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We introduce a novel parametrization of B — zz£v form factors relying on partial-wave decompositions

and series expansions in suitable variables. We bound the expansion coefficients through unitarity and
include left-hand cut contributions using established dispersive methods. The two-hadron line shapes
are treated in a model-independent manner using Omnes functions, thus allowing for a data-driven

determination of the expansion parameters. We study the underlying composition of the di-pion system in
B — nrfv decays through fits to differential spectra of BT — z"z~# v measured by the Belle experiment.
In contrast to previous works, we are able to study the full phase space and are not limited to certain
kinematic regions. As a consequence, we extract branching fractions for the different partial waves of
the di-pion system. We find B(B™ — (zt77)s¢v) = 22114 x 107, B(BT - (z*77)pt*v) =
19.673% x 107, and B(B* — (z*77)p¢*v) =3.51]7 x 107, In addition, we derive predictions

for the thus far unobserved B* — 7°7°/*v decay and obtain a sizable branching fraction of

B(B* = 2°2°%*v) = 2.9707 x 107,

DOI: 10.1103/8pm6-9xzq

I. INTRODUCTION

Precise determinations of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements allow for potent tests
of the Standard Model (SM) by overconstraining the CKM
unitarity triangle in global fits [1-3]. A well-established
strategy to determine the magnitude of the matrix
element |V ;| is through measurements of semileptonic
B meson decays, which allow for greater theoretical
control than decays involving purely hadronic final states.
Determinations of |V,,| are extracted by employing
two complementary approaches: the exclusive approach
focuses on the reconstruction of specific decay modes,
while the inclusive approach aims to measure the sum of all
possible final states entailing the same quark-level tran-
sition. Current world averages of |V ;| from exclusive and
inclusive determinations exhibit a disagreement of approx-
imately 3 standard deviations, a longstanding and unre-
solved puzzle to date.

While the most precise exclusive determinations of |V |
are extracted from measurements of B — z£v decays [2],
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measurements of B - wZv and B — p£v have also been
performed. Here, @ and p refer to the @(782) and p(770),
respectively. Interestingly, extractions of |V,,| using
B — wfv decays are compatible with each other, but are
systematically lower than determinations from B — zfv
[4,5]. The situation is further complicated when consider-
ing B — pZv decays where the two most precise measure-
ments are in significant tension with each other [5,6].
Additionally, the result reported by Belle is compatible with
the world average of |V ;| from the B — z£v mode, while
BABAR quoted a lower value. Recently, Belle II reported a
tagged analysis of BY — p°/*v [7] as well as a simulta-
neous analysis of B — z7#*v and BT — p°/*v decays
using an untagged reconstruction method [8]. The branch-
ing fraction extracted in the former is compatible with the
one obtained by Belle, but not with the BABAR measure-
ment. The latter determined |V ;| from the B* — p’¢*v
mode that is compatible with the measurements by BABAR
and Belle. Figure 1 shows the current status of extracted
|V.p| values for B — wfv and B — p¢v from different
experiments, updated in Ref. [9] to the more recent form
factor calculation of Ref. [10].

Charmless semileptonic decays are typically modeled as
a mixture of specific exclusive modes and nonresonant
contributions. Various different approaches are employed
to combine simulated decays of known resonances, namely
B — {7, w,p,n,n'}¢v, with scaled predictions of the total
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FIG. 1. The extracted |V,,;| values for B - wfv and B — pfv

from BABAR [6,11], Belle [5], and Belle II [8], compared to the
values extracted in a global fit of B — #/£v data in Ref. [12] and
the average of inclusive determinations [2]. The B — wfv and
B — pfv values for BABAR and Belle have been updated with
new form factor input in Ref. [9].

