et al., 2020; Bras et al., 2021; van Oort et al., 2023).
The European heatwave of 2003, for instance, caused losses of around 10% in agriculture
and in some cases reached 50% (Posthumus et al., 2009). In this context, stakeholders
have started implementing adaptation measurements to overcome and leverage the cur-
rent and projected state of the climate. The Common Agricultural Policies (CAP), for
example, aims to help farmers to adapt and mitigate climate change and support them
financially (European Commission, 2024). Farmers themselves also adapt to the observed
changes, for example by modifying planting date (Olesen et al., 2012) or incorporating
more resilient varieties (Olesen et al., 2011). To develop effective adaptation strategies and
sustain financial stability, it is necessary to understand the relationship between weather
and climate variables and agricultural productivity (Reidsma et al., 2010; Olesen et al.,
2012).

Recent literature on climate-related agricultural impacts focus on crop yield as a function
of several factors (Figure 1.3). These ones can be grouped in climate (e.g. temperature
and precipitation conditions among others), management (e.g. irrigation), soil (soil type
and nutrients), technology (plant breeding) and other factors (e.g. carbon dioxide fer-



1 Introduction

Oslo ;g stock

. Vgseou

2 &Tokyo

5 o

\v_ < 4 ol 3 ©Hong Kone
mxkag@‘_;iwﬂ N o & "% iong nss

Los Angeles”

5

B

Tk
%
Bogota

Lima®,

Drylands ¥

100% ¢
.
Cropland 3

0%

“Hietoume  Fhuckiang

Figure 1.1: Global cropland (green shaded area). Reprinted from (European Commission
Joint Research Centre, 2025), Joint Research Centre.
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Figure 1.2: Series of (a) worldwide total production and (b) worldwide average yield for the
main crop groups (colors). Data is extracted from the Food and Agriculture Organization
of the United Nations (FAO, 2024a). To make the groups comparable between them, the
individual series are normalized from 0 to 1. For the definition of each group, see FAO
(2022).

tilization). The three implemented approaches encompasses experiment-based studies,
process-based crop modeling, also called crop simulation models (CSM), and statistical
modeling. Field experiments consist of direct measurements that, with proper isolation,
provide the most reliable insight into the influence of studied variable. However, the
implementation is cost-expensive and geographically constrained, producing limiting in-
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Figure 1.3: Crop yield as a function of multiple drivers. Adapted with permission from
Figure 1 in Hu et al. (2024), Elsevier.

sight. CSMs simulate crop growth by integrating weather, soil, and management factors.
They are widely used to explore how crops respond to environmental stressors, evaluate
farming strategies, and provide seasonal yield forecasts. Despite their strengths, CSMs
often fall short in capturing the effects of extreme weather, require regional calibration,
and depend on detailed input data that may not be available (van der Velde et al., 2012;
Zampieri et al., 2018; Barlow et al., 2015).

The limitations of CSMs are bridged by statistical models. These are mathematical
approaches to predict certain variable (in this case, crop yield) as a function of others
(i.e. climate predictors). Statistical models can be used for exploring unknown relations
between a set of predictors and a target variable, for evaluating previous evidence on new
data or for establishing forecasts tools (Tredennick et al., 2021). With an adequate sample
size, statistical models can be easily implemented at any spatial scale. In agriculture, they
allow establishing previously unseen relations between a set of predictors and a target
variable, and can serve as complementary tools for forecasting and CSM development
(Ben-Ari et al., 2018; Zampieri et al., 2018; Webber et al., 2020).

Statistical models have been traditionally implemented to predict crop yield as a contin-
uous variables. This means, they attempt to model the general variability of crop yield
rather than targeting a specific segment (i.e. low yield or high yield). In this sense, they
can not be used to identify the most relevant meteorological drivers of substantial drops
in crop yield (Hu et al., 2024). This portion of the spectrum has been refereed in the
literature as yield failure (Webber et al., 2020), yield extreme (van Oort et al., 2023), yield
loss (Ben-Ari et al., 2018) and yield shock (Zhu et al., 2021) among others. These low-
yield events influence insurance payouts, investment strategies in agriculture, and even
government-level policy decisions concerning food security (Kalkuhl et al., 2016; Zhou
et al., 2022; FAO, 2023b). Therefore, this thesis specifically focuses on understanding
and modeling the meteorological drivers of yield shocks, with the goal of supporting more
targeted and risk-aware decision-making in climate-agriculture systems.

Additionally, for the adequate application of statistical models, it is crucial to overcome
the specific challenges that can be noticed in the literature. First, identifying relevant
predictors is not straightforward, as it requires prior knowledge of crop vulnerability, since
not all extreme weather leads to yield loss and vice versa (Smith, 2011; van der Velde et al.,
2012). Many studies rely on aggregated climate indicators such as mean temperature or
total precipitation (Beillouin et al., 2020; Webber et al., 2020), while others use threshold-
based metrics derived from statistical definitions (Schmitt et al., 2022). These statistically
defined variables help standardize and compare extreme weather events across regions by
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quantifying their frequency and intensity (Zampieri et al., 2017). However, the specific
advantages of using either simple or more complex variable types remain unclear (Ben-Ari
et al., 2016). Therefore, this thesis analyzes to what extent more complex variables can
enhance both our understanding and the predictability of crop yield losses.

The second limitation of statistical models concerns data availability. The recent Euro-
pean literature has pointed the importance of sub-seasonal (i.e. monthly scale) weather
and climate variability on substantial losses (Ben-Ari et al., 2018; Webber et al., 2020),
lacking a standard comparison at the European level. Conversely, Zhu et al. (2021) at-
tempted to study the influence of seasonal drivers (i.e. 3 month-aggregated) on regional
scale, disregarding potential national differences. In combination, addressing the climate
influence on substantial drops in yield at finer temporal and spatial scale have not been
attempted. Recently, hybrid datasets combining satellite and ground observations have
shown potential for improving spatial assessments of environmental impacts on crops,
though their application remains limited (lizumi and Sakai, 2020; Kim et al., 2021).
Thus, this thesis utilizes the Global Dataset of Historical Yields (Iizumi and Sakai, 2020),
a gridded dataset based on satellite and reported yield data, which provides higher data
availability across the European domain and thereafter can enhance model robustness.
This study focuses on two major crops: maize and winter wheat. Ultimately, a standard
country-to-country comparison of the most important climate drivers of yield shock is
provided.

The final point regarding statistical models relates to their application. Traditionally,
these models have been used in agriculture to assess impacts under present climate con-
ditions. However, with ongoing global warming, the average climate conditions along
with the nature of extreme weather events is expected to shift (IPCC, 2023). Subse-
quently, this would trigger changes in agricultural suitability and crop yield variability
across Europe (Bednar-Friedl et al., 2022). To explore future impact of climate change on
crop yield, Global Climate Models (GCMs) downscaled through Regional Climate Models
(RCMs) are commonly used, which have the potential to capture future climate signals
and variability. While these models have typically been applied in conjunction with CSMs
(Webber et al., 2018), their integration with statistical models remains largely unexplored.
Thereby, this study also investigates how the risk of maize and wheat yield shocks may
evolve under future climate scenarios using a statistical modeling approach.

This thesis is organized as follows. Chapter 2 presents the theoretical background, cov-
ering general meteorological, agricultural, and statistical modeling concepts. Chapter 3
outlines the research gaps and formulates the research questions. Chapter 4 describes
the datasets and their pre-processing. Chapter 5 details the methodology and statistical
models employed. The results are presented in three chapters: Chapter 6 investigates the
added value of predictor definition complexity; Chapter 7 examines country-to-country
variability across Europe in the present climate; and Chapter 8 extends the analysis to
future climate change scenarios. Finally, chapter 9 summarizes and remarks the main out-
comes of this thesis. It finalizes with discussion on the methodological choices, limitations
and future research considerations.



2 Theoretical Background

This chapter establishes the basis for understanding the motivation, methodology, results,
and discussions of this thesis. As the work relates components of climate, statistics, and
agriculture, the foundations of each discipline are first explained individually, followed by
a discussion of their interactions. The chapter starts with an overview of general meteo-
rological background concepts, a description of climate in Europe, and the suitability of
agriculture in the country (Section 2.1). Section 2.2 illustrates how several environmen-
tal factors influence the growth and development of plants. These concepts are further
described in Section 2.3, with a focus on the two major crops of this thesis (maize and
winter wheat). Section 2.4 explains the specific techniques used to assess weather and
climate impact on agriculture, and with a special focus on statistical models. Finally,
Section 2.5 introduces the concept of a climate model.

2.1 General meteorological background and the Euro-
pean climate

The climate system (illustrated in Figure 2.1) is a dynamic and interconnected framework
comprising five primary components: the atmosphere, hydrosphere, cryosphere, land sur-
face, and biosphere. These components are in constant change, and interact with each
other, making the system highly non-linear. Solar radiation is the most significant source
of energy income and fluctuations. The atmosphere is a thick layer of gases (composed
by several sub-layers) that surrounds the earth and is held by gravitational force. Some
of these gases (the most renamed are Carbon Dioxide CO,, methane CH, and water va-
por HyO) absorb and emit long-wave radiation, keeping the average surface temperature
around 15°C. The local variation of the concentration of these gases as well as the pres-
ence or absence of clouds (composed by HyO in the three phases) produce local changes
in the radiative budget.

The Earth’s translation motion, quasi-elliptical shape and 23.5° axial tilt drive the sea-
sonal cycle of the incoming solar radiation (Figure 2.2). In June, when the Northern
Hemisphere is tilted toward the Sun, it receives more direct sunlight and longer day-
light hours, resulting in warmer weather. In contrast, in December, when the Northern
Hemisphere is tilted away from the Sun, the sunlight is less direct and daylight hours are
shorter, leading to cooler temperatures. During the transition to autumn, days gradually
become shorter, while in spring, as the Northern Hemisphere begins to tilt back toward
the Sun, the days lengthen again.
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Figure 2.1: Schematization of the climate system. Reprinted from Figure 1 in Le Treut
et al. (2007), Cambridge University Press.
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Figure 2.2: Earth’s orbit around the Sun and seasons. Reprinted from Figures 3.3 in
Ahrens (2009), Brooks/Cole, Cengage Learning.
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gage Learning.



2.1 General meteorological background and the Furopean climate

The Earth’s shape and rotation produce a meridional imbalance in energy and heat, with
higher temperatures near the equator than at the poles. This imbalance, combined with
the Coriolis effect, drives the formation of large-scale atmospheric circulation patterns
(Figure 2.3). These patterns are organized into three main cells in each hemisphere: the
Hadley, Ferrel, and polar cells. The Hadley and polar cells are thermally direct, with
warm air rising in low latitudes and cold air sinking at high latitudes, while the Ferrel
cell, located in the midlatitudes, is thermally indirect. These vertical motions play a
central role in shaping global precipitation: ascending branches of the circulation, found
near the equator and around 60° latitude, promote convection and high rainfall, whereas
descending branches, such as those near 30° and the poles, suppress convection and are
associated with dry regions. From the surface branches of these cells emerge dominant
wind systems: the trade winds (easterlies) close to the Equator and the westerlies in the
mid latitudes.

2.1.1 Climate in Europe

Europe is a highly fragmented and heterogeneous landmass that constitutes the western
part of the Eurasian continent. It has long peninsulas like the Iberian Peninsula, mountain
ranges like the Alps, the Pyrenees or the Scandinavian range, and surrounding islands (like
Iceland or the British Isles). Europe has coastlines on the Arctic Ocean and the Baltic
Seas in the north, the Caspian Sea to the southeast, the Black Sea and the Mediterranean
Sea in the south, and the Atlantic Ocean to the west. The southernmost points in Europe
(south Iberian Peninsula, southern Italy and some islands in the Mediterranean Sea) are
around the latitude 36°N. In contrast, the northernmost points (northern Norway and
Iceland) are roughly at 70°N. The landmass also features distinct geological areas like
the central European Uplands, highly-loess concentrated soil mass in the Great European
plain and major sources of freshwater such as the Rhine basin.

Figure 2.4a and b display the seasonal average temperature and total precipitation respec-
tively for Europe. Conventionality and orography strongly influence the climatology of the
region. In general, southern regions are characterized by warmer temperature and drier
conditions throughout the year. Here, recurrent droughts and prolonged dry periods are
usual, with precipitation absent during a whole season (Casanueva et al., 2014; Moemken
and Pinto, 2022). In contrast, the northern regions features colder temperatures with
high cloud coverage and precipitation throughout the year (Pena-Angulo et al., 2020). In
addition to this, continentality and topography also alter temperature and precipitation
patterns locally. Eastern Europe experience strong interseasonal variability, with very
high temperatures in summer but with values easily plunging below 0°C in winter. The
Scandinavian mountain range is the wettest region in the continent with cumulative rain
reaching more than 300 mm or even 400 mm. The Alps, located in central Europe, also
feature cold temperatures winter and high rainfall, especially during summer and autumn.

Besides the seasonal climatology, the European in-season (or sub-seasonal) climate is in-
fluenced the displacement of air masses (Figure 2.5; Kallos et al., 2007; Lépy and Pasanen,
2017). These are extended regions of approximately homogeneous characteristics in terms
of temperature and humidty (Ahrens, 2009). Air masses are classified by their origin, in
terms of latitude (Tropical, Equatorial, Polar, Arctic or Antarctic) and topography (Con-
tinental or Maritine); depending on the region these feature warm/cold or humid/dry

7



2 Theoretical Background

a) b)

-8 -4 0 4 8 12 16 20 24 0 60 120 180 240 300 360 420 480
Temperature {[°C] Precipitation [mm]

Figure 2.4: Seasonal average temperature (a) and total precipitation (b) for winter (DJF),
summer (JJA), spring (MAM) and autumn (SON). The values are computed using daily
average temperature and total precipitation data from the ensemble version v27.0e of
E-OBS (Cornes et al., 2018) using the 1981-2021 period.
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Figure 2.5: Schematization of air masses around Europe.

conditions. The Tropical Maritime air mass coming from the Atlantic Ocean is charac-
terized by warm and humid temperatures, whereas the Tropical Continental coming from
northern Africa is dry and warm. The Polar Maritime and Arctic Maritime are character-
ized by cold temperatures and humid conditions, while the Polar continental has rather
dry conditions. The frequency, presence and characteristics of air masses as well as the
advection changes depending on the season.

Air masses are transported by wind. This process is also known as advection, which plays
a crucial role in modifying the weather conditions of the region they reach (Trigo et al.,
2002; Pithan et al., 2018; Kautz et al., 2022). In particularly, the movement of airmases is
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modulated by spatial air pressure distribution. As an example, the meridional preassure
gradient in the north Atlantic Ocean modulates the westerly winds intensity (Trigo et
al., 2002). Typically, a higher air preassure difference between the subtropical preassure
and the polar region brings relatively humid, warm air, resulting in higher temperatures
and precipitation, whereas a weakening of the gradient leads to drier and cold conditions.
Another example atmospheric blocking, a persistent high-pressure system in the mid- and
high-latitude regions. This phenomenon disrupts the typical zonal (west-to-east) flow of
the westerly winds, causing them to shift into a meridional (north-south) pattern. As
a result, air masses move meridionally, which can lead to prolonged weather extremes
(Kautz et al., 2022). Notable events associated with atmospheric blocking include the
2002 European floods, the 2003 European heatwave, the 2012 European cold wave, and
the 2018 European heatwave.

Figure 2.6a displays the monthly interannual variability of mean temperature in Eu-
rope. Between November and March, central, eastern, and northern Europe experience
interannual variability exceeding 3 °C. For precipitation, between October and March,
the monthly interannual variability exceeds 60 mm in north Scandinavia, north Great
Britain, Portugal, Italy, and the Alps. From the centre of western regions (including
western France) until eastern areas (including Slovakia and western Ukraine), precipita-
tion can vary from 40 mm to 60 mm. In contrast, from April to October, the variability
reduces, generally between 1°C and 3 °C across Europe. The monthly precipitation vari-
ability (displayed in Figure 2.6b) is also notable. This greater variability is generally
due to stronger transitions between NAO phases during the winter months compared to
summer (Trigo et al., 2002; Hurrell et al., 2003).

Due to global warming, Europe has experienced strong changes in its climate. Although
there is regional variability, temperature increases have become evident for the entire
region (Watson et al., 1997; Krauskopf and Huth, 2020). Furthermore, global warming
is also related to an increasing severity and frequency of several weather extremes such
as heatwaves (Russo et al., 2015; Lhotka and Kysely, 2022). The regions in the northern
half of Europe have experienced an increase in annual rainfall; extreme precipitation and
stream flows have also become more severe in central and northern Europe (Madsen et al.,
2014). In contrast, droughts have become more frequent, longer and more severe in the
Mediterranean region (Spinoni et al., 2015). With ongoing climate change and considering
business-as-usual climate scenarios, extreme weather events are expected to increase in
terms of frequency and severity (Watson et al., 1997; Beniston et al., 2007; Seneviratne
et al., 2021).

2.1.2 Agriculture in Europe

Ramankutty et al. (2002) and Licker et al. (2010) assessed the global land suitability for
agriculture. These studies found that the European continent, among other regions in the
world, is highly suitable for agriculture, especially for some of the major crops like wheat
or maize. What sets Europe (mainly Western Europe) apart from the rest of the world is
the region’s exceptionally high actual reported yields. This is also illustrated in Figure 2.7,
where a relatively high yield in the European Union can be observed compared to the other
continents for almost all the crop groups. The reason is attributed to advanced agricultural
management and technology in European countries, which have made significant strides in
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Figure 2.6: Same as Figure 2.4 but for the monthly standard deviation of mean tempera-
ture (a) and total precipitation(b). Values are calculated by first computing the monthly
mean temperature (and total precipitation) and then computing the interannual standard
deviation by month.

technological improvements related to genetic improvements and management practices,
like nitrogen implementation or irrigation (Licker et al., 2010; Pujol Andreu, 2011). In
2021, for example, Europe contributed more than one-third to worldwide wheat, potatoes,
oil rapeseed and oil sunflower production, and roughly a tenth of maize production (FAO,
2023a).

However, the recent increasing of extreme weather events in Europe has a direct impact
on the agricultural sector (Figure 2.8). Some of the most widely studied stressors are
droughts, heatwaves, frosts and floods (Bras et al., 2021). The European heatwave of
2003, for example, was characterized by both dry conditions and elevated temperatures
that hit several regions during June and August (Fontana et al., 2015). The agricultural
sector was severely affected across central European countries, with losses of about 10%
in total wheat production and 21% in total maize production, with some districts having
reported a reduction of more than 50%. In 2007 in England, he estimated losses in flooded
areas were about 40% in cereals (Posthumus et al., 2009). Multiple extreme weather events
in 2016 led to a national loss of 27% in wheat in France (Ben-Ari et al., 2018). These
impacts will likely increase under future climate change scenarios (Bednar-Friedl et al.,
2022).
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Figure 2.7: Distribution of crop yield for main crop groups for each continent and for
the European Union (E.U). Data ranges from 1980 to 2020 and is obtained from FAO
(2024a). For the definition of each crop group, see FAO (2022).

2.2 Environmental factors influencing crop growth and
development

In Section 2.1, the climate in Europe and its suitability for agricultural practice are
described. To understand how weather and climate influence crop yields, this section
focuses on the environmental elements that affect plant physiology.

In botany, there is a difference between the concept of growth and development. Growth
refers to the accumulation of biomass, weight, height or volume, and it is a quantitative
value that can be measured. Development is a qualitative process that refers to changes in
the morphology of the plant, aiming for the reproduction and perpetuation of the species.
Development is related to the succession of visible (and also invisible) changes, which are
referred to as phenological stages (associated with the successive observed phenomena).
When assessing agricultural productivity, process related to both growth and develop-
ment are equally relevant to understand. Several environmental factors modulate these
processes.

The three most relevant factors modulating growth and development are radiation (spe-
cially the visible spectrum from radiation), temperature and water. Radiation is associ-
ated with growing and flowering, water plays a crucial role in growing, and temperature
is a crucial modulator in the metabolic processes of plants (i.e. modulates growth and
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Figure 2.8: Wheat yield series for major producers in Europe (in colours) and documented
weather and climate extreme in the region (red text). Data is obtained from FAO (2024a).
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Figure 2.9: Idealized response of duration (a) of a phenological stage and development
rate (b) to temperature. T refers to base temperature or also minimum temperature, 7,
to optimal temperature, and 7}, to maximum temperature. Adapted from Figure 2.4 in
Andrade and Sadras (2002), National Institute of Agricultural Technology (INTA).

development). Additionally, the soil properties like texture and chemical composition,
and atmospheric composition (including COg, Og, ozone O3 and HoO or most specifically
relative humidity), play relevant roles in growth and impact. The following subsections
provide a detailed description of these factors.
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2.2.1 Temperature

Temperature is the most relevant factor in determining a plant’s suitability in a region.
Under proper light conditions, temperature is the determinant factor for development.
Furthermore, with adequate water provision and light, temperature becomes the deter-
minant factor for growing.

Temperature thresholds

A way to understand the effect of temperature is by considering temperature thresholds.
These cardinal points (cardinal temperatures) delimit plant survival, growth and devel-
opment. Temperature thresholds are practically unique for each individual plant, process
and phenological stage (Porter and Gawith, 1999; Luo, 2011). Plants can only develop
under specific temperature conditions.

Figure 2.9 schematizes the idealized duration of a phenological stage as a function of
temperature. The duration decreases with lower temperature up to a certain point, after
which it begins to rise again. Figure 2.9b illustrates the corresponding development rate
(Duration™). The development rate increases from a so-called base temperature (T}) up
to a point of maximum rate, referred to as the optimal temperature (7,); beyond this
point, it declines sharply until it ceases entirely above the maximum temperature (75,).
In general, the inequality 7T, — T, < T, —T} holds, indicating that plants typically tolerate
cooler temperatures (relative to T,) better than excessively high ones. This non-linear
relationship also characterizes growth or biomass accumulation.

Lethal temperatures

Lethal temperatures refer to the thresholds (lower and upper thresholds) at which the
effect of temperature becomes damaging or lethal. This threshold varies depending on the
species and even to the phenological stage, as well as the exposure’s duration, frequency
and magnitude. Early lab studies focus on the temperatures at which plants can not
survive (Porter and Gawith, 1999). However, a high frequency of very high temperature
(or very low temperature) can produce physiological alterations in the plant and cause
losses in quality or yield (Barlow et al., 2015). Winter crops (meaning that their growing
cycle takes place mainly during winter) have typical thresholds of —15°C to 0°C as a
lower threshold and around 40 °C to 45 °C as an upper threshold, whereas summer crops
(meaning that their growing cycle takes place mainly during spring and summer) have
typical lethal temperatures of —5°C to 0°C and 40 °C to 50 °C.

Vernalization

Some types of plants (especially long-season crops like winter wheat) require cold exposure
for later blooming. This process is called "vernalization", and if these plants are sown
in spring (after winter), flowering can be delayed or even aborted. Vernalization is a
cumulative process that accelerates flowering over long days. This process is crucial since
it allows to delay flowering after winter and, in this way, avoid frost damage in the sensitive
periods (Trevaskis, 2010). Vernalization response occurs only at temperatures around or
above freezing; optimal temperature typically ranges between 0°C and 10 °C.
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Figure 2.10: Effect of vernalization on flowering time obtained in a set of experiments
with different populations of rapes (See Zhao et al., 2010, for the setup and details of the
experiment). Reprinted with permission from Figure 3 in Zhao et al. (2010), Journal of
Experimental Botany, Oxford Academic.

Vernalization is exemplified in Figure 2.10 for rapes, where flowering time is depicted as a
function of vernalization days for different populations of rapes. For all the experiments,
days to flowering reaches minimum when vernalization days approaches 20. In contrast,
the number of days to flowering is maximized when vernalization is null.

2.2.2 Water, transpiration and evapotranspiration

Water is essential for growing and for regulating the temperature inside the plant. Water
makes up most of the mass of plant cells. It is the most abundant and also considered
the most limiting factor for growing.

The water movement form the roots to the whole plant is possible due to transpiration,
which refers to the release of water vapour from the leaves into the atmosphere. Transpi-
ration is only feasible when there is a difference between the water vapour content in the
atmosphere and in the intercell space on the leaves (which is usually close to saturation).
Therefore, when the air is dry (or the relative humidity is low), atmospheric demand
for water is high and thus transpiration increases. Transpiration also works as a cooling
mechanism for plants. Evapotranspiration integrates both evaporation and transpiration
(Allen et al., 1998) and depends on several factors: the atmospheric demand for water
(i.e. relative humidity), temperature, soil moisture, foliar area (the total area covered by
leaves), type of plant, and the development stage. Soil moisture refers to the water content
in the soil, and it relates to the available water for plants. Soil moisture mainly increases
with precipitation and decreases with evapotranspiration. In agriculture, irrigation is a
common practice to maintain good water balance, especially in critical periods of plant
growth (Attri et al., 2022).

2.2.3 Radiation, photosynthesis and photosynthesis pathways

Several botanical processes are influenced by radiation. Here, we delve into the one corre-
spondent to the spectrum between 400 mm to 700 m. This is also called Photosynthetically
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Table 2.1: List of agricultural weather hazards and potential damages.

Hazard Potential damage

Frost Metabolic halt, risk of plant cell death.

Chilling Photosynthesis inhibition

Heatwave Heat stress, photosynthesis inhibition.

Drought Plant growth inhibition, increasing risk of heat stress.
Pests Physical damage

Disease Biomass loss, quality loss

Floods and Water logging Reduced nutrient uptake efficiency, increasing risk of pests and disease proliferation.
Hail Physical damage

Active Radiation (PAR) and coincides with the largest portion of energy emited by the
sun. Photosynthesis is the process by which plants can synthesise glucose (CgH120¢) and
release oxygen (Og) by using water (H,0), carbon dioxide (COy) and PAR. In the envi-
ronment, energy is obtained from solar radiation, water from soil moisture, and CO, from
the air.

As previously discussed, factors like water availability and temperature are also critical in
regulating plant growth. However, how plants respond to these environmental conditions
varies depending on their adaptation to specific habitats. These differences are reflected in
the three main photosynthetic pathways: C3, C4 and CAM. Depending on the pathway,
it enables plants to optimize their growth and survival in diverse environments.

Most land plants (~85%) are C3 plants, which directly use CO5 from the atmosphere
during photosynthesis. These plants, such as wheat, grapes, oats, and berries, are com-
mon in mid and high-latitude regions. However, they face a trade-off between taking up
COgq and limiting water loss through their stomata. In dry conditions, stomata are close
to conserving water, which reduces CO, uptake and limits photosynthesis. High tempera-
tures can exacerbate this by reducing transpiration, leading to heat stress. C4 and CAM
plants are better adapted to hot and dry environments. C4 plants, like maize and sugar-
cane, initially fix CO, into four-carbon compounds, allowing photosynthesis to continue
even when stomata are partially closed. CAM plants, common in desert areas, fix CO, at
night when temperatures are colder. While these pathways are more water-efficient, they
require more energy, meaning that C4 and CAM plants need more sunlight to thrive.

Figure 2.11 displays the CO, assimilation as a function of leaf temperature for C3 and
C4 plants, with data gathered by (Yamori et al., 2014). The information for CAM plants
should be ignored due to a lack of comparable experiments (specifically, only experiments
during the night were considered; Yamori et al., 2014). In general, C3 plants have rela-
tively higher CO, fixation in low temperatures compared to C4 plants. In contrast, C4
plants have much higher CO, fixation in warmer environments compared to C3.

2.2.4 Weather hazards and stressors

In addition to the biophysical relations described above, there is a list of weather and
climate adversities which act as stressors and can produce severe damages in plants, or
reduce drastically crop production. These stressors (summarized in table 2.1) can manifest
singly, or simultaneously, and the impact can be cumulative (Bevacqua et al., 2021; Noia
Junior et al., 2023). A detailed description of these stressors is provided below.

15



2 Theoretical Background

Py C, plants
P — C, plants < >
g CAM plants
S 30 4
E
3 . Y
B Iy -
~
I 20 1
D
5
=
Z 10 4 i
2 potential range
_8 Of T::pr
B 7

0 I I I I

0 10 20 30 40 50
Leaf temperature ("C)

Figure 2.11: Typical temperature responses of photosynthesis in C3, C4 and CAM plants.
Temperature responses of photosynthesis are pooled from the published data and are
averaged in C3, C4 and CAM plants. The information for CAM plants should be ignored
due to lack of comparable experiments (Yamori et al., 2014). Reprinted with permission
from Figure 4 in Yamori et al. (2014), Photosynthesis Research, Springer Nature.

Heat stress: It refers to any temperature elevation that can cause permanent injuries to
growth and development in the plant (Ul Hassan et al., 2022). Heat stress occurs tipically
when the plant can not compensate the temperature differences with the environment.
This occurs either when ambient temperature is suffitiently high to cause severe damages
(i.e. above maximum temperature, Figure 2.11), or when transpiration is limited due to
water scarcity. The effect of high temperature in plants are numerous (dos Santos et al.,
2022). Onme of the most important is the sharply reduction in photosynthesis rate as
well as the carbohydrate reserves (Taiz and Zeiger, 2002). Generally, C3 plants are more
sensitive to C4 plants and CAM. Events of heat stress are observed during heatwaves,
and can last during several days or weeks (Fink et al., 2004).

Frost and chilling: Frost refers to the period in which air temperature drops below
the freezing point (0°C). In this case, ice formation can occur inside the plant, causing
severe damages or killing. The impact depends on the temperature, water vapor content,
total exposure and the specie. Chilling refers to low temperatures which are not below
the freezing point, but are still detrimental for the plant. In this sense, detrimental is
relative to the specie itself, with temperatures ranging between 0°C to 15°C. Typically,
plants with heat tolerance tends to be highly sensitive to low temperatures.

Drought and water stress: It is one of the major abiotic stressors in agriculture and
also one of the most studied ones (dos Santos et al., 2022). Drought refers to a prolonged
and sustained water deficiency compared to normal conditions (Mishra and Singh, 2010).
Thought related between them, the definition of drought varies depending on the discipline
(e.g. meteorological drought, agricultural drought, hydrological drought). In agriculture,
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it refers to the substantial soil water scarcity that hinders crop growth or can even be
lethal. Additionally, as previously mentioned, drought can also cause increase in the risk
of heat stress due to limiting transpiration. However, the underlying impacts are complex
and still under research (dos Santos et al., 2022). Events of drought typically last from
weeks to months (Rousi et al., 2023).

