KIT | KIT-Bibliothek | Impressum | Datenschutz

Analysing artificial neural networks in high school mathematics education

Kindler, Stephan ORCID iD icon 1; Schönbrodt, Sarah ORCID iD icon 1; Frank, Martin ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

This article presents an intended learning path for high school students, through which they can be able to grasp and categorise the central properties of artificial neural networks. This will be achieved by applying classical methods of analysis to the mathematical building blocks of a simple network. The aim is to enable students to have an informed opinion about the inherent limitations of such networks, thereby demystifying this new technology.


Postprint §
DOI: 10.5445/IR/1000188809
Veröffentlicht am 17.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 01.07.2025
Sprache Englisch
Identifikator KITopen-ID: 1000188809
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Towards Fostering AI and Data Science Literacy in Schools Across Disciplines: Proceedings of the 1st Symposium on Integrating AI and Data Science into School Education Across Disciplines (AIDEA1 2025). Ed.: S. Podworny & S. Schönbrodt
Veranstaltung 1st Symposium on Integrating AI and Data Science into School Education Across Disciplines (AIDEA1 2025), Salzburg, Österreich, 24.02.2025 – 28.02.2025
Externe Relationen Konferenz
Schlagwörter Learning materials, mathematics education, artificial neural networks, artificial intelligence
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page