inclusive B — X, Zv decay rate. Pythia [13] is then generally
used to hadronize the inclusive spectrum into various
hadronic final states. Both exclusive and inclusive exper-
imental measurements rely on Monte Carlo (MC) simu-
lations to either subtract or include nonresonant B — X, £v
processes, the size of which is highly dependent on the
underlying theoretical description or MC methodology.
Studies that make use of a “hybrid” method, originally
proposed by Ref. [14], to combine exclusive decay modes
with inclusive predictions report a different estimation of
the nonresonant contribution compared to studies that make
use of alternative methods [15]. The modeling of this
inclusive nonresonant component becomes, in turn, one of
the leading sources of systematic error for not only studies
of exclusive modes such as B — pfv [5-8], BT - u"v
[16], and BT — yZ*v [17], but also inclusive determina-
tions of |V,;| [18]. In addition, inclusive analyses meas-
uring kinematic distributions of B — X .Zv decays usually
reconstruct B — XZv decays and subtract the significantly
smaller B — X,Zv component, treated as a background
process, based on estimations from simulation. As a
result, this strategy leads to a non-negligible modeling
uncertainty in recent measurements of B — X .Zv kin-
ematic spectra [19,20].

To improve future measurements of the p° final state and
investigate further unflavored resonances decaying to a
charged-pion pair, we investigate the four-body semilep-
tonic decay B* — n" 27" v. This channel is of particular
interest, since the ztz~ system potentially comprises
narrow resonances, broad states with nontrivial line shapes

as well as interference patterns. Differential kinematic
spectra of the Bt — z"z~¢"v decay have been measured
by the Belle Collaboration in Ref. [21]. By performing a
two-dimensional analysis of the partial branching fractions
as a function of the di-pion invariant mass, M., and the
four-momentum transfer squared, g?, this measurement
allows for a unique probe of the composition of the 7t 7~
system. Using the spectra provided by this measurement,
we study the underlying composition of the di-pion system
by employing model-independent information to explicitly
describe the line shapes of different partial waves.

By virtue of Watson’s theorem [22], we are able to
harness the high precision obtained on the zz scattering
phase shifts by means of Roy equations [23] and available
zz scattering data in Refs. [24-26]. These analyses were
further refined by including data on ete™ — xn~ for the
P wave [27] and differential decay rates in By — J/Wrr
decays for the S wave [28,29]. A previous attempt to
develop a theoretical description of B — zzfv decays
based on heavy-meson chiral perturbation theory that
includes the available information on the line shapes, as
well as left-hand cuts, was limited to the large-g> region of
the phase space [30] and thus cannot be applied directly to
the Belle data. Consequently, we aim to extend the para-
metrization of Ref. [31], developed to study B — Dzfv
decays, which incorporates unitarity bounds on the relevant
form factors and is not limited in the ¢* range. However,
left-hand cuts and inelasticities that are relevant for
B — nnfv decays are not accounted for, which we will
resolve in this work.

The remainder of this paper is structured as follows. We
introduce the fivefold differential decay rate of B — znfv
decays in Sec. II. In Sec. III we present a novel form factor
decomposition with the correct analytic structure for a
three-hadron form factor and derive a parametrization of
the form factors bounded by unitarity. This parametrization
requires a model-independent treatment of the di-pion
invariant-mass spectrum, which is discussed in Sec. IV.
With this parametrization at hand, we perform a fit to the
Belle measurement of Ref. [21] and discuss the results
in Sec. V. Finally, we conclude with a discussion of the
implications of our findings and an outlook on possible
extensions of our work in Sec. VL.

II. THE B — nxfv DECAY RATE
A. Kinematics

The decay B(pp) — #(p1)n(p2)¢(ps)v(p,) is charac-
terized by five independent kinematic quantities: two
invariant masses, ¢> = (p, + p,)?, s = (p; + p2)?, the
azimuthal angle between the di-lepton and di-pion decay
planes y, as well as 0, and 6, the polar angles of the lepton
and the pion in the di-lepton and di-pion rest frames.

To relate the angles to scalar products between the four-
momenta, we introduce the differences
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612 = p1 — P2, Spy = Pe— Py (1)
as well as the projectors
9.9 12 P12uP12y
P = —g,, + :‘]2”, PLY = —g,, +"f, (2)

where p/, = p/ + p5. Computing products between
momenta and projectors, we obtain

p)
q2<p12 . p@ 'Plz) = s(q . p(12) . q) = B¢

4 9
(80 P9 60 ) = 482,

(512 512) = ﬂm
<P12 5fu> = —"cos by,
(q p12) 512) = —cosG (3)

where Az, = A(M3%, g%, s) with the Kéllén function
Mxy.z) =x* +y* +22 =2(xy+yz+2zx),  (4)

while

A(qz,mﬁ,O) m%
pr="—s——=1-—5,
9 7
VA(s. M2, M%) aM2
: :

ﬁﬂ: (5)

Finally, Kpy = ﬂf\/le and Kip = ﬂ”\/ﬂgf.

