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Graphical Abstract: 

  

Abstract 
Utilization of CO2-containing industrial waste gas emissions as substrates for fermentation with 

acetogen bacteria is a novel approach. A key requirement for successful process optimization and the 

development of advanced control strategies is a robust model that can sufficiently predict system 

responses to varying process conditions. However, few fermentation models have been developed for 

continuous cell retention or elevated pressure conditions, which are beneficial for integrating gas 

fermentation with CO2 separation technologies. Therefore, this study adapts a dynamic kinetic model 

to simulate these conditions to enable model-supported process design with Clostridium ljungdahlii. 

The literature model was modified by adjusting key equations and re-estimating important kinetic 

parameters derived from long-term fermentation experiments in a continuous stirred tank reactor. 

Addition of a carbon dioxide dependency to the hydrogen uptake rate and the acetate to ethanol 

conversion rate improves the model’s accuracy to predict biomass and product concentration trends 

under high hydrogen substrate gas and moderately increased pressure conditions. Model predictions 

indicate that maximum ethanol production is linked with biomass growth and increases more than 

tenfold when the gas residence time is lowered from 1.80 to 0.09 h, and the H₂ content in the substrate 

gas is simultaneously raised from 60 to 80%, with the remainder being CO. Maximum acetate 

production is predicted to increase with lower gas residence time, 50% H₂ in the feedstock gas and a 

shift from CO to a mixture of CO and CO₂ as a carbon source, with a CO₂ content of up to 30%. 
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Highlights: 

 A model was developed to represent continuous, pressurized conditions 

 The addition of CO2 dependency enhances the model’s predictive capability 

 The modified model accurately predicts outcomes under moderate pressure conditions 

 Substrate gas residence time and composition influence the product spectrum 

 

1. Introduction 
In the face of climate change, the capture and use of the waste gas carbon dioxide (CO2) has become 

increasingly important. Fossil CO2 contributes up to 68% of global greenhouse gas emissions [1]. To 

reduce emissions, it is crucial to optimize existing and new carbon capture and storage (CCS) and 

utilization (CCU) technologies [2], [3]. One such promising technology is gas fermentation [4], [5]. In 

this process, acetogenic microorganisms use gas mixtures containing carbon monoxide (CO), CO2, and 

hydrogen (H2) to produce fuels and basic chemicals, such as ethanol, acetic acid, butanol, butyrate, or 

hexanol [6], [7], [8], [9]. Many anaerobic organisms follow the Wood-Ljungdahl pathway (WLP) under 

autotrophic conditions [9]. In this pathway, CO or mixtures of CO2 and H2 provide a carbon source or a 

reduction equivalent in the case of H2 [10]. Ethanol can be produced directly from acetaldehyde, an 

intermediate product of the WLP, through conversion with aldehyde dehydrogenase (ALDH), followed 

by reduction with alcohol dehydrogenase (ADH). Alternatively, it can be produced from acetate via 

conversion with aldehyde ferredoxin oxidoreductase (AOR) and subsequent reduction with ADH [9], 

[11]. Gas fermentation is already industrially deployed to produce ethanol as a biofuel from steel mill 

emissions [7], [12], [13]. Higher-value products are achieved with mixed-culture fermentation or 

sequential co-fermentation [14], [15], [16]. Another promising application for gas fermentation is the 

integration of this process with other CCS or CCU technologies, such as electrocatalytic CO2 reduction, 

for more efficient use of waste gases [17], [18]. Clostridium ljungdahlii, an acetogenic, anaerobic, rod-

shaped, gram-positive bacterium that primarily produces acetate and ethanol, is commonly cultivated 

for gas fermentation [19]. Equations 1-6 list the proposed simplified reactions for the production of 

acetic acid (HAc) and ethanol (EtOH) by this organism.  

The influence of different process parameters on the 

fermentation with this organism has been explored in 

batch and continuous experiments [20], [21], [22], [23], 

[24], [25], [26]. Liquid solubility of the substrate gases 

is one of the main limiting factors in gas fermentation 

and can be increased by changing the gas composition 

or increasing the total process pressure [27], [28], [29]. 

Process pressure and gas composition influence growth and product formation [23], [30], [31]. The 

hydrostatic pressure at the bottom of industrial fermentation reactors can reach 2 to 3.5 bar with a 

height of the reactor of about 25 m [32]. This makes the influences of high pressure on the 

fermentation organism especially important for these applications. The substrate gas composition 

varies when waste gases or the product gases of other CCS or CCU technologies are used as feedstock 

for gas fermentation [33]. These limitations, coupled with the inherent nonlinearity and complexity of 

bioprocess systems, present significant challenges to achieve robust operation. As a result, control 

strategies are crucial for effectively addressing these issues [34]. In addition to the heterogeneity in 

gas composition, the limited availability of measurement data during operation represents another 

4𝐶𝑂 + 2𝐻2𝑂 → 𝐻𝐴𝑐 + 2𝐶𝑂2 (1) 
4𝐻2 + 2𝐶𝑂2 → 𝐻𝐴𝑐 + 2𝐻2𝑂 (2) 

𝐻𝐴𝑐 + 2𝐶𝑂 + 𝐻2𝑂 → 𝐸𝑡𝑂𝐻 + 2𝐶𝑂2 (3) 
𝐻𝐴𝑐 + 2𝐻2 → 𝐸𝑡𝑂𝐻 + 𝐻2𝑂 (4) 

6𝐶𝑂 + 3𝐻2𝑂 → 𝐸𝑡𝑂𝐻 + 4𝐶𝑂2 (5) 
6𝐻2 + 2𝐶𝑂2 → 𝐸𝑡𝑂𝐻 + 3𝐻2𝑂 (6) 
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common obstacle. Usually, only delayed, irregularly sampled online, or event-based at-line sensor data 

is available, for example [25], [35]. Since most advanced control strategies, such as Model Predictive 

Control (MPC), rely on knowledge of the entire state information, state observer, also known as soft 

sensors, are an integral component of those control architectures [36], [37], [38]. Soft sensors can 

assist in reconstructing missing state information. Their performance is highly dependent on the 

quality of the underlying process model. For this reason and to enable model-supported process design 

for evaluating the feasibility of fermentation technologies alongside monitoring and controlling the 

fermentation process, a high-quality model is needed [39]. Many genomic-scale and kinetic models for 

gas fermentation have been published [40], [41], [42], [43], [44], [45]. However, few models have been 

tested under continuous cell retention or pressurized conditions, which are beneficial for industrial 

applications or for the coupling of gas fermentation with the gas streams of other CCS and CCU 

technologies. Therefore, this study uses a kinetic model by Medeiros et al. to model elevated pressure 

and continuous cell retention conditions as published by Perret et al. to enable model-supported 

process design and optimization [24], [25], [46]. After validating the model's predictive capability, it is 

applied to investigate the influence of gas residence time (GRT) on substrate gas composition for the 

production of biomass, ethanol, or acetate. 