Water logging and high precipitation: Water logging occurs when the amount of
water in the soil is above the field capacity, producing an extra layer of water over the
surface. This usually takes place after prolonged periods of precipitation. Water logging
can lead to soil’s chemical composition alteration, hypoxia (shortage of oxygen or anoxia),
nutrient leakage and anatomical alteration (Maryam and Nasreen, 2012). Furthermore,
waterlogging at the beginning or end of the season can constrain field operations by
delaying sowing or limiting harvesting (Gobin, 2010; Olesen et al., 2012; Van Oort et al.,
2012). In addition to water logging, extended precipitation periods are linked to reduced
radiation and less photosynthesis, pest and disease proliferation(Noia Junior et al., 2023).

Hail: It refers to the solid precipitation spheroidal, conical or irregular in form, and
generally with 5 mm of diameter or more (American Meteorological Society, 2012). Hail-
storms are a mesoscale phenomenon, with severe and localized impact, which ranges from
foliar loss (i.e. leaves loss), fruit loss and stem breackage.

Pests and diseases: Pests refer to a living being that has a nutritional relationship
with a plant. Disease refers to a physiological alteration within the plant affecting home-
ostasis and, in some cases, producing visible morphological modifications. Although pests
and disease are not a climatic hazards per se, their proliferation relies on the weather
and climate conditions. Disease and pests outbreaks are influenced by temperature and
humidity (Tho et al., 2019), or after long precipitation events (Rowlandson et al., 2015).
Their spatial proliferation also depends on wind (Xu and Ridout, 2001).

2.3 The importance, the growth and the development
of maize and wheat

The previous section focuses entirely on environmental factors influencing the growth and
development of plants in general. This section examines the crops studied in this thesis:
maize and wheat.

Maize and wheat plants are considered major crops since they play a crucial role in food
security and development (Leff et al., 2004; FAO, 2024a). These plants are two of the
most important crops in the world in terms of production, along with sugar cane and rice
(FAO, 2024a). Both cereals are essential nutritional sources and are utilized for animal
forage and ethanol fuel generation (Ranum et al., 2014). Europe accounts for over a
third of the worldwide wheat production, meaning that any substantial drop in European
wheat production can lead to teleconnected supply losses (d’Amour et al., 2016). Roughly
10% of global maize production comes from Europe and is mainly used in internal and
intercontinental trade (Wu and Guclu, 2013). In general, maize production and yield
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Table 2.2: Summary of the main differences between maize and winter wheat.

Maize Winter wheat
Planting ~Spring ~Autumn
Harvesting ~Summer ~Summer
Max.: ~45°C Max.: ~45°C
Lethal temperatures Min.: ~—2°C Min: ~o—15°C
Planting: ~20°C
Optimal Temperature | ~20°C to 25°C Middle of cycle: ~0°C to 10°C
End of cycle: ~20°C
Vernalization No Yes
gﬁ;f ;‘iee(i[(lij.;rements ~500mm to 800 mm | ~450 mm
s . : Tillering (vernalization)
Most sensitive period | Around flowering .
Around flowering

losses in Europe lead to market instability and increases in importations (Chatzopoulos
et al., 2020).

Table 2.2 summarizes the main differences between wheat and maize. Both crops adapt
and evolve in different regions, resulting in distinct characteristics. The following sections
explain the fundamental reasons for their global importance as well as the growth and
development of each crop.

2.3.1 Maize

Maize (Zea mays), also called corn, is one of the most important crops in the world,
in terms of production (FAO, 2024a). This crop is used for human consumption and
fuel production and also serves as raw material for many industries, such as the food
or textile industry (FAO, 1992). However, the major use is for animal feeding. The
oldest archaeological evidence from maize domestication was found in Mexico and later
spread through the American continent (Piperno et al., 2009; Tenaillon and Charcosset,
2011). There is evidence that it was introduced to Europe from the Caribbean in the late
15" century and from North America during the 16" century. The large-scale molecular
analysis shows that most of the southern European maize is related to Caribbean maize,
which is more adapted to warmer climates, whereas central European maize is more
related to north American maize, which is more adapted to temperate climate (Tenaillon
and Charcosset, 2011). Additionally, successful breeding techniques and hybridization
have led to a substantial increase in maize yield during the second half of the 20th century
(Tenaillon and Charcosset, 2011).

Maize yield is determined by the plant density (number of plants per area), the number
of cobs per plant (usually between 1 and 2), the total number of kernels (grains) per cob,
and kernel weight. In a field, the total number of grains and grain weight is estimated
by sampling, producing both underestimation and overestimation (Ngoune Tandzi and
Mutengwa, 2020). Maize yield is estimated differently for different purposes. When using
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L0

Figure 2.12: Phenological stages of maize. Adapted with permission from Figure 3 in
Wan et al. (2022), ©)FElsevier.

)
v

Y (X

Emergence—Jointing stage | Bell-mouthed—Tassel stage Silking— Blister stage I Milk—Maturity stage
Vegetative growth Reproductive growth

i

-,A
ok

maize for animal feeding, for example, farmers harvest all aerial parts of the plant, chop
them, and transport them into silos for fermentation (also called "silage maize").

Growth and development of maize

Maize has a cycle ranging between 3 and 5 months (FAO, 2024b). It is also considered
a summer crop, with sowing dates typically in spring and harvest during late summer in
mid-latitude regions. The most widely used scale to identify the stages of development
is the one developed by Ritchie and Hanway (1986), also illustrated in Figure 2.12. It
consists of two main stages, the vegetative stage and the reproductive stage, and their
subdivisions. The beginning of the reproductive stage also refers to flowering. The stages
do not overlap. However, the growth of the reproductive parts of maize already starts
during the early part of the cycle.

Environmental factors influencing maize growth and development

The suitability of maize is mainly constrained by three factors: frost, soil moisture, and
temperature (Maton et al., 2007). The seeds of maize require warm and humid conditions
to emerge; dry and cold conditions at sowing can delay emergence by up to two weeks or
even prevent it altogether (Smith and Hamel, 1999). As a C4 plant, maize is well-adapted
to high-light environments and can continue photosynthesizing under high-temperature
conditions (Crafts-Brandner and Salvucci, 2002).

Figure 2.13 illustrates the temperature thresholds of maize for each development stage,
extracted from Sanchez et al. (2014). Overall, there are small changes in the sensitivity
of maize to temperature along the cycle. The maximum development rate is around 27 °C
to 30°C, and the maximum temperature is about 40°C at the beginning of the cycle,
which decreases to 35°C by grain filling. The minimum temperature is always close to
10°C in the whole cycle. The lethal minimum temperature is —1.9 °C, whereas the lethal
maximum temperature is around 46 °C.

Depending on the climate, maize requires between 500 mm and 800 mm of water for high
yield (FAO, 2024b). The maximum sensitivity to environmental conditions is around
flowering when the total number of kernels is determined. During this stage, lack of
water, in addition to sunlight restriction, can sharply reduce the total number of kernels,
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Figure 2.13: Estimated temperature thresholds of maize for each stage, obtained from
Sanchez et al. (2014). The minimum or base temperature (7'min, blue), Optimal temper-
ature (Topt, in green), maximum temperature (T'maz, in red) and lethal temperatures
(horizontal dark red) are illustrated. The opaque represents the average value, and the
corresponding shades illustrate the standard error.

i.e. yield (Andrade et al., 2000; FAO, 2024b). This also refers to the critical period of
maize (Andrade and Sadras, 2002).

2.3.2 Wheat

Wheat is one of the major crops in the world and ranks as the fourth most important
crop in terms of production (FAO, 2023a). What sets wheat apart from other crops is its
remarkable adaptability to different climates, as it is cultivated in both tropical regions and
very high latitudes. Wheat is considered a significant source of carbohydrates, proteins,
and fibres (Shewry and Hey, 2015). Apart from most common varieties, wheat can be
classified as "winter wheat" and "spring wheat". Wheat was first domesticated around
10,000 BC in the Middle East (de Sousa et al., 2021). Through natural hybridization and
anthropogenic selection, new wheat varieties emerged, leading to the development of the
most common forms today: "common wheat" or "bread wheat" (Triticum aestivum) and
"durum wheat" (Triticum turgidum var. durum). Wheat yield is determined by the total
number of grains per area.

Growth and development of wheat

The variety of our interest is winter wheat, which is a long-day plant and has a cycle
ranging from 180 to 250 days (FAO, 2024c). It is considered a winter crop, which means
that it is planted during autumn, its main vegetative cycle takes place during winter, and it
is harvested in early summer. The most widely used scale to determine the phenological
stages is the Zadoks scale (Zadoks et al., 1974, also illustrated in Figure 2.14), which
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Figure 2.14: Phenological stages of winter wheat. Reprinted with permission from Figure
2 in Mamassi et al. (2023), ©CC BY 4.0.
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Figure 2.15: Same as Figure 2.13, but for wheat. The data is obtained from Porter and
Gawith (1999).

consists of 10 main stages that can overlap. During the tillering stage (Figure 2.14, wheat
undergoes vernalization.

Environmental factors influencing wheat growth and development

In contrast to maize, wheat has a longer cycle and can be exposed to several hazards
throughout the year. Wheat has a higher tolerance to cold exposure but a lower tolerance
to high temperatures. Furthermore, it requires vernalization. Therefore, if temperatures
during tillering (Figure 2.14) are not cold enough (between 0°C and 10 °C), flowering can
be delayed or aborted. The number of tillers produced during tillering strongly depends
on the duration of the phase. Earlier sowing enables longer tillering, potentially producing
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more tillers and, thereafter, spikes. As wheat is a C3 plant, it does not perform well under
hot-dry conditions.

Figure 2.15 displays the temperature thresholds for the cycle of wheat. The minimum,
optimal and maximum temperatures increase from vernalization (vegetative stages) until
anthesis. At early stages, minimum temperatures are close to 0°C, until reaching 10°C
during anthesis and grain filling. Maximum temperature (7'm) is close to 20 °C during the
vegetative stage until reaching 35°C in grain filling. The lethal minimum temperature is
—17°C, whereas the lethal maximum temperature is around 46 °C.

In Europe, wheat plantation requires between 150 mm and 450 mm depending on the area
(Supit et al., 2010). Water requirements are usually low until the reproductive stages and
grain-filling period are reached. Generally, winter wheat is not irrigated, although some
parts in the Mediterranean region and France implement irrigation (Zhao et al., 2015).

The most sensitive state (the critical period) for determining wheat yield is between 20
days before anthesis and 10 days after anthesis. During this period, low radiation, very
low temperatures, very high temperatures, and water deficit limit the number of grains
and the size, which determine the potential yield of the plant (Curtis et al., 2002).

2.4 Common approaches in agricultural meteorology

The previous section provides the bases to understand how weather and climate influ-
ence growth and development of plants, exemplifying the case of maize and wheat. This
knowledge has been assured using mostly three methodologies: Field experiment-based
studies, process-based crop models, also called crop simulation models (CSM), and sta-
tistical models.

Field experiments rely on direct measurements and, when variables are well controlled,
offer highly reliable insights into specific climate-crop relationships. However, they are of-
ten costly, logistically challenging to implement, and geographically constrained, limiting
the ability to generalize results beyond the study area.

CSMs are highly developed models, based on first-principled equations and parametriza-
tions. They are used to assess the physiological responses of a specific crop to climate
drivers through the control of other factors such as management, soil properties and nutri-
tional availability, among others. CSMs are very useful for evaluating potential benefits of
developing new technologies (Jones et al., 2017b) and evaluating alternative management
for both present and future climate scenarios (Andarzian et al., 2015; Knox et al., 2016;
Siebert et al., 2017). In addition, CSMs are also used for providing real-time crop yield
forecast information, as the Joint Research Center (JRC) of the European Commission
does in the European domain (European Commission. JRC, 2020).

Notwithstanding this, CSMs are prone to some drawbacks. First of all, their representa-
tion of extreme weather impact is limited (Barlow et al., 2015). By way of explanation,
they fail to accurately represent losses linked to high precipitation extremes (van der Velde
et al., 2012), extreme temperatures (Barlow et al., 2015) and the wide range of pests and
disease species that damage crops (Jones et al., 2017a). Additionally, CSMs are based on
empirical evidence of weather-related agricultural response in specific regions, and require
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calibration for different areas (Zampieri et al., 2018). Lastly, they require extensive data
input which may not be readily available (Hu et al., 2024).

The gaps from CSMs are bridged by statistical models (Zampieri et al., 2018). These are
based on direct observations or reported data and, without assuming previous knowledge,
they can potentially provide insight into new unknown relations between the environment
and crop yield. Additionally, as an advantage over experimental research, it can cover
extended regions, providing additional robust spatial comparison (Hu et al., 2024).

Rather than being competitors, these approaches complement each other (Hu et al., 2024).
Since the methodology of this thesis relies heavily on statistical models, a detailed de-
scription of these models follows.

2.4.1 Statistical learning and machine learning

Even thought statistical and machine learning are referred as different concept, their
definition is actually entangled. The difference between statistical modeling and ma-
chine learning lies in their fields of origin: statistical modeling originates from statistics,
whereas machine learning comes from computational science. Broadly speaking, statis-
tical modeling encompasses tools used to understand data (James et al., 2021), while
machine learning includes methods that enable computers to learn from data (Mahesh et
al., 2020). Generally, the goal of statistical learning is inference, whereas machine learning
focuses on prediction. Machine learning tends to be associated with higher complexity
and lower interpretability. However, there is now a vast number of tools that make ma-
chine learning models interpretable, as described in Chapter 5. Both statistical modeling
and machine learning can be divided into supervised and unsupervised learning (Mahesh
et al., 2020; James et al., 2021). In supervised learning, there is an expected outcome
or response (e.g., linear regression or Random Forest), while unsupervised learning seeks
patterns in the data (e.g., principal component analysis).

Together, these approaches involve exploring data, inferring certain behaviors, or making
predictions (Tredennick et al., 2021). The following section focuses on the theoretical
framework of statistical learning as described in James et al. (2021).

2.4.2 Definition of statistical models

Statistical methods assume a relationship between a set of variables X and a variable to
be predicted y (also called the predictand). This relation is represented by the function
f and is given in the form of (Equation 2.1):

y=f(X)+e (2.1)

where ¢, refers to the irreducible error (that comes from e.g. instrumental errors). The
underlying aim of statistical models is to estimate a function f which attempts to be as
closed as possible to the real function f (Equation 2.2):

y=f(X)+e& +er=f(X)+e (2.2)
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where €, represents the error due to incorrect modelling, and € is the sum of the two type
of errors.

In general, statistical methods can be classified into two groups: parametric approaches
and non-parametric approaches. The first group assumes that f has a specific structure
based on parameters or coefficients. For example, if we assume that y has a linear response
to X, Equation 2.2 can be written as (Equation 2.3).

y = Po+ fir1 + Paxa+ ...+ Brxy + € (2.3)

where 3, is the independent fixed parameter and (;...0; are the fixed parameters associ-
ated to each predictor zi...xy. Bp...0k are usually estimated with algorithms that attempt
to reduce ¢ like ordinary least squares. Parametric approaches can also assume other types
of relation, such as polynomic and exponential, and can also include the combination of
several predictors. This method is generally more practical as it is eassy to interpret and
estimate. However, the proposed structure lacks flexibility and may not provide the most
accurate representation of f.

Non-parametric approaches involve direct estimation of the function f without assuming
a specific structure beforehand. Therefore, these methods are more flexible than para-
metric approaches and tend to approximate the true function f more closely. This group
includes methods such as Random Forest, which is described in Chapter 5. However, a
major drawback of non-parametric methods is their requirement for a large number of
observations to achieve accurate estimation. Furthermore, their high flexibility can lead
to overfitting and poor performance on unseen data, as discussed later in this section.

2.4.3 Binary classification models

Statistical models can be applied for either predicting a quantitative variable or a qualita-
tive (binomial) one. In the context of agriculture, statistical models can be used to study
significant drops in crop yield. This are refereed in the literature as yield loss (Ben-Ari et
al., 2018), bad year (Vogel et al., 2021), yield failure (Webber et al., 2020) or yield shock
(Zhu et al., 2021; Ma and Zou, 2024). This type of events are specially detrimental for
stakeholders as they lead to financial instability and losses in food supply (Kalkuhl et al.,
2016; Cottrell et al., 2019; Zhou et al., 2022). The use of models targeting yield shock
prediction allows the identification of the key drivers in the specific scenario of losses.

When the target variable follows a binary distribution (i.e., categories 0/1), the objective
is to predict the probability of occurrence of one category (usually y=1 y=1). This
probability function can be expressed as follows (Equation 2.4):

Ply=1]X)=r(X) (2.4)
where 7(X) is the probability function of the event y = 1 given the predictors X. In

this case, m(X) must lie between 0 and 1. Therefore, approaches such as linear regression
cannot be directly applied (as exemplified in Figure 2.16, green dashed line). For binomial
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Figure 2.16: Comparison of linear and Logistic regression models for binary prediction.
Probabilities (from 0, i.e. 0% to 1, i.e. 100%) of "yes" as a function of z by using a
logistic regression model (red line) and a linear regression model (green dashed line). The
observations (orange) denote 0 if the value is "no" and 1 if the value is "yes". Models are
trained by using a predictor z with random values ranging from 0 to 10 and a binomial
predictand "yes"/"no".

outcomes, a commonly used parametric approach is logistic regression, which is given by
(Equation 2.5):

ePotbBizi+Pazat. ..+ Brz

7(X) = Ply=11X) = (2.5)

Logistic regression is exemplified in Figure 2.16 (red line). In this case, logistic regres-
sion provides a natural framework for binary-classification problems. Additionally, Equa-
tion 2.5 can be rewritten in a linear regression-like structure, resulting in (Equation 2.6):

7(X)
1 — | = o 2.6
Og(l—ﬂ'(X)) Bo + Bixy + Bowa + ... + Bk (2.6)
where log (JS:(())()) is called the log-odds or logit. This transformation has no restrictions

and allows the implementation of parametric approaches such as linear modeling.

The coefficients of the logistic regression model are typically estimated using the method
of maximum likelihood, which involves maximizing the following function (Equation 2.7):
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Figure 2.17: Comparison of Random Forest model and Logistic regression model for binary
prediction. Probabilities (from 0, i.e. 0% to 1, i.e. 100%) of "yes" as a function of x by
using a logistic regression model (red line) and a Random Forest model (violet line). The
observations (orange) denote 0 if the value is "no" and 1 if the value is "yes". Models are
trained by using a predictor z with random values ranging from 0 to 10 and a binomial
predictand "yes"/"no".
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where N represents the total number of observations and w(x;) = P(y; = 1 | x;). This
is the log-likelihood function, which is maximized when the predicted probabilities 7(x;)
closely match the observed outcomes ;.

While Equation 2.5 and 2.6 assumes a linear relationship between the predictors and the
logit, this assumption may not always hold. Figure 2.17 illustrated how logistic regression
and a Random Forest model predict a simulated binomial variable. In the example,
when z < 5 and x > 7.5, the y = yes. Therefore, the logistic regression (red line)
struggles with accurate predictions since a non-linear relation exists between x and y. In
contrast, Random Forest, which is a more flexible tool, can get closer to the observations.
In cases where non-linear interactions are present, non-parametric approaches, such as
classification trees, can ofOfer advantages by accommodating more complex relationships.
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Figure 2.18: (a) Data simulated from a true function f (black). Three estimates of the
f are shown: a low-flexible model (orange curve), a medium-flexible model (blue) and a
high-flexible model (green). b() error obtained by using the training data (grey curve)
and independent test data (red curve) as a function of flexibility; squares represent the
training and test error for the three models shown in (a). (c) Test error is obtained
from the original models (blue, similar to a red line in (b)) and by using cross-validation
methods (dashed lines). Reprinted with permission from Figures 2.9 and 5.6 in James
et al. (2021), [©2021 Springer.

2.4.4 The bias-variance tradeoff and cross validation

When building a model, only a fraction of the observations, referred to as the training
data, is used instead of the entire sample. Since the model is built on this set, its accuracy
is typically very high when predicting outcomes from these observations. However, the
model’s utility is assessed by testing it against a previously unseen dataset. In this case,
models with high accuracy on the training data often exhibit low accuracy on new data.
Such models are described as having low bias but high variance, as they lack consistency
across different training sets.

This phenomenon is illustrated in Figure 2.18a and b, where the performance of three
models (low-flexible in yellow, mid-flexible in blue, and high-flexible in green) represent
the true function (black line) and to predict unseen data. The high-flexible model is the
one that gets closer to the observations; the medium-flexible model is the closest one to
the true function. When analyzing the performance of these models for the training data
(grey line) and test data (red line) in Figure 2.18b, the high-flexible model has the lowest
errors when modelling the training data but is also the less accurate one when using the
test data. In contrast, the medium-flexible model, though with higher error from training
data, has the lowest test error. Therefore, modeling implies a trade-off between flexibility
to represent the training observations and capacity to predict unforseen observations.

One way to reduce the variance of models is by building an ensemble of models based
on subsamples of the original. For this, there are several tools that are based on data
split (like cross-validation) or sub-sampling methods (like bootstrapping). In some cases,
especially in machine-learning methods, these tools are included within the model con-
struction. This process is common in statistics since the output average of the models
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has a lower variance than the individual ones (We exemplify these concepts in Chapter
5). The three models attempt to represent the true function (black line). In the example
of Figure 2.18, when readjusting the models using cross-validation (Figure 2.18c), the
performance of all of them increase.

2.5 Climate models

As mentioned in section 2.1, there is vast literature supporting the evidence of ungoing
global warming and climate change (Calvin et al., 2023; IPCC, 2023). The comprehension
of climate variability and future prediction is feasible owing to the development of climate
models, which we describe below.

2.5.1 Global climate models

Climate models are representations of the climate system based on parametrizations,
physical laws and measured data. They are used to study the existent interactions and
explore the changes in the climate system under different scenarios. Climate models have
been used to quantify the evolution of the past and present climate as well as to estimate
possible scenarios for the future (Stocker, 2011).

In the IPCC reports, for example, climate models are used to explore plausible future
scenarios and to establish the impact associated with then, as well as the possible miti-
gation and adaptation strategies (Figure 2.19; IPCC, 2023). Future climate scenarios are
based on the influence of human activity on climate. The concentration of Atmospheric
greenhouse gases (GHG) induce changes in global temperature by increasing inward radi-
ation flux (also called radiative forcing) and subsequently influencing the components of
the climate system (Figure 2.19 bottom row). The resultant simulations can be used for
assessing extreme weather and the impact in different sectors like in the agricultural one.

The possible climate pathways are based on a set of concentration and emission pathways,
which entail a set of plausible socioeconomic decisions throughout the years. The Coupled
Model Intercomparison Project (CMIP) was launched by the World Climate Research
Program and aims to provide a standardized format for the Global Climate Models (GCM,;
Eyring et al., 2016). The core set of runs from phase 5 of CMIP (CMIP5) appraise different
Representative Concentration Pathways (RCP) scenarios (Moss et al., 2010; Taylor et
al., 2012; Collins et al., 2013; Edenhofer et al., 2014). There are in total four RCPs
(RCP2.6, RCP4.5, RCP6 and RCP8.5); each of them contemplates a range of possible
emission scenarios, but converges to a similar net radiation forcing by 2100.The RCPS8.5,
for instance, considers a pathway of progressively increase in GHG emission, reaching
a value of 85Wm™2 by 2100, compared to pre-industrial levels. The RCP2.6 (high
mitigation scenario), in contrast, is a scenario of progressively reduction in CO5 emissions,
converging to radiative forcing of 2.6 Wm~2 by 2100, compared to pre-industrial levels.
Later, CMIP phase 6 (CMIP6) developed a new set of pathways called Shared Socio-
economic Pathways (SSP). These contemplates both qualitative and quantitative features
of societal future, and accounts for a wider spectrum of possible future socioeconomic
pathways (also illustrated in Figure 2.19 by different colourlines; Chen et al., 2021).
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Figure 2.19: Schematization of the climate change study process, starting from anthro-
pogenic emissions, to changes in atmospheric concentration, to changes in Earth’s energy
balance (forcing), to changes in global climate and ultimately regional climate and cli-
matic impact-drivers. Shown is the core set of five Shared Socio-economic Pathways
(SSP); carbon dioxide (CO3) emissions (panel top left, Gtyr'), methane (CH4) emis-
sions (middle) and sulphur dioxide (SO;), nitrogen oxide (NO,) emissions (top right, all
in Mtyr—!); concentrations of atmospheric COy (ppm) and CH, (ppb), second row left
and right; effective radiative forcing for both anthropogenic and natural forcings (W m=2),
third row; changes in global surface air temperature (°C) relative to 1850-1900, fourth
row; maps of projected temperature change and changes in annual-mean precipitation at
a global warming level (GWL) of 2°C relative to 1850-1900. Reprinted from figure TS4
in IPCC (2023), Cambridge University Press.

29



2 Theoretical Background

GFDL-ESM4 ———SSP1-2.6
7F ———IPSL-CM6A-LR ~---- SSP37.0 I
MPI-ESM1-2-HR - SSP5-8.5 Il
6 MRI-ESM2-0 Obs (HadCRUTS) A

UKESM1-0-LL ‘__:f’ o+

Global Warming Level (°C)

1
1850 1900 1950 2000 2050 2100

Pre-industrial
period

Figure 2.20: GLobal warming level relative to pre-industrial period for five GCMs (colors)
and three emission scenarios (line style), and for the observational data (black line).
Adapted from Figure 1 in Ruane et al. (2024), Willey.

In cliamte modeling, it is common to use multiple models rather than a single one. The
IPCC report fifth assessment based on CMIP5, for instance, was based on a set of nearly
20 different Global Simulation Models, or General Circulation Models (GCM, Collins
et al., 2013). The difference between models rely on the evolution of GHG emission
and concentration, land use and land cover changes as well as model formulations and
computational efficiency among others. This is also illustrated in Figure 2.19 (fourth
row), where for each SSP there is a range of uncertainty in the global surface temperature
evolution. The use of a multi model ensemble approach provides higher robustness through
the consideration of all possible scenarios.

In the IPCC sixth report, the concept of global warming levels (GWL) were incorporated
(Chen et al., 2023). GWL refers to the period in which the global temperature reaches
certain threshold compared to pre-industrial levels. Instead of analyzing the temporal
evolution of the GCMs, this approach focuses on the changes under certain GWL, which
is calculated for each model individually (Vautard et al., 2014). GWL vary across different
GCMs owing to, as previously mentioned, changes in the parallelization and assumptions
in the socioeconomic decisions. This is also exemplified in Figure 2.20, where we see when
different GCMs (in colors) for several SSP (line style) reach a correspondent GWL. In
this case, for instance, the difference between models reaching 3 °C warming level can be
greater than 20 or 30 years. This method, however, has been widely utilized since the
impacts of climate change are apparently independent from emission scenario or GCM
but rather GWL (Chen et al., 2023).
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2.5.2 Regional climate models

Though GCMs (Global Climate Models) provide reliable information at the global scale,
they often fall short in capturing local or regional-scale climate phenomena, such as the
influence of complex topography, land-sea interactions, and localized weather systems.
Consequently, Regional Climate Models (RCMs) have been developed to refine GCM
outputs and provide higher-resolution projections over specific regions (Giorgi and Jr,
2015). The basic approach of RCMs is to retain the large-scale forcing provided by a GCM,
such as long-term trends in greenhouse gas concentrations, as boundary conditions. These
are then used to dynamically simulate regional climate by incorporating more detailed
representations of surface features and atmospheric processes.

To standardize and advance regional downscaling efforts globally, the World Climate Re-
search Programme initiated the Coordinated Regional Downscaling Experiment (CORDEX),
with regional branches focusing on specific domains (Figure 2.21). EURO-CORDEX, for
instance, addresses the European region using RCMs with spatial resolutions of 0.44° x
0.44° (standard setup) and 0.1° x 0.1° (~11km), which significantly improve the repre-
sentation of regional climate characteristics (Jacob et al., 2014). This increased resolution
enables more accurate simulation of localized phenomena, such as orographic precipitation
and regional wind patterns.

In general, three primary approaches to downscaling have been developed: statistical-
empirical methods, dynamical downscaling (or nesting), and statistical-dynamical down-
scaling (SDD). Statistical methods rely on historical relationships between large-scale at-
mospheric variables from GCMs and local observations to infer finer-scale climate behav-
ior. While computationally efficient, these methods may overlook dynamically evolving
processes. In contrast, dynamical downscaling embeds an RCM within a GCM, allowing
the RCM to receive boundary conditions updated over time, thereby providing a phys-
ically consistent simulation of regional climates. though at higher computational cost.
SDD represents a hybrid strategy that reduces computational demands by using statisti-
cal techniques to classify GCM outputs into representative weather patterns, then running
the RCM for each pattern separately.

2.5.3 Systematic biases and adjustment methods

An important consideration when working with climate model outputs is the application of
bias correction techniques (Maraun and Widmann, 2018). Climate models, particularly
GCMs and RCMs, often exhibit systematic errors when compared to observed climate
data. These biases, commonly inherited from the driving GCM, can affect not only
the mean state but also higher-order statistical properties such as variability, trends,
and distribution shapes (Hall, 2014). From a statistical perspective, a bias refers to a
systematic deviation between the simulated and observed datasets for a given variable
(Maraun, 2016).

Bias correction aims to adjust the simulated data so that its statistical characteristics
more closely match those of the observed records. Typically, this involves identifying and
correcting persistent discrepancies through statistical transformations. These corrections
are based on a comparison between a historical reference period of the model output,

31



2 Theoretical Background
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Figure 2.21: Conceptual framework for the experiments planned under the Coordinated
Regional Downscaling EXperiment (CORDEX). RCM = regional climate model; GCM =
global climate model. Reprinted with permission from Figure 7 in Giorgi (2019), Wiley.

often referred to as control data, and corresponding observed climate data. Once trained
on this baseline period, the bias correction method is applied to future projections to
improve their realism and usability, particularly for impact studies and decision-making
in climate-sensitive sectors.

There are several methods to tackle bias correction (Teutschbein and Seibert, 2012).
Below, we describe three methos commonly used.