Furthermore, one additional vector orthogonal to both ¢*
and pf, is required for the form factor decomposition.
We take

.pU2) s
(12) _ plng (4P -8 o) ,
Ty P61, = (q-P“z) ) q) P q", (6)

which fulfills
o)

Y= (1022 = z; sin 0. (7)

1 1
5T

This scalar product is closely related to contractions of the
Levi-Civita tensor with all three meson momenta:

2
. K7,
(leuvpaplfpépg) =S 1_6 Sln29 (8)
Finally, for the computation of the decay rate, the
quantities

=/s\/q* Kek12 G 0,sinf,cosy  (9)
Ape

and

KeKia . :
= iv/s\/q* =“==sin 0, sin 0, siny

N/

e;wpaéfyq 512]7 12 —
(10)

are required.

B. Form factors

With the quantities introduced in the previous section at
hand, we can write down a fully general form factor
decomposition for B — zzfv decays:

(7 (p1)7* (p2)|Vu|B(PB)) = i€upops Pt P39V (s, 1, u1),
(w ()7 (p2)|AB(pg)) = TW> £ (5.1.u)
v k
+P;w P12~7:(1] )(S% u)
q" ik
+?f§f J(s.t.u). (11)

Here, the labels j, k € {0, 4, —} denote the charges of the
pions, which are relevant to determine the respective
isospin relations later on. To simplify the notation, we write

M,k = <”1(P1)” (P2)|V* = A*|B(pg))- (12)

The form factors introduced here differ from those of
Ref. [32] by kinematic factors that can become singular.
Each of the form factors depends on three independent
kinematic variables, making a model-independent des-
cription significantly more cumbersome than in the case
of 1 — 1 transitions.

Various techniques have been applied to parametrize
form factors for B — zz transitions or similar 1 — 2 or
0 — 3 form factors. For the case of y* — 3z dispersive
parametrizations exist [33,34], while K — zz¢v decays
have been studied using reconstruction theorems to obtain
the full s, ¢, and u dependence [35]. For phenomenological
studies of B — Dr/v decays [31] and light-cone sum rule
(LCSR) calculations of B — Kx£¢ [36,37] or B — nntv
[38—41] decays a partial-wave expansion and subsequent
factorization of the g*> and s dependence is employed.
The dispersive treatment of Ref. [30] and the quantum
chromodynamics (QCD) factorization-based calcula-
tions of Refs. [42,43] also include crossed-channel B*
contributions.

In Sec. IlII we introduce a novel parametrization, com-
bining the strength of the dispersive representations intro-
duced in Refs. [30,35] with the unitarity bounds derived
in Ref. [31].
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C. Fivefold differential decay rate
The fivefold differential decay rate is given by

dsFB—»/z/nkfu _
dg®>dsdcos@,dcosf,dy

KijlzﬁfleijkyLym (13)

where the constant factor K ;; and the leptonic tensor L*”
are given by

G%’|Vub|2

K., —_f1"ubl
Jk 76113
4’ 7" Myn

’

q9 ,

LMY = P(q)”w(qz - mLQ”) + 7mf - 5;v5;v - ieﬂl/pﬂq/)§fy’o_'

(14)

Here, G is Fermi’s constant and the symmetrization factor
njis 2 for j, k = 0 and 1 otherwise. Evaluating the product
between hadronic and leptonic tensor yields

MM Ly = 4*Pe ( )+ M< M cos 26,
+ MWsin?0, cos 2y + M sin20

3 ,cos 2y + M, sin20, cos y
+ M(jk) sin, cos y + Méjk) cos b,

(k)