2. Materials and Methods 

2.1 Kinetic Model 

2.1.1 Short model overview 

In this study, a literature kinetic model published by Medeiros et al. was used as a basis and adapted 

to new process conditions [46]. The model equations can be found in the original publication and in 

the supporting information, equations S1-S29. The model dynamically approximates a continuous 

stirred tank reactor with and without cell retention conditions. It consists of differential balance state 

equations that consider flow balance equations and gas-liquid mass transfer, if necessary. The model 

further considers the uptake/production rates of CO, H₂, CO₂, EtOH, HAc, and water (H₂O) species in 

the gas and liquid phases, as well as the biomass concentration in cell dry weight (CDW) in the liquid 

phase (Equations S1-S5). Gas flow out of the reactor and mass transfer coefficients (kLa) are also 

approximated with model equations S23-S29. Cell retention is approximated by a purge factor Xp in 

biomass mass balance. This factor ranges from 0, full cell retention, to 1, full cell purge out of the 

reactor. Cell growth is described as a function of cell death, which is approximated with a time and 

activity-independent death rate kd and growth rate µ. The growth rate is dependent on biomass yield 

coefficients and H2 and CO uptake rates (Equations S9), which follow Michaelis-Menten kinetics with 

substrate and product inhibition (S10). Ethanol inhibition IE, acetate inhibition IA, and CO inhibition ICO 

follow standard non-competitive enzyme inhibition (Equations S11-S14). Hereby, it is assumed that CO 

only inhibits H2 uptake. Ethanol inhibition is only implemented into the model with a threshold of 

35 g l-1 ethanol. For all other substrates and products, the uptake and production rates follow the 

stoichiometry of the proposed acetate and ethanol production reaction of C. ljungdahlii (Equations 1-

4) and are combinations of the acetate to ethanol conversion rate νR
EtOH, i and the CO or H2 uptake rates 

νi (Equations S15-S22). The model assumes ethanol to be exclusively produced via the AOR route out 

of acetate and not through the direct ALDH route, and therefore, ethanol production is only possible 

through acetate conversion and dependent on the acetate concentration. Finally, the model requires 

15 kinetic input parameters, which have to be estimated with data, as they incorporate effects not 

directly described by the model [46].  

2.1.2 Model limitations 

The mechanistic model does not explicitly represent the effects of all process conditions on 

fermentation. Instead, these effects are implicitly integrated into the kinetic parameter values. This 

encompasses the impacts of temperature and pH on microbial growth and product formation, as well 
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as the influence of culture medium composition on the volumetric mass transfer coefficient (kLa) and 

growth kinetics. Other process conditions can only directly affect certain parameters. For instance, 

pressure only affects gas solubility and volume flow, but does not directly affect the biological 

metabolism kinetics. The model can describe some short-term effects, such as a stirrer failure or a stop 

in the liquid feed flow rate, but implementation is limited to setting the corresponding parameter to 

or close to zero for the duration of the effect. Other effects, such as non-ideal mixing in the reactor or 

time-varying properties like changes in liquid volume, were not incorporated into the model. Process 

conditions affecting the kinetic model parameters for only short periods of fermentation time cannot 

be described with the model, because the kinetic parameters were assumed to be time-independent. 

These effects include the influence of foam formation at high gas flow rates and changes in nutrient 

composition over long batch fermentation times and at high biomass concentrations. 

2.1.3 Model adaptations 

The kinetic parameters were re-estimated in this study due to different experimental conditions 

because they account for effects that were not directly incorporated into the model. Some additional 

changes were made to the model before these estimations: 

1. The ungassed power number NP used in the original publication for the calculation of power input 

was approximated with the Newton number Ne following equation 7, wherein QG is the gas flow in 

m3 s-1, N is the agitation rate in s-1, and dR and di are the reactor and stirrer diameter in m, respectively 

[46], [47]. 

𝑁𝑒 = 1.5 + (0.5 × (
𝑄𝐺

𝑁 × 𝑑𝑖
3 × (1 + 38 × (

𝑑𝑅

𝑑𝑖

)
−5

))

0.075

+ 1600 × (
𝑄𝐺

𝑁 × 𝑑𝑖
3 × (1 + 38 × (

𝑑𝑅

𝑑𝑖

)
−5

))

2.6

)

−1

 

(7) 

2. The power input PV was calculated with equation 8 and the liquid volume of the reactor VL in m3 

instead of using equation 27 of the original publication [46]. 

𝑃𝑉 =
𝑁𝑒 × 𝜌𝐿 × 𝑁3 × 𝑑𝑖

5

𝑉𝐿
 

(8) 

3. Ethanol inhibition was implemented without a threshold concentration, even though the ethanol 

concentration was lower than the threshold concentration proposed for the original model throughout 

the fermentation experiments used for parametrization and validation. [24], [25], [46]. The original 

threshold implementation was based on the findings of Ramio-Pujol et al. and Phillips et al. [35], [48]. 

Ramio-Pujol et al. did not observe a significant ethanol inhibition of C. ljungdahlii at concentrations 

below 15 g l-1 ethanol, while Phillips et al. observed a sharp decline in cell growth after an ethanol 

concentration of 35 g l-1 was reached [35], [48]. This decline could also be caused by other changes in 

medium content [35]. To our knowledge, no further investigations were made into ethanol inhibition 

of C. ljungdahlii, but a slight inhibition of the gas uptake rates by ethanol might be possible and was 

therefore implemented into the model. 

4. All 15 kinetic parameters were re-estimated with new experimental datasets, because the different 

experimental conditions are expected to affect additional parameters, such as inhibition constants or 

maximum uptake rates. The parameter bounds for these parameters are listed in Table S1 and are 

directly adopted or based on the bounds published for the original model [46]. 