Linear scaling

Linear scaling is the simplest bias correction method. Specifically it aims to correct the
differences in the expected value, i.e. the average value (also called first order correction).
If X5 the mean of the observations X,ps, Xcon: the mean of the control data X,p, and
Xsim the simulation data (which can be in effect similar to the X,,,; or future projection
data),. Then, the adjusted simulated data Xpcgin can be written as (Equation 2.8):

XBCsim = Xsim + (Xobs - Xcont) (28)

or also by considering a multiplication factor (Equation 2.9):

X, obs

XBCsim = Xsim + (29)

cont

32



2.5 Climate models

In general, the additive form of the equation is more common for temperature-based vari-
ables, with low variance, whereas the multiplicative form is more common for precipitation
(higher variability).

Empirical Quantile Mapping

Another method which has been very popular in the literature is Empirical Quantile
Mapping (EQM). The advantage that it has over other methods is that it adjust certain
simulated data based on the quantiles; in this way, it does not assume any previous
theoretical distribution of the data (Teutschbein and Seibert, 2012). Quantile mapping
adjust the distribution by each single estimated quantile ¢, which is obtained from the
empirically-estimated cumulative distribution function F'. For a certain value x, of of the
variable to be adjusted, the gth quantile is then given by (Equation 2.10):

q=F(z,) (2.10)

From this, the inversed empirical distribution function F~! can be written as (Equa-
tion 2.11):

z, = FY(q) (2.11)

By using the two equations above, the adjusted value x5 can be written as (Equation 2.12):

TBCsim = FOZ;(Fszm<x51m)) (212)

where the suffix obs refers to the observation and sim to the simulated data. By itself,
EQM is not adequate for climate projection data adjustment. This is because the pro-
jected data ussually falls outside the scope of the original distribution, and this method
adjust back to the original historical distribution.

Quantile Delta Mapping

Cannon et al. (2015) introduced two methods that adjust quantiles while keeping the
model projections: Detrend Quantile Maping (DQM) and Quantile Delta Mapping (QDM).
The description of QDM (which is utilizes in this thesis) is provided below.

Let’s call sim the simulated data associated to future projection and cont to the historical
data. For a given value x4, the quantile gy, is defined as (Equation 2.13):

Qsim = Fsim(xsim) (213)

With Fp,,; the cumulative distribution function of the future projected data. Next,
the difference between the historical data and the future data for gp,,; is calculated as
(Equation 2.14):

)= Lsim — F_l (QSzm) (214)

cont

Or it is also calculated in the multiplicative way (Equation 2.15):
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x -
§=—"""__ (2.15)
FcorlLt(q«Sim)
With F_!. the inversed cumulative distribution function of the historical data. Finally,

the adjusted value xsp,,; is obtained by (Equation 2.16):

TBCsim = F(;bls(qszm) + o (216)

or for the multiplicative (Equation 2.17):

TBCsim = Fo_bls(qsim) * 0 (217)
Similar to Linear scaling, the suffix sim can refer to both historical or projected data. As

a matter of fact, if the historical data is used (i.e. sim = cont), QDM becomes similar to
EQM.
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3 Research Questions

As mentioned in Chapter 1 and Chapter 2, statistical models have the potential to bridge
the knowledge gap that raises from CSMs by revealing previously unseen interactions. In
contrast to the traditional aim of understanding crop yield variability, this thesis focuses
on substantial losses (also refereed throughout the thesis as "yield shock"), which are the
drivers of food insecurity and finantial instability. The first objective is to understand to
what extent complex-defined weather variables or predictors can enhance predictability
skill on a study case of silag emaizeyield shock in Germany. Second, a comparison of
climate drivers of maize and wheat yield shock across European countries is performed.
Finally, the changes of yield shock risk under future climate scenarios is evaluated. The
results addressing these aims are presented in Chapter 6 to 8.

The thesis workflow is summarized in Figure 3.1. Initially, the focus is on comparing
the advantages and disadvantages of variable selection in statistical models for assessing
weather influence on crop yield losses. The representation of climate drivers in statistical
models is rarely examined, particularly in the context of significant yield losses (Beillouin
et al., 2020). Thus, the aim is to address this gap by comparing the use of simple
versus complex climate variables in a case study on silage maize yield shocks in Germany.
For this, two statistical approaches are evaluated: the Least Absolute Shrinkage and
Selection Operator (LASSO), a linear method that optimizes performance by penalizing
and shrinking coefficients, and Random Forest, a non-parametric model that combines
multiple decision trees to capture complex patterns. Thus, the first research question is
as follows:

Research Question 1 (RQ1)

To what extent does increasing the complexity in the definition of cli-
mate predictors improve the performance of silage maize yield shocks
predictions in Germany?

RQ1 is answered in Chapter 6. The results show that when using LASSO, a combination
of simple and complex predictors enhances model performance. In contrast, with Random
Forest, models perform equally well regardless of the pre-selection of predictors. This is
because Random Forest captures non-linear interactions.

The second research question addresses the challenge of data limitations and model ro-
bustness in assessing climate impacts across European countries. For the first time, the

Global Dataset of Historical Yields (GDHY), a gridded dataset based on satellite and
observed yield information, is employed to enable standardized comparisons across the
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Figure 3.1: Schematization of thesis workflow summary, data used and research questions
by chapter. The squared boxes includes method and data inputs, whereas the circled ones
the correspondent analyses associated with the research question.

continent. Based on the findings in Chapter 6, the analysis exclusively applies Random
Forest models using simple predictors. The focus is on three major maize-producing coun-
tries in Europe (France, Romania and Spain) and six for winter wheat (France, Germany,
Poland, Romania, Spain and the UK). The study identifies and quantifies the influence of
key in-season climate drivers on crop yields across these countries. Therefore, the research
question remains as follows:

Research Question 2 (RQ2)

What are the country-to-country variations in the in-season climate
drivers of maize and winter wheat yield shock across European coun-
tries?

RQ?2 is answered in Chapter 7. The results displays the high spatial and crop variability
of weather and climate influence on maize and wheat yield shock. We find that cold,
warm, dry and wet conditions can have similar impact depending on the country.

Finally, the third research question examines how crop yield risk may evolve under fu-
ture climate scenarios. Ongoing global warming raising concerns about changes in key
agricultural stressors (Bednar-Friedl et al., 2022). Chapter 8 offers a novel perspective
by applying statistical models to assess future climate impacts on major European crops.
To explore this, an ensemble of GCMs from CMIP5, downscaled through the CORDEX
framework, is used to project future climate conditions. The statistical crop models de-
veloped in Chapter 7 are then employed to assess which predictors are associated with
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increased or decreased probabilities of maize and winter wheat yield shocks in a warmer
climate. Thus, the research question remains as follows:

[ Research Question 3 (RQ3)

How would the risk of maize and winter wheat yield losses vary across
Europe in a warmer climate from a statistical modeling perspective?

The answer of RQ3 is in Chapter 8, which highlights the importance of temperature
and precipitation signal on a warmer climate. Maize yield shocks are mainly driven by
drier conditions, though precipitation signals are uncertain, while for winter wheat, higher
temperatures generally increase yield loss risk.

In summary, Chapter 6 establishes the fundamental requirements for a robust and simple
model, specifically to assess the influence of sub-seasonal climate drivers on substantial
losses. Chapter 7 expands the analysis to the European domain and compare two crops,
which are different in their physiology. Finally, Chapter 8 explores the changes in the risk
of losses and the attributions under warmer climate. By focusing solely on yield losses, we
identify the key weather drivers of food insecurity and market instability in the context of
agriculture. Furthermore, it supports the development of targeted adaptation strategies
for maize and winter wheat at the national scale. Ultimately, this thesis advances the
basis for assessing agricultural vulnerability under present and future climate change.
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4 Datasets and Data Transformation

This chapter describes the datasets utilized in the thesis. The two crop datasets are
introduced first (Section 4.1): the reported yield data extracted from the German Statis-
tical Office and the Global Data of Historical Yields (GDHY), developed by lizumi et al.
(2014) and lizumi and Sakai (2020). The crop yield data classification process is then
explained, in which continuous yield data is transformed into categorical yield shock/no
yield shock data, a method applied to both datasets. Subsequently, the meteorological
data is presented (Section 4.2), specifically the ensemble version of the meteorological
observational dataset E-OBS, which is used to study the impacts under present climate
conditions. This data is used to create sub-seasonal weather and climate indices. Finally,
future climate scenario models are introduced (Section 4.3) to investigate the potential
impacts of climate change on crop yields. Additional details related to this chapter are
provided in Appendix A.

4.1 Crop data

The crop datasets employed in this thesis contain exclusively crop yield information,
expressed in units of mass per area (kg-hal). Given their differing spatial resolutions,
temporal coverage, and geographic domains, each dataset is utilized for distinct purposes.
The first dataset focuses on silage maize yields in Germany (Section 4.1.1), available
at the district ("Landkreis") level for the period 1999 to 2020. This high-resolution
regional dataset is used to address RQ1, which centers on a methodological comparison
(Chapter 6). The second dataset, the GDHY (Section 4.1.2), provides gridded global data
on maize and winter wheat yields from 1982 to 2016. Its spatial scope make it suitable
for a robust country-to-country analysis of weather impacts on major staple crops (RQ2,
Chapter 7 and RQ3, Chapter 8).

As this thesis focuses on substantial drops in yield, both datasets are transformed to yield
shock. This approach serves to identify the most common weather and climate patterns
observed during significant losses in agriculture. These are the ones that have a strong
impact on food security, finance and therefore are relevant for various sectors.

4.1.1 Silage maize in Germany

The crop yield dataset is extracted from the Statistical German Office database "Region-
aldatenbank Deutschland" (Statistisches Bundesamt (Destatis), 2025). Silage maize yield
data for the period 1999 to 2020 is used at the district level ("Landkreis"), corresponding
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Figure 4.1: Average silage maize yield (a), standard deviation (b) and relative standard
deviation (defined as standard deviation/average, c) per district in Germany in the 1999-
2020 period. The statistics are calculated after removing districts with less than 21 values
of data (districts in blank do not satisfy the filter).

to the NUTS3 resolution (Eurostat, 2025). Locations with more than 10% missing values
(i.e., more than two years of missing data) are excluded. This filtering process results in
a dataset comprising 242 time series, each with at least 21 annual yield values.

Figure 4.1 displays the climatology of silage maize yield data in Germany. The average
values of silage maize yield in Germany (Figure 4.1a) range between roughly 30tha™*
and 50tha~! | with higher values in western and southern Germany and lower values in
northeastern Germany. This spatial difference occurs due to the sandy soil characteristic of
the region, which reduces field capacity and tends to reduce the overall yield (Section 2.2;
Gebauer et al., 2022; Schmitt et al., 2022). The variability of yield along the years
(standard deviation, Figure 4.1b) is mostly homogeneous in the country. However, the
relative variability of silage maize yield (Figure 4.1c) is higher in central-eastern Germany,
mainly due to the relatively lower values in average maize yield.

4.1.2 Global Dataset of Historical Yields

This data is used in Chapter 7 to assess the impact of sub-seasonal weather and climate
conditions on maize and winter wheat yield across European countries.

lizumi et al. (2014) developed a global gridded dataset for major crops, also called the
Global Dataset of Historical Yields (GDHY; lizumi and Sakai, 2020). This is a global
gridded dataset of major crops based on a combination of satellite data and nationally
reported yield data. The newest version has a resolution of 0.5° x 0.5° and can distinguish
between seasonal winter and spring varieties (lizumi and Sakai, 2020). The GDHY is
built by using the following datasets as input:
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e Yearly nationally reported yield data obtained from FAO (2024a).

e Grid-cell net primary production (NPP), calculated using satellite-based products
and crop-specific radiation use efficiency.

e Global gridded dataset of crop planting and harvesting date around the 2000s (Sacks
et al., 2010).

The development of the dataset proceeds the following steps for each grid cell:

1. Fitting of normal distribution for planting and harvesting date (to account for tem-
poral variability and management at specific locations).

2. Accumulation of NPP along the growing season (between planting and harvesting
date).

3. Adjustment of FAO country yield for secondary cropping system use (Secondary
cropping system refers to the practice of planting a shorter season variety within
the same year, which is very common in tropical regions).

4. Combination of crop-specific grid NPP with FAO country yields.
5. Repetition of step 4, but for secondary cropping systems.

The satellite-based NPP gives reasonable information on the above-ground biomass of
the crops, whereas the harvesting practices and yield data report politics are strongly
dependent on the country. In other words, the temporal variation in modelled yields
followed those in the FAO data, whereas the spatial variation within a country follows
that in the NPP data (lizumi et al., 2014).

This thesis uses version 1.3 of the GDHY (lizumi and Sakai, 2020), which has yearly data
on major crops from 1982 until 2016, with a resolution of 0.5° x 0.5°. The dataset has
free access and can be downloaded from the PANGAEA repository (lizumi, 2019). The
original datasets distinguish between spring wheat (with the growing period in spring),
winter wheat (with the growing period throughout winter and spring), maize, rice and
soybean. Since this thesis aims to compare crops with different season length, the analyses
centers on two crops: Maize, which is typically planted in early spring and harvested in
late summer, and winter wheat, which is planted in early autumn and harvested in summer
(Chapter 2).

Overview of maize yield data in Europe using the GDHY

Figure 4.2 displays the average and standard deviation values of maize yield in Europe.
Maize yield ranges between 4tha~! and 16tha! for most of Europe, except for Galicia
(northwestern Spain), with values over 24 t ha. The values are rare and much higher than
Spain’s average national reported values (Supplementary Figure Al). However, this dif-
ference is probably due to the relatively high NPP in the country (Neumann et al., 2016),
which produces much greater values of maize yield in that region. Additionally, the rela-
tive variability remains quite similar in the whole European domain. We also observe that
neither Germany, Ukraine nor Poland (top maize producers in Europe, Supplementary
Figure Al) are present in the data.
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Figure 4.2: Maize yield data from GDHY (lizumi and Sakai, 2020). Average yield (a),
standard deviation (b) and relative standard deviation (c) for the European domain in
the 1982-2016 period.
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Figure 4.3: Same as Figure 4.2, but for winter wheat.

Given the data availability, sample size (number of grids per country), and importance in
terms of production at the European level (Figure A1), the target countries are:

GDHY Maize yield. Studied countries

e France ¢ Romania e Spain

Overview of winter wheat yield data in Europe using the GDHY

Figure 4.3 displays the average, standard deviation and relative standard deviation for
winter wheat yield using the GDHY. The highest values of winter wheat yield are found
in central and northwestern Europe, whereas the lowest ones are in southern and eastern
Europe. Similar to the case of maize, the region of Galicia in Spain presents a higher
yield than the rest of Spain. In high-.yield areas, the values range between 6tha~! and
12tha™!, which can be outstanding for some grids (similar to maize, due to the relatively
high NPP values within the country). Winter wheat yield variability ranges between 0
and 2tha™! per year, whereas the relative variability is relatively homogeneous in the
domain (between 15% and 30%).

Given the sample size, importance in terms of production at the European level (Fig-
ure A2), and regional variability in terms of climate, the six target countries are:
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GDHY winter wheat yield. Studied countries

e France e Germany e Poland e Romania e Spain e The UK

4.1.3 The definition of yield shock

The following description of yield data transformation is common for all crop yield
datasets. Silage maize yield shock (defined below) is described and used in Chapter 6,
whereas maize and winter wheat yield shock series across European countries are described
in Chapter 7.

As previously mentioned, crop yield has experienced a long-term positive trend associated
with technological improvements over the decades (Chapter 1). This is especially observed
in the GDHY for most of Europe (Figure A3). Additionally, political context and policy
implementations also produce a long-term effect on agriculture and could have either
negatively or positively influenced crop yield data (Micu et al., 2017). In this context, it
is hard to disentangle the impact of climate drivers. Therefore, removing trend is generally
recommended (Shi et al., 2013).

Furthermore, crop yield data is spatially heterogeneous since other static and temporal
non-environmental sources of crop yield variability exist, such as management and spatial
soil properties variability. Given that the focus is on individual countries, the data first
must be detrended and standardized, so thereafter, the individual series range on similar
values and have similar variability.

Detrending and standardization is a common practice and has been implemented in many
previous studies (Ben-Ari et al., 2018; Ceglar et al., 2016; Beillouin et al., 2020; Zhu et al.,
2021). The process usually consists of modelling the yield data series solely as a function
of time ¢ and then applying the following equation (Equation 4.1):

Yobs,j — Ytrend,j
YDetsidj =~ (4.1)
Ytrend,j

Where j refers to the specific location (district or grid, depending on the dataset), thus
the detrending is applied to individual series (in our case, location or grid point). ypessiq is
the detrended and standardized yield, y,s is the observed yield and #;¢nq is the long-term
modelled yield. There are several approaches to model 9eng- The most common in the
literature is based on locally weighted scatterplot smoothing (LOESS or LOWESS; Ceglar
et al., 2016; Ben-Ari et al., 2018; Beillouin et al., 2020; Lischeid et al., 2022). LOESS
is a non-parametric regression tool that properly captures the long-term behaviour and
variance of magnitude and is not sensitive to outliers (Cleveland, 1979), showing to be the
most appropriate approach for detrending yield data (Lu et al., 2017). After detrending
and standardizing, yield is not treated as a general continuous positive variable but rather
as a variation from the expected long-term behaviour.

Since this thesis focuses on the impact of climate and weather on individual countries, the
yield series are grouped by country. In the case of silage maize in Germany, all the data
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Figure 4.4: Yield data transformation for silage maize yield in Germany. (a) Year-to-
year distribution of silage maize yield for the entire sample, (b) year-to-year distribution
of standardized yield, horizontal red line corresponds to the global 15" percentile (c)
number of "yield shock" (orange bars) and "no yield shock" (blue bars) per year.

is treated as coming from a single distribution, whereas in GDHY, the data is grouped
by the individual countries.

Finally, the definition of yield shock is applied. For this, the data is discretized to dis-
tinguish between cases of substantial drop in yield and the opposite. The 15" percentile
of the domain’s detrended and standardized data is computed. Subsequently, if the value
falls below the 15*" percentile, the data is re-defined as "yield shock". In contrast, if the
value exceeds the 15" percentile threshold, the data is re-defined as "no yield shock". In
this way, the continuous distribution is converted into a binary yield shock/no yield shock
distribution. Typical threshold values range between the 5" and 20*" percentile for yield
shock (Webber et al., 2020; van Oort et al., 2023).

The yield data transformation is exemplified and illustrated for silage maize yield in
Germany in Figure 4.4. The first panel (a) displays the year-to-year distribution, where
we observe high dispersion within the yearly samples. In the second panel (b), the series
is already detrended and standardized with Equation 4.1. In this case, the data is much
less dispersed than the original observations. Furthermore, Figure 4.4b includes the 15
percentile (horizontal red line) that is used to categorize the data into yield shock and no
yield shock. Finally, Figure 4.4c displays the year-to-year frequency of yield shock reports
(in orange) and no yield shock reports (in blue).
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4.2 Meteorological data

Meteorological data is essential for understanding the influence of weather and climate
on crop yield shocks. The analysis done in present climate (RQ1 and RQ2, Section 4.2.1
and 4.2.2, Chapter 6 and Chaptern 7) are based on the ensemble version v23.1e and
27.0 of E-OBS (Cornes et al., 2018). E-OBS is a gridded observational dataset, with a
resolution of 0.1° x 0.1° (~11km), based on interpolated European meteorological station
data. Daily maximum, minimum and average temperature data as well as the daily total
precipitation data are extracted. Thereafter, the climate indices are calculated. These are
based on precipitation data and temperature data, and attempt to work as proxis of the
most common drivers of yield shock. The first set of climate indices (use to assess silage
maize yield shock in Germany) spam different definitions which contemplate average state
of climate, frequency and magnitude of extreme weather events. Given the conclusions
from RQ1 (Chapter 6), the climate indices are redefined and simplified for the followup
chapters (Chapter 7 and Chapter 8).

4.2.1 Climate indices for silage maize yield shock in Germany

The climate indices described below are used in Chapter 6 to assess the weather and
climate drivers of silage maize yield shock in Germany.

The first set of climate indices is based on daily maximum temperature, minimum tem-
perature and total precipitation from 1998 to 2020. A total of 11 climate indices (Table
4.1) are calculated. These indices are partially based on previous literature (Vogel et al.,
2019; Schmitt et al., 2022) and attempt to represent the most studied weather and climate
extreme events (drought event, extreme precipitation, cold and high temperatures). In
particular, the aim is to compare the impact of frequency (e.g. number of warm days)
and magnitude (e.g. cumulative heat) of unusual weather conditions apart from the most
commonly used variables (average temperatures and cumulative precipitation). All the
percentiles required for defining the indices are calculated using 1998-2020 as the base pe-
riod. For the cumulative-precipitation-based variables (SPIltm05 and SPgt05), monthly
total precipitation is computed and standardized within the same months of the study pe-
riod by fitting a Gaussian distribution. This yields a "Standardized Precipitation" (SP),
which resembles the widely-known Standardized Precipitation Index (McKee et al., 1993),
but focuses on the accumulation of a single month. The standardized precipitation during
wet months (SPgt05) and standardized precipitation during dry months (SPltm05) are
obtained by adjusting the original SP values.

Since maize is roughly planted around April in different parts of Germany and harvested
around September, the range from April to September is considered. This gives a total
of 66 climate indices (i.e. eleven indices x six months).

Figure 4.5 displays the correlation matrix between climate indices for each month. Among
the considered variables, co-linearity is evident. To distinguish the predictive capabili-
ties of simple versus complex variables and to reduce spurious correlations, six different
groups of predictors are constructed (Figure 4.6): a group of simple variables (Simple, Fig-
ure 4.6a), consisting of total precipitation (PP), mean maximum temperature (7'X), and
mean minimum temperature (T'N); a group of frequency-based variables (Frequency, Fig-
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Table 4.1: List of climate indices utilized to study silage maize yield shock in Germany.

Variable Short name Description
Total precipitation PP Monthly total precipitation
Number of dry days PPIt1 Number of days with precipitation below 1 mm
Number of wet days PP90p Number of days with precipitation above the wet days-based 90th percentile
SP during dry months SPltn05 Monthly standardized precipitation when the value is below -0.5
SP during wet months SPgt05 Monthly standardized precipitation when the value is above 0.5
Mean maximum temperature 7'X Monthly mean maximum temperature
Number of warm days TX90p Number of days with daily maximum temperature above the monthly 90th percentile
Cumulative heat TX90pDD Cumulative daily maximum temperature during warm days
Mean minimum temperature TN Monthly mean minimum temperature
Number of cold nights TN10p Number of nights with daily minimum temperature below the monthly 10th percentile
Cumulative cold TN10pDD Cumulative daily minimum temperature during cold nights
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Figure 4.5: Spearman correlation between climate indices for each month ( in panels).

ure 4.6b), including the number of warm days (7' X90p), number of cold nights (T"N10p),
PP90p, and the number of dry days (PPItl); a group of cumulative-based variables
(Cumulative, Figure 4.6c), incorporating accumulated heat (TX90pDD), accumulated
cold (TN10pDD), SPgt05, and SPItm05; and a group using all variables together (All,

Figure 4.6d).

In addition, two groups are generated using a step-wise variable reduction method (James
et al., 2021). The step-wise algorithm selects an optimal subset of predictors by itera-
tively adding or removing variables based on a specific criterion, typically an information
criterion or statistical test, to identify the best-performing model with a reduced num-
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Figure 4.6: Set of selected variables of each group (by panel) before modelling. The
considered variables appeared in blue squares, while the not-considered variables in blank.

ber of variables. This method requires computation of a "null model" (a model with no
predictors) and a "full model" (a model containing all predictors). In this case, both are
based on a logistic regression model, consistent with Equation 2.5. The model selection is
made using a Bayesian Information Criterion, which measures how well the model fits the
data as well as the number of predictors required, which helps avoid overfitting (James
et al., 2021 and Appendix A). The fifth and sixth group are based on the Forward mode
of Step-wise (Forward, Figure 4.6e ) and the Backward mode (Backward, Figure 4.6f).
From the 66 variables, 18 predictors remain in the Forward group, while Backward counts
18 predictors.

4.2.2 Climate indicators for the GDHY

The climate indices described below are used to assess the weather and climate drivers of
maize and winter wheat yield shock in Europe in present climate (in Chapter 7) and in
future climate scenarios (in Chapter 8).
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Table 4.2: List of climate indices utilized to study maize and winter wheat yield shock
across European countries, using the GDHY.

Variable Short name Description

Mean temperature Tmean Monthly average temperature

Diurnal temperature range DTR Monthly mean diurnal temperature range
Total precipitation RRsum Monthly total precipitation

Daily maximum temperature, minimum temperature, mean temperature, and total pre-
cipitation are extracted for the period 1981 to 2016 with a spatial resolution of 0.1° x 0.1°
(~11km). Additionally, the daily diurnal temperature range is calculated by subtracting
the daily minimum temperature from the daily maximum temperature. Since the GDHY
dataset has a resolution of 0.5° x 0.5°, the meteorological data is re-gridded using bilinear
interpolation to match the GDHY resolution. To reduce day-to-day variability, a 3-day
moving mean window is applied to the datasets. Table 4.2 displays the climate indices
considered when focusing on maize and winter wheat yield shocks across European coun-
tries. The selected predictors at this stage include monthly mean temperature (T'mean),
monthly diurnal temperature range (DT R), and monthly total precipitation (RRsum).

Planting and harvesting dates differ for maize and winter wheat; therefore, the month
ranges considered for each crop vary. For maize, which is sown between March and
May and harvested around September, the period from April to September is used. This
results in a total of 18 climate indices (i.e., three indices x six months). For winter wheat,
planted during autumn and harvested around summer of the following year, the period
from October to August is considered, resulting in 33 climate indices (i.e., four indices x
eleven months).

4.3 Future climate model data

To investigate the effect of climate change on crop yield shocks, future modeled climate
data is used. As mentioned in Chapter 2, Global Climate Models (GCMs) can project
changes in climate by considering different socioeconomic pathways and climate variabil-
ity. Additionally, Regional Climate Models (RCMs) downscale GCM outputs to provide
future climate projections at finer spatial resolutions. This data also requires adjustment
to match the distribution of observed data.

4.3.1 GCM-RCM model chains

The focus is placed specifically on the RCP8.5 scenario, which represents a high-emission
pathway and aligns with current observations (Schwalm et al., 2020). To enhance the
robustness of subsequent modeling, results are based on eight GCM-RCM model chains
(Table 4.3). Following the CORDEX standard framework (Chapter 2), all data have a
spatial resolution of approximately 11km and daily temporal resolution. For all GCM-
RCM model chains, the ensemble member r1iip1 and version vl are used, except for
the ICHEC-EC-EARTH models (using members r12ilpl v1) and the CNRM-CERFACS-
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Table 4.3: List of cGCM-RCM model chains and their correspondent period for GWL2
and GWL3.

GCM-RCM chain GCM RCM GWL2 GWL3

CNRM-CERFACS-CNRM-CM5_CLMcom CNRM-CERFACS-CNRM-CM5 (Voldoire et al., 2013) CLMcom-CCLM4-8-17 (Rockel et al., 2008)  2029-2058 2052-2081
CNRM-CERFACS-CNRM-CM5_ KNMI CNRM-CERFACS-CNRM-CM5 (Voldoire et al., 2013) KNMI-RACMO22E (Meijgaard et al., 2008) 2029-2058 2052-2081
ICHEC-EC-EARTH_ CLMcom ICHEC-EC-EARTH (Hazeleger et al., 2012) CLMcom-CCLM4-8-17 2026-2055  2051-2080
ICHEC-EC-EARTH _KNMI ICHEC-EC-EARTH KNMI-RACMO22E 2026-2055  2051-2080
IPSL-IPSL-CM5A-MR_ KNMI IPSL-IPSL-CM5A-MR (Dufresne et al., 2013) KNMI-RACMO22E 2028-2057  2040-2069
MPI-M-MPI-ESM-LR _ CLMcom MPI-M-MPI-ESM-LR (Giorgetta et al., 2013) CLMcom-CCLM4-8-17 2029-2058  2052-2081
MPI-M-MPI-ESM-LR _ KNMI MPI-M-MPI-ESM-LR KNMI-RACMO22E 2029-2058  2029-2058
NCC-NorESM1-M_ KNMI NCC-NorESM1-M (Bentsen et al., 2013) KNMI-RACMO22E 2031-2060  2057-2086

CNRM-CM5_ KNMI model chain (using member r11ilp! v2). Each member contains a
historical period (1950-2005) and future projections (2006-2100). The historical period
corresponds to the time frame during which the model was trained, while the projection
period covers the future scenario. Since the GDHY dataset begins in 1982, the historical
period is limited to 1982-2005, with future projections spanning 2006—-2100.

To record the changes in future climate simulations, the definition of Global Warming
Levels (GWLs, Chapter 2) is applied. The GWLs are calculated for each GCM inde-
pendently (Table 4.3; Fortems-Cheiney et al., 2017; Teichmann et al., 2018; Moemken
and Pinto, 2022) following the methodology of Vautard et al. (2014). In this case, the
GWLs are calculated relative to the pre-industrial period 1881-1910 by selecting the year
when the 30-year rolling global mean temperature reaches either 2°C or 3 °C. This thesis
focuses on GWL+2°C (GWL2) and GWL+3°C (GWL3), and compare the outputs with
the historical period (1982-2005).

4.3.2 Data transformation and bias correction

The data replicates the climate indicators calculated for Chapter 7 with some additional
adjustments. Figure 4.7 displays the model transformation process, including bias correc-
tion and predictor computation. From the simulations, the daily precipitation and daily
maximum, minimum, and mean temperatures are extracted. The diurnal temperature
range is calculated by subtracting the daily minimum temperature from the daily maxi-
mum temperature. Additionally, all simulated daily precipitation values between 0 mm
and 0.1 mm are converted to 0 mm. This is referred to as drizzle correction (Moemken
and Pinto, 2022; Lazoglou et al., 2024) and is applied to remove the model’s tendency to
overestimate the occurrence of light precipitation events. Next, the data is remapped to
match the GDHY grid and subjected to a 3-day running mean to remove synoptic-scale
variability (Section 4.2.2). Following this, the simulations undergo bias correction using
two methods: Linear Scaling and Quantile Delta Mapping (QDM, Teutschbein and Seib-
ert, 2012; Maraun, 2016 and Chapter 2). This produces two separate chains for each bias
correction method, resulting in a total of 16 RCM-GCM-bias-corrected (RCM-GCM-BC)
model chains.