+ M sin 6, siny + M sin 20, sin y

+ MYYsin?0, sin 2;(> : (15)

where the M l(-j *) are combinations of kinematic factors and
form factors:

k p (jk)
= (1-49) (e
+O—%)%W2ﬂ%4mﬁ
q
1 ik ik 1k
_/}f|:1 <|A(J )|2 + |A(L] )|2) —§|A(()J )|2]’
w 1 k k
M = 30 || APP 4P
k ik k),
= peRe(AF AP,
. . . 2 . .
M@:JFMwMWH%MWWWW}

. 2 . . . .
M =2 [% Re(AY AT - Re(A(jk)Aﬁ]k)’*)} ,

. . . 2 . .
Mw_qhmwmmy%mWWMM}
M< =P, Im( )Ai’“ )

where
AVR \/_ X12 sin 9,[g< Jk) | AUR VK1 sin Qﬂf(f"),
. b Vg
. /_/1 ) . )
A(()./k) _ B ‘7:(1116)’ Ag./k) _ /qugjk)- (17)

2V/q

Integrating over cos, and y leaves us with the triple
differential decay rate,

ik
FTp ey GHVil k12Be U _ My (18)
dg*dsdcos®,  Myn; 4°2° [ 3 )

which cannot be further simplified without a parametriza-
tion of the form factors.

III. FORM FACTOR PARAMETRIZATION

The form factors introduced in Sec. II depend on
three independent variables: s, t= (pz—p;)?, and
u = (pp — p»)*. Consequently, they exhibit a complex
analytic structure. As the derivation of a model-indepen-
dent parametrization for such form factors is lengthy, we
split this section into several parts. First, we introduce the
main idea that would be valid in the absence of branch cuts
induced by ¢ or u# channel Bz interactions and ignore
the underlying isospin structure. Next, we introduce
single-variable functions and discuss their general isospin
decomposition, relevant to obtain the correct relations
between BT — zta—¢tv, Bt - 2%2% v, and B° —
7 7% v form factors. Afterwards, we derive recon-
struction theorems relating the single-variable functions
to the original form factors, depending on s, ¢, and u.
Finally, we derive the unitarity bounds and a parametriza-
tion for the full system of single-variable functions.

A. Main idea

For the semileptonic decays under study, we are mainly
interested in the analytic properties in g> and s, while
expressing ¢ and u through more convenient kinematic
variables. To this end, we introduce the helicity angle of the
positively charged pion in the di-pion rest frame,

t—u
cosl, = ———, (19)
ﬂn\/le

and eliminate the remaining dependence on ¢ + u in terms
of s, ¢* and the particle masses.

To discuss the analytic structure and overall kinematic
factors, we study the form factors in 2 — 2 scattering
kinematics, i.e., we consider the process JB — zz. First,
we perform a partial-wave expansion of the form factors in
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cos @,. This step is crucial to disentangle the contribution
of different resonances in the zz spectrum and separate
isovector and isoscalar configurations, as even partial
waves can only contain isoscalar zz configurations, while
the odd ones contain only the isovector ones. The exact
form of the partial-wave expansion depends on the form
factor under question: angular momentum conservation
dictates that | and F, are expanded in simple Legendre
polynomials of cos 8,;, while f and g are expanded in terms
of their derivatives [44]:

Fi(q? s,co80,) = ZPl(cos 0,)F (2 5),

=0
- ZPl(cos 0.)F" (4. 5).
=0

= Pi(cosd,) /D (. ).
=1

9(g*.s.cos0,) = > Pj(cos0,)g"(q?s).  (20)
=1

Fr(q%, s,cos0,)

(g% s,cos0,)

The partial-wave amplitudes F()(¢?,s) all share similar
properties. First, for ¢* < g2 = (Mg — 2M,,)? they are real
in the region 0 < s < 4M2 and, by virtue of Watson’s
theorem, share the same phase along the branch cut starting
at s, = 4M?2 with the elastic 7z scattering phases up to the

respective inelastic thresholds s< ) Following Ref. [45], we
can determine the behavior of the partial-wave amplitudes
at the thresholds s=1s,, ¢*=¢%, and ¢*=¢> =
(Mg + 2M,)?, based on possible kinematic singularities
and angular momentum conservation. Again, the polariza-
tion and parity of the current play a crucial role. For f, g,
and F,, we find a simple scaling with /:

9P s) = (VseBe) " 30 (G ),
(G2 5) = (Vawebe) " FO(G 5),
(@2, 5) = (V2seBe) FY (% 5). (21)