The adapted model could not sufficiently predict changes in biomass concentration or changes in the 

ethanol-to-acetate ratio during the parameter estimation routines. This was predominantly observed 

at cell retention conditions with GRT lower than 0.26 h (gas flow rates higher than 7 l h-1), and higher 

CO2 than CO content in the substrate gas. For this reason, further adaptations were made to the model. 
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5. A CO2 dependency was added to the H2 uptake rate according to standard multi-substrate Michaelis-

Menten kinetics, changing equation S9, for H2, to equation 9. This was done to account for potential 

effects of CO₂ on H₂ uptake and the growth rate, and limit growth without a carbon source. 

𝜈𝐻2 = −𝜈𝑚𝑎𝑥, 𝐻2 𝐶𝑂2 ×
𝐶𝐿,𝐻2

𝐶𝐿,𝐻2 + 𝐾𝐻2
×

𝐶𝐿,𝐶𝑂2

𝐶𝐿,𝐶𝑂2 + 𝐾𝐶𝑂2
× 𝐼𝐸 × 𝐼𝐴 × 𝐼𝐶𝑂,𝐻2 

(9) 

6. The acetate to ethanol conversion rate was modified by adding a CO2 inhibition term (equation 10), 

to capture the shifts in the ethanol-to-acetate ratio observed in the fermentation experiments used 

for parametrization under GRT conditions higher than 0.26 h and mild pressure conditions [24], [25]. 

When C. ljungdahlii grows on pure CO or with high CO to CO2/H2 ratios in the substrate gas, more 

ethanol is produced [23], [49]. One possible explanation for this is that C. ljungdahlii can synthesize 

more ATP when grown on CO [49]. Hermann et al. also observed higher production of acetate than 

ethanol when C. ljungdahlii was grown on H2/CO2 instead of CO in batch cultivations, also citing a lower 

ATP yield as the main reason for this effect [30]. In this study, it was assumed that the lack of ATP 

generation with CO2 as the carbon source can be correlated with the CO2 concentration in the liquid 

phase. This was implemented with ethanol production being inhibited by the CO2 liquid concentration. 

𝜈𝐸𝑡𝑂𝐻,𝑖
𝑅 = 0.5 ×

|𝜈𝑖|

1 +
|𝜈𝑖|

2 × 𝜈𝑚𝑎𝑥𝐴𝑐,𝑖
𝑅 ×

𝐶𝐿,𝐻𝐴𝑐

𝐶𝐿,𝐻𝐴𝑐 + 𝐾𝑆,𝐴𝐶,𝑖
𝑅

×
1

1 +
𝐶𝐿,𝐶𝑂2

𝐾𝐼 𝐶𝑂2 𝐴𝑐 

 
i=CO, H2 (10) 

2.2 Case studies used for the estimation of the kinetic parameters 

Product, biomass, and off-gas concentration data from Perret et al. 2023, Experiment A and Perret et 

al. 2024, Experiment A was used to estimate model parameters [24], [25]. Hereafter, these 

experiments are named dataset 1 and dataset 2. The process conditions are provided in Table 1 and 

Figure S1. The model was only parametrized to time points where every parameter was measured, 

including gas data. Data from both experiments was used for the parameter estimation routines. The 

kinetic parameters of models 4 and 5 were estimated with dataset 1 and conditions with pressure 

ranges from 1 to 2 bar absolute from dataset 2 (80 data points). The purge factor XP was not specified 

by Perret et al. but was approximated with the ratio of the purged sample volume over time 

(0.00208 l h-1) to the flow rate [24], [25]. This resulted in an XP value of 0.0316. The parameter values 

reported for the original model were used for those not specified for datasets 1 and 2. [24], [25], [46]. 

 

 

 

Table 1: Short overview of the experimental conditions used for parameterization of the models 

Experiment dataset 1; Perret et al. 2023 A 
[25] 

dataset 2; Perret et al. 2024 A 
[24] 

Temperature in °C 37 37 

pH 5.85 5.85 

Number of different data 
points 

66*6 112(80)*6 

Process time in h 1640 1970 

Cell retention activation time 
in h 

913 0 

Purge factor XP 0.0316 

Pressure absolute in bar 0 0-4 bar 
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Gas flow in l h-1 4.8-7.38 5.82-16.5 

Liquid flow in l h-1 0-0.066 0-0.066 

2.3 Numerical modeling 

The original model and the modified models were implemented in MATLAB version: 24.1.0.2603908 

(R2024a). The solver ode15s for stiff problems was used for computationally efficient integration of 

the differential equation system. The kinetic parameters were estimated by minimizing the squared 

norm of the residuals error. To this end, the global optimization toolbox function MultiStart was 

employed together with the optimization toolbox function lsqcurvefit, a nonlinear least squares solver, 

to find global solutions for the minimization problem. Alongside this, lsqcurvefit was used on its own 

to define local minima. The concentrations of biomass, ethanol, acetate, CO, CO₂, and H₂ used for 

estimation were weighted by multiplication with a proportional factor to reduce reliance on one 

component. These constants for the respective concentrations were chosen so that their order of 

magnitude corresponds to biomass concentration. The proportional factors are listed in Table S2. The 

absolute tolerance of the ode15s solver was set to 10-3 during the parametrization of models 1-4 due 

to simulation instabilities with lower absolute tolerance. An F-test to discard the null-hypothesis for 

the model parameters was performed, and 95% confidence intervals of nonlinear regression were 

estimated for the kinetic parameters. This was done by implementing the procedure detailed by 

Medeiros et al. in MATLAB [46]. Original and re-estimated model parameters and confidence intervals 

are shown in Table S3 and Table S4, as well as the squared norm of the residuals error in Table 2.  

Model validation was followed by steady-state predictions for different substrate gas compositions 

and GRTs. The models’ differential equations were solved using the ode15s solver with the initial 

conditions of dataset 1 over a time interval of 1000 h to satisfy steady state criteria. 

2.4 Model validation with long-term continuous fermentation experiments 

The models’ performance was compared to two continuous fermentation experiments. The organism, 

medium composition, experimental setups, and experimental conditions are detailed in the following 

chapter. 