After bias correction, climate indices defined in Section 4.2.2 are computed individually for
each simulation: monthly mean temperature (T'mean), total precipitation (RRsum), and
diurnal temperature range (DT R). Consequently, the output consists of 16 independent
simulation datasets (Figure 4.7).
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Figure 4.7: Schematic overview of the processing chain for bias adjustment and climate
indicators calculation.

The simulations before and after bias correction are evaluated against the reference E-OBS
dataset for the historical period (1982-2005). The evaluation is based on two statistical
metrics: mean bias (Equation 4.2) and mean relative bias (Equation 4.3). For a set of
observations x,,; and corresponding simulations x4, ;, the metrics are defined as follows:

Mean Relative Bias =

N
i 1
Mean Bias = N ;(:csmm — Tobs,i) (4.2)
Mean Bias 1 &
o T ith T = — - 4.
o wit Lobs N ; Tobs,i ( 3)

The performance is addressed at different aggregation levels. By all means, the analysis
is centered on differences across months, GCM-RCM model chain, domain and the data
in its totality. The results are displayed and discussed in Chapter 8.
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This chapter outlines the methodologies employed in this thesis. Specifically, the ap-
proaches used to identify the influence of climate indicators on crop yield shock (both
maize and winter wheat) are described. First, composite analyses are introduced (Sec-
tion 5.1), which elucidate the behavior of weather and climate drivers during years of yield
shock in Europe. Next, LASSO (Section 5.2), a linear parametric method, is presented to
study silage maize yield shock in Germany. Following this, Random Forest (Section 5.3), a
non-parametric machine learning model, is introduced and applied to analyze the weather
and climate drivers of silage maize yield shock in Germany as well as maize and winter
wheat yield shock across European countries. The final section describes the models’
setup for the specific cases of this thesis.

5.1 Composite analysis

As a first step, the state of the climate during yield shock and no yield shock years is
depicted using composite analysis. This approach provides an initial overview of how
certain data behave under specific conditions. In this case, selected climate indicators
during yield shock years are compared against those during no yield shock years. Despite
its simplicity and not being a statistical model per se, composite analysis offers an initial
insight into the impacts of individual predictors and the expected outcomes for subsequent
models. Results from composite analyses are presented in Chapter 6 and Chapter 7.

To compare the predictors, positional estimators (specifically the median and interquartile
range) are illustrated for both yield shock and no yield shock years. A second comparison
relies on the cumulative distribution along with the the two-sample Kolmogorov-Smirnov
test (K-S test; Wilks, 2006). The Kolmogorov-Smirnov is based on the maximum differ-
ence between the cumulative distribution functions of the two samples tested. This test is
a is a popular alternative to the two-sample T-test, as it does not assume prior knowledge
of the data distribution.

5.2 Statistical modelling with LASSO

The first statistical model applied in this thesis is the Least Absolute Shrinkage and
Selection Operator (LASSO; Tibshirani, 1996). LASSO is a parametric model based on
linear regression that aims to find the best model while regularizing coefficient values.
A key feature of LASSO is that, through regularization, some predictor coefficients can
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Figure 5.1: Example of LASSO’s mechanism. Five random variables x1...x5 are used to
predict a binary "yes" /"no" variable. The plot illustrates the predictor’s coefficient values
as a function of the tuning parameter A\. The relation is based on Equation 5.1.

be shrunk to zero, effectively performing variable selection. LASSO is primarily used in
Chapter 6 to analyze key predictors of silage maize yield shock in Germany.

5.2.1 Description of LASSO

LASSO can be adapted for binary classification problems by applying the logistic regres-
sion model, as described in Equation 2.5. In this case, the coefficients are estimated by
maximizing the following criterion (Equation 5.1):

N k
5()7%@% {Z[%’ZOQ(P(%; Bo. Br---Be)) + (1 — yi)log(1 — P(x3; Bo, Pr---Fr))] — AZ 151}
PLBr j=1

J/

-~

~
Log-likelihood Penalty

(5.1)

Where the first term represents the log-likelihood. Here i refers to an observation (in our
case, a specific time and location), and N is the total number of observations in the sample.
The variable y; is the binary outcome, taking the value of 0 (no yield shock) or 1 (yield
shock), and P(z;; Bo, B1...0k) is the probability function that depends on the parameter
B1...0k, the predictors z;...xy (associated with each parameter), and an intercept term fy.
For a given i, the log-likelihood is maximized when P is close to 1 for y; = 1 or P close
to 0 for y; = 0.

The second term in Equation 5.1 is called the "penalty term", which is the sum of the
absolute values of the coefficients fy, 5;...0; weighted by a tuning parameter \. The way
this term works is illustrated in Figure 5.1. It is observed that the larger the value of A,
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Figure 5.2: Schematized of a confusion matrix.

the smaller the values of f;...06;. Thus, in LASSO, the parameters to be estimated are
Bo, B1...0r and A. Both are typically determined together through cross-validation.

5.2.2 Model performance with Mathews Correlation Coefficient

Several metrics exist to assess the performance of a binary regression model (Assel et al.,
2017; Chicco and Jurman, 2020). The evaluation employed in this thesis is based on
the Matthews Correlation Coefficient (MCC; Matthews, 1975). The MCC is a symmetric
coefficient designed for assessing binomial or classification model performance. This metric
is chosen because of its sensitivity to imbalanced data, allowing consideration of broader
data distribution scenarios and providing more comprehensive information than other
metrics (Chicco et al., 2021).

MCC is calculated using the values obtained from a confusion matrix (Figure 5.2), where
TN refers to true negatives (actual negatives that are correctly predicted negatives), T'P
refers to true positives (actual positives that are correctly predicted positives), F'P refers
to false positives (actual negatives that are wrongly predicted positives) and F'N refers to
false negatives (actual positives that are wrongly predicted negatives). Then, MCC can
be written as follows (Equation 5.2):

VOO — TP xTN —FPxFN (5.2)
/(TP + FP)(TP+ FN)(TN + FP)+ (TN + FN)

MCC increases when either T'PxT'N increases or F'PxF N decreases. This means that
a high model performance requires high numbers of both TP and T'N while having low
numbers of both F'P and FN. An MCC equal to 1 implies a perfect model, whereas an
MCC equal to —1 means that the model does not hit any single value. A value close to
0 implies a performance similar to random guessing.
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5.8 Statistical modelling with Random Forest

5.2.3 Variable importance in LASSO

Given that LASSO is based on a linear regression. The importance of each variable is
easily addressed by comparing the coefficients values. [;...0;. When considering Equa-

tion 2.6, the estimated coefficients are related to the linear increase/decrease of the term

log(235205)-

However, this approach faces a limitation. Since the coefficients are related to the magni-
tude and scale of their corresponding predictors, it is unfeasible to compare them directly.
Therefore, it is common practice to either normalize the data or standardize it to maintain
the predictors’ distribution within a comparable scale. Once the data lies on a similar
scale, for a given variable X;, we can convey variable importance as the coefficients 3;.

5.2.4 Predictor’s contribution to low and high probabilities

Once a model with LASSO is built, it is possible to apply new data to estimate the
contribution to low and high probabilities of either yes (in our case, yield shock) or no (no
yield shock). This is straightforward by using Equation 2.6 and calculating the individual

contribution to the log(lf(;’(j—izz)s)) (Equation 5.3):

Contribution; , = By * Ty (5.3)

where Contribution;, is the contribution for each observation [ and each predictor £, and
X is the data for each observation and predictor. This approach enables the identifica-
tion of the most important predictors for a specific datasets and quantifying the actual
contribution to either high or low probabilities of either yes or no.

5.3 Statistical modelling with Random Forest

The second statistical model utilized in this thesis is Random Forest (Breiman, 1998).
Random Forest is a machine learning method widely used due to its flexibility and high
predictive skill. This tool has been previously used in extreme weather-related crop impact
studies in Europe and showed exceptionally high-performance skill (Vogel et al., 2019;
Beillouin et al., 2020). Random Forest is utilized in Chapter 6 to analyze silage maize
yield shocks and in Chapter 7 to examine maize and winter wheat yield shocks across
Europe. Later, the models obtained are applied in Chapter 8 for investigating future
climate change impacts.

5.3.1 Description of Random Forest

Random Forest is based on the decision tree algorithm (Figure 5.3). Since the predictand,
yield shock, is a binomial variable in this research (yield shock/no yield shock), a binary
classification approach is described.

In detail, Random Forest functions as an ensemble of decision trees (Figure 5.4). They
are built by iteratively constructing individual trees using a subsample of the training
dataset, selected through the bootstrapping sampling method. The complementary data
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Figure 5.3: Schemtization of a decision tree. This example is produced by using four
random predictors x1...x4 and a binary predictand Yes/No. Decision trees consist of
recursive splitting until a value of "Yes" or "No" is finally obtained. The decisions between
the branches of the trees are called "nodes". The final node is called "terminal node".

not used to create a given tree is called Out-Of-Bag (OOB) data. During forest construc-
tion, OOB data can be used to make predictions, which may be probabilistic or a single
class determined by majority vote across the trees. The OOB error rate is defined as
(Equation 5.4):

TotalMisclasst fications

ClassificationError =

TotalObservations (54)
Thus, Equation 5.4 takes values close to 0 with high accuracy and close to 1 with high
misses. Increasing the number of trees T reduces the error rate. Typically, models with
more than 500 trees are already stable (having low error and low variance, Chapter 2). The
OOB error can be considered a cross-validation error (James et al., 2021). Furthermore,
Equation 5.4 can be used to measure the accuracy of independent data, which is not used
to make the model.

5.3.2 Variable importance in Random Forest

In the process of building trees, variable importance can also be addressed. When build-
ing a tree, the most utilized approach for determining node splits is the Gini index G
(Equation 5.5):

G =2p(1 - p) (5.5)
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Figure 5.4: Schemtization of Random Forest and outputs of the model. Random Forest is
obtained by producing a total of T decision trees (which are similar to Figure 5.3). The
predictand yes/no is obtained either as a class proportion or decided by majority vote.

Where p refers to the proportion of either the class yes/no. Therefore, the Gini index
measures the purity of the node. In this context, purity refers to the proportion (i.e., the
higher the proportion of a single class, the higher the purity of the node).

One way to determine the importance of predictors in Random Forest is by using the
Gini index impurity (Equation 5.5). During tree construction, the total decrease in the
Gini index caused by splits on a specific predictor is recorded and then averaged across
all trees. A larger decrease indicates greater importance of that predictor. This metric is
also known as the mean decrease in Gini index or Gini importance.

5.3.3 Partial dependence plots

The mean decrease in the Gini index provides information on variable importance but does
not reveal the actual effect of the target predictor. To address this, partial dependence
plots are utilized (Friedman, 2001; Goldstein et al., 2015). Partial dependence plots are
used to illustrate the relationship between a target feature (or a subset of features) and the
predicted outcome of a machine-learning model. They help to show how the probabilities
of a certain class change as a function of individual predictors.

To define partial dependence plots, let s be the target predictor of interest and C' be
the set of all other features (the complement of s). The partial dependence function, fs
represents the average predicted outcome when the feature s takes different values, with
all other features held constant (Equation 5.6):

| X
S:NZ (s, 2c) (5.6)
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Where N is the total number of observations, z; is the vector of the predictor s, z¢; are
the predictors C for the observation ¢, and f the estimated function (in this case, obtained
by using Random Forest). Partial dependence plots are a practical way of making black
boxes understandable and are commonly used to explain model behaviour in agriculture
and extreme weather-related studies (Vogel et al., 2019; Beillouin et al., 2020).

5.3.4 Shapley values

Partial dependence plots provide an average view of how the probabilities of yield shock
depend on selected predictors. However, they do not show the marginal contribution
of each predictor to the predicted probabilities. This distinction is especially important
when interpreting the individual influence of predictors on unseen (test) data. To address
this limitation, Shapley values are introduced (Shapley et al., 1953; Molnar, 2020).

A Shapley value represents the average marginal contribution of a feature across all pos-
sible coalitions of predictors. This allows us to quantify each predictor’s contribution
relative to the average predicted probability. For example, if the average probability of
yield shock is 20% and the predicted probability for a new instance is 45%, the Shapley
values sum to the difference of 25%, distributed according to each predictor’s individual
contribution. However, a Shapley value does not equal the change in prediction caused
by simply removing the feature; rather, it is the average contribution across all possible
feature combinations.

One limitation of Shapley values is that they are estimated by permuting feature values,
which can generate potentially unrealistic instances, particularly when predictors are cor-
related. Another limitation is that they are computationally expensive, so in practice,
approximate methods are usually applied.

5.4 Models’ setup

This section describes the specific setups for each study. Chapter 6 compares LASSO
and Random Forest models using similar setups. Chapter 7 builds upon the outcomes
and limitations identified in Chapter 6, refining the approach by focusing exclusively on
Random Forest. Finally, Chapter8 applies the models developed in Chapter 7 to future
climate scenarios, integrating additional tools to evaluate projected impacts. Detailed
descriptions of each chapter’s setup follow below.

5.4.1 LASSO for maize yield shock in Germany

The silage maize yield data described in Section 4.1.1 is used after transformation into
yield shock and no yield shock categories (Section 4.1.3). Additionally, the set of predictors
from Section 4.2.1 is employed. Models are computed separately for each defined group
of variables. Since the coefficients f;...5; from LASSO depend on the magnitude of the
predictors (Section 5.2.3), all predictors are first rescaled to the range [—1,1]. This step
ensures all predictors share the same unit range while preserving their distribution (Ali
et al., 2014).
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Figure 5.5: Schematization of model set-up when analysing weather and climate drivers
of maize yield shock in Germany. The data is first split into random 70% for building
the model and 30% for testing the model. The model construction consists of leaving one
year out (blue) and validating the individual model against the year. The resulting model
is the one that reduces the error to the minimum. Finally, the model is tested against the
remaining 30% of data.

The model setup for LASSO is illustrated in Figure 5.5. The data is first randomly split,
allocating 70% for training and 30% for testing. LASSO is computed using the glmnet
package in R software (Friedman, Jerome et al., 2021). The tuning parameter is selected
via a customized cross-validation method known as “leave-one-year-out cross-validation”
(Wang et al., 2020; Tredennick et al., 2021). This procedure involves building a model
while excluding all observations from a particular year and evaluating a range of values
for \. The model’s accuracy is then validated against the omitted year. This process
is repeated for each year. Cross-validation is performed using the cv.glmnet function,
which produces two main outputs: Lambda.min, the tuning parameter that minimizes
the cross-validation error, and Lambda.lse, which corresponds to the most regularized
model within one standard deviation of Lambda.min. All models are estimated using
Lambda.1se to balance model complexity and predictability.

Once models are built for each set of variables, variable importance is compared across
them. To estimate the relevance of climate drivers explaining silage maize yield shock, a
qualitative analysis is performed, focusing explicitly on the variable importance ranking
for each group and addressing similarities and differences among them.

Next, the test data is used to assess the performance skill of each model via the Matthews
Correlation Coefficient (MCC) (Section 5.2.2). To construct the confusion matrix, a
threshold is required to split the predicted probabilities; a common choice is 50%. This
implies that predicted probabilities above (below) 50% are labeled as yield shock (no
yield shock). However, this threshold can be biased, particularly with imbalanced data.
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Therefore, MCC is calculated for each model across a set of 20 equally spaced thresholds
ranging from 0 (0%) to 1 (100%), i.e., threshold = 0,0.05,0.1,0.15,...,1. When inter-
preting results, a threshold closer to 0% represents a more pessimistic view, while one
closer to 100% represents a more optimistic view.

Finally, the best model is selected based on the Matthews Correlation Coefficient (MCC),
and the contribution of climate drivers to historical silage maize yield losses is investigated
(Section 5.2.4). As an initial step, year-to-year probabilities of yield shock are calculated
using the test data and compared with reported observations (illustrated in Figure 4.4c).
Next, the years are ranked from the worst (highest predicted probabilities of yield shock)
to the best (lowest predicted probabilities of yield shock) by averaging predictions per
year. The six worst years (referred to as “bad years”) and the six best years (referred to
as “good years”) are then selected based on these average predicted probabilities. Finally,
the contributions of the variables to the predicted high and low yield shock probabilities
are quantified and compared (Section 5.2.4).

5.4.2 Random Forest for maize yield shock in Germany

Since the aim is to compare the outputs with those obtained using LASSO, most of the
methods are repeated (Section 5.4.1, Figure 5.5). First, the data is randomly split into
70% for training and 30% for testing (using the same sets defined in Section 5.4.1). The
training data is used to compute a Random Forest model for the six groups of variables
derived from Section 4.2.1. These models are trained using the train and trainControl
functions from the caret package in R (Kuhn et al., 2023). The number of trees is set to
500, and the leave-one-year-out validation method is employed to identify the best model
and the optimal number of features m within the range of 7 to 12.

For each model, the variable importance ranking is examined using the mean decrease in
the Gini index (Section 5.3.2). Subsequently, the model’s performance skill is evaluated
by computing the MCC on the test data. Finally, year-to-year probabilities of yield shock
are estimated as described in Section 5.2.4. Because Random Forest is constructed from
decision trees, variable contributions cannot be explored in the same manner as with
LASSO. Instead, partial dependence plots are used to illustrate how the probabilities of
yield shock depend on each predictor, complemented by visualizations of the variables’
distributions during the “good” and “bad” years.

5.4.3 Random Forest for crop yield losses across Europe

The set-up and outputs for assessing weather and climate drivers of yield shock across
European countries are illustrated in Figure 5.6. Unlike the previous method, an ensemble
of Random Forest models is performed to incorporate uncertainty from the input data. For
this, a Random Forest ensemble is computed for each country and dataset by employing
a leave-one-year-out approach (similar to Section 5.4.1 but maintaining separate models,
Figure 5.6a). Since the GDHY dataset covers the period from 1982 to 2016, this approach
results in an ensemble of 35 models per country (e.g., one model trained on 1982-2015
and tested on 2016, one model trained on 1982-2014 plus 2016 and tested on 2015, etc.).
The function randomForest from the randomForest package in R is used (Breiman and
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Figure 5.6: Schematization of model set-up and outputs when analysing weather and
climate drivers of winter wheat yield across European countries. (a) leave-one-year-out
model building process, (b) Variable importance schematization with uncertainty. (c)
[lustration of partial dependence plots with uncertainty. And (d) Classification error as
a function of number of trees for the validation or OOB error (blue) and for the test data

(red).

Cutler, 2022). The number of trees is set to 500, while the number of features is kept at

the default value of \/# predictors.

For each ensemble, variable importance is calculated using the mean decrease in the Gini
index (Section 5.3.2). Additionally, the marginal effect of each predictor is quantified
through partial dependence plots (Section 5.3.3). Since each country has a total of 35
Random Forest models, results are summarized by plotting the ensemble mean and un-
certainty ranges represented by the 5™ and 95™ percentiles of all models (Figure 5.6b,c).

Both the OOB error (validation error) and test error are recorded (Figure 5.6d). Pre-
dictability skill of the ensemble is assessed by testing each model against the left-out year
(e.g., the model trained on 1982-2015 is tested on 2016; the model trained on 1982-2014
plus 2016 is tested on 2015). Performance is evaluated using the error rate defined in
Equation 5.4.

Finally, years with low accuracy are identified for each country. The causes of low accuracy
are investigated by examining specific model outputs, analyzing partial dependence plots,
and reviewing the climatology of the identified years.
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5 Statistical Modelling
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Figure 5.7: Schematization and exemplification of model outcome in future climate change
scenario. For each crop-country domain, the use the 16 RCM-GCM-Bias Correction (BC)
model chain (16 models) as input on the leave-one-year-out ensemble model (35 models)
are used. The predicted probabilities are assessed in two different ways. The first one
(left plot) display the dual distribution analysis, exemplified for the case of two predictors
in winter wheat yield shock in Germany during the historical period (green), GWL2
(orange) and GWL3 (red). The second approach (right plot) analyze side by side the
Shapley values using GWL2 and GWL3 data (left panel), and the shift in distribution’s
predictors on the correspondent periods (right panel).

5.4.4 Random Forest for crop loss in warmer climates

Once the models are established for present climate data, they are applied to future climate
scenarios to predict changes in yield shock probabilities. These results are presented in
Chapter 8, where the drivers of changes under GWL2 and GWL3 (Section 4.3) are also
investigated in comparison to the historical period.

Figure 5.7 illustrates the two approaches considered to assess the climate drivers of changes
in yield shock risk under warmer climate scenarios. For each crop-country model ensem-
ble developed in Chapter 7, future climate change data (Section 4.3) are used as input
data. Given the leave-one-year-out ensemble comprising 35 models and the RCM-GCM-
BC ensemble with 16 datasets, a total of 560 individual predictions per grid and year
are obtained, ensuring relative independence. To evaluate the influence of predictors on
changes in probabilities, two approaches are utilized, which are described below:

e Dual distribution relation. This approach focuses on the top variables identified
using the Gini index. Based on information derived from partial dependence plots
(Chapter 7), changes in yield shock can be attributed to variations in these top
variables. For example, suppose the Random Forest ensemble and partial depen-
dence plots indicate that T'mean in June increases the probability of winter wheat
yield shock in Germany. If both the probability of yield shock and T'mean in June
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5.4 Models’ setup

increase under GWL2 and GWL3, this would suggest that changes in yield shock
are due to the changes in T'mean in June. It is important to note that this approach
is based on causality rather than casualty.

e Shapley values and changes in variable distribution. Shapley values are esti-
mated separately for GWL2 and GWL3. For a given GWL, crop, and country, the
probabilities of yield shock are calculated, allowing estimation of changes in proba-
bilities compared to a baseline (average values in the historical period). Attribution
is then studied based on the behavior of individual variables in each specific case.
Taking the example of winter wheat in Germany, this approach can reveal whether
the changes in probabilities are associated to the ones in T'mean in June.

Shapley values are calculated using the Fastshap package in R (Greenwell and Greenwell,
2020). The Shapviz package is employed to visualize the results (Mayer and Stando, 2025).
By default, the criterion for determining the most important variable in these packages
is the average of the absolute Shapley values, expressed as % Zf\il |si|, where N denotes
the total sample size. Given the large size of the dataset (approximately 6.72 x 107) and
the high computational cost of the method, Shapley values are computed on a sub-sample
of 300 observations per input data, per GWL and per leave-one-year-out model (i.e., 35
models). The baseline is defined as the average probability of yield shock during the
historical period for each leave-one-year-out model.
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6 Model Comparison of Climate Drivers of Silage
Maize Yield Shock in Germany

This chapter aims to answer the RQ1:

To what extent does increasing the complexity in the definition of climate
predictors improve the performance of silage maize yield shocks predictions
in Germany?

Additionally, the influence of climate drivers on silage maize yield shock is described
and discussed. First, an overview of the silage maize yield shock series in Germany is
provided, the most extreme years are identified, and the recorded weather reports during
those years are reviewed. Furthermore, differences between the selected weather and
climate drivers during yield shocks and no yield shocks are described (Section 6.1). Next,
the results obtained by LASSO and Random Forest are compared. Analyses are always
conducted separately for each method. Variable importance (Section 6.2), predictability
skill (Section 6.3), and contributions to high and low predicted probabilities of yield shock
(Section 6.4) are compared. Following this, a physical interpretation of the model outputs
is provided by describing the physiological response (Section 6.5). The chapter concludes
with a summary of results, discussion of methodological choices, and answering RQ1
(Section 6.6). The information of this chapter is further supported by Appendix B.

6.1 Overview of yield shock series and composite anal-
ysis

This first section focuses on the climatology of yield shock and the chosen climate drivers.
Yield shock are defined by using the 15" percentile of yield deviations from the whole
domain (as described in Chapter 4). In detail, the aim is to evaluate to what extent the
years with high yield shock numbers match extreme weather events in the studied period
(1999-2020). The second step is to analyze the behavior of the eleven climate indicators
(displayed in Table 4.1 and described in Section 4.2.1) during yield shock and no yield
shock using composite analysis.

Yield shock series

First, the characteristics of the silage maize yield shock series in Germany are described.
The year-to-year distribution is shown in Figure 6.1 (similar to the one shown in Fig-
ure 4.4c). The shocks are mostly concentrated in six years: 2003, 2006, 2010, 2013, 2015,
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Figure 6.1: Year-to-year silage maize number of yield shock (orange) and no yield shock
(blue) in the whole domain.

and 2018. During these years, the number of losses exceeds 50 (i.e., more than 20% of the
total domain). These years also coincide with those reported by Webber et al. (2020).

The spatial distribution of yield shock for the identified years are shown in Figure 6.2. As
a general view, the shocks during 2006, 2010 and 2018 are mostly concentrated in central
and northern Germany. The year 2003 shows high density of losses in central and eastern
Germany. During 2013, losses are identified throughout the whole country, especially in
northwestern Germany. Finally, in 2015, we see a relatively low number of districts with
losses, which are mostly located in southern eastern Germany.

In the identified years, extreme weather events were also reported in the area (Lhotka
and Kysely, 2022). The year 2003 was characterized by anomalously hot and dry condi-
tions during June and August in central Europe (Fink et al., 2004). Similarly, extreme
high temperatures were reported during July 2006 (Rebetez et al., 2009). During 2010,
warmer-than-average summer temperatures were recorded throughout Western and Cen-
tral Europe, with values of at least 3 °C warmer than average in Germany (Blunden et al.,
2011). 2013 presented several anomalies throughout spring and summer, with extremely
cold and wet conditions in early spring, late snowfalls and floods in wide areas of the
country and the exceptional hailstorm of 27" and 28" July (Blunden and Arndt, 2014).
During the year 2015, unusual strong and long-lasting heatwaves were reported in Cen-
tral Europe (Blunden and Arndt, 2016). Finally in 2018, Germany experienced one of
the driest and warmest years from the last century, reporting temperature record break-
ing throughout spring and summer in different regions (Blunden and Arndt, 2019; Rousi
et al., 2023).

Composite analysis

The link between climate anomalies and silage maize yield shocks can be rapidly inspected
by using composite analysis. For this, the climate indicators defined in Table 4.1 are used.

Figure 6.3 presents the climatology (median and interquartile range) of the selected predic-
tors for yield shock years (orange) and no-yield-shock years (blue). The most pronounced
differences occur in June, July, and August, characterized by warmer and drier condi-
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Figure 6.2: Spatial distribution of yield shocks for the top six worst years (in panels).

tions during yield shocks. Specifically, these cases exhibit relatively lower values of PP,
PP90p, and SPItm05, and higher values of PPIt1. Similarly, increased values of T'N,
TX, TX90p, and TX90pD D are observed, alongside lower TN10p and TN10pDD. The
largest deviations during yield shock years occur in July, where the median of PP is
approximately 45 mm lower, and PPIlt1 and T X90p are about 13d and 3d, respectively.
Additionally in this month, T°X is 2 °C higher and TX90pDD is between 5°Cd and 35°Cd
higher.

Moreover, in April, higher values of T"N10p and lower values of TN10pD D (with consider-
able variability in the interquartile range) are evident. This is also observed in September
for both variables.

According to the K-S test, almost all predictors present statistically significant differences
between years of yield shock and no yield shock (not shown). It is only for PP90p and
SPgt05 in April, SPItm05 in May, and PP90p and SPgt05 in September, where there is
no statistically significant difference between the two cases.
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Figure 6.3: Climatology of the selected predictors during yield shock (orange) and no
yield shock (blue). The opaque lines represent the median, and the shades represent
the interquartile range. Since SPgt05 and SPltm05 are standardized values, they are
adimensional ("adim.").

6.2 Comparison of variable importance between groups

This section compares the general pattern of the meteorological variables that explain
silage maize yield shock probabilities. The results are organized by method and the
illustrations show the comparison by variable group.

LASSO

Figure 6.4 illustrates the coefficient values obtained for each group of variables. The
name of the models corresponds to the predefined set of predictors. When the colour
is red (blue), an increase in the value of the corresponding variable leads to a higher
(lower) yield shock probability. Coefficients which are either null or not included are
not displayed in colours. The coefficient values are presented in Table B.1, sorted by
decreasing absolute value. First of all, a reduction in the total number of predictors in
comparison to the original inputs is observed (Figure 4.6). The approach with LASSO
reduces the total number of variables from 18 to 11 in group Simple, 24 to 7 in Frequency,
24 to 11 in Cumulative, 66 to 21 variables in group All, 18 to 14 in Forward and 18 to 15
in Backward.

Overall, the six groups agree on two sets of factors. The first one is that hot-dry conditions
during July and August increase the probability of maize yield shock. The primary
predictor for the six groups is maximum temperature-related variables in July. This
is illustrated in a positive coefficient of TX (i.e. higher maximum temperature, higher
probability of yield shock), TX90P (i.e. higher number of warm days, higher probabilities
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Figure 6.4: Coefficient values by variable group (in each panel) in LASSO. The coefficient
names (y-axis) refer to the variables in Table 4.1. Months (x-axis) are represented by their
number. Variables that are either excluded from the group or not selected by LASSO are
in blank.

of yield shock), and TXD90pDD (i.e. higher cumulative heat, higher probabilities of
yield shock) in groups Simple, Frequency, and Cumulative, respectively. Groups All and
Forward select TX90p in July as the most important variable. The group Backward, on
the other hand, chooses TX in July as the most important variable (second most relevant
variable in group All and third in group Forward). In addition, in the same month,
reduced precipitation increases the probability of maize yield shock. This is shown in
the negative coefficient of PP (i.e. the less precipitation, the higher probabilities of yield
shock) in groups Simple and SPIltm05 (i.e. the more negative the value, the more the
probabilities of yield shock) in group Cumulative, and Backward, and in the positive
coefficient of PPIt1 (the higher the number of dry days, the higher the probabilities of
yield shock) in groups Frequency, All and Forward. Lastly, hot and dry conditions in
August increase the probability of yield shock, though the importance of predictors in
this month has a lesser impact.

As a second general pattern, cold temperatures during April increase the probability of
silage maize yield shock. The key variables change depending on the group, but the
predictors show similar patterns. In group Simple, a negative coefficient of T X in April
can be noted, whilst in group Frequency, it is illustrated in the positive coefficient of
TN10p (i.e., the more number of cold nights, the highest the probability of yield shock).
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Figure 6.5: Relative variable importance of the Random Forest models by group (in
panels). Only the top 10 variables per group are displayed. The variable importance is
normalized between 0 and 1 to make it comparable between groups.

In groups Cumulative, All, Forward and Backward, the negative effect of cold temperatures
in April is illustrated by a negative coefficient of TN10pDD (i.e. the more cumulative
cold, the higher the probabilities of yield shock). We also observe this pattern in May
(particularly with TN10pDD) but to a lesser extent.

Random Forest

Figure 6.5 illustrates the relative variable importance of the top 10 predictors per group
(in panels). Due to the nature of variable importance in Random Forest, the direction of
the relationship (positive or negative) with silage maize yield shock cannot be determined.
The plot only indicates how influential each variable is on model performance.

As expected, the six groups exhibit patterns similar to those obtained using LASSO, with
July-based variables being the most important across groups. This is particularly evident
in the group All, where the top six variables are exclusively July-based. This pattern arises
because Random Forest does not perform variable selection or filtering as LASSO does.
The most important predictors in each group are maximum temperature-based variables
in July. However, unlike the LASSO results, T'X holds relatively greater importance
than 7 X90p for the three hybrid groups (All, Forward, and Backward). Additionally,
precipitation-based variables in July show high relevance, such as PP for groups Simple
and Backward, PPIt1 for Frequency, All, and Forward, and SPIltm05 for Cumulative.

The subsequent set of variables changes depending on the group, but in general, either
August or April-based predictors seem to be the most important. Similar to LASSO, in
the case of April-based variables, the most relevant predictor for all the groups, except for

67



6 Model Comparison of Climate Drivers of Silage Maize Yield Shock in Germany

group Simple, is a minimum temperature-based variable, i.e. T"N10p for group Frequency,
TN10pDD for group Cumulative, All and Forward and Backward. In the case of the group
Simple, August, May and September-based variables (PP and T'X) appear as the most
relevant after July-based predictors.

6.3 Comparison of predictive skill between set of vari-
ables

The next step involves comparing the performance of predicted probabilities between the
different sets of variables. This is achieved by evaluating and describing the predictive skill
of each method individually using the Mathews Correlation Coefficient (MCC, Chapter 5).

LASSO

Figure 6.6 illustrates the performance skill obtained with MCC for all models throughout
the different thresholds. As a general observation, the MCC is positive for all models
and thresholds, which means that the six model performances are better than random
guessing. Moreover, a peak in performance in the six groups is observed when the prob-
ability threshold is between 20% and 30%, depending on the model. The hybrid groups
(All, Forward and Backward) present superior predictive skills than the other groups
(Simple, Frequency and Cumulative). This becomes evident when considering thresholds
between 30% and 80%. The group Backward (red line) is the one with the overall highest
performance, though the difference can be considered negligible.

Random Forest

Figure 6.7 displays the model performance by using MCC for each group with Random
Forest. Similar to the results obtained by using LASSO (Figure 6.6), the MCC is positive
for all models and thresholds; additionally, the peak in performance is between 20% and
40%, depending on the model.

In contrast to the results obtained with LASSO, no group demonstrates a clearly superior
performance in the Random Forest models. All groups show comparable predictive skill
for thresholds below 40%. Between 40% and 65%, the groups All and Frequency exhibit
a slight improvement relative to the others, though the difference is minimal.
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Figure 6.6: Mathews correlation coefficient (MCC) for each variable group (by colour)
using LASSO. The threshold (x-axis) chosen to determine the confusion matrix is in
percentage.

Random Forest
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Figure 6.7: Same as Figure 6.6, but using Random Forest.

6.4 Year-to-year prediction and variable contribution
during historical losses
As a final step, the factors contributing to both high and low predicted probabilities of

yield shock are examined. In particular, the six years with the highest risk (also called
"bad years") are compared to those with the lowest (referred as "good years"). As in
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Figure 6.8: Year-to-year distribution of the predicted probability in group Backward using
LASSO. Orange-coloured boxplots correspond to the six bad years, and blue-coloured to
the six good years.

earlier sections, the analysis is performed separately for both LASSO and Random Forest
models.

LASSO

Since the model obtained using the group Backward outperforms the others, the remaining
analysis focuses solely on this group. Figure 6.8 presents the year-to-year distribution of
predicted probabilities of yield shock. Years with higher and lower predicted probabilities
correspond closely to the reported observations of yield shock in Figure 6.1. The years
2003, 2006, 2010, 2013, 2015, and 2018 exhibit the highest predicted yield shock proba-
bilities (orange-colored boxplots in Figure 6.8, referred to as bad years), which coincide
with the largest numbers of reported yield shocks (orange bars in Figure 6.1). Among
these, 2018 shows the highest predictions. Conversely, the years 2000, 2004, 2005, 2007,
2009, and 2011 (blue-colored boxplots in Figure 6.8, referred to as good years) have the
lowest predicted yield shock probabilities. This pattern also holds for the groups All and
Forward (Supplementary Figures B1 and B2). Subsequently, composites of variable con-
tributions are created using these two sets of years to compare factors contributing to
lower or higher probabilities.

The comparison between the variable contribution to the predicted probabilities is pre-
sented in Figure 6.9. The variables in the x-axis are sorted by variable importance (as
in Table B.1 for group Backward). If the values are positive (negative), then the corre-
sponding variable contributed to increasing (decreasing) probabilities of yield shock. The
most noticeable difference is observed in temperature-based variables in July and in April.
For Tz and PP in July (first and second variable), the contribution during bad years is
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Figure 6.9: Composite distribution of the variable contribution to the predicted proba-
bilities in group Backward using LASSO. The variables in the x-axis are organized by
absolute coefficient values (as in Table B.1). The dashed-horizontal violet line indicates a
null contribution. Composites are made using the bad years (orange-coloured boxplots)
and the good years (blue-coloured boxplots).

mostly positive (i.e. higher logit values), whereas for the good years, this is negative. For
TX90P (fourth variable), the overall contribution during good years is entirely negative,
whereas it is close to 0 during bad years. Furthermore, the distributions reveal a relatively
positive contribution of TN10p during April. For the remaining variables, there is no ap-
parent difference between bad years and good years. These patterns are also observed
for groups All and Forward (Supplementary Figure B3 and B4 with their corresponding
variable importance rank).

Random Forest

Given the similarity in variable performance among the Random Forest models, only
the case of group Simple is analyzed. Figure 6.10 displays the year-to-year predicted
probabilities of yield shock for group Simple by using Random Forest. Similar to LASSO,
the highest predictions are, in order, 2018, 2013, 2003, 2010, 2015 and 2006 (bad years).
The order slightly changes depending on the chosen group (table B.2). Additionally six
groups are in agreement with the selected good years, which are 2004, 2005, 2009, 2011,
2012, and 2017 (good years).

Figure 6.11 presents the partial dependence plots for the Random Forest model based on
group Simple, highlighting the top five variables along with their distributions during bad
years (orange) and good years (blue). The probability of yield shock sharply increases
with extremely low July T'X, reaching approximately 40% when T'X falls below 15 °C.
However, at least 75% of observations during bad years show T'X values above 20 °C,
indicating that low July temperatures are not the primary characteristic of these cases.
For the first two variables (T'X and PP in July), hotter or drier conditions correspond to
increased yield shock risk. The probabilities rise to about 40% when T'X exceeds 28 °C
or when PP approaches zero. Consistently, bad years exhibit generally hotter and drier
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Figure 6.10: Same as Figure 6.8 for group Simple and Random Forest.

conditions compared to good years. Additionally, increased T'X in August also elevates
the risk of yield shock, reaching similar probability levels to the other variables.

Similar patterns emerge across other variables for the selected months in groups beyond
Simple (Supplementary Figures B5 to B9). Higher temperatures (e.g., elevated T'X90p
and TX90pDD) and drier conditions (high PPIt1) during July correlate with increased
yield shock probabilities. Furthermore, elevated T'N10p and reduced tn10pDD in April
are associated with higher risk of silage maize yield shock.
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Figure 6.11: (top row) Partial dependence plots of the top 5 predictors obtained from
group Simple and Random Forest. And (bottom row) the associated variable distribution
during good years (blue) and bad years (orange).

6.5 Physiological response of silage maize yield shock
to key climate drivers

The patterns identified by both LASSO and Random Forest models can be interpreted
through the lens of maize physiology, highlighting how specific weather and climate con-
ditions influence yield.

For both methods, higher temperatures and lower precipitation in July emerge as the most
important factors influencing silage maize yield shock. Specifically, the number of warm
days ranks as the most critical July-based variable. These findings align with the global-
scale study by Vogel et al. (2019), but contrast with previous German studies (Gornott
and Wechsung, 2016; Schmitt et al., 2022), which examined a range of weather and climate
drivers focusing on general crop yield variability. Gornott and Wechsung (2016) identified
evapotranspiration, calculated from maximum and minimum temperatures, as negatively
impacting silage maize yields during August to October. Meanwhile, Schmitt et al. (2022)
demonstrated a clear drought effect using soil moisture data aggregated by phenological
stages. Disentangling the direct impacts of high temperature, evapotranspiration, and
water deficit remains challenging. Extreme heat increases vapor pressure deficit, elevates
soil water demand through enhanced carbon assimilation and transpiration rates, ulti-
mately reducing water availability (Lobell et al., 2013). Thus, both temperature and
precipitation must be considered when predicting yield shocks. Combined indices (e.g.,

73



6 Model Comparison of Climate Drivers of Silage Maize Yield Shock in Germany

Zampieri et al., 2017) offer a promising alternative by capturing compound-event drivers,
reducing spurious correlations, and jointly assessing temperature and precipitation effects.
Notably, irrigation can mitigate the adverse effects of hot and dry conditions, making it a
vital adaptation strategy. Although maize irrigation is uncommon in Germany (Peichl et
al., 2018; Zhao et al., 2015), it can substantially increase yields and sometimes represents
the most critical management factor (Huynh et al., 2019).

As a secondary set of explanatory variables, anomalously low temperatures during April
also increase the probability of silage maize yield shock. This pattern was similarly re-
ported by Lischeid et al. (2022) using machine-learning models. While most agricultural
climate research prioritizes temperature and drought, other extremes such as frost, low
temperatures, or floods receive less attention (Cogato et al., 2019). However, maize
seedlings are sensitive to early-season conditions, requiring warm and moist soils for op-
timal growth (Stone et al., 1999; Bechoux et al., 2000). Consequently, yield losses may
be triggered by low temperatures above freezing (Sanchez et al., 2014; Vogel et al., 2019).
To mitigate cold stress, farmers often delay planting dates (Parker et al., 2017), though
this strategy can reduce yields by shortening the growing season (Baum et al., 2019).

When applying Random Forest, a decrease in T'X during July is also observed to sharply
increase the probability of silage maize yield shock. This pattern was similarly identified
by Lischeid et al. (2022) using both Random Forest and Support Vector Machine models.
Although high temperatures during the summer months generally impact maize nega-
tively, cold conditions in July can reduce biomass accumulation and slow development
rates. In such cases, the effects of high temperatures on silage maize yield tend to mani-
fest later, particularly in August. However, in our analysis, T'X values during July in bad
years are not notably lower than those in good years. This suggests that, while very low
July temperatures can have a strong impact, most silage maize yield shocks correspond to
warmer July conditions. It is also noteworthy that LASSO regression is unable to capture
this non-linear relationship between the predictors and silage maize yield shock.

6.6 Discussion and summary

This chapter investigates the added value of using both simple and complex variables
through the application of LASSO and Random Forest methods. Key climate drivers
associated with silage maize yield shock are identified, the best combination of variables
in terms of predictive skill is determined, and the meteorological factors driving historical
yield losses are examined.

The composite analysis reveals that silage maize yield shock features higher and drier
conditions during summer as well as cold conditions during April and September. The
information from the composite analysis provides a first overview of how the selected
predictors behave during yield shock. However, this approach does not quantify the
actual probabilities of yield shock. Additionally, it does not provide insight into non-
linear interactions. To address these limitations, statistical models are applied to provide
quantitative insights and to assess the relative importance and influence of the selected
predictors.
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6.6 Discussion and summary

With LASSO, the results from the MCC revealed that a combination of more complex and
simple variables outperforms models with more traditional ones. The Step-wise selection
model reduced the number of considered variables drastically, giving a coherent model
with high prediction skills. Even though the capability of Step-wise prediction is widely
criticized, it can be a powerful algorithm if it is supported by information criterion (Whit-
tingham et al., 2006). These results cast light on the relevance of considering complex
variables and using adequate variable selection methods to enhance predictability skills.

However, in contrast to LASSO, Random Forest models perform similarly regardless of the
pre-selection of predictors. They perform equally well as the hybrid groups in LASSO.
The advantage of Random Forest is that it does not require an increased number of
predictors or more complex variable formulations to achieve high predictive performance.
In contrast, LASSO necessitates a more sophisticated set of predictors to reach similar
levels of robustness. Furthermore, Random Forest offers valuable interpretability through
tools like Partial Dependence Plots and variable importance metrics, such as the Gini
index, which provide deeper insights into the model’s decision-making process. This
makes Random Forest not only a powerful tool but also a relatively comprehensible one.

Lastly, we find that predicted probabilities matched the historical silage maize yield shock
observations well. The six years with the highest predicted probabilities are 2003, 2006,
2010, 2013, 2015 and 2018. Despite all the predictors from the model, the strongest con-
tribution to high probabilities of yield shock comes from temperature-based variables in
July and cumulative cold in April. In the case of 2013, it is important to highlight that not
all potential climate indicators are identified. In this year, there were mainly two extreme
events reported: Extreme floods that took place at early June in northeastern Germany
(Blunden and Arndt, 2014) and the severe hailstorms from 27" and 28" July impacting
mainly northern Germany (around Hanover) and southern Germany respectively (Kunz
et al., 2018). These events can have notable impacts at more localized level but are not
identified by the model due to the nationally-aggregated and leave-one-year-out valida-
tion approaches. In this case, models with higher resolution (e.g. for each NUTS1 or
bundesland) could be more useful. Furthermore the chosen climate indicators may serve
as proxy of both extreme weather events (specially PPgt90p and SP1gt05) but are not
necessarily correlated. As a last point, exceptional cold temperatures in March were also
reported (Blunden and Arndt, 2014) that, thought not included in the model, could have
delayed the sowing of maize in some local farms.

Answer to RQ1

With the analysis performed in this chapter, the answer to RQ1 remains as follows:
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RQ1: To what extent does increasing the complexity in the definition of
climate predictors improve the performance of silage maize yield shocks
predictions in Germany?

When using LASSO, hybrid groups (consisting on simple and complex-defined pre-
dictors) exhibit superior predictive skills. Regardless of the pre-selection of vari-
ables, warm and dry conditions during July and August, as well as cold conditions
in April, increase the chances of silage maize yield shock in Germany. The number
of warm days in July and cumulative cold in April have higher relevance among
the variables within the corresponding months and within the groups that consider
these variables.

In contrast to LASSO, the models obtained using Random Forest perform simi-
larly regardless of the pre-selection of variables. The high flexibility of Random
Forest provides the added value and thus, it is not entirely necessary to use more
complex variables in this case. Additionally, it has the potential to reveal non-
linear responses. Apart from the already-mentioned maize yield shock drivers, low
maximum temperatures in July heightens the probability of yield shock.

In

summary, this chapter demonstrates that model performance is influenced by both
the definition of climate predictors and the choice of statistical method. While LASSO
benefits from a broader set of predictors, particularly when combining simple and complex-
defined variables, Random Forest consistently delivers high predictive skill regardless of
the variable selection strategy. The chapter also identifies the key meteorological drivers
associated with silage maize yield losses in Germany. Warm and dry conditions in July, as
well as unusually low temperatures in April, are shown to increase the likelihood of yield
shocks. Among these, high temperatures in July emerge as the most dominant driver of

historical yield losses, according to the selected variables and modeling approach.
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7 Spatial Heterogeneity of Agricultural Losses
Across Europe

This chapter aims to answer the RQ2:

What are the country-to-country variations in the in-season climate drivers of
maize and winter wheat yield shock across European countries?

The chapter analyses how climate drivers influence maize and winter wheat yield shock
across major European producers. The countries studied for each crop are:

e Maize: France, Romania and Spain.
e Winter wheat: France, Germany, Poland, Romania, Spain and the UK.

The results are presented separately for maize and winter wheat across the sections of this
chapter. The first section introduces the yield shock time series alongside documented
extreme weather events within the corresponding regions (Section 7.1). This is followed by
a climatological analysis of the selected predictors, highlighting differences between years
with and without yield shocks (Section 7.2). The subsequent section presents the results
from the Random Forest ensemble, beginning with an assessment of variable importance
and their influence on yield shocks (Section 7.3), and continuing with an examination of
the factors contributing to low predictive skill (Section 7.4). A physical interpretation of
the model outputs and spatial heterogeneity of the impacts is then provided (Section 7.5).
The chapter concludes with a summary and discussion, including a response to RQ2
(Section 7.6). Additional supporting material is available in Appendix C.

7.1 Overview yield shock series

As in Chapter 6, the analysis begins by describing the characteristics of the yield shock
series. An initial connection between weather extremes and yield shocks is also established
by examining reported events during the identified years.

The maize yield shock series is illustrated in Figure 7.1 for France(a), Romania(b) and
Spain(c). These are presented as a fraction of the total domain for easy comparisons be-
tween countries. In France (Figure 7.1a), the proportion of yield shock is small throughout
the years. It is specifically in 1990, 2003 and 2013 where the fraction of yield shock/no
yield shock is over 75%. In Romania (Figure 7.1b), the distribution is even more uneven.
Yield shocks are concentrated mostly in the years 1982, 2000, 2007, and 2012, where
the proportion reaches almost 100% in the domain. In Spain (Figure 7.1c), in contrast,

7



7 Spatial Heterogeneity of Agricultural Losses Across Furope

Maize

100%

a) France
75%
50%

: Il I I I I ) I I . II

25%+

0% -

b) Romania

100%- = — 1 —

50% 4

25% A

0% -
¢) Spain

100%
e | L
50%
25% A

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

Relative reports

Shock [l No [ Yes

Figure 7.1: Year-to-year proportion of maize yield shock (orange) and no yield shock
(blue). The proportion is calculated as the total number of grids with shock divided by
the total number of grids of the country.

yield shock is approximately evenly distributed throughout the years, with only a high
proportion (50%) in 1995.

Figure 7.2 displays the winter wheat yield shock and no yield shock series for France(a),
Germany (b), Poland (c), Romania (d), Spain (e) and the UK (f). Overall, the cases are
concentrated in a small number of years. The series for France displays around 50% yield
shocks in 1986, 1987, 2010, and 2011, while there is almost 100% of cases in 2016. In
Germany, yield shocks are more evenly distributed over the years, with 2003 being the
only year with a peak of 50% of the cases. Poland has a high number in 1992, 2000 and
2003, with almost the entire country being affected in this last year. Romania sees nearly
100% yield shocks in 1996, 2003, and 2007. Spain only experience high proportions in
1995 and 2005. Finally, in the UK, yield shocks are relatively low, with 50% in 1987 and
2007, but nearly 100% of the yield shocks reports in 2012.

Many of the years with high proportions of yield shocks coincide with historical records
of extreme weather events (Ben-Ari et al., 2018; van der Velde et al., 2018; Bevacqua
et al., 2021; Moemken and Pinto, 2022). The European heatwave from 2003 extended
throughout central Europe, impacting most of France, Germany and some regions in
Poland (Fink et al., 2004). During 2007, the UK was hit by high precipitation events and
floods, specially in the southern region (Levinson and Lawrimore, 2008), while Romania
experienced one of the warmest years recorded since 1960 (Busuioc et al., 2007; Marcu and
Borz, 2013). During 2012, the Uk recorded the third warmest March since 1910 whereas
it experienced the wettest June in the 247-year England and Wales series (Blunden and
Arndt, 2013). Finally, the year 2016 in France was characterized by extremely high
temperatures during December but also extraordinary precipitation events at the end
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Figure 7.2: Same as Figure 7.1, but for winter wheat across the studied countries.

of May and beginning of June, with precipitation values exceding up to four times the
climatology in some stations (Blunden et al., 2017).

7.2 Climatology and composite analysis of climate in-
dicators

As a first step, the general variability of the selected climate indices (T'mean, DTR,

and RRsum; Section 4.2.2) during yield shock and no yield shock periods is described.

Initially, a climatology of the corresponding indices is provided and compared across the
selected countries. Since the chosen predictors for maize yield shock span from April
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Figure 7.3: Series of median (opaque lines) and interquartile range (shade) for the three
climate indicators (in rows) along the six countries (in panels).

to September, while those for winter wheat cover the October—August period, only the
climatology for the latter group is analyzed here (see Appendix C for the case of maize).

Climatology of drivers

Figure 7.3 shows the climatology of selected climate indicators across the six countries.
Naturally, T'mean exhibits notable seasonal variability. Additionally, higher fluctuation
in the winter months (i.e. higher interquartile range). In winter (Dec.,Jan., Feb.), we see
Tmean values of about 5°C in France, Spain and the UK, and 0°C in Germany, Poland
and Romania. During the summer months (Jun., Jul., Aug.), the values rounds close
to 20°C in all the selected countries excepting Spain and the UK, where T'mean can
reach values of around 25 °C and 15 °C respectively. The DT R behaves similar for all the
countries, i.e. lower values during winter and higher during summer. Alike to T'mean,
all the countries (except Spain and the UK) present similar values of DT R during the
winter months (~2.5°C) and in the summer months (~7.5°C). In the case of Spain,
DTR presents higher intranual oscilation, with values of around 5 °C in winter and over
10°C in summer, whereas the UK is the country with lower DT R variability, with values
of 2.5°C in winter and 5°C. RRsum pattern varies between countries. In France and
Germany, precipitation oscillates around 40 mm to 100 mm per month throughout the
year, whereas in Poland and Romania, RRsum ranges between 20mm and 40 mm in
autumn and winter months and reaches values over 60 mm between June and July. Spain
is the driest country, with values ranging between 40 mm and 80 mm from autumn to
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Figure 7.4: Median (opaque lines) and interquartile range (shade) of the selected climate
indices during cases of maize yield shock (orange) and no yield shock (blue) for each
country (in panels). Statistical significance by using the K-S test is presented in squares
for a confidence level of 99% (black) and no significance (light grey).

spring months, and RRsum dropping to less than 20 mm in summer months. The UK
has precipitation ranging between 60 mm and 120 mm per month throughout the year,
with the highest RRsum from October to December.
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Composite analysis for maize yield shocks

Figure 7.4 shows the difference between the average values of selected predictors during
years of yield shock and no yield shock for the studied countries. For the cumulative
distribution of the selected climate indicators for each country, see Supplementary Fig-
ure C2,C3 and C4 for France, Romania and Spain, respectively. In the three cases, years
of yield shock are characterized by relatively higher Tmean, higher DT R, higher DTR,
and lower RRsum throughout the selected months. Additionally, according to the K-S
test, almost all the predictors are statistically significantly different.

In France (Figure 7.4a), the most pronounced differences occur between July and August.
During these months, the mean temperature (T'mean) and diurnal temperature range
(DTR) are approximately 1°C higher, while total precipitation (RRsum) is about 20 mm
lower in years with yield shock compared to years without yield shock. To a lesser extent,
reduced precipitation is also observed during May and June. Additionally, September
shows a slight decrease in mean temperature alongside a modest increase in precipitation
during yield shock years.

Romania (Figure 7.4b) presents substantial differences in the climate indicators during
the whole cycle, with more distinction between June and July. In these months, T'mean is
around 1°C to 2.5°C higher during yield shock than no yield shock reports. Additionally
find higher DT R throughout the cycle, with values ranging between 1°C in April up to
2°C in July. Alike the case of France, yield shock years feature lower RRsum during
the entire cycle, with the most notable difference in June and July (up to 40 mm in the
median), but a shift in the behavior in September (i.e. higher RRsum during yield shock
years). In these months, RRsum ranges between 20 mm and 70 mm during yield shock
and between 40 mm and 100 mm during no yield shock. DT R is 2°C to 3 °C higher and.

Spain (Figure 7.4c), though still significant, is the country which presents minor quanti-
tative differences between the selected predictors during yield shock and no yield shock.
In contrast to the other countries, the highest difference in RRsum is presented at the
beginning of the studied months, i.e. in April and May, where values are overall 10 mm
lower during yield shock. DT'R is also relatively higher, but the differences do not reach
1°C. T'mean is persistently around 1 °C higher during yield shock throughout the months.

Composite analysis for winter wheat yield shocks

Composite analysis are displayed in Figure 7.5 for the six countries (in panels). The
results from the K-S test are presented as squares in the bottom part of the subplots for
each variable and country. Overall, there are overlaps in the interquartile ranges, though
there are differences in the median values of the selected predictors. According to the
K-S test, there is a statistically significant difference between most of the climate indices
distribution during cases of yield shock and no yield shock.

In France (Figure 7.5a), RRsum behaves differently during years of yield shock and no
yield shock, with higher precipitation from November and March but relatively lower in
April. With less extent, relatively warmer conditions during November and December
in cases of yield shock can be observed. Additionally, the country features slightly lower
DTR and higher RRsum during May and June.
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Winter wheat
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Figure 7.5: Same as Figure 7.4, but for winter wheat and the correspondent target coun-
tries.

In Germany (Figure 7.5b), RRsum is relatively higher, particularly between October and
December, but presents slightly drier conditions between February and June. To a lesser
extent, we observe slightly higher T'means between April and June during yield shock
cases than in cases with no yield shock.

Similar to Germany, in the case of Poland (Figure 7.5¢), RRsum during years of yield
shock is slightly lower during spring months (between April and June). Moreover, T'mean
between December and February is slightly lower during cases of yield shock, while in April
and June, DT'R is relatively higher.

Romania (Figure 7.5d) presents substantial differences in the climatology during years of
yield shock and no yield shock. T'mean tends to be lower during winter, with median
values of —5°C during yield shock cases and 0 °C during no yield shock cases. The spring
and summer months are more characterized by warmer, dryer and higher DT'R conditions.
The highest difference is observed in June, where the median of RRsum is 75 mm during
years of no yield shock and 50 mm during years of yield shock.

Spain (Figure 7.5e) presents drier conditions during years of yield shock throughout the
year, with differences of around 25 mm between years of yield shock and no yield shock
in April and May. We also observe higher DT R, especially between December and June.
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Figure 7.6: Variable importance in the Random Forest ensemble when assessing maize
yield shock. Values are normalized for each country (in panels). Predictors are displayed
by month (x-axis) and variable type (colour). The bar endings correspond to the average
value of the Random Forest models, and the error bars correspond to the 5*-95t" percentile
uncertainty range.

Lastly, in the UK (Figure 7.5f), yield shock reports feature high DT'R and higher precip-
itation during summer. This is especially evident in June, where the median of RRsum
during yield shock reports is almost 100 mm higher than in the case of no yield shock
reports.

7.3 Determination of variable importance and impact

Building on the information from the previous section, notable climatological differences
between yield shock and no yield shock conditions are established. This section analyzes
the results obtained from the Random Forest ensemble, focusing specifically on identifying
the most important drivers of yield shock under variable climate conditions.

Maize

Figure 7.6 shows the normalized variable importance by country for maize yield shock
in response to the selected climate indices. The three countries exhibit distinct patterns
in variable importance. Overall, variables based on total precipitation (RRsum) and
diurnal temperature range (DT R) are markedly more influential than those based on
mean temperature (T'mean). In France, DT R and RRsum during July and August are
highly important, followed by T'mean in May, August, and September, which show similar
relevance. In Romania, DT R and RRsum in June and July are most significant, with
RRsum playing a somewhat lesser role; T'mean-based variables appear to have minimal
relevance. In contrast, Spain differs from the other countries by showing high importance
of RRsum-based variables in April and May.
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7.8 Determination of variable importance and impact
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Figure 7.7: Partial dependence plots of the top six variables per country for maize. The
rank is obtained by sorting the variable importance by descendant average value on Fig-
ure 7.6. The red opaque line corresponds to the ensemble mean of the Random Forest
models, and the shade to the 5"-95'" percentile uncertainty range.

Partial dependence plots are displayed in Figure 7.7 and for the top six most important
variables per country. The plots present the average probabilities of yield shock as a
function of each predictor (Section 5.3.3). Overall, the probabilities range between 15%
to 35% approximately.

For the first four predictors in France (Figure 7.7a), the probabilities of maize yield shock
increase from 20% to 30% when RRsum drops below 100mm and with DTR growing
from 10°C over 15°C in July and August. From the 5™ and 6" predictor, we see a slight
increase in the risk with low Tmean in May, but a notable increase (from 20% to 35%)
with high T'mean in August.

In Romania (Figure 7.7b), higher probabilities of maize yield shock are associated with
increased diurnal temperature range (DT R) and reduced total precipitation (RRsum),
particularly during July. When DT R exceeds 15 °C in July, the likelihood of yield shock
rises from 15% to 35%. Additionally, a double-tailed effect is observed for DT'R in June,
where both unusually high and low values increase the probability of yield shock. Low
RRsum during the summer months further contributes to elevated risk.

In Spain (Figure 7.7¢), the overall probability of yield shock remains below 25%. The risk
increases up to 30% when April precipitation drops to zero.
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Figure 7.8: Same as Figure 7.6, but for winter wheat yield shock models and the corre-
spondent countries.

Winter wheat

Figure 7.8 presents the average variable importance for each country, along with associated
uncertainty ranges, for the winter wheat yield shock models. Significant differences emerge
in the patterns of variable importance, with T'mean-based variables generally showing
high relevance, while RRsum and DT R tend to have low importance in most countries.
Notably, France, Germany, and Poland (Figures 7.8a—c) exhibit strong importance of
Tmean during December, and to a lesser extent in November. Additionally, T'mean in
April is highly relevant in France, and in June and August in Germany. In Poland, many
predictors display similar importance within their uncertainty ranges. In Romania and
Spain (Figures 7.8d and e), RRsum in April is notably important, with T'mean during
February and May also showing high relevance in Romania. In the UK (Figure 7.8f), the
Random Forest ensemble identifies RRsum and DTR in June as the only variables of
high significance.