2.4.1 Bacteria, media, and pre-culture 

Clostridium ljungdahlii (DSM 13528) was cultivated anaerobically in modified Tanner medium in three 

pre-cultures and one main culture. A detailed description of the medium composition can be found in 

Stoll et al. [50]. Fructose was added as a carbon source to the pre-cultures to a final concentration of 

10 g l-1 for pre-culture 1 and 5 g l-1 for pre-cultures 2 and 3. Mixtures of artificial synthesis gas were the 

only carbon source for the main cultivation. The pH of the medium was adjusted to 5.9-6.0 through 

the addition of KOH pellets. Subsequently, the medium was deoxygenated by sparging with a sterile 

20% CO2 and 80% nitrogen (N2) gas mixture for 30-60 min. Afterwards, the medium was autoclaved at 

121 °C for 25 min, before a sterile 100 g l-1 cysteine-HCl solution was added to the medium to a final 

concentration of 1 vol-% for pre-culture media and 0.3 vol-% for the main culture medium. Pre-

cultures were cultivated at 37 °C without stirring in 100 ml serum bottles containing 50 ml medium for 

2 days or in the case of pre-culture 3 for 3 days in 500 ml bottles containing 250 ml medium. Pre-

culture 1 was inoculated with 10 ml of a starter culture made from a freeze-dried culture stored 

at -80°C. Pre-cultures 2 and 3 were inoculated with 10 vol-% and 1 vol-% inoculum of the prior pre-

culture, respectively. The main cultivation was inoculated with 250 ml of pre-culture 3. 

2.4.2 Experimental setup of the fermentation experiments 

Experiments were carried out in a heated, 4 l stainless steel continuous stirred tank reactor (CSTR) with 

continuous gas and liquid flow, a gas mixing station, and an external cell retention circuit. The gas flow 

rate, gas composition, liquid flow rate, pressure, temperature, and pH are control variables and can be 

adjusted. The detailed setup is described in Perret et al., and a simplified schematic of the reactor setup 
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is shown in Figure 1 [24], [25]. A micro annular gear pump (HNP Mikrosysteme, Germany) was used 

instead of the peristaltic pump described by Perret et al. for the cell retention circuit and kept at a flow 

of 10 l h-1 [24], [25]. 

 

Figure 1: Schematic representation of the fermentation setup; adapted and modified from Perret et al. 
[24] 

The reactor, feed pipes, and the cell retention circuit were sterilized prior to inoculation by first filling 

them with 0.5 % peracetic acid. After this, the reactor was autoclaved by holding the reactor 

temperature at 120 °C for at least 25 min. This was achieved by blowing hot steam into the reactor at 

multiple ports. During the experiments, online gas measurements were carried out every 15 min, using 

a 2-channel gas chromatograph (Inficon Fusion, INFICON, USA) with argon and helium as carrier gases. 

Off-gas concentrations and flow rates were calculated based on the nitrogen volume fraction in the 

inlet and off-gas streams and the substrate gas mass flow. Biomass and the product concentration in 

the reactor broth were monitored daily via manual sampling. The optical density (OD) of the samples 

was measured with a UV-Vis spectrometer (VWR, Germany) at 600 nm. For this, the samples were 

diluted with 0.9 vol-% NaCl solution to an OD below 0.4 and measured. The OD of the cell-free samples 

was determined after centrifugation of the samples for 15 min at 12000 g. The CDW was then 

estimated by a CDW OD correlation. The ethanol and acetate content of the samples was determined 

by high-pressure liquid chromatography (HPLC) (Aminex HPX-87-H column, Hitachi, Japan) with an 

eluent containing 4 mmol l-1 sulfuric acid after centrifugation of the undiluted sample. 

2.4.3 Experimental conditions of the validation experiments 

In the fermentation experiments, the gas composition, gas flow rate, liquid flow rate, pressure, and 

purge factor were varied over time (see Table S5, Figure 2). All other process conditions were kept 

constant. The reactor was filled with 2.2 l medium and stirred at 600 rpm. The pH and temperature 

were held constant at 5.85 and 37 °C, respectively. For experiment A, the previously introduced purge 

factor used for the model predictions was determined using equation 11 with the OD of the sample 

taken from the reactor and the OD measured in the permeate at the time of sampling. 

𝑋𝑃,𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝐴 = 1 −
𝑂𝐷𝐵𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟 − 𝑂𝐷𝑃𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝑂𝐷𝐵𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟
 

 

(11) 

This resulted in a purge factor of 0.8. Short failures of the liquid feed pump and the stirrer occurred 

during experiments A and B. The times at which this occurred are shown in Figure 2 and are noted in 

the affected interval in Table S5. 
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Figure 2: Experimental conditions of the validation runs conducted at 600 rpm, 37°C, and pH of 5.85 
for (a) Experiment A, (b) Experiment B; Purge factor Xp, agitation rate N in rpm, reactor pressure in 
bar, liquid flow rate at 37°C QL in l h-1, substrate gas flow rate at 37°C and atmospheric pressure QG in 
l h-1, and substrate gas composition in % over the fermentation time in h 

3. Results and discussion 

3.1 Parameter estimation and model fit 

The changes detailed in Chapter 2.1.3 Model adaptations” and stepwise model iterations are shown in 

Table 2. The main models discussed in this study are models 3 and 5, representing the models with 

minor and major applied changes to the base model, respectively. The parameters estimated in this 

study are significant with respect to the F-test (Table S4) and have mostly low confidence interval 

errors below 25% (Table S3). Exceptions are the CO uptake affinity constant for CO KS CO, and the H2 

uptake affinity constant for CO2 KCO2, with an error greater than 50% in model 5. A possible reason is 

the small value of KS, CO, as well as the number of parameters affecting CO and H2 uptake directly (5-6 

parameters). In the case of KS, CO, the estimation results are close to the set bounds of the parameter. 

This indicates that the proposed bounds are not optimal. The bounds used in this study are based on 

those of the original model publication, which were set to align with literature findings at the time. 

Maximum uptake rates reportedly vary [30]. Therefore, a change in boundaries may improve the 

accuracy of the model fit, but was not further tested in this study.  
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Table 2: Adapted and modified models, with short description, model number, the squared norm of 
the residuals for the model fits, and the squared norm of the residuals for the model fits with less data, 
absolute, and in % compared to model 1 

Parameter 
First 7 parameters the 
same as C1 [46] without 
𝐾𝐼,𝐸𝑇𝑂𝐻 

First 7 parameters 
the same as C1 [46] 