The variable importance is further explored by analysing the individual contribution to
high or low probabilities of yield shock. Figure 7.9 shows the partial dependence plots of
the four most important variables per country selected based on Figure 7.8. Given the
unique characteristics, the analysis is done for each country separately.

In France (Figure 7.9a), the highest probabilities of winter wheat yield shock are asso-
ciated with two key variables: mean temperature (T'mean) in April and December. For
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obabilities of yield shock
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Figure 7.9: Same as Figure 7.7, but for the ensemble models assessing winter wheat yield
shock. The rank is obtained from Figure 7.8.

both predictors, increasing temperatures correspond to elevated risk, reaching up to 30%
probability at approximately 15°C in April and 10 °C in December.

In Germany (Figure 7.9b), warmer June conditions increase the risk from 20% to 25%.
Additionally, T'mean exhibits a non-linear relationship with yield shock, where values
below —5°C raise the probability from 20% to 30%, and values above 5°C increase the
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chances to 25%. Furthermore, T'mean in August (the fourth most important variable)
also shows an effect, with probabilities of yield shock increasing for T'mean over 20 °C.

The Random Forest ensemble shows little impact from the selected climate drivers for
Poland (Figure 7.9 c¢). The probability of yield shock rises to roughly 20% to 25% with
decreasing Tmean during December, March and January.

The results from Romania (Figure 7.9d), shows impact of dry, cold and hot conditions
depending on the month: increasing T'mean in May rises the risk up to 35%, while low
RRsum in April and T'mean in February increases them to 30% and 35%, respectively.

In Spain (Figure 7.9¢), drivers of yield shock are predominantly drier conditions during
January and spring (March-May). The risk of yield shock abruptly heightens from 15%
to 30% with scarce RRsum in April and, to a lesser extent, in May and January.

Finally, the UK (Figure 7.9e) experience higher risks of winter wheat yield shock with
high RRsum in June and July as well as low DT R in July.

7.4 Performance of Random Forest ensemble

This section evaluates the performance of the Random Forest ensemble and examines in-
dividual models exhibiting low accuracy. The results for maize and winter wheat ensemble
models are presented together, as the analysis and findings are similar for both crops.

Ensemble performance

Figure 7.10 display the OOB error and test error while building the Random Forest model
for winter wheat (See supplementary Figure C5 for maize). For each model during the
Random Forest building, the OOB is recorded. Within the same process, the leave-one-
year-out dataset is used as test data to calculate the model performance against the
independent one. The ensemble reaches stability after considering 100 trees, and the
value converges to 0.1 in all the models. Therefore, the ensemble produces reliable results
when considering 500 trees. On average, the test error converges to 0.15 in each country.
This means that the ensemble of models presents 85% of accuracy when using unforeseen
data. However, there is high uncertainty when taking the uncertainty into account. This
is specially notable in the case of Romania for both crops (Figure 7.10d and Figure C5b).

To understand in detail the previous outcomes, we identify the individual years which
present low accuracy within the ensembles. Figure 7.11 displays the distribution of error
rate for each individual country model for both studied crops. The most inaccurate models
(with an error rate above 0.5) are labelled with the corresponding tested year in red. For
both crops, the interquartile range of the individual countries ranges between 0 and 0.25,
with the lowest values found in France for both crops. All the models present between one
to five leave-year-out models where the error rate is above 0.5. For instance, in France
for maize yield shock (Figure 7.11a), the model trained without the data from 2003 (i.e.
tested against the year 2003) has an error rate close to 1. For maize, the years and models
with low accuracy identified in each country are 2013, 1990 and 2003 in France and 2003,
2007, 1992, 2000 and 2012 in Romania; the resultant models in Spain present errors lower
than 0.5. For winter wheat (Figure 7.11b), the years identified in each country are 2016,
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Figure 7.10: Error rate and test error as a function of number of trees for the ensemble
of Random Forest models per country (in panels), using the maize yield shock data. The
solid lines denote the average value between the models, and the shades represent the
uncertainty range by using the 5™ and 95™ percentile. The Out-Of-Bag (OOB) error
(turquoise) is built using the OOB sampling method from Random Forest (James et al.,
2021), and the test error (red) is built by using the leave-one-year-out data.

2011 and 2003 in France; 2003 and 1992 in Germany; 2006, 1992 and 2000 in Poland;
2003, 1996 and 2007 in Romania; 1995 and 2005 in Spain; and 2012, 1987 and 2007 in
the UK. All these years are also identified as extreme years, i.e. the proportion of yield
shock reports is relatively high (Figure 7.1 for maize and Figure 7.2 for winter wheat).

Performance during extreme years

As a last point, we further explore the behaviour of the individual leave-extreme year-out
models by analysing the partial dependence plots in conjunction with the data distribution
of the target year and model. In this way, we can identify whether the model itself predicts
high or low probability in during the target year.

We first investigate the example of 2003 in France for maize. Figure 7.12a displays the
partial dependence plots for the three most essential variables in the Random Forest
ensemble (in black, as depicted in Figure 7.7a) and for the leave-2003-out model (in red).
Figure 7.12b displays the distribution of the correspondent top three variables for the
studied period without considering 2003 (i.e. 1982-2002,2004-2016, grey boxplot) and for
2003 (red boxplot). During this year, the values of DTR and T'mean in August (sixth
variable, last column) are exceptionally higher than the climatology. When analysing the
partial dependence plots, the impact of both predictors for the leave-2003-out model (red
line) disappears. In other words, the model does not predict high probabilities of maize
yield shock with sunny and warmer days in August.
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Figure 7.11: Test error distribution for each country. Year-out tests with classification
errors higher than 0.5 are displayed in red. (a) for maize and (b) for winter wheat.

For the case of winter wheat, we analyse the example of 2012 in the UK. Figure 7.13a
displays the partial dependence plots of the top three variables for the ensemble model
(RRsum and DT R in June and RRsum in July, as shown in Figure 7.9f) and the in-
dividual model produced by leaving 2012 data out (red line). Figure 7.13b displays the
distribution of the correspondent top three variables for the studied period without consid-
ering 2012 (i.e. 1982-2011,2013-2016, grey boxplot) and for 2012 (red boxplot). RRsum
in June and July is notably higher than the climatology, while DT'R in June is relatively
lower. The partial dependence plots for the model trained without using 2012 (red line)
quantify lower probabilities of yield shock than the ensemble means. A similar analy-
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(grey) and only for 2003 (red) in France for the top three variables.

Winter wheat. UK 2012

a)
40%
-
]
9]
=
i
S 30%
2
=
‘G — Ensemble mean
|3 L_ — Year 2012 out
S 20% —J\_/_—
- L__..
o
a
10%

b)
‘ N H .I:D H ! i ‘ -I:Ij ‘ {I} Allyears except 2012
0 100 200 2 4 6 8 0 100 200 0 100 200 300 & 202
1st) Jun. RRsum [mm] 2nd) Jun. DTR [C°] 3rd) Jul. RRsum [mm] 4th) Jan. RRsum [mm]

Figure 7.13: Same as Figure 7.12, but for winter wheat yield shock and the year 2012 in
the UK.

sis can be done for the 2003 in Germany, displayed in Figure 7.14. In this case, the
leave-2003-out model quantifies lower probabilities of yield shock for high T'mean in June
and August compared to the ensemble model. According to the variable’s distribution
(Figure 7.14b), both T'mean in June and August have exceptional values during 2003.
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Figure 7.14: Same as Figure 7.12, but for winter wheat yield shock and the year 2003 in
Germany.

7.5 Physiological response and spatial heterogeneity of
the impacts

Both crops present notable differences in the most important climate indicators, even
within the same country. In the case of France for instance, we find that for both maize
and winter wheat, low RRsum and high T'mean in the individual summer months can
lead to higher chances of yield shock, but we also point the impacts of low T'mean in maize
and high Tmean in winter wheat during December. This is also the case of Romania.
The differences in the physiological response also provides higher and lower sensitivity to
years with extreme weather events reported. The heatwaves that hit France in 2003 were
more detrimental to maize than winter wheat, and this is also observed in Romania but
for the opposite case.

As we mentioned in Chapter 2, each crop has different characteristics, cycle length and
thus sensitivity to weather. Considering the spatial heterogeneity in the climatology’s
domains, below we explore what causes high risk of yield shock in each case.

Maize

In the case of maize, the output impacts are similar in Romania and France whereas Spain
shows different impact. In France, we find high impact of low precipitation and overall
sunny days (i.e. high DTR) in July and August. The findings are in partial agreement
with previous literature (Hawkins et al., 2013b; Ben-Ari et al., 2016), who specifically
found higher importance of precipitation shortage during the late 20" century but a
higher importance of hot days during the 215 century. The increasing application of
irrigation and frequency of extreme temperatures during the last decades have changed
the relative importance of precipitation and temperatures Hawkins et al. (2013b). In
general, flowering, the critical period of maize, takes place during July in France (Olesen
et al., 2012), which may explain the high relevance of predictors in the summer months.

92



7.5 Physiological response and spatial heterogeneity of the impacts

We also find that lower temperatures during May can trigger high probabilities of maize
yield shock in France. At first, these results may be striking since most of the literature
targets high-temperature impacts. However, cold exposure (frost and chilling) can be
critical for maize growth and yield for both early and late varieties (Caubel et al., 2018).

In Romania, the Random Forest ensemble model reveals a high impact from increasing
diurnal temperature and dry conditions in summer months, especially in July and August.
In general, DT'R is linked to increasing maximum temperatures, decreasing minimum
temperatures and dry conditions due to low cloud cover and possibly low precipitation.
This result also agrees with previous literature in the studied area (Micu et al., 2017;
Feng and Hao, 2020). Flowering generally occurs around the June and July months in
Romania (Olesen et al., 2012); thus, dry-warm conditions in these months are detrimental
to the crop. Furthermore, we find that low DT'R in June (likely higher cloudy days) can
increase the risk of maize losses in the country. Thought previous studies do not reveal
our findings (Pravilie et al., 2020; Calugar et al., 2024), their methodology were mostly
based on linear approaches or do not distinguish between causality and casualty. A high
percentage of cloudy days can reduce the total radiation and thus be also detrimental for
maize yield.

Interestingly enough, the most relevant variable in determining maize yield shock in Spain
is low RRsum during April. Irrigation is a common practice in Spain (Zajac et al., 2022).
This may explain why our results do not reveal high importance of hot or dry conditions
during summer.

Winter wheat

In Europe, there is evidence of extremely cold temperatures, heat waves, and dry and wet
periods impacting winter wheat yield (Mékinen et al., 2018). Though winter wheat has
lower precipitation requirements than maize and a higher tolerance to low temperatures,
the long season of the crop increases the crop’s susceptibility to extreme weather. Winter
wheat undergoes vernalization during the winter months. Therefore, warmer tempera-
tures during these months can partially abort flowering or delay it (as an example, this
phenomenon partially explains the losses of 2016 in France; Noia Junior et al., 2023).
Furthermore, the lack of snow coverage during these months exposes the plant to detri-
mental low temperatures (Mékinen et al., 2018). Anthesis in wheat in Europe is typically
observed between May and June (Olesen et al., 2012; Oteros et al., 2015; Schmitt et al.,
2022; Noia Junior et al., 2023). Higher temperature and drier conditions during this
stage lead to fast development with low growth, whereas lower temperatures during this
stage can delay the most ideal window for growth and can expose the crop to heatwaves
and dryer conditions during the summer (Djanaguiraman et al., 2020; Du et al., 2022).
Therefore, these months are generally critical for determining yield.

Overall, depending on the country and month, cold /warm conditions and dry/wet condi-
tions are related to increasing probabilities of winter wheat yield shock. The climatological
heterogeneity between countries may partially explain the differences in winter wheat yield
shock drivers.

In France, winter wheat yield shock risk is linked to warmer conditions in April and
warmer conditions during December. The study from Ben-Ari et al., 2018 also revealed a
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strong influence from a higher number of days with maximum temperature between 0°C
and 10°C during December, and Ben-Ari et al., 2016 noted that April is the month with
the highest importance to explain yield loss. France presents high spatial heterogeneity
within the country, and therefore, weather and climate drivers of yield shock could be
rather region-specific (Ceglar et al., 2016).

In Germany, warmer conditions during June increase the probability of yield shock. Fur-
thermore, we observe that both cold and warm temperatures during December are linked
to a higher risk of losses. Schmitt et al., 2022 mentioned drought to be the most important
factor, while Peichl et al., 2021 found high-temperature impacts in June but also negative
wheat yield anomalies with higher soil moisture in March. Central regions, like Germany
and France, experience both cold and warm temperatures in December, which are both
detrimental for winter wheat (Ceglar et al., 2016; Mékinen et al., 2018). Central regions,
like Germany and France, experience both cold and warm temperatures in December,
which are both detrimental for winter wheat (Ceglar et al., 2016; Mékinen et al., 2018).
Anthesis is typically observed around June (Schmitt et al., 2022), so higher temperatures
in this month can be critical.

The results from Romania reveal that colder conditions in February, dry conditions in
April and warm conditions in May are linked to higher probabilities of yield shock. The
experimental study from Tayyar (2010) showed that negative precipitation anomalies and
positive T'mean anomalies during springtime shorten the grain filling period, resulting in
earlier grain maturity and low yield. Due to the warmer climatology, maturity is reached
around June (Croitoru et al., 2012), and the impacts of hot-dry conditions are likely seen
during spring months. Additionally, temperatures in Romania during winter can drop
below the freezing point, which can also halter the growth of the crop.

In Spain, drought conditions during the whole year (especially in April) are linked to
an increasing probability of yield shock. These results were also obtained by Pascoa
et al. (2017), which showed that negative precipitation anomalies during March, April,
and May are linked to reduced wheat yield in the Iberian Peninsula. Prolonged periods
of drought are typical in Spain and the Iberian Peninsula (Moemken and Pinto, 2022)
and hence abrupt drops in yield are more likely due to such phenomenon (Bento et al.,
2021). Flowering in Spain occurs in early spring (Oteros et al., 2015), and the crop is
harvested between May and July. Therefore, drier conditions during early spring are the
most detrimental effect observed.

Lastly, in the UK, we observe that strong precipitations in June and low DT R lead to
higher yield shock probabilities. This is also highlighted by van der Velde et al. (2018)
when assessing the historical loss of 2012 in the country. Posthumus et al. (2009) also
mention significant agricultural losses during the summer floods of 2007. The UK is
more humid throughout the year, and the likelihood of having yield shock due to high
precipitation is higher in this area. Therefore, the risk of losses may be rather linked to
drops in solar radiation (which is indirectly related to DT R and also to RRsum).
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7.6 Discussion and summary

This chapter assesses the weather and climate drivers of maize and winter wheat yield
shock across European countries. The three target countries for maize are France, Roma-
nia and Spain, and we include Germany, Poland and the UK for winter wheat. We explore
the most important weather and climate indicators according to the leave-one-year-out
Random Forest ensemble model and quantify the impacts. Finally, we investigate the
behaviour of individual models within the ensemble, which show low accuracy.

We observe partial agreement between the composite analysis and Random Forest out-
puts. However, the composite analysis only shows the differences between years with and
without yield shocks, missing non-linear patterns. Most of the climate indicators have
statistically significant differences between yield shock and no yield shock cases, even
though they are not apparent, for instance, for the T'mean series in Germany in the case
of winter wheat. Composite analysis serves as a first approach to disentangle how weather
and climate drivers behave during years of yield shock. Nevertheless, we still require a
more powerful tool to quantify and disentangle the impacts.

For the reasons mentioned above, we utilize a flexible and robust statistical model such as
Random Forest, which enables us to identify the key drivers of yield shock and quantify
their impact. The leave-one-year-out ensemble approach helps capture high-frequency
drivers of yield shock and also the effects of weather extremes. This setup reduces the
apparent impact of individual extremes (not shown), which is why the obtained proba-
bilities by using partial dependence plots do not exceed 40%. This is particularly evident
in Poland for the case of winter wheat, where composite analysis reveals strong negative
anomalies, but the predicted probabilities of yield shock do not exceed 25%. Despite
this, the leave-one-year-our ensemble approach enhances the robustness of the results by
reducing the sensitivity to outliers.

For both crops, Random Forest ensembles have an overall high accuracy. However, when
predicting extreme years, the performance is limited. This is illustrated by the examples
of 2003 in France for maize, 2012 in the UK, and 2003 in Germany for winter wheat. The
summer of 2012 in the UK was exceptionally wet, with some locations reporting their
highest precipitation values in the last 200 years (Blunden and Arndt, 2019). The partial
dependence plots for the leave-2012-out model present lower probabilities of high RRsum
in June and July and low DT'R in June than the ensemble. Likewise, this can be observed
in Germany and France, where T'mean in June 2003 is exceptionally high compared to the
climatology (Fink et al., 2004). Another example is the unprecedented warm December
in 2016 in France (Figure C6; Ben-Ari et al., 2018) or the dry conditions in 1995 in Spain.
Random Forest is a practical tool with high predictability in ecology (Cutler et al., 2007).
However, it struggles with extrapolation beyond the historical evidence. This information
provides insight into the uniqueness of these years, which are relevant in the ensemble to
capture important variables in both years’ high-yield shock reports. Single models should
not be individually assessed, but rather, we should focus on the ensemble in conjunction.

Answer to RQ2

By considering the outcomes from this chapter, we answer the RQ2 as follows:
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RQ2: What are the country-to-country variations in the in-season cli-
mate drivers of maize and winter wheat yield shock across European
countries?

Maize yield shocks show similar weather-related impacts in France and Romania,
with July—August conditions, particularly high diurnal temperature range (DTR)
and low precipitation, being critical. In France, cold conditions in May and dry,
sunny summers during flowering are key drivers. Romania shows sensitivity to
summer highly-sunny and dry conditions, though cloudy (low DTR) Junes may
also pose risks. Spain differs, with low spring precipitation in April being most
important, likely due to widespread irrigation mitigating summer stress.

The climatology of the target countries plays a more important role when assessing
weather and climate drivers of winter wheat yield shock. The risk of yield shock
increases with warmer conditions in December in France and Germany. Romania
and Poland experience colder winter months during yield shock years. Drier and
warmer springs are typically observed in yield shock years in the studied countries.
High chances of losses are especially seen for France, Romania and Spain. All
countries except the UK see drier and/or warmer conditions in the summer months.
The UK, in contrast, features higher rainfalls and a low diurnal temperature range
during the summer months.

Unlike the analysis performed in Chapter 6 for silage maize yield in Germany, we in-
corporate a crop and spatial dimension to the problem. We observe notable spatial
heterogeneity on the impacts, in this is probably due to the climatological differences
between domains, though we find some common patterns. France and Germany have
similar climates, although the temperatures during the winter months are lower in Ger-
many (where we also see the impacts in winter wheat). Poland and Romania present
the lowest temperature values during winter months, although during spring and summer
months, Romania tends to be warmer, impacting both maize and winter wheat. Spain
is the driest and warmest country in the study domain, and we see high impacts on dry
conditions in both crops. Lastly, the UK is the wettest country and the one with the low-
est diurnal temperature range and interannual temperature variability. The combination
of both high rain and low diurnal temperature rain are the most detrimental for winter
wheat according to the analysis presented in this Chapter.
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8 Future Climate Change Influence on Crop Yield
Shock

This chapter aims to answer the last research question of this thesis:

How would the risk of maize and winter wheat yield losses vary across Europe
in a warmer climate from a statistical modeling perspective?

As in Chapter 7, the target domains are:
e Maize: France, Romania and Spain.
e Winter wheat: France, Germany, Poland, Romania, Spain and the UK.

The first section focuses on the historical period (1982-2005); it evaluates the climate
models’ capacity to capture the reference data and the predicted probabilities of crop losses
(Section 8.1). The second stage concentrates on the future climate scenario. For this,
the chosen climate drivers are evaluated in a warmer climate and compared to previous
literature (Section 8.2). After that, the changes in crop yield shock and the plausible
causes of them are addressed (Section 8.3). The following section concentrates on the
physiological aspects of the risk changes (Section 8.4). Finally, Section 8.5 summarizes the
whole chapter, discusses the methodological aspects and answers RQ3. The information
from this Chapter is further supported by Appendix D.

8.1 Evaluation of historical simulations

The performance of historical simulations in representing climate drivers and yield shocks
across Europe is assessed by comparison with the E-OBS ensemble mean dataset. The
analysis focuses on the historical period (1982-2005), evaluating eight Global Climate
Model-Regional Climate Model chains (GCM-RCM chain) against the corresponding pre-
dictors derived from the E-OBS reference. The evaluation begins by examining simulation
biases for key variables (T'mean, DT R, and RRsum), highlighting differences across mod-
els, months, and countries. Both non-corrected simulations (referred to as NC) and those
adjusted using two bias correction methods, Quantile Delta Mapping (QDM) and Linear
Scaling, are considered. In the second part, the models’ ability to reproduce the variability
of maize and winter wheat yield shocks is analyzed for each country.
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Figure 8.1: Average relative bias between the simulations and E-OBS data during the his-
torical period (1982-2005) for each variable (columns) for data previously bias correction
(NC), and after bias correction (Linear scaling and QDM, in rows). The relative bias is
computed as the average bias for each month, variable, and model divided by the mean
of the observed data. Then, the mean relative bias is computed by averaging the relative
bias across months and subsequently across models.Finally the values are converted to
percentage (x100%).

8.1.1 Comparison of climate drivers

The average relative bias for each variable across months and models is displayed in
Figure 8.1 (See Supplementary Figure D1 for the average bias). High overestimation of
bias (or high underestimation) are represented with high tone of red (blue). Visibly, the
simulations before being corrected present noticeable variance while values after bias cor-
rection drop to almost 0%. In general, the biases are slightly higher for QDM than for
Linear scaling. More specifically, for T'mean and DT R the ensemble simulation underes-
timate the reference data with more than 3% (~0.4°C for both variables, Supplementary
Figure D1). Both bias-correction methods display small underestimation of T'mean and
DTR in southern and western Europe (France and Spain), while the opposite can be
observed for the remaining domain. For RRsum; the ensemble mean overestimate the
reference data in the entire domain, for about 20% the average values (approximately
5mm to 10 mm more, Supplementary Figure D1). In addition to this, the biases are
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Figure 8.2: Average relative bias between the simulations and E-OBS data during the
historical period for each variable (panels) for data previously bias correction (NC), and
after bias correction (Linear scaling and QDM, in columns), and for each model (rows).
The values (black text) are calculated by computing relative bias for each grid point,
month and variable, and then averaging across the domain and months. The colorbar
(blue-white-red) display the normalize bias per model (0% for white, underestimation in
blue and overestimation in red).

contrasting to the other variables, with overestimation in the south and underestimation
in central and northern Europe.

Aggregated relative bias per model is displayed in Figure 8.2. The values are calculated
by averaging relative bias for each grid point, month and variable, and then averaging
across the domain and months. Average relative bias changes depending on the model
and variable. By way of example, the NCC-Nor-ESM1M KNMI model before correc-
tion (NC) has -1% of bias for Tmean and around 44% for RRsum. The ICHEC-EC-
EARTH CLMcom presents average relative biases of around -2% for Tmean and DT R
(higher than NCC-Nor-ESM1M KNMI), and about 23% for RRsum (lower than NCC-
Nor-ESM1M KNMI). For all the cases, bias correction suppress the differences in the
data to no more than 1% or 2%. Generally, there are slightly lower values (i.e. better
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Figure 8.3: Cumulative distribution for the predicted probabilities of maize yield shock
across countries (panels), methods (colors) and the observations (black). The probabilities
are obtained using the historical period (1982-2005).

performance) for linear scaling than for QDM. The magnitude does not only depends on
the chosen model but also on the month (Supplementary Figure D3).

8.1.2 Analysis in predicted yield shock probabilities

The second evaluation is based on comparing the predicted probabilities of yield shock
using the simulations against the E-OBS data. For this, the models are evaluated indi-
vidually (by RCm-GCM model chain) before and after bias correction (NC, Linear and
QDM) for each country and for each leave-one-year-out model. In the case of E-OBS,
the outputs are based on the year-out probabilities (for example, the input data of the
year 2000 is only evaluated on the model trained without the year 2000, See Chapter 7
for more detail). In this way, the probabilities are not based on the data in which they
were trained. The results are illustrated in the way of cumulative distributoin function,
boxplots and time series (See Appendix D for the boxplots and time series).

Cumulative distribution of the probabilities of maize yield shock are displayed in Figure 8.3
for each country (panels). In the case of France and Romania (panel a and b) the curves
of the predictions after bias correction (Linear in red and QDM in green) closely match
the observations (black). In contrast, the results without correcting biases (blue) do not
match the curves for these two countries. Specifically in the case of Spain (panel ¢) we do
not observe substantial differences in the outputs regardless of correcting or not correcting
the input data.

The similar analysis can be done for the case of winter wheat (Figure 8.4). For this
crop, the differences between the simulation before correcting and the observations are
more notorious than for maize in all the countries. Generally, the simulations tend to
overestimate the probabilities of yield shock in all the countries except for Romania and
Spain (panel d and f). For both Linear and QDM, the outputs match the observed
predictions curves.
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Figure 8.4: Same as Figure 8.3 but for winter wheat and the correspondent countries.

Summary of bias correction

Based on the findings from this section, both Linear and QDM bias correction methods
demonstrate equivalent performance in approximating the observed historical data. This
holds true when examining in-season climate drivers as well as when comparing the average
predicted probabilities of crop yield shock. As a result, both correction methods are
incorporated in an ensemble framework. The subsequent analysis is therefore based on
sixteen (16) datasets, derived from eight RCM-GCM model chains combined with the
two bias correction methods.

8.2 Changes in the climate drivers under global warm-
ing

The next step consist on evaluating the climate drivers in the future scenarios. Addi-
tionally, this section compares the results with the observed ones in previous literature
to future climate extremes. For this, the average values of the indices are computed in a
GWL2 and GWL3 (See Table 4.3) and compared against the mean values of the histori-
cal period (Supplementary Figure D9,D10 and D11). Given the differences in the signal
across models, the agreement between these ones are evaluated by using the approach B
from IPCC ARG (Gutiérrez et al., 2021). This one establishes that there is high confidence
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between model signal only when at least 80% of models agree on it (i.e. more than 12
models).

Difference [°C]

0 1 2 3 4 5

Figure 8.5: Spatial changes in average Tmean between GWL2 (column 1 and 3) and
GWLS3 (column 3 and 4) by months (Rows, December-May on the left and June-November
on the right) compared to the historical period. The results display the average difference
between mean values during GWL2 and GWL3 (obtained from Table 4.3) and the histor-
ical period (1982-2005) across each GCM-RCM model-bias correction chain (16 members
in total). If the signal between models does not agree in more than 80% (i.e. more than 12
models), this is represented with an "x" point. The approach correspondent to Approach
B of model robustness representation in IPCC ARG, described in Table 1 in Gutiérrez
et al. (2021).

Annual temperature is expected to increase in whole Europe under RCP8.5 scenario with
high model agreement (Jacob et al., 2014). Figure 8.5 display the monthly difference in
the average T'mean between GWL2 and GWL3 compared to the historical period. At the
monthly scale, the increase in temperature is likely stronger in a GWL3 than a GWL3.
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Figure 8.6: Similar to Figure 8.5 but for RRsum.

In fact, in some regions, values rise over 4 °C, suggesting warming higher than the global
rate (Vautard et al., 2014). The highest difference are observed in Poland and Romania
between January and April, and in Spain between June and October. The increase in
Germany and France is higher during the transition months (March-May and September-
November) compared to winter and summer. This is also in agreement with previous
literature, pointing to higher warming rate as well as increase in frequency and intensity
of heatwaves at the southern regions than central and norther regions (Jacob et al., 2014;
Molina et al., 2020).

Precipitation is expected to increase in northern areas, mainly in winter, and decrease
in central and southern Europe, especially in summer (Cardell et al., 2020; IPCC, 2023;
Coppola et al., 2021). However, there is low agreement between models in the projected
precipitation (Jacob et al., 2014). According to Figure 8.6, at a monthly scale, the overall
results on RRsum suggest decrease in precipitation in the southern region (including
southern France) and higher values in central and northern regions, but the model’s signal
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Figure 8.7: Similar to Figure 8.5 but for DTR.

is contrasting. More specifically under GWL2 we find agreement in a slight increase of
RRsum (10mm to 20 mm) in central and northern Europe in January, and average lower
values (~—10mm) in norther Spain and France in July. Generally, the rates are stronger
in a GWL3 compared to GWL2, with also wider extension of model agreement. Between
December and February, central and northern regions (Germany, Poland and the UK
specially) become wetter (between 10mm and 20mm). Conversely in southern region
(Northern Spain and southern France), RRsum between March and August drops about
20mm in a GWL3 compared to the historical period. It is important to consider that this
results solely target the cumulative precipitation but not the frequency or the intensity of
events, which can still be relevant. For example, the Mediterranean region would likely
experience longer dry period but more intense extreme precipitation events (Coppola et
al., 2021).

Finally, Figure 8.7 illustrate the changes in monthly DT'R by GWL2 and GW3. It is
only in some reginos in Spain and Poland where there is high agreement between model’s
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8.8 Drwers and yield shock risk under warmer climate

signal. Our results suggest a slight increase in DT R in southwestern Europe and a de-
crease in northeastern Europe, but the differences do not exceed 1°C. Generally, the
highest values are observed in Spain and southern France, between May and Septem-
ber whereas, within the same month rage, Poland features lower DT R values, specially
in a GWL3 compared to GWL2. Diurnal temperature attempts to cover several atmo-
spheric aspects. It is directly related to the difference between maximum temperature and
minimum temperature, thus it also relates to the cloud cover and thereafter total solar
incoming radiation. With drier conditions in the south, as previously discussed, there
might be overall higher DT R associated with it. This is also supported by projected
increase in surface shortwave radiation observed in these regions (Coppola et al., 2021).
Conversely, the observed diminished DT R in the eastern (Poland) can be rather related
to higher increase in minimum temperature compared to the rate projected for maximum
temperature (Carvalho et al., 2021).