Adapted Adapted less data 
Adapted with CO2 

dependency less data 

Model Number 
1 2 3 4 5 

2.1.3 Model adaptations 
1-2 1-3 1-4 1-4 1-6 

Squared norm of the 
residuals error all data; only 
1-2 bar 

633; 452 548; 452 387; 287 479; 253 454; 173 

Squared norm of the 
residuals error all data; only 
1-2 bar in % 

100; 100 86; 100 61; 63 76 ;56 72; 38 

Notes 
   only pressure 

condition 1-2 bar 
for fit 

only pressure 
condition 1-2 bar for 
fit 

Model 3 (Figure 3, green line) can approximate the general trends in dataset 1 for biomass, ethanol, 

and acetate concentration as well as CO, CO2, and H2 concentration in the reactor off-gas with sufficient 

accuracy until 1200 h. After this point, a drop in both biomass and ethanol concentration is observed 

in the experiment, which the model cannot predict (Figure 3.A-F green line and black squares). The 

higher CO and CO2 content present in the substrate gas at this time may be a reason for this drop in 

biomass and ethanol concentration. CO inhibition is already implemented in the original model, which 

is why other effects most likely cause the drop in biomass and ethanol concentration. Most likely, CO2 

also has inhibitory effects that are not yet described in the model. This can be observed at 

approximately 600-700 h in dataset 2 under moderate pressure conditions. A decline in biomass and 

ethanol concentration and an increase in acetate concentration followed the increase of CO2 substrate 

gas concentration, whereby the gas flow rate and the other gas components were slightly changed 

(Figure 3 g-j; Figure S1 b). A loss in cell activity as a result of non-ideal reactor conditions caused by 

foam formation resulting from the high gas flow rate greater than 7 l h-1 (GRT 0.26 h), documented at 

this time, is also possible, as foam formation affects various fermentation parameters [51]. The model 

represents the general gas data trend of dataset 2, especially for CO, while overpredicting the amount 

of CO2 and underpredicting the amount of H2 in the reactor off-gas, but can still capture the dynamic 

responses and changes of the gas data used for the estimation (Figure 3.J-L). The model is unable to 

portray the changes in the ethanol-to-acetate ratio under pressure conditions with simultaneous high 

gas flow rates greater than 9 l h-1 (GRT smaller than 0.2 h) and follows a trend line for biomass, ethanol, 

and acetate concentration (Figure 3.G-I). The model only responds to the general increase in gas flow 

rate and pressure, while it cannot depict the changes in the ethanol-to-acetate ratio and biomass 

concentration resulting from variation in the substrate gas composition. This indicates that the acetate 

to ethanol conversion/ethanol production of the model is not accurate for high gas flow, cell retention, 

and pressurized conditions. To address the inability of model 3 to accurately describe the off-gas 

concentration and the ethanol-to-acetate ratio at high gas flow rates, further model adaptations were 

tested. To mitigate the effect of unknown influences of high pressure on the fermentation of C. 

ljungdahlii, model 4 was only fitted to pressure conditions smaller than 3 bar. This resulted in a 

decrease in error (Table 2), but model 4 is still unable to accurately capture the changes in biomass, 

ethanol, and acetate production at moderate pressure conditions and gas flow rates greater than 

7 l h-1. A likely cause is an inhibitory effect of CO2 on the growth rate and the acetate to ethanol 

conversion. This effect was implemented in model 5, as detailed above. 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

10 
 

 

Figure 3: Model predictions and comparison to biomass concentration in g l-1, ethanol and acetate 
concentration in the liquid phase in mmol l-1 and CO, CO2 and H2 concentration in the off-gas in mmol l-1 
for dataset 1 [25] (a-f) and dataset 2 [24] (g-l) over the fermentation time in h; Green line re-estimated 
model with ethanol inhibition (Model 3), blue line modified model with CO2 dependency and inhibition 
(Model 5) 

Model 5 was fitted to datasets 1 and 2 under moderate pressure conditions (1-2 bar). The parameter 

estimation results for model 5 are presented in Table 2, and the model fit is illustrated in Figure 3 (blue 

line). This modification results in a 30% lower squared norm of the residuals error compared to the 

model fit of model 4, which was estimated under the same conditions. Compared to models 3 and 4, 

it provides a better approximation of the dataset trends (Figure 3). Model 5 depicts the biomass and 

acetate concentration trend similar to model 3 and exhibits a slightly worse ethanol concentration 

depiction in the first 600 h of dataset 1 than model 3 until cell retention is activated. Afterwards, all 
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product concentrations are more accurately portrayed by model 5. This model can even portray the 

first decrease in biomass and ethanol concentration observable in dataset 1 after 1200 h as a result of 

the increased CO2 concentration in the substrate gas, but fails to predict the second decrease observed 

without a change to the prior process conditions at 1400 h. This indicates that the second drop is likely 

caused by a loss in activity of the cells, changes in media nutrients, or other unimplemented changes 

of the reactor setup, such as foam formation, or time-dependent changes to the model parameters, 

as detailed above, and cannot be predicted with the current model, as discussed in 2.1.2 Model 

limitations.  

Model 5 also follows the biomass, ethanol, and acetate concentration of dataset 2 under pressure 

conditions smaller than 3 bar more accurately than model 3 (Figure 3.G-L). As mentioned earlier, 

model 3 only responds to some dynamic changes of dataset 2, primarily the increases in gas flow rate 

and pressure. In comparison, model 5 can portray changes in biomass, acetate, and ethanol 

concentration resulting from variations in the substrate gas composition in dataset 2. This shows that 

the changes in product ratio and biomass concentration observed in this experiment are likely caused 

by the effects of changing the substrate gas composition, especially the CO2 content, and can be 

approximated with the model modifications proposed. The biomass and off-gas concentration trends 

of model 5 follow the data trends under pressurized conditions not used for fitting (Figure 3.G-L after 

1400 h). Despite this, the model cannot predict the trend of ethanol and acetate production under 

these conditions. Ethanol concentration is overestimated, and acetate concentration is 

underestimated. For most of the fermentation time, the trend of ethanol concentration follows the 

trend for the biomass concentration. Growth and ethanol production in C. ljungdahlii are reported to 

be closely correlated, which explains this behavior [52]. At pressures above 2 bar, this behavior 

switches from ethanol to acetate. Therefore, the low GRT, high-pressure conditions affect the 

metabolism of the bacteria in a way not implemented into the model. The assumption of ethanol being 

only produced via the AOR route in the original model is based on the findings of Richter et al., who 

reported ethanol to be exclusively produced with this route in a CSTR and bubble column reactor with 

CO as the main gas component [53]. Nevertheless, the acetate conversion and ethanol production can 

change under high-pressure conditions. For example, a production of ethanol via the ALDH route might 

occur. This was tested by implementing a direct production of ethanol out of the substrate gas with 

standard Michaelis-Menten kinetics (data not shown). No significant effect of this change on the model 

performance was observed, which is why this approach was not further investigated. Another theory 

for the observed shift in the ethanol-to-acetate ratio is a possible inhibitory effect of H2 in the liquid 

phase on the production of ethanol [24]. This effect is not described for C. ljungdahlii under mild 

pressure conditions. Demler et al. observed in batch experiments with Acetobacterium woodii that 

higher partial pressures of H2 yield more acetate [54]. This could be the case for C. ljungdahlii under 

high-pressure conditions due to the increased solubility of H₂ and has to be investigated in future 

research. 