8.3 Drivers and yield shock risk under warmer climate

Once the future changes in drivers have been established, the next step is to analyze
the trends and drivers of yield shocks under future climate conditions. This section
evaluates the outputs of the leave-one-year-out ensemble model using the future simulation
datasets. The analysis is organized in three stages for each crop: first, it examines the
overall trends in the probabilities of yield shock; second, it investigates the apparent
changes in the most relevant variables under GWL2 and GWL3 using the dual distribution
approach (Chapter 5); and third, it identifies the variables responsible for higher or lower
probabilities of yield shock under GWL2 and GWL3 using Shapley values. The full
ensemble considered includes 8 GCM-RCM models x 2 bias correction methods x 35
leave-one-year-out Random Forest models, while for computational efficiency the outputs
are based on sub-samples of the data.

8.3.1 Maize

Trend in probabilities

Figure 8.8 display the evolution in the probabilities of maize yield shock for the studied
domain. Most of the change in the risk of losses are expected only at the end of the
century. France (a) would experience slight increase in he mean probability vlaues, from
20% to 25%. In the historical period, average values range between 10% and 30% while
after 2050 some years can rise up to 35%. However, the uncertainty does not change
throughout the period. Average probabilities of maize yield shock in Romania (c) remain
constant until 2040, when there is an approximately linear increase reaching 25% by te
end of the century. Finally, in the case of Spain (c) probabilities of yield shock remain
constant. In contrast to the other countries, the uncertainty narrows down by the end of
the century.

A similar analysis can be conducted when comparing global warming levels (GWLs),
as shown in Figure 8.9. In this case, the probabilities of yield shocks under GWL2
and GWL3 are compared against those observed during the historical period. Although
the risk of yield shock increases under warmer climate scenarios, the magnitude of the
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Figure 8.8: Probabilities of maize yield shock for each country (in panels) in the 1982-
2100 period. Blue opac line represents the yearly average value, and the shade represents
the 5™-95" percentile uncertainty form the ensemble. Black-dot lines display the long-
term trend in the 5% percentile, mean and 95" percentile, obtained by LOEWSS (See
Equation 4.1). Vertical green-dashed line in 2006 indicates the end of the historical
period and the begining of RCP85 scenario. The probabilities are obtained by combining
GCM-RCM models (8 models), the two bias correction methods (2 methods), and the
leave-one-year-out ensembles (35 models).
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Figure 8.9: Maize yield shock probability distribution (x-axis) per country (y-axis) and
per global warming level (colors). The historical period ("Hist.", green) correspondent
to the 1982-2005 period. Boxplot mid line corresponds to the median of the distribution,
the end of the boxes to the 25"-75" percentile and the end of the whiskers to the 5**-90t"
percentile. GWL periods are based on the Table 4.3 for each correspondent GCM-RCM
model chain.
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Figure 8.10: Dual distribution of the top three most important predictors of maize yield
shock probabilities by country (a, b, ¢) for each GWL (shown in colors). Predictors
are based on Figure 7.6 in Chapter 7. Top row: Density distributions for each variable
(columns). Bottom row, left: Scatter plots between each variable (columns) and yield
shock probabilities. Bottom row, right: Distribution of yield shock probabilities and
average values for each GWL (horizontal dashed lines).

shift does not exceed 5% for any of the countries analyzed. For instance, France is
projected to experience a higher risk of yield shock under both GWL2 and GWL3, with
a concurrent reduction in uncertainty. In Romania, the increase in risk is particularly
evident under GWL3, whereas little change is observed under GWL2. In the case of Spain,
the median probability of yield shock is higher for both GWL2 and GWL3 compared to the
historical period, but the values are similar between the two warming levels. Additionally,
uncertainty is reduced under warmer climate scenarios.

Dual distribution

The analysis begins with information from the model ensemble by examining the most
important predictors identified in Chapter 7. Figure 8.10 illustrates the relationship be-
tween the top three predictors (x-axis, by column) and the probabilities of yield shock
(y-axis), shown for each GWL scenario and the historical period (distinguished by color).
Generally, the predictor variables exhibit limited variation across GWLs. This is partic-
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ularly evident in all variables based on DT R and RRsum. Notable shifts are observed
only in T'mean for May and August in France (panel a, fifth and sixth columns) and
in T'mean for September in Spain (panel ¢, sixth column), where higher values are seen
under GWL2 and GWL3 scenarios. In France, probabilities of yield shock show a slight
increase under GWL2 and GWL3, while in Romania (panel b), an increase is evident only

under GWLS3.

Shapley values

The results derived from Shapley value analysis are presented in Figure 8.11. For each
country (panels a, b, ¢), the left panels display the top nine contributing variables under
warmer climate conditions, along with their relative values (colorbar). The corresponding
right panels show the distributions of these predictors during the historical period, GWL2,
and GWL3. A country-specific analysis is provided below.

In the case of France (Figure 8.11a), eight of the top nine contributing variables are asso-
ciated with the summer months (June, July, and August), with the exception of T'mean
in September. In general, higher values of Tmean and DT R (represented by red dots),
along with lower values of RRsum (blue dots), are associated with positive contributions
to the probability of maize yield shock. This indicates that, under these conditions, the
expected probability of a yield shock increases relative to the historical baseline. Con-
versely, lower values of T'mean, higher values of RRsum, and, to a lesser extent, lower
values of DT R are linked to reductions in yield shock probability. Notably, T'mean ap-
pears consistently among the top contributing variables and exhibits a strong negative
influence on the probability of yield shock under extreme conditions. In particular, max-
imum values of T'mean in September during GWL2 and GWL3 scenarios show a more
pronounced negative contribution than any other predictor. An examination of the vari-
able distributions (right panel) reveals a clear upward shift in all Tmean-based variables
(first, second, sixth, eighth, and ninth rows) under GWL2 and GWL3. The most signifi-
cant increase occurs in August and September (top two variables), where the interquartile
ranges of GWL3 and the historical period do not overlap. For the RRsum-based variables
(third and fourth rows), a moderate shift toward lower values is observed under warmer
scenarios. In contrast, the DT R-based variables (fifth and seventh rows) exhibit minimal
change in distribution across climate scenarios.

In Romania (Figure 8.11b), the highest influences arise from predictors associated with
June and July. As observed in France, high values of Tmean and DT'R (indicated by red
dots), along with low values of RRsum (blue dots), contribute to elevated probabilities of
maize yield shock relative to the historical baseline. The most significant contribution is
attributed to DT R in July (first row), where peak values are associated with an increase
in yield shock probability of up to 0.3 (i.e., 30%). In contrast, T'mean in September (ninth
row) contributes negatively to yield shock probability at high values, though its overall
impact is smaller compared to the primary predictors. The distribution of variables in
Romania (right panel) indicates a general warming trend under GWL2 and GWL3, though
the magnitude of change is less pronounced than in France. For example, while T'mean
shows moderate increases, there is a slight reduction in RRsum under warmer scenarios
and minimal change in the distribution of DT R-based variables.
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Figure 8.11: For each country (a,b,c) and maize yield shock: Top nine contributors (left
panel) Shapley values values and relative feature value (in colors), and (left panel) variable
distribution during the historical period, GWL2 and GWL3 (colors).

In Spain (Figure 8.11c), the top three contributing variables are RRsum in April, May,
and July. Consistent with patterns observed in other countries, warmer, drier conditions
and higher DT R values are associated with increased probabilities of maize yield shock.
However, the Shapley values in Spain are generally lower than in France and Romania,
rarely exceeding 0.15. A notable exception is RRsum in April, where extremely low values
during GWL2 and GWL3 are linked to a substantial increase in yield shock probability.
The distribution of variables (right panel) reflects similar trends to those observed in
France and Romania. Drier conditions, represented by RRsum in April, May, July, and
September (first, second, third, and fifth rows) as well as warmer conditions, captured
by T'mean in May, August, and September (fourth and seventh to ninth rows), are more
likely under GWL2 and GWL3 scenarios.
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Figure 8.12: Similar to Figure 8.8 but for winter wheat and the correspondent domain (in
panels).

8.3.2 Winter wheat

Overall trends in probabilities

The probabilities of winter wheat yield shock (Figure 8.12) display strong changes during
the century. France and Germany (panel a and b) present similar behavior, with pseudo-
linear trend and 10% increase in the risk observed by the end of the century. In contrast
to the case of maize, the uncertainty along the century is smaller; values up to 5-30% in
the beginning of the century and 10-40% at the end of the century in Germany, while in
France the uncertainty rise form 10-30% to 20-40%. Poland (panel c) is the only country
presenting visible negative trend in the risk of losses. Average probabilities decrease
from 20% to 15%. Additionally, the uncertainty range also narrows down from 10-50%
to 10-20%. In the case of Romania and Spain (panel d and e), probabilities of winter
wheat yield shock only present slight increase by the end of the projections (no greater
than 5% comparing the end of the century and the historical period). Uncertainty in
Romania range constant values of 5-45%, while in Spain the uncertainty is slightly bigger
(5-50%). Finally, in the UK (panel f), probabilities of yield shock remain constant, with
an uncertainty range of 5-35% and a slight narrowing by the end of the century.

When comparing GWL against the historical period (Figure 8.12), the behavior is con-
trasting across countries. France and Germany would experience drastically increase in
the risk of yield losses under GWL2 and GWLS3 respectively. For both countries, the 5%-
95 percentile range remains unchanged, but the median increases by 5% under GWL2
and almost 10% for GWL3 compared to the historical. On the other hand, the proba-
bilities of yield shock in Poland slightly diminish under warmer climate, as well as the
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Figure 8.13: Same as Figure 8.9 but for winter wheat.

uncertainty range. For both Romania and Spain, the risk of losses are overall higher
under warmer climate, with higher values for Spain. Finally, thought the risk of losses in
the UK does not change under warmer climate, the uncertainty would be reduced under
GWL2 and GWL3 respectively.

Dual distribution

Figure 8.14 and Figure 8.15 illustrate the relationship between the top three predictors
(x-axis, by row) and the probabilities of winter wheat yield shock across different Global
Warming Levels (GWLs), distinguished by color. Compared to maize, winter wheat
displays more pronounced differences in both the predicted probabilities of yield shock
and the distribution of predictors between the historical period, GWL2, and GWLS3.
These differences are particularly evident in T'mean-based variables, which exhibit clear
distributional shifts under warming scenarios.

In France (Figure 8.14a), T'mean in April and December shows a marked shift toward
higher values under GWL2 and, more prominently, under GWL3. This is accompanied
by an increase of approximately 10% in the median predicted probability of yield shock
in GWL3 compared to the historical period. A similar pattern is observed in Germany
(Figure 8.14b), where T'mean in June and December (first and second columns) increases
progressively with warmer climate, and the median probability of yield shock rises to
nearly 30% under GWLS3.

In Romania and Spain (Figure 8.14¢ and Figure 8.15d), the predicted probabilities of yield
shock also increase under GWL2 and GWL3, although to a lesser extent than in France
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Figure 8.14: Similar to Figure 8.10 but for winter wheat and top three predictors for
France, Germany and Poland (panel a,b,c).

or Germany. In Spain, slight reductions in RRsum-based variables are noted, alongside
higher values of T'mean in May and February (panel d, first and third columns). Poland
(Figure 8.15e) presents a contrasting pattern: T'mean in December and March shows
increases, yet the probabilities of yield shock decrease under GWL2 and GWL3, with
little difference between the two warming levels.

In the UK (Figure 8.15f), no notable differences are observed in either the top predictors
or the predicted probabilities of yield shock across scenarios, suggesting a relatively stable
response under projected warming.
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Figure 8.15: Similar to Figure 8.10 but for winter wheat and top three predictors for
Romania, Spain and the UK (panel d,e and f).

Shapley values

The results obtained by Shapley values are shown in Figure 8.16 for each country (a-f).
The left panel display the distribution of Shapley value for the top three contributors
as a function of their relative values (from low values in blue, mid values in yellow and
high value in red). The top contributors is calculated by considering both the average
in the absolute Shapley values for each predictor during GWL2 and GWL3 together. As
a general view, most of the contributors are similar to the ones obtained by using Gini
index. The Shapley value are relative to the baseline obtained by computing the historical
data in each leave-one-year-out model, which results in average values of 0.2 (i.e. 20%).
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The contributions in most extreme shows values of 0.25 which can be translated on an
expected increase in 25% to the probabilities of yield shock or, conversely, a decrease.
Below, each country is analyzed separately.

In France (Figure 8.16a), the top three contributors to changes in the probabilities of
winter wheat yield shock are T'mean in December, T'mean in October, and DTR in
February. According to the Shapley values, high values of T'mean in December (indicated
by yellow to red dots) are associated with increased probabilities of yield shock, with
contributions reaching up to 0.2. These elevated values of T'mean are more frequent
under GWL2 and GWL3 scenarios. To a lesser extent, high values of T'mean in October
(second row, red dots) are associated with slightly negative Shapley values. Despite this, a
consistent increase in T'mean for October is observed under GWL2 and GWL3, similar to
the trend seen in December. In the case of DT'R in February (third row), the relationship
is inverse: high values are linked to lower probabilities of yield shock, while lower values
tend to contribute positively. However, the distribution of DTR in February remains
relatively unchanged across GWL2, GWL3, and the historical period. Among the top
nine contributing variables (Supplementary Figure 8.14a), T'mean in April also stands
out. High values of this variable contribute positively to the probability of yield shock
and align with a noticeable increase in its distribution under both GWL2 and GWL3
scenarios.

The top three contributors in Germany (Figure 8.16b) are T'mean in June, August and
December. For the three variables, higher values (yellow and red dots) contribute to
relatively positive probabilities of winter wheat yield shock. We also see that low values
of Tmean in December (blue dots) contribute further higher probabilities. The three
variables increase under GWL2 and GWL3. This is specially notable in August, where
there is no overlapping in the interquartile range between GWL3 and the historical period.

In Poland (Figure 8.16¢), the top three contributors to changes in the probabilities of
winter wheat yield shock under GWL2 and GWL3 are T'mean in October, December, and
March. Additionally, T'mean in January ranks among the top four contributing variables
(Supplementary Figure D12¢). For all four variables, high values of T'mean contribute
negatively to the probability of yield shock, whereas low values contribute positively,
though with a smaller magnitude. All four months are projected to experience higher
Tmean values under GWL2 and GWL3 scenarios. This shift is particularly pronounced
in October and March, where the interquartile ranges of GWL3 and the historical period
do not overlap, indicating a substantial warming trend in these months.

In Romania (Figure 8.16d), under GWL2 and 3, the most important contributors to
changes in the probabilities of winter wheat yield shock are T'mean in May, RRsum
in April and T'mean in February. This also coincides with the results by using Gini
index (Chapter 7 and Figure 8.14d). From the Shapley values distribution, Tmean is
characterized by two groups: High concentration of relative low values (yellow and blue
dots) reduce the probabilities of yield shock (between 0 to -1) whereas a more spred of
high values (yellow to red) contribute positively (between 0 to 0.3). Additionally, when
analysing the variable distribution (panel b), the values of this predictor in a GWL2 and
GWL3 are progresively higher. In the case of Tmean in February (third variable), high
values (red dots) contribute slightly negatively, whereas low values (blue dots) increase
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Figure 8.16: Similar to Figure 8.10 but for top three variables and winter wheat for the
corresponding studied countries.

the probabilities of yield shock, thought the data spread is less concentrated; similar to
the case of T'mean in May, the values in February are likely higher in a GWL2 and
GWL3. For RRsum in April, we find a dual distribution behavior, with high values (red)
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contributing negatively and low values (blue) positively; there are not apparent differences
in the RRsum distribution under GWL2 or 3 compared to the historical.

In Spain (Figure 8.16e), the top contributing variables to changes in winter wheat yield
shock probabilities are RRsum in April, May, and March. Analysis of the variable dis-
tributions reveals a slight shift toward lower RRsum values in April and May under
warmer climate scenarios, with slightly lower values under GWL3 than GWL2. In con-
trast, RRsum in March shows a slight increase under both GWL2 and GWL3 compared
to the historical period. Additionally, RRsum in January exhibits strong positive Shapley
contributions (Supplementary Figure D13e); however, no clear distinction is observed in
its distribution across the different warming levels.

Finally, in the UK (Figure 8.16f), no substantial changes are observed in the top con-
tributing variables between the historical period and the GWL2 or GWL3 scenarios. The
primary contributors include RRsum and DTR in June, with RRsum in January also
showing moderate influence. Among these, only DT R in June displays a slight shift to-
ward lower values under warmer conditions, with similar behavior under both GWL2 and

GWLS3.

8.4 Physiological response to future climate warming

Due to global warming, sagroclimatic zones in Europe have shifted towards northern
areas, and this would likely continue under a 2 °C warming scenario according to RCP8.5
(Ceglar et al., 2019b). This translates in an extentio in the growing season (which opens
the opportunity for new cropping systems), reduction in the risk of frost and increase in
heat stress (Ceglar et al., 2019a; Cardell et al., 2020; Coppola et al., 2021). Consequently,
the probabilities of maize and winter wheat yield shock in future warmer climate scenarios
could be attributed to a different physiological process compared to the present climate.
This section provides an in-detailed discussion for each crop, domain and compares the
results with previous literature.

Maize

The contrasting signals in RRsum and DT R and the high agreement in T'mean may
explain the probability trends. According to the ensemble of Random Forest models em-
ployed in this chapter, probabilities of maize yield shock are not expected to increase more
than 5% in the regions, with a high level of uncertainty. One of the possible explanations
of such small changes leans on both the high importance of RRsum-based variables on
the domains and the low agreement in the signal. This may also explain the high uncer-
tainty in the year-to-year probabilities (Figure 8.8). Furthermore, the model agreement
in the changes of in-season precipitation within countries is contrasting. Consequently,
the signal in the probabilities would likely vary at sub-national scale.

Despite what is mentioned above, warmer and drier conditions throughout the summer
months would still lead to higher risk of losses in France and Romania. Thought there
is little documentation on the future impact of climate change in maize yield in both
domains, there is agreement on slight decrease in overall yield variability (Bednar-Friedl
et al., 2022). In the case of Romania, however, the losses are mostly attributed to higher
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DTR in July (translated to average higher sunny days), which would not change in the
future. Higher summer temperatures increase the risk of heat stress, water use and reduce
growing season length (van der Velde et al., 2012; Hawkins et al., 2013a; Ben-Ari et al.,
2016). Some of these effects can be compensated by adequate adaptation measures like
targeting mostly optimal cycle duration and sowing dates (Parent et al., 2018).

According to the results obtained in this chapter, Spain would experience slight increase
in maize yield shock risk. The impact of climate change in Spain can be actually two-fold
(Rey et al., 2011). On the one hand, drier conditions would lead to both higher atmo-
spheric water demand (i.e. evapotranspiration) and lower water availability for maize.
This is in agreement with our results, that display the high importance of RRsum. On
the other hand, increases in average temperature reduces the growing season length, which
subsequently leads to overall lower water use and water deficit. In this way, the potential
losses in yield are compensated by the reduction in water demand (Rey et al., 2011). In
this conditions, irrigation can actually lead to even increase in some parts of the country.
However, the increase in longer drier periods and generally lower precipitations would
compromise water supply for irrigation (Iglesias et al., 2003).

Furthermore, the results from Shapley value display the influence of warm Septembers
in France and Spain. Specifically, it suggest that warmer conditions in the month would
lead to lower probabilities of yield shock. Grain filling in maize ussually coincides with
August and September, with harvesting between late September and October. Low tem-
peratures in this phenological stage can lead to lower starch cumulative rate, ultimately
reducing yield (Guo et al., 2022; Xu et al., 2024). In contrast, high temperatures in this
month, which are not as harmful as summer months, can lead to optimal development
rate (Katsenios et al., 2021). In this sense, warm conditions in September can lead to
temperatures in September expected under GWL2 and GWL3 respectively can actually
lead towards lower risk of losses. On the other hand, it is also true that the shortening
in growing season length questions the influence of late summer temperatures on yield
variability (Rey et al., 2011; Parent et al., 2018). Thus, while late-season warmth may
offer some mitigation against yield shocks, its overall impact remains uncertain.

Winter wheat

The probabilities of winter wheat yield shock across the domains display higher consis-
tence between models (Also depicted in Supplementary Figure D8). Generally, the most
important drivers of yield shock are T'mean-based predictor. The consistence positive
sign among models may explain the clear trend observed in France, Germany, Poland
and Romania. In the case of Spain, which relies mostly on RRsum-based predictors, the
low agreement between models’ signal may explain the high uncertainty presented in the
probabilities (Figure 8.12e). We do not find strong changes in yield shock probabilities in
the UK, but neither strong signal on the variables.

High temperatures during December in France and Germany would likely increase the
risk of winter wheat losses in these countries. With higher temperatures in winter, the
vernalization requirements are less likely to be fulfilled (Wu et al., 2017). In the case of
France for instance, this is also pointed by Ben-Ari et al. (2018) that predicted a negative
trend in the number of vernalizing days (i.e. number of days with daily temperature
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between 0°C and 10 °C) under RCP8.5 scenario. As winter becomes warmer, the suitable
areas of winter wheat with sufficient vernalization days would likely diminish (Martin et
al., 2025). This would require the exploration of new varieties or considering alternative
crops. In addition to this, in Germany, as well as in Romania and Poland, there would
still be events of low temperature in winter. This is illustrated for instance in the case
of T'mean in December (as is shown in Flgure 8.16). where low temperature can equally
contributes towards higher probabilities of yield shock in the country. Hence, future
adaptation will demand varieties and management practices resilient to both insufficient
vernalization and occasional extreme cold.

Higher temperatures in spring months contribute towards increasing risk of losses in
France, Germany and Romania. As heatwaves become more intense, the impact of heat
stress, specially during anthesis would likely increase (Martin et al., 2025). Moreover,
increasing temperatures would lead to enhanced development rate, potentially reducing
mass accumulation (Senapati et al., 2020), which is expected for the three countries (Cu-
culeanu et al., 1999; Trnka et al., 2015). However, in some cases this can be an advantage,
since early maturity can reduce the exposure of wheat to the summer temperatures (Rezaei
et al., 2015; Le Roux et al., 2024). Addressing these trade-offs will require models that
simulates growing season length, which lies beyond the scope of this chapter. In any case,
this does not negate the negative impacts that can arise from higher temperatures in
summer months.

In contrast to the other countries, the probabilities of winter wheat yield shock in Poland
would diminish or likely remain similar under warmer climate. In fact, the country is
expected to experience an increase in relative yield (Bednar-Friedl et al., 2022). Un-
der GWL2 and GWL3 in an RCP8.5 scenario, increases in temperature and precipita-
tion would make the country more suitable for growing wheat. Given the increase in
Tmean throughout the year, the risk of losses due to frost would strongly diminish. This
strengthen the evidence that northern Europe would become more suitability for agricul-
ture in future climate change (Ceglar et al., 2019b). This is also observed in Romania with
Tmean during February, where warmer conditions within the months would contribute
to lower probabilities of losses. However, as it happens in Germany, the occurrence of
low temperatures contributing to risk of losses would be diminished but not necessarily
dissipated. Additionally, high temperatures in October tends to contribute towards lower
risk of losses, which is observed in Poland as well as France. Warm conditions at the
carliest stage can contribute to more optimal seeding conditions (Le Roux et al., 2024).

The risk of losses in Spain are mostly attributed to relatively lower precipitation during
spring, It is important to notice that our results point to RRsum in March, April and May
as most crucial indicators, suggesting the influence of cumulative seasonal rain (Trnka et
al., 2015). Although irrigation can partly offset these impacts, its effectiveness will be
constrained by declining water availability (Bednar-Friedl et al., 2022). By comparison,
the projected increase in mean temperature (T'mean) during May contributes less to the
probability of yield shocks than dry conditions (Supplementary Figure D13f). However, it
is possible that our models underestimate the role of heat stress, as maximum temperature
was not explicitly included as a predictor.
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Finally, for the case of the UK, we find no significant trends in the risk of losses. The
previous literature in the UK is particularly contrasting (Harkness et al., 2020; Putelat et
al., 2021). The results from Clarke et al. (2021) point to the loss increase due to drought
stress, whereas Putelat et al. (2021) suggest similar risk compared to present climate. In
particular, these studies are based on the CSM Sirius (Jamieson et al., 1998), which does
not account for heavy rain as stressor and may be limited to the local calibration (Zampieri
et al., 2018). Conversely, Harkness et al. (2020) focuses on the stressors and states that
"hotter and drier summers would improve sowing and harvesting conditions and reduce
the risk of lodging". Our results are based on the historical evidence of yield losses, which
is independent from the previous approaches. Given that the total precipitation would
remain constant under GWL2 and GWL3, the risk of winter wheat yield shock in the UK
would likely remain similar in the future compared to present climate.

8.5 Discussion and summary

Given the statistical-based crop models developed in Chapter 7, this chapter addresses
the question of whether the risk of losses would change under warmer climate scenarios
and the potential attributions. For this, it is necessary to employ bias correction on the
GCM-RCM model to thereafter address the changes in the future scenarios. The results
are also discussed by considering the physiological aspects of crops and the knowledge
according to previous literature.

Regardless of the month, model and country, QDM and Linear scaling perform similarly.
Specifically, to our surprise, we find similar performance in the in-season climate drivers.
One of the possible explanations is the aggregation level of the indicators. Generally,
Quantile mapping-based methods outperform when the target variable is at high temporal
resolution, specially daily data (Teutschbein and Seibert, 2012). On the other hand, at
monthly scale, simpler methods such the linear scaling can already present high robustness
(Moemken and Pinto, 2022; Bayar et al., 2023). As additional caution, it has been shown
that quantile mapping can also produce significant pitfalls in the climate signal form
the original GCM simulation (Chandel et al., 2024). Notwithstanding this, it is also
important to mention that applying bias correction is delicated itself, as it adjusts the
statistical distribution of the variable rather than addressing the misrepresentation of
physical process associated with it (Maraun et al., 2017). Under this consideration, it is
in fact recommended to rely on varios bias correction methods rather than a single one
(Laux et al., 2021).

The contributions to changes in yield shock are identified using two complementary ap-
proaches. On the one hand, changes in variable distributions are analyzed by focusing on
the top predictors from the models. This approach relies on information derived from the
Gini index impurity during model calibration. However, it provides a limited perspective,
as it faces the causality—casualty dilemma. For instance, in the case of T'mean in February
in Romania, both the predictor and the probabilities of yield shock increase, which may
suggest a direct relationship at first glance. Additionally, this method overlooks poten-
tial shifts in variable importance resulting from changes in the nature of the predictors
themselves. Nevertheless, similar to the composite analysis presented in Chapters 6 and
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Chapter 7, the dual distribution approach offers an initial overview of the potential drivers
behind changes in yield shock risk.

For the challenge presented in this chapter, Shapley values are of great advantage to
identify causes of losses (Jones et al., 2022). By using the historical period as a reference,
the most important contributors (to both positive and negative changes in crop yield
shock risk) under warmer climates are disentangled. The results do not only display
similar behaviors (like the ones obtained from Gini index and partial dependence plots in
Chapter 7) but also point to other potentially relevant predictors. With the information
obtained from Shapley values we learn that the identified key sub-seasonal climate drivers
of crop yield shock would remain important in each domain in future climate change
scenarios. For example, even thought the increase in winter wheat yield shock losses in
Germany can be attributed to warmer conditions in December, the risk of frost damage
would remain. Another example is the one from Poland, where the higher temperatures
throughout the winter months point towards a diminishment in the chance of losses. The
main limitation of Shapley values is the statistical model itself. In other words, this
approach can not identify potential drivers when these ones were entirely missing during
the training process (Abramoff et al., 2023).

Answer to RQ3

By encompassing the discussion and results from this chapter, RQ3 is answered as follows:

RQ3: How would the risk of maize and winter wheat yield losses vary
across Europe in a warmer climate from a statistical modeling perspec-
tive?

For maize, based on a GCM-RCM model ensemble under the RCP8.5 scenario,
there is only a slight increase in the risk of yield shock along the 215 century. Un-
der GWL2 and GWL3 conditions in the studied domain (France, Romania, and
Spain), the low agreement in precipitation signal produces high uncertainty in the
probabilities. However, hotter, drier, and higher diurnal temperature range con-
ditions during spring and summer months would still contribute to yield shocks.
Furthermore, the expected warmer conditions in September would likely contribute
to a lower risk of losses in France and Spain under GWL2 and GWLS3.

For winter wheat, the changes in yield shock risk across the studied countries
(France, Germany, Poland, Romania, Spain, and the UK) are contrasting. The
expected increase in temperature would lead to higher probabilities of yield shock
in France, Germany and Romania, but would benefit the suitability in Poland.
Warmer conditions in December would contribute to higher risk in France and Ger-
many; in contrast, elevated winter temperatures in Poland and Romania would
reduce the probabilities of shock. Expected warmer and drier conditions in the
spring months would increase the likelihood of yield shocks across the continent
but especially in Romania and Spain. In the UK, as precipitation patterns are pro-
jected to remain relatively stable under warmer climate scenarios, no substantial
trends are expected in the probabilities of winter yield shock.
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With the inclusion of climate model uncertainty and future projections, this chapter
disentangles the spatial heterogeneity of crop yield shock changes in a warmer climate.
Increasing temperatures expected under GWL2 and GWL3 would have a two fold effect.
Warmer temperatures durnig winter months would lead to higher risk of losses in France
and Germany, but paradoxically lower risk in Poland and Romania. The warming ex-
pected in spring and early summer months would contribute towards higher probabilities
of wheat yield shock across the continent. The low agreement in precipitation and diurnal
temperature range signal provokes higher uncertainty in maize yield shock probabilities,
with solely slight increase in yield shock in France. As in the UK, since summer rainfall
patterns are likely to stay similar in a warmer climate, the expected chances of winter
wheat yield shocks would probably remain unchanged.
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9 Conclusions

This is the concluding chapter of the thesis. It first summarizes the main points of the
thesis and the overarching conclusions. Lastly, the chapter discusses the whole work in
a holistic framework by highlighting the implications, acknowledging the limitations and
the considerations for future research.