A pressure-dependency of the acetate to ethanol conversion rates, and an addition of inhibition by H2-

concentration in the liquid phase were tested for this purpose (models 6 and 7; change of equation 10 

to equation S30 or S31, respectively). Both changes approximated the acetate and ethanol 

concentration under high-pressure conditions with smaller errors than prior model iterations, reducing 

the overall squared norm of the residuals error by about 40% when compared to model 3. However, 

the representation of biomass under high-pressure conditions and the behavior of the acetate 

concentration over the fermentation time of dataset 2 (Figure S2) were less accurate than model 5s 

simulations. These results suggest that further model adjustments are necessary to accurately predict 

high-pressure cultivations . 
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Other untested hypotheses that might cause the shift in the ethanol-to-acetate ratio include a loss in 

microbial activity or a change in death rate. Pressure influences cell activity, genome expression, 

product spectrum, and death rate in other microorganisms [55], [56], so this is likely for C. ljungdahlii. 

For instance, Sivalingam et al. observed an increase in acetate and volatile fatty acid production in 

batch experiments with mixed acetogen cultures when H2 pressure was increased up to 15 bar [57]. 

Oswald et al. observed that C. ljungdahlii produces formic acid under high-pressure conditions above 

7 bar [31]. Formic acid is an intermediate product in the WLP, and its production was also observed by 

Perret et al. in small concentrations up to 0.1 g l-1[24]. Due to this small amount, formic acid production 

was not implemented into the model, as a significant influence is unlikely. Various microorganisms 

react differently to environmental stress conditions and adapt their metabolism accordingly [58]. In 

the study used for parametrization, C. ljungdahlii was cultivated under cell retention, pressure 

conditions for a long time. Hence, there is a high chance that the microorganisms adapted to the 

pressure conditions, which are not suitable for maximum metabolic activity, by reducing ATP usage. 

This resulted in lower ethanol production and yield, because C. ljungdahlii shifted its metabolism to 

maintain biomass and save ATP by reducing ethanol production. Ethanol production in C. ljungdahlii is 

proposed to be an overflow mechanism of high reduction equivalents and acetic acid concentrations 

[53]. While high acetic acid concentrations were produced under high-pressure conditions, the cells 

were exposed to more stress caused by the high pressure, with a possible manifestation in a higher 

death rate, in reduced substrate yields, or in lower reduction equivalent concentration and, 

consequently, lower ethanol production and higher acetic acid production. This indicates a time 

dependency of the kinetic parameters, which cannot be described with the current model setup. One 

solution is a segmented model approach over the fermentation time, meaning re-estimating important 

parameters, such as the death rate or parameters linked to ethanol production, under high-pressure 

conditions, instead of using a single model with the same estimated kinetic parameters or rate 

equations for all fermentation conditions. However, a better general understanding of pressure effects 

on growth and product formation in C. ljungdahlii is necessary for further model modifications. 

The predictions of model 5 for the off-gas concentrations are similar to those of model 3, despite the 

changes to the H2 uptake rate in model 5. The main difference is the H2 concentration in the off-gas 

during the first 300 h of dataset 2, where model 5 portrays a decrease in H2 off-gas concentration, 

observed in the study, but not predicted by model 3. Another difference is the CO2 off-gas 

concentration in the same dataset, which is approximated more accurately by model 5. These changes 

resulted from the changes to the acetate to ethanol conversion rate and the added dependencies of 

CO2 concentration on H2 uptake. All models approximate changes caused by the stirrer failure 

occurring at approximately 700 h cultivation in dataset 1, but predict a shorter influence on the acetate 

concentration than observed. In the model, a stirrer failure is implemented by setting the agitation 

rate to 0 for a given duration with no additional changes. The CSTR reactor is still assumed to be ideally 

mixed. In reality, various changes could influence the microorganisms [59], [60]. Such changes may 

involve cell sedimentation, and several gradients of e.g., temperature, pH, and nutrients, ultimately 

evoking metabolic adaptation, loss of activity, cell starvation, or death. 

3.2 Validation of the model prediction capabilities 

Two experiments were conducted in the same reactor setup used by Perret et al. and compared with 

predictions of model 3 and 5 made for these conditions (see Table S5 and Figure 2 for the detailed 

conditions and Figure 4 for the comparison of the model prediction and experimental data) [24], [25]. 

All models can predict the general trends in both fermentation experiments. The predicted biomass 

concentration follows experiments A and B closely until activation of cell retention. In experiment A, 

this discrepancy might be caused by a stirrer failure shortly after cell retention was enabled. This could 

also explain the overestimation of biomass concentration in the first hours of experiment B (Figure 4). 
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In experiment A, model 3 provides the best approximation of biomass over the whole fermentation 

time, while in experiment B, model 3 predicts nearly double the amount of biomass concentration 

observed under pressurized, cell retention conditions. This is likely caused by the low gas rate and high 

purge factor conditions in experiment A, which are well-described with the unmodified model, while 

the high pressure and low purge factor conditions in experiment B need further model modifications 

to be accurately described. Although model 5 portrays the biomass concentration in experiment B 

more accurately, it cannot predict the decline in biomass concentration observed after 500 h. This is 

caused by the high-pressure conditions of 3.5 bar absolute in this experiment, which are not 

adequately portrayed in the models. 

Model 3 predicts the trend of ethanol concentration more accurately than model 5, which tends to 

underestimate ethanol production. In experiment B, this changes after 500 h at high pressures and CO2 

concentrations, where model 5 matches the observed ethanol concentration closer than model 3, the 

latter predicting a further increase in ethanol concentration, which is not observed during this 

experiment. This indicates that the changes to the acetate conversion positively influence the 

predictive capability of the models under these conditions. In experiment A, predictions for acetate 

concentrations were similar for all models, with all of them overpredicting acetate concentration. An 

exception to this is an increase in acetate concentration after 1100 h observed in experiment A as a 

result of the higher gas flow rate, which is only predicted in model 5. 