9.1 Summary and key findings

Ongoing climate change raises concerns about the suitability of agriculture across Eu-
rope. Increasing climate variability, observed in higher frequency and intensity of extreme
weather events, has led to stronger drops in crop yield and production (Bednar-Friedl et
al., 2022). With statistical and machine learning, it is possible to infer the most relevant
climate drivers of substantial crop losses (defined as "yield shock" in this thesis), and
thereafter guide stakeholders and policy makers towards ensuring food security and finan-
cial stability in the sector (Kalkuhl et al., 2016). For this, the predictors should properly
represent climate variability and the model should be sufficiently flexible to capture the
non-linear interaction, grounded on adequate validation methods (Greener et al., 2022).
At the European level, previous research has focused on individual countries by disregard-
ing a standard spatial comparison, or used process-based crop models, which are prone
to underestimating crop failure (Webber et al., 2020). By using statistical modeling, this
thesis addresses the spatial heterogeneity of the most important in-season climate drivers
of major crops across Europe in present and future climate change scenarios.

On the added value of variable complexity using Least Absolute Shrinkage
and Selection Operator compared to Random Forest

The first Research Question (RQ1) is framed on the discussion of variable complexity. The
way climate drivers are represented in statistical models is scarcely discussed, specially in
the context of substantial losses (Beillouin et al., 2020). Therefore, Chapter 6 disentangles
the advantages and disadvantages of using complex-defined variables instead of simple-
defined ones in a study case of silage maize yield shock in Germany. For this, we compare
two different statistical models. The first one, Least Absolute Shrinkage and Selection
Operator (LASSO), is a linear regression-like method that builds a model by seeking
the best performance while shrinking the parameters’ values to zero. The second one,
Random Forest is a highly flexible non parametric model, which is based on an ensemble
of classification trees.
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The results show that hybrid-based groups of variables enhance predictive accuracy when
using LASSO. On the other hand, Random Forest displays high-performance skills re-
gardless of the variable’s complexity. The non-linear nature of this method captures
more adequately the relationships between weather and climate drivers (without the need
for complex variable transformations). Taking this into account, a combination of both
cold temperatures during April and high and dry conditions during July increases the
chances of silage maize yield shock in Germany. The results from Random Forest also
reveal a high chance of silage maize yield shock under cold temperatures in July (which
is not captured by LASSO). Historical silage maize yield losses feature particularly high-
temperature conditions during July and cumulative cold during April. As a summary,
RQ1 can be answered as follows:

RQ1: To what extent does increasing the complexity in the definition of
climate predictors improve the performance of silage maize yield shocks
predictions in Germany?

When addressing the climate drivers of silage maize yield shock in Germany, LASSO
performance improves by considering a combination of both simple-defined and
complex-defined input variables.

Conversely, Random Forest models perform consistently well regardless of predictor
complexity, highlighting their ability to capture non-linear relationships without
relying on complex variables.

On the country-to-country heterogeneity of climate-related crop yield losses
across Europe

With the acquired knowledge from Chapter 6, we proceed to the second Research Ques-
tion (RQ2), focused on the country-to-country comparison across Europe. Most of the
literature in the region investigates the impact at individual country (Ben-Ari et al.,
2018; Webber et al., 2020), without assessing the spatial heterogeneity across the con-
tinent. The only attempt to do this was either by using coarse resolution and tackling
seasonal drivers (Zhu et al., 2021) or by using process-based crop models (van der Velde
et al., 2018). Chapter 7 employs the Global Data of Historical Yields dataset (GDHY,
lizumi and Sakai, 2020), a hybrid reported yield and satellite-based dataset, to disentangle
the spatial heterogeneity of the agricultural impacts across Europe. The most relevant
in-season climate drivers of three maize producer (France, Romania and Spain) and six
winter wheat producers (France, Germany, Poland, Romania, Spain and the UK) are
investigated. For this, an ensemble of Random Forest is employed for each country and
crop specifically (9 ensembles in total).

The results illustrate the spatial heterogeneity of the impacts. In particular, maize yield
shocks are primarily influenced by precipitation shortage. In France and Romania, the
risk mainly increases with drier conditions and a high diurnal temperature range dur-
ing the summer months; additionally, cold temperatures in May also affect the losses in
France. In Spain, maize yield shock are more closely linked to low rainfall during the
spring months. For winter wheat, cold, wet, warm, and dry conditions are all relevant in
explaining significant losses. Specifically, yield shocks are associated with warm Decem-
bers in France and Germany, cold winters in Romania and Poland, and generally drier
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or warmer conditions during the spring months in Spain and Romania. The results also
indicate a strong impact of wet conditions and a low diurnal temperature range during
June in the UK. Therefore, RQ2 is summarized as follows:

RQ2: What are the country-to-country variations in the in-season cli-
mate drivers of maize and winter wheat yield shock across European
countries?

Maize yield shock is mostly related to drier conditions across Europe, but the month
of occurrence is different, i.e. spring months in Spain and summer months in France
and Romania.

Winter wheat yield shock can be associated to temperature variability in center and
eastern Europe (France, Germany, Poland and Romania), with warm, cold winters
and warm early summer months being equivalently crucial; Spain is subjected to
dry conditions in the spring months, while in the UK it is mostly driven by high
rain in June.

On the future climate change influence on crop yield shock variability from a
statistical modeling perspective

The Research Question 3 (RQ3) assesses the future impact of climate change on crop
yield shock across Europe. The suitability of agriculture in Europe under warmer climate
scenarios is primarily addressed in the context of crop yield variability, often using process-
based crop models (Webber et al., 2018; Bednar-Friedl et al., 2022). Using the statistical
models developed in Chapter 7, it is possible to evaluate how a warmer climate alters the
expected probabilities of yield shocks and their potential drivers. This analysis uses a set
of eight Global Climate Model-Regional Climate Model (GCM-RCM) chains developed
under CMIP5 and downscaled through EURO-CORDEX. The focus is on examining how
long-term crop yield shocks vary under 2°C and 3°C warming scenarios (GWL2 and
GWLS3 respectively), along with identifying the most relevant in-season drivers.

The results, presented in Chapter 8, reveal contrasting responses depending on the crop-
country combination. For maize yield shock, low agreement among models regarding
precipitation signals results in greater uncertainty and weak trends in the risk of losses.
Despite this, drier conditions would remain as main driver of losses under GWL2 and
GWL3. For winter wheat, yield shock probabilities increase in France, Germany, Ro-
mania, and Spain, while remaining unchanged or showing a decreasing trend in Poland
and the UK. As the average monthly temperatures are expected to increase in the fu-
ture (with high agreement between models), the chances of cold temperature impacts
would probably decline, particularly in Germany, Poland, and Romania. However, this
would also lead to higher losses in France and Germany due to warmer temperatures in
December. Furthermore, higher temperatures during spring and early summer months
are projected to increase the probabilities of losses across most of the continent. For the
case of Spain and the UK, the low agreement in precipitation signal leads to unchanged
average probabilities of loses.Based on these findings, RQ3 is answered as follows:
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RQ3: How would the risk of maize and winter wheat yield losses vary
across Europe in a warmer climate from a statistical modeling perspec-
tive?

For maize, the low agreement in precipitation signal produces high uncertainty in
the underlying yield shock probabilities for France, Romania and Spain.

In the case of winter wheat, the expected increase in temperature would lead to
higher probabilities of yield shock in France, Germany and Romania, but would
benefit the suitability in Poland. In Spain and the UK, the low consistency in
precipitation patterns results in little to no change in the average probability of
losses.

This thesis addresses the limitations of statistical modeling in agricultural meteorology
and establish a fairly robust comparison of in-season climate drivers of major crops yield
shock across Europe. Therefore, the overall conclusions of this thesis are:

e Effective statistical modeling of crop yield losses from in-season climate
drivers depend on both variable definition and model flexibility. Lin-
ear models like LASSO benefit from using complex predictor definitions,
while non-linear models such as Random Forest can capture key interac-
tions using simpler variables.

e With the GDHY and statistical models, it is possible to assess the impact
of in-season climate variability on major crop losses. The information
is important for understanding the historical agricultural failures across
Europe and to assess potential drivers in future climate change scenarios.

e Maize yield shocks across Europe are largely driven by dry conditions,
with regional differences in the month of impact. In France and Roma-
nia, losses are primarily associated with low summer months precipita-
tion, while in Spain they are linked to dry conditions in spring months.
Uncertainty in future precipitation projections under climate warming
makes trends in maize yield risk difficult to determine.

e Winter wheat yield shocks can result from warm, cold, dry, or wet con-
ditions, underscoring the importance of regional climatology in impact
assessments. Future changes in losses are mainly driven by temperature
trends. Warming in northern and eastern Europe (Germany, Poland, and
Romania) may lower frost risk and improve crop suitability but could also
interfere with vernalization, particularly in France and Poland. At the
same time, rising temperatures in spring and early summer are expected
to increase yield shock risk across the continent.

9.2 Discussion, implications and outlook

The results have implications for several sectors, which are discussed below. The find-
ings contribute towards better adaptation decisions for buffering short- and long-term
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climate change impacts on agriculture. This section additionally addresses the challenges
presented throughout the study and proposes feasible pathways for overcoming them.

As agriculture entails socio-economic decisions, addressing only the impacts from climate
drivers can be limiting. The way this thesis applies statistical modeling is by partially
assuming some physical understanding on the impacts. This is reflected in the use of
several climate indicators spamming the crop cycle rather than focusing on the most
studied ones like drought or heatwaves. This approach validates the models by consider-
ing our physical understanding and allow space for unexplored links between the chosen
climate predictors and crop yield shock (Tredennick et al., 2021). However, we are also
disregarding potential non-climatic stressors such as vulnerability, agricultural decisions
(e.g. fertilization, cover crops) or the economic-political context (Kinnunen et al., 2022;
Teixeira et al., 2023). Thereafter, future research pathways would benefit from integrat-
ing political decisions and socio-economical factors to the agricultural model (Ziv et al.,
2020).

As mentioned above, the key climate drivers of yield losses identified by the statistical
models match the most sensitive stages of maize and wheat. For the case of maize, low pre-
cipitation conditions during summer months in France, Germany and Romania enhance
the risk of losses, which roughly coincide with flowering dates in each country (Olesen
et al., 2012). Consequently, maize could benefit in these regions from implementing ir-
rigation systems that would mitigate both the dry and potentially warm temperatures
of summer (Huynh et al., 2019; Parent et al., 2018). This would remain true also for
future climate change scenarios, even thought the precipitation trends are contrasting
between models (Bednar-Friedl et al., 2022). Conversely, in the case of Spain, prolonged
drought are expected under warmer climate, questioning the actual water available for ir-
rigation (Rodriguez Diaz et al., 2007). This can also lead to higher costs in irrigation and
would compromise the decision from farmers in cultivating. In this sense, water reservoir
management for irrigation systems are currently being explored, which would potentially
mitigate the impact of drought in agriculture (Ho and Ehret, 2025).

In the case of winter wheat, by tackling each country individually, the results obtained
in this thesis suggest considering specific adaptation measurements. Winter wheat has
a longer season than maize, and consequently, it is exposed to more stressors. The crop
does not benefit from either extreme low or high temperatures during winter as it requires
cold exposure for later blooming (vernalization) and is yet affected by frost. The higher
temperatures expected in winter in France and Germany, two of the top wheat producers
worldwide, would likely disrupts vernalization, which questions the suitability of winter
wheat under warmer climate (Martin et al., 2025). This does not hold true to Poland
that, conversely, would benefit from lower risk of frost and opens new opportunities to
stakeholders. Generally speaking in terms of temperature, northern regions are expected
to be higher suitable than southern regions, which opens new opportunities for stakehold-
ers (Trnka et al., 2011). However, other adverse weather extremes like early heatwaves
are expected to increase in the north (Trnka et al., 2015). This would require to explore
alternative adaptation measurements (as it is discussed below).

One way to adapt towards climate resilient cropping systems are by introducing new crop
varieties. For centuries, farmers have chosen the most optimal varieties for the average
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environmental conditions of their land (Bradshaw, 2017). This is today obtained by inten-
sive breeding, where shorter growing season length, higher environmental stress tolerance
and higher yield varieties are sought (Mao et al., 2023; Atlin et al., 2017; Bradshaw,
2017). Thereby, one option for climate adaptation is the choice of the adequate crop
variety for the upcoming new environmental condition (Olesen et al., 2011). For example,
maize yield across Europe can substantially increase with shorter cycle varieties, keeping
the crop away from summer heatwaves and prolonged drought exposure (Parent et al.,
2018). Moreover, farmers would then avoid the use of costly irrigation systems (Garcia-
Garizabal et al., 2014). In the case of wheat, we observe strong heterogeneity in the
stressors across Europe. In France and Germany, reduced-flowering time varieties (with
lower vernalization requirements) could alleviate the impacts of warmer winters (Kamran
et al., 2014). In Romania or Spain, the focus should be on higher heat and drought tol-
erance varieties (Xynias et al., 2020; Bednar-Friedl et al., 2022). Furthermore, breeders
should contemplate potential diseases proliferation, which are expected to increase under
warmer climate (Miedaner and Juroszek, 2021).

It is important to mention that, when this thesis discusses crop suitability, it does not
consider land use and soil properties. On the one hand, as previously mentioned, warmer
and wetter conditions in northern Europe opens new opportunities for stakeholders in
these areas. Specifically in Chapter 8 we find that wheat yield shock risk would remain
stable or diminish in future climate in Poland and the UK. On the other hand, isolating
these factors can be challenging since soil properties and land use should also be addressed.
In this sense, it has been shown that some crops, like wheat, are mostly cultivated under
marginally suitable areas, and expansion is constrained by wooden and grass lands (Dornik
et al., 2024). With increasing land protection policies, extensive agricultural practice
would rather be limited (Koninger et al., 2022; Boix-Fayos and De Vente, 2023). In
this case, exploring sustainable intensification or climate-smart agricultural practices (for
instance crop rotation) could enhance land productivity (MacLaren et al., 2022). Another
factor to consider is soil erosion. With likely higher precipitation in northern areas,
soil erosion (produced by water) would increase, leading to soil loss and reduced land
suitability (Panagos et al., 2021). Therefore, future research on land suitability should
also encompass soil property changes as well as the policy aspects of land use.

Additionally, the findings of this thesis can benefit the insurance sector. In the first place,
farmers could ensure financial stability by purchasing specific weather-index insurance
(Bucheli et al., 2023). This type of insurance is tailored to specific weather extremes; it
has lower costs than traditional indemnity insurance and helps avoid moral hazard issues.
Weather index insurance can increase the economic stability of farmers by obtaining cov-
erage from specific weather extremes. A practical example comes from eastern Germany,
where a pilot heat index insurance designed for wheat and oilseed rape farmers reduced
financial risk by approximately 20% by using hourly temperature data during key growth
phases (Bucheli et al., 2022). Despite a weather-index insurance market in Europe, some
weather and climate extremes are underrepresented (Bucheli et al., 2022). However, it is
also true that, with higher risk of losses, farmers’ willingness to pay would be compromised
by potential higher premium values (Zhllima et al., 2025). This could be compensated by
new governmental subsidies that would enhance ensure economic stability (Bednar-Friedl
et al., 2022).
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The developed models in this thesis could enhance agricultural seasonal forecast systems
(van der Velde et al., 2018). The Joint Research Center (JRC) of the European Com-
mission (EC) makes in-season forecast of expected crop yield by using Crop simulation
Models (CSMs) and parametrtic statistical models (van der Velde et al., 2018). Thus,
on the one hand, the obtained results can serve as guidance for improve process-based
crop simulation models, which are thereafter used for forecasting (Webber et al., 2020).
The other alternative is to consider the statistical models of this thesis as forecast tools
themselves. Subsequently, a future step of this thesis is to explore the predictability skill
of the Random Forest models by using seasonal forecast meteorological data, for example
like the one developed by the European Centre for Medium-Range Weather Forecasts
(ECMWF, Hersbach et al., 2020).

Moreover, this thesis presents some methodological limitations that should be mentioned.
By using a small set of well-defined predictors, the Random Forest models already capture
key weather hazards associated with yield shocks. This highlights the usefulness of flexible
models that rely on broadly defined indicators of climate extremes. However, despite the
range of definitions explored in Chapter 6, some important stressors remain unaddressed.
For example, the current indicators do not explicitly account for evapotranspiration, which
is critical for understanding water availability, atmospheric demand, and plant health
(Allen et al., 1998; Murphy and Hurtado, 2020). Another overlooked factor is hailstorms,
which are among the most damaging localized weather hazards and can cause severe yield
losses (Kunz et al., 2018). Although Chapter 6 does not include these stressors directly,
some of their effects may be indirectly captured. Variables such as temperature, diurnal
temperature range, or cumulative precipitation are often correlated with the omitted
ones. However, dealing with such co-linearity is complex. Several statistical methods
exist to address this challenge (Shi et al., 2013). To reduce redundancy among input
variables, future work could consider the use of combined stress indices. One example is
the integrated drought and heat stress metric proposed by Zampieri et al. (2017). This
type of approach could improve both model performance and interpretability

On the other hand, the thesis could benefit from a more universal-based input approach,
meaning the use of several domains in conjunction (Kratzert et al., 2019). The rationale
behind this method is to overcome the limitations of Random Forest in extrapolating
data. This constraint explains why the individual models in Chapter 7 do not adequately
capture extreme weather events, and why the trends in crop yield risk do not exceed an
average of 10% in Chapter 8. In fact, for prediction tasks that require extrapolation,
simple models can outperform complex black-box models by approximately 40% (Laksh-
minarayanan et al., 2017; Muckley et al., 2023). Even when using country-independent
models, one way to mitigate this issue is to train the model on diverse datasets and
domains (Kratzert et al., 2019). However, this approach should also account for the
phenological stages during which crops are exposed to specific climate events, rather than
relying on Gregorian-calendar—based aggregated indices. Additionally, the contrasting cli-
matologies that ultimately led to the development of divergent crop varieties could limit
the predictability of the models (Zampieri et al., 2017; Lima et al., 2021). These consider-
ations could offer a more accurate assessment and potentially enhance our understanding
of the impact of extreme weather events on crop yield.
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The results from this thesis would presumably improve by using a wider and new genera-
tion of models and datasets. Chapter 6 and Chapter 7 are based on the version 23.0e and
27.0e of the ensemble mean of E-OBS, when the recently released 31.0e includes a higher
amount of stations in the interpolation (European Climate Assessment & Dataset, 2024).
The results obtained from Chapter 8, based only on eight RCM-GCM model, can be
enhances by using a wider model ensemble (Moemken et al., 2018). Furthermore, CMIP6
and CORDEX-based downscaled models are currently in development and expected to
become available soon (Katragkou et al., 2024). With updated parametrizations, data
input and inclusions of more sources of emission variability like aerosol forcing, CMIP6
showed higher independence between the Shared Socio-economic Pathway and GCMs
(Chen et al., 2023). Therefore, this would expand our physical understanding on the im-
pact under warmer climate, but would also likely increase the uncertainty in some regions
(Zhang and Chen, 2021).

As a final point, future research should expand its focus to include the impact of climate
extremes on non-staple crops (Bednar-Friedl et al., 2022). While maize and winter wheat,
along with soybean and rice, are vital for global food security, other crop groups such as
fruits and vegetables are equally important for human dietary health (Slavin and Lloyd,
2012). Despite their nutritional and economic significance, the effects of extreme weather
events on these high-value crops remain underexplored (Cogato et al., 2019). A major
concern regarding this area is the limited availability and quality of crop-specific data
(European Commission — Directorate-General for Agriculture and Rural Development —
Unit A.3, 2023). As the economic value and dietary relevance of non-staple crops continue
to grow, improving our understanding of their vulnerability to climate variability will be
critical for developing resilient agricultural systems.

In summary, this thesis shows the sensitivity of predictor and statistical model choice
when assessing weather and climate drivers of agricultural losses. The refined models
provide insight into the most relevant national weather and climate drivers of yield shock.
Ultimately, the information of this thesis contributes towards agricultural adaptation to
climate change.
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A Appendix to Chapter 4

Production [Mt]

Harvesdted area [thousand ha]

Yield [kg/ha]

1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016
Year

— France — Romania —— Hungary - Serbia and Montenegro
Area dary E

— Ukraine — Italy — Serbia - Spain

Figure Al: Series of reported national data extracted from FAO (FAO, 2024a). Total
production (top panel), total harvested area (mid panel), and average yield (bottom
panel) for the 8 biggest European maize producers (in colours).

Bayesian Information Criterion

The Bayesian information criterion (BIC) is defined as:

BIC = 2 x loglik + log(N) x k (A.1)
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Figure A2: Same as Figure A1, but for winter wheat.

Where loglik refers to the log-likelihood (Section 2.4), k is the number of predictors and
N is the number of observations.
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Figure A3: Pearson correlation between time series and yield for maize (a) and winter
wheat (b) yield series, using the GDHY for the 1982-2016 period.
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Table B.1: Coefficient values for each predictor per model in LASSO. Variables are sorted
by decreasing absolute value. The number on the left side of the underscore corresponds
to the month.

Simple Frequency Cumulative All Forward Backward
07_TX 3.80 | 07_TX90p 1.82 | 07_TX90pDD 1.63 07_TX90p 1.62 07_TX90p 1.93 07_TX 2.51
07_PP -195| 07_PPIt1 1.74 | 07_SPltn05 -1.10 07_TX 1.19 07_PPIt1 1.55 07_PP -1.63
09 _TN -1.05|04_TNI10p 0.75 | 04_TN10pDD -1.08 07 _PPIt1 1.05 07 _TX 1.36 | 04 TN10pDD -1.21
04 TX -0.65| 06 _PPIt1 0.62 | 08 SPltn05 -0.67 | 04 TN10pDD -0.94 | 04 TN10pDD -1.19 | 07 TX90p 1.16
08 PP -0.51| 08_PPIt1 0.61 | 05_TN10pDD 0.60 06_PPIt1 0.61 08 PPIt1 0.82 | 05_TN10pDD 0.94
05_TN 043 | 08_TX90p 0.28 | 06_SPltn05 -0.45 08_PPIt1 0.60 | 05_TN10pDD 0.72 | 04_TX90pDD 0.87
04 PP -041|05 TN10p -0.17 | 05_SPgt05 0.44 | 05_TN10pDD 0.52 | 06_SPltn05 -0.48 05_TX -0.83
08_TX 0.38 08_TX90pDD 0.34 | 05_SPltn05 -0.47 08_PP -0.38 | 04_SPltn05  0.82
05_TX -0.34 09_TN10pDD -0.25 | 05_SPgt05 0.43 | 05_SPltn05 -0.36 | 05_SPltn05 -0.81
09_TX -0.27 05_SPItn05 -0.16 | 07_SPltn05 -0.41 09_TX -0.33 04 PP -0.72
06_PP -0.20 04 SPItn05  0.06 | 08 SPItn05 -0.32 | 06 TN10pDD 0.30 | 08 SPltn05 -0.72

08 TX90pDD 0.29 04 PP -0.27 | 06_TN10pDD 0.54
06_SPIltn05  -0.24 07_PP90p  -0.21 04_TX -0.47
09_TX -0.21 05_TX -0.09 | 06_SPltn05 -0.44
06_TN10pDD 0.20 08_TX 0.31
07_PP -0.19
04 PP -0.15
09 TN10pDD -0.10
04 TNI10p 0.08
04 TX -0.07
08_PP -0.01
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Figure Bl: Year-to-year distribution of the predicted probability in group All using

LASSO. Orange-coloured boxplots correspond to the six bad years and blue-coloured
to the six good years.

LASSO. Forward
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Figure B2: Same as Figure B1, but for group Forward.
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Figure B3: Composite distribution of the variable contribution to the predicted probabil-
ities in All group. The variables in x-axis are organized by absolute coefficient values (as
in Table S1). The dashed-horizontal violet line indicates a "null contribution". Compos-
ites were made using the six bad years (orange-coloured boxplots) and the six good years
(blue-coloured boxplots).
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Figure B4: Same as Figure B3, but for group Forward.

Table B.2: Worst years predicted (in descendent order) for the six groups obtained by
using Random Forest.

Simple | Frequency | Cumulative | All | Forward | Backward
2013 2018 2013 2013 2018 2013
2018 2013 2018 2018 2013 2018
2010 2003 2003 2003 2003 2003
2003 2010 2010 2010 2010 2010
2006 2006 2006 2006 2006 2006
2015 2015 2015 2015 2015 2015
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Figure B5: (top row) Partial dependence plots for the top 5 predictors for group Frequency
and (bottom row) the associated variable distribution during good years (blue) and bad

years (orange).
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Figure B7: Same as Figure B5, but for group All.
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Figure B9: Same as Figure B5, but for group Backward.
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a) France b) Romania c) Spain
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Figure C1: Series of median (opaque lines) and interquartile range (shade) for the three
climate indicators (in rows) along the three countries (in panels).

Climatology of selected predictors for studying maize yield shock in France,
Romania and Spain

We provide a climatological description of the selected weather and climate indicators
only for France, Romania and Spain.

Figure C1 displays the climatology of the selected weather and climate drivers of maize
yield shock by month (x-axis), type (in rows) and country (in columns). T'mean follows
the seasonal variability, with a progressive increase from April, reaching peak values in
July and August and dropping in September. The three countries present values around
10°C in April. Spain (Figure Clc) has the highest values of T'mean in the summer months
(with T'mean over 20 °C), followed by Romania (Figure C1b) and finally by France France
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(Figure Cla), where T'mean reach values between 10 °C and 20 °C in the summer months.
Additionally, Spain tends to have higher uncertainty (i.e., a higher interquartile range)
within the sub-seasonal scale than other countries.

Similar to T'mean, in Figure C1, we observe that DT R tends to be higher in the summer
months than in the spring months. France and Romania present relatively low variability
of DT R throughout the selected months, with values ranging between 4°C and 7°C in
April and September for both countries and with values around 6 °C for France and 8°C
for Romania in the summer months. Spain presents the highest DT R values throughout
the selected months and the highest intermonthly variability. DT R has values of around
7°C in April and can reaches overall values of 11°C in July.

The behaviour of RRsum is rather country-specific. However, we observe overall higher
values in spring months than in the summer months. France has a stationary pattern,
with median values between 50 mm and 75 mm, with the highest values observed during
May (between 50 mm and 100 mm). Romania presents slightly higher seasonal variability,
with peak values of RRsum in June and the lowest values in August and September.
Spain has the lowest overall precipitation, with RRsum values oscillating between 50 mm
in April and dropping to almost null values in July and August.

Maize. France

a) France

Shock — No — Yes

Figure C2: Cumulative distribution for the selected predictors during yield shock (orange)
and no yield shock (blue) in France.
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Figure C4: Same as Figure C2, but in Spain.



C' Appendix to Chapter 7

Maize

a) France b) Romania c) Spain
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Figure C5: Error rate and test error as a function of number of trees for the ensemble of
Random Forest models per country (in panels), using the maize yield shock data. The
solid lines denote the average value between the models, and the shades represent the
uncertainty range by using the 5% and 95" percentile. The OOB error (turquoise) is
built by the Out-Of-Bag (OOB) sampling method (James et al., 2021), and the test error
(red) is built by using the leave-one-year-out data.
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Figure C6: (a) Partial dependence plots for the three most important variables (according
to Figure 7.8) for the ensemble model (black line) and the model leaving-2016-out (red
line), and (b) data distribution during the studied period without considering 2016 (grey)
and only for 2016 (red) in France for winter wheat models.
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Winter wheat. Spain 1995
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Figure C7: Same as Flgure C6 but for the case of 1995 in Spain.
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Figure D1: Average bias between the simulations and E-OBS data during the historical
period for each variable (columns) for NC, Linear scaling and QDM (rows). The bias is
computed as the average bias for each month, variable, and model divided by the mean
of the observed data. The average bias is computed by averaging the bias across months
for each model and finally averaging across models.
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Figure D2: Average bias between the simulations and E-OBS data during the historical
period for each variable (panels) for NC, Linear scaling and QDM (columns) and for each
model (rows). The displayed values (black text) is calculated by computing bias for each
grid point, month and variable, and then averaging across the domain and months. The
colorbar (blue-white-red) display the normalize bias per model (0% for white and blue-red

towards higher bias).
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Figure D3: Average relative bias between the simulations and E-OBS data during the
historical period for each variable (panels) for NC, Linear scaling and QDM (columns)
and for each month (rows). The displayed values (black text) is calculated by computing
relative bias for each grid point, model and variable, and then averaging across the domain
and model respectively. The colorbar (blue-white-red) display the normalize bias per
model (0% for white and blue-red towards higher bias).
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Figure D4: Similar to Figure D3, but for the biases (without relativizing).
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Maize

a) France b) Romania ) Spain
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Figure D5: Predicted probabilities of maize yield shocks by GCM-RCM model chains
(colored boxes) and observations (black-framed box) for NC under two bias correction
methods (x-axis) across the three countries (panels). The horizontal line within each box
represents the median, the box borders indicate the interquartile range, and the whiskers
show the 10®"-90'" percentiles. Outliers are displayed as dots. Observed probabilities are
estimated using a leave-one-year-out model and year-out data.
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Winter wheat
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Figure D6: Same as Figure D5 but for winter wheat.
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Figure D7: Predicted probabilities of maize yield shock by country (rows),

method(columns) and model (colors). The year-to-year variability is displayed in trans-
parent lines. Thick opac lines display the long-term expected trends, estimated by using
LOESS method (Wickham et al., 2016).
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Winter wheat

NC Linear

QDM

60%

pluewoy| | puejod | fuewlsn| | edueiq

wv
Rl
=
=
(1
Q
o
&.60%1
© 40%1
T 20%1
o
v
>
< wv
T
Q
2
60%1
40%1 L . =
20%1 ; < =
5%- T T T T T T T T T T T T T T T
1985 1990 1995 2000 2005 1985 1990 1995 2000 2005 1985 1990 1995 2000 2005
Models — CRM-CERFACS-CNRM-CMS_CLMcom ~— ICHEC-EC-EARTH_CLMcom ~— IPSLIPSL-CMSAMR_KNMI MPI-M-MPL-ESM-LR_KNMI - Obs
odels
CNRM-CERFACS-CNRM-CM5_KNMI ~ ~— ICHEC-EC-EARTH_KNMI MPI-M-MPL-ESM-LR_CLMcom —— NCC-NorESM1-M_KNMI

Figure D8: Same as Figure D7 but for winter wheat.
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Figure D12: For winter wheat in France (a), Germany (b) and Poland (c). Top nine
contributors (left panel) SHAP values and relative feature value (in colors), and (left
panel) variable distribution during the historical period, GWL2 and GWL3 (colors). Part
1.
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Figure D13: Same as Figure D12 but for Romania (d), Spain (e) and the UK (f).
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