All models predict off-gas concentrations for H2, CO, and CO2 similarly. For experiment A, the CO off-

gas concentration is overpredicted, while for experiment B, under pressurized conditions, it is 

underestimated. A similar trend is observed for the H2 off-gas concentration. CO2 off-gas concentration 

is overestimated in both experiments, with a closer portrayal by model 3. The models approximate 

simulated stirrer failures, but predict a shorter influence on biomass and product concentration than 

observed in the experiments, mirroring the model response to the stirrer failure in dataset 1 (Figure 

3). Furthermore, the models do not predict the decline in biomass concentration observed in 

experiment A under batch conditions at the end of the experiment. Nutrient limitations during this 

phase are a possible cause, as no new fresh medium was fed into the reactor. The effect of media 

components is not represented within the models. Likewise, all models overpredict the amount of 

biomass and acetate produced during the initial batch phase of experiment A, caused by a possible 

prolonged adaptation of the microorganisms to the new conditions, resulting in less growth.  
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Figure 4: Model predictions and comparison to biomass concentration in g l-1, ethanol, and acetate 
concentration in mmol l-1 and CO, CO2, and H2 off-gas concentration in mmol l-1 for the validation 
experiments A (a-f)and B (g-l) over the fermentation time in h; Green line re-estimated model with 
ethanol inhibition; Blue line modified model with CO2 dependency and inhibition 

In this study, the variation in gas composition in the data used for parametrization and validation was 

rather small. Experiments were only carried out with H2 contents in the substrate gas ranging from 60-

80% while CO and CO2 content never exceeded 20%. Therefore, validation of the model with CO, CO2, 

and H2 ratios in the substrate gas outside of these ranges is necessary and will be the focus of future 

studies. Although model 5 portrays most of the dynamic profiles of the experiments used to estimate 

and validate the model parameters, it is unable to make accurate predictions under high-pressure 

conditions. Currently, industrial gas fermentation reactors operate at hydrostatic pressure ranges from 
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1 to 3.5 bar inside the reactor, which fall within the scope of the modified model [32]. However, this 

could change in the future, as a higher demand for gas fermentation could necessitate larger reactors. 

One of the largest airlift reactors was operated with a pressure range of 3 to 6 bar, demonstrating the 

need for models capable of predicting high-pressure conditions [61]. In order to optimize the model 

predictions under high-pressure cell retention conditions and to improve the model's predictive 

capabilities in general, it is necessary to better understand how pressure and cell retention affect the 

metabolism, viability, and activity of C. ljungdahlii. Additionally, further optimization of the model 

parameterization and kinetics is necessary to incorporate effects found through future experimental 

research. This requires additional parameterization routines and variation of parameter boundaries, 

as well as further validation runs to ensure the model's predictive accuracy. 

3.3 Predicting the influence of GRT on optimal substrate gas composition for product formation 

To test the model's capability as a tool for future process optimizations, predictions were made with 

the model to determine the influence of GRT on the needed substrate gas composition for high product 

yield. Model 5 was used to predict the influence of gas composition and GRT on the optimal substrate 

gas composition for ethanol, acetate, or biomass production in the aforementioned fermentation 

setup, due to its high accuracy in predicting the dynamic profiles of experiments A and B, as well as 

datasets 1 and 2, under moderate pressure conditions. These compositions were predicted under the 

assumption of full cell retention, a continuous liquid flow rate of 0.066 l h-1, no N2 in the substrate gas, 

pH of 5.85, temperature of 37 °C, pressure of 1 bar, and agitation rate of 600 rpm. The substrate gas 

composition with the highest concentration of biomass, ethanol, or acetate at the corresponding GRT 

is shown in Figure 5.  

Model 5 predicts the optimal ratio of H2, CO, and CO2 in the substrate gas to change from high CO 

content conditions of 50% towards lower CO concentrations of 22% with lower GRT for ethanol and 

biomass production. More CO than CO2 is estimated to be optimal for ethanol and biomass production, 

with the optimal ratio being composed of only CO and H2. The model predicts that these optimal gas 

compositions for maximum biomass and ethanol concentration follow each other closely. Both are 

produced when substrate gas consists of 60 to 80% H2 and 40 to 20% CO, depending on the GRT (Figure 

5). An explanation for this is the close correlation between growth and ethanol production in C. 

ljungdahlii [52]. Acetate is mainly produced with a H2 concentration of 50% and high CO2 contents in 

the substrate gas. The latter rises from 10 to 30% with lower GRT, while CO concentration declines 

simultaneously from 40 to 20% (Figure 5). In general, high CO concentrations are favorable for product 

formation at high GRT, while high H2 concentrations are favorable at low GRT. In contrast, the original 

unmodified model projects high CO concentrations higher than 50% to be advantageous for ethanol 

production even under low GRT conditions and in batch conditions with a GRT of 0.42 h [46], [62]. 

These differences are caused by the variation in pH at which the kinetic parameters were estimated, 

as pH influences the substrate uptake and usage [24]. Model 5 predicts ethanol concentration to rise 

more than tenfold, from 36 to 456 mmol l-1 by lowering the GRT from 3.6 to 0.09 h and a simultaneous 

increase in H2 concentration in the substrate gas (Figure 5). These predictions also indicate that acetate 

concentration rises from 80 to 354 mmol l-1 by lowering the GRT and changing the main carbon source 

of the substrate gas from CO to CO2 (Figure 5). These predictions demonstrate that the substrate gas 

composition and flow rate influence the desired fermentation product and its concentration. This 

shows that control of the fermentation is possible by varying these conditions, and is essential for 

optimizing the fermentation process or to integrate the fermentation process with other CCS and CCU 

technologies. 
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Figure 5: Prediction of model 5 for the optimal substrate gas composition for maximum production of 
CDW (orange squares), ethanol (green circles) and acetate (purple triangles) for different GRTs from 
3.6-0.09 h (gas flow rates from 0.5-20 l -1) in the steady state after 1000 h of cultivation; (a) GRT 
indicated by color in h;(b) Predicted CDW, ethanol and acetate concentration indicated by color in g l-1 
and mmol l-1 respectively; 4 l reactor, 2.2 l liquid volume, full cell retention XP 0.0316, liquid-flow rate 
0.066 l h-1, no inert gas component (N2) in substrate gas, pH of 5.85, temperature of 37 °C, pressure of 
1 bar and agitation rate of 600 rpm; Initial conditions of dataset 1 

3.4 Impact of the study 

The extended models discussed in this study are based on a model from literature with the aim of 

optimizing applicability for high hydrogen substrate gas with a mixed carbon source, cell retention, and 

elevated pressure conditions. The addition of a CO2 dependency on the H2 uptake rate and a CO2 

inhibition of the acetate to ethanol conversion rates enabled a more accurate approximation in model 

5 when compared to model 3, which emphasizes the significant impact of CO2 on the metabolism and 

product formation of C. ljungdahlii.  

The role of CO2 is also reflected in the predictions of model 5. Switching the main carbon source from 

CO to a mixture of CO and CO2 shifts the main product of the fermentation from ethanol to acetate. 

This can be beneficial for future gas fermentation applications, as possible substrate gas sources can 

be selected based on availability and desired product. Therefore, the model can be used to a priori 
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screen the effects of different gas compositions on the fermentation and to determine the feasibility 

of alternative synthesis gas sources. 

Furthermore, this study highlights novel research needs. A detailed understanding of the effects of CO2 

on the product formation and metabolism of C. ljungdahlii is required and should be investigated in 

more depth in future research. Additionally, the model shows that the effect of high pressure on gas 

fermentation is not sufficiently understood beyond enhancing gas solubility. Discrepancies between 

the current model predictions and the data used for parameter estimation and validation suggest 

possible changes in the metabolic activity of C. ljungdahlii at high pressure. Hence, future research 

should also investigate the possibility of inhibition of ethanol production by components that are not 

typically limiting under non-pressurized conditions, such as H₂. The metabolism of C. ljungdahlii at 

high-pressure conditions and the effect of elevated pressure on ethanol production, such as possible 

ethanol production via the ALDH route, should also be investigated to enable implementation into the 

model for improved accuracy in describing high-pressure conditions. 

Nonetheless, advancements to the model made in this work allow for conditions with high hydrogen 

substrate gas, cell retention, and moderate pressures to be described accurately. This enables an 

expanded application of the model as an optimization and prediction tool under such conditions and 

can be a step toward using the model for process control. 

4. Conclusion 
In this study, the literature model proposed by Medeiros et al. was adapted to a different reactor setup 

with different process conditions [24], [25], [46]. Minor modifications to the H2 uptake rate and the 

acetate to ethanol conversion rates enabled moderate pressure and high H2, low CO substrate gas 

content conditions to be described accurately. The modified models sufficiently predicted the dynamic 

off-gas and product concentration trends observed in two experiments conducted within the same 

reactor setup, without having to re-estimate the model's kinetic parameters. Predictions made with 

the model show promising results for using the kinetic model as a prediction and optimization tool.  

Data availability statement 
All the data are openly available on Repo4Cat (https://repository.nfdi4cat.org/) via the link: 

https://hdl.handle.net/21.11165/4cat/XXXX-XXXX. 

CRediT authorship contribution statement 
C.E. Conceptualization; Formal analysis; Investigation; Methodology; Validation; Visualization; 

Writing – original draft 

L.R. Methodology; Writing – original draft 

S.M. Investigation; Methodology; Writing – review & editing  

T.M. Funding acquisition; Project administration; Writing – review & editing 

A.K.  Funding acquisition; Writing – review & editing 

M.W. Project administration, Writing – review & editing 

J.S. Conceptualization; Funding acquisition; Project administration; Resources; Writing – review & 

editing 

Acknowledgment 
The authors thank Elena Hauer and Elias Richter for their support of the experiments, Karl Weiss and 

Dennis Heidenblut for their technical support, and Veronika Holderied for conducting the HPLC 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

18 
 

analysis. The authors acknowledge funding of this work by the Deutsche Forschungsgemeinschaft 

(DFG, German Research Foundation) NSERC-DFG SUSTAIN SA 2666/2-1. The Helmholtz Association is 

acknowledged for the funding of S.M. via the research program “Materials Systems Engineering”, topic 

“Adaptive and Bioinstructive Materials Systems” and the KIT via KIT-Strategy Funding. 

Nomenclature 
Symbol Description Unit 

CL, CO2 Liquid concentration of carbon dioxide mmol l-1 

CL, H2 Liquid concentration of hydrogen mmol l-1 

CL, HAc Liquid concentration of acetate mmol l-1 

CL, i Liquid concentration of component i mmol l-1 

di Stirrer diameter m 

dR Reactor diameter m 

IA Inhibition acetate  

ICO, H2 Inhibition of hydrogen uptake by CO  

ICO, i Inhibition of the uptake of component i by CO  

IE Inhibition ethanol  

KCO2 Affinity constant for CO2 mmol l-1 

kd Death constant h-1 

KH2 Affinity constant of H2 mmol l-1 

KI CO2 AC Inhibition constant of CO2 in the acetate to ethanol conversion mmol l-1 

KR
S, AC, i Affinity constant for acetate in the acetate to ethanol conversion mmol l-1 

KS, i Affinity constant for component i mmol l-1 

N Agitation rate s-1 

Ne Newton number  

ODBioreactor Optical density of the sample  

ODPermeate Optical density of the permeate  

pR Reactor pressure bar 

PV Power input W 

QG Gas volume flow rate m3 s-1 

QL Liquid volume flow rate m3 s-1 

Xp Purge factor - 

XP, Experiment 

A 

Experimentally investigated purge factor  



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

19 
 

Symbol Description Unit 

νH2 Specific uptake rate of H2 mmol g-1 

h-1 

νi Specific uptake rate of component i mmol g-1 

h-1 

νmax, H2, CO2 Maximum specific CO2-dependent uptake rate of H2 mmol g-1 

h-1 

νmax, i Maximum specific uptake rate of component i mmol g-1 

h-1 

νmax
R

Ac, i Maximum specific reaction rate of acetate uptake dependent on 

component i 

mmol g-1 

h-1 

νR
EtOH, i Specific reaction rate of the acetate to ethanol conversion with 

simultaneous use of component i 

mmol g-1 

h-1 

µ Growth rate h-1 

 

Abbreviations  
ADH Alcohol dehydrogenase 
ALDH Aldehyde dehydrogenase 
AOR Aldehyde ferredoxin oxidoreductase 
CCS Carbon capture and storage 
CCU Carbon capture and utilization 
CDW Cell dry weight 
CO Carbon monoxide 
CO2 Carbon dioxide 
CSTR Continuous stirred tank reactor 
EtOH Ethanol 
GRT Gas residence time 
H2 Hydrogen 
H2O Water 
HAc Acetic acid/acetate 
MPC Model Predictive Control 
N2 Nitrogen 
OD Optical density 
WLP Wood-Ljungdahl-Pathway 
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