In the case of F; we have to distinguish the S-wave
contribution from the others. For / =0 we deal with a
1" - 070" transition that can only occur with orbital
angular momentum L = 1, while the / = 1 partial wave is a
1™ — 071" transition that can proceed with L =0 or
L = 2. Consequently, we need to include one power of
\/2ge for [ =0, but not for / = 1 [45]. For higher partial
waves, the pattern is the same as for / = 1, i.e., transitions
with orbital angular momentum L =/—1and L =1+ 1
are allowed. Including kinematic singularities at ¢* = g7,
we obtain

FI(¢.s) :f“’)(qz s).
.7:(1) (\//13 ,,) q s) (22)
s

In the following, we generalize the derivation of the
unitarity bounds for the B — D) form factors by Boyd,
Grinstein, and Lebed (BGL) [46—48]. The starting point is
the observation that, in QCD, the two-point function
1Y) (g?) w Of currents J obeys once- or twice-subtracted
dispersion relations. First, we decompose

J q qu J
Y (q?),, = P (¢?) + p (42, (23)

where L and T denote the longitudinal and transversal
components, respectively. The dispersion relations take the
form

J J
Wi = L [y Il ()
L dQ2 7 Jo ( 2 _ Q2)2
217) 2
@), oy ATy 1/ ImH (q
xr (Q%) =3 == 7 . (24
T ( ) 2d(Q2)2 7 Jo (qz QZ)% )
where the ;((LJ}T for b — u currents can be computed at
Q? = 0 in perturbation theory or on the lattice [49]. The

()
L/T

of all possible intermediate hadronic states,

imaginary parts of 1,/ can be expressed through the sum

ImH(L/)T q + ie)

Z / dPS P, (017,1X) (X7, [0),

(25)
where the projection operators are given by
1 Hq”
P =ZPWw and Py = qqf . (26)

One-particle contributions from poles below the first
two-particle threshold to Im H(LJ/)T can directly be evaluated,
and are given in terms of leptonic decay constants f, and

masses Mp:

D] M3}
X (Q%) . Ep :(M%, -0
Y| Yy @

For b — u transitions there are only two subthreshold
poles: the B* resonance contributes to the transverse part of
the vector current, whereas the B meson contributes to the
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longitudinal part of the axial current. Similarly, two-particle
contributions from B decays to ground-state pseudoscalar
mesons will be present for the transverse and longitudinal
part of the vector current. However, these will be neglected
in the following. Omitting any intermediate state in the sum
leads to an inequality, and thus, an upper bound on the
contribution of a given sum of intermediate states to the
two-point function.

In our case, X = Btn"z~ and the three-particle phase-
space measure can be written as

/dPs3 / ds/dcose \/;ﬂ’;, (28)

where s_ = (My — \/¢%)?* depends on ¢* and we inte-
grated over the angles that the form factors do not depend
on. Inserting our form factor decomposition into the phase-
space integrals leads to three contributions: one from g to
H<TV), one from f and F, to H<TA), and one from JF, to H(LA).
Each of these schematically takes the form

IMTI(q? + i€) | goe = > _Ki(q*. 5)|F)(g?. 9)2.  (29)
1

where we integrated over cos 8, and collected all numerical
and kinematic factors in K;(¢?,s). Inserting this into the
dispersion relations for Q%> = 0 leads to a bound of the form

> [Tar [ oM 2P, o0)

To arrive at a compact BGL-type parametrization of the
form factors, we need to disentangle the s and g¢>
dependence. To this end, we switch the order of integration:

/:Odqz/s_ds:/oods/jdqz. (31)
q5 Sy Sy q5

The new, s-dependent lower g’-integration boundary is
given by g% = (Mg + /5)*. We can now write

1 /oo L
> — dsK;(s
23 [ sk

o o Ki(q*s)
® dg* = -
2 (@)

Fi(g*.s)P. (32)

where we split K;(g?, s) into a g*-independent part and a
remainder. The ¢ integration for fixed s can be treated
following the procedure of BGL. This is achieved by
mapping the integration domain in g> onto the unit circle
in the variable z:

) _ Vi

2 ~2 2

- -V —q
(¢ 45) =~ V4 (33)
Vit

¢+ V-

Here, g3 < ¢% determines the value of ¢* corresponding
to z=0. Note that the branch point of the mapping
is the lowest two-particle threshold §% = (M. + M,)?,
depending on the current under consideration. As a
consequence, the integration domain is not the full
unit circle, but only an arc with opening angle o, =
arg z(¢3., g3) [50-53]. We thus rewrite the integral over g°:

Kl(q S)
/% ag? ST VP o)

:%7{%“’#)(2, s)Bp(2)Fi(z,5) . (34)

The outer functions (bg)(z, s) have the same magnitude as
the product of the Jacobian of the variable change and
kinematic factors on the unit circle, but no zeros or poles
inside of the unit disk, while the Blaschke factors Bp
contain subthreshold poles in ¢?. The integrand is free of
kinematic singularities and zeros and thus can be expanded
in polynomials orthogonal on the arc of the unit circle. This
class of polynomials, characterized by the angle «ay, are
known as Szegd polynomials [54] and their appearance in
form factors for semileptonic decays have been first
discussed in Ref. [50]. Expanding the form factors in
terms of the Szegd polynomials p; leads to

ff) (Z S)BF Zall )
Z|a1l 2' (35)

dz,
[ AODLRCLIEE
Inserting the result into Eq. (32), we obtain

F[(Z, S)

10> 33 [Tk 0 6o

In the next step, we need to parametrize the s dependence of
the ag’? (s). Along the branch cut, each of them obeys a

unitarity relation of the form
Disc agf)(s) = lirré <a§f>(s + ie) — ag?(s - ie))
= 2ia\?) (s) sin §,¢16(s — 4M2), (37)

where the 9, are the elastic zz scattering phases for partial
waves with angular momentum [. The solution to this
equation is given by
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at)(s) = Q(s)a’) <s>,

where Q,(s) is the Omnes function [55] and the functions

dg?(s) are real for 4M2 < s < si(rll). In Ref. [31], the
(F)

functions a;;
s independent. Here, we aim to expand and derive a general
parametrization in s, taking into account additional imagi-
nary parts induced above si(r?.

The structure of each integral in the sum is exactly of the
form as for the pion vector form factor, considered in
Ref. [56], and thus we can resort to the methods introduced
there. As we are interested in the region 4M2 < s < sg),
we perform a second conformal mapping,

st =5+ /sty

where s, determines the value of s corresponding to y = 0.
The variable y is real below the inelastic threshold and lies
on the unit circle above. Splitting the integral in Eq. (36)
into two regions, one below the inelastic threshold and one
above, we obtain

dy
2m f 00

(s) have been assumed to be approximately

yl(SaSO) =

) S)‘Z + ZRI
1
(40)

Here, again, (/31(!) (y) are outer functions and E? (y) possible
Blaschke factors. In none of the zz partial waves sub-
threshold poles occur, so the Blaschke factors are trivial.
However, as we will discuss later, in the t-channel P wave
the B* resonance is below the Br threshold. We can now
express

~(F 1 F)
A5'0) = g g 2 4D

(F)

where the expansion coefficients ¢, ;; are real and con-

strained by

Z|C111|2+ZR (42)

Li,j

The remainders R; are the contribution of the integral
of Eq. (36) up to the inelastic threshold and depend
nontrivially on the expansion coefficients. While they
are positive definite and can be simply evaluated numeri-

cally, they are not diagonal in the expansion coefficients

cﬁ]) and mix different powers in the y expansion.

In summary, our partial-wave expanded form factors take
the form

B Q(s)
o (z.5)Br(2)dy () BY (v)
® ch.ijpi 2, O yJ- (43)

D(g* s) =

Note that this representation does not benefit from approxi-
mate knowledge of the scattering phases above the inelastic
threshold nor does it reproduce the correct scaling of
imaginary parts stemming from inelastic channels. To
ameliorate both issues, we introduce a second form inspired
by the Bourrely-Caprini-Lellouch (BCL) parametrization
of the B — n form factors [57]:

- Q(s)
FO (g2, 5) = L
) ) o))
® > il piza)gl(y).  (44)
i.j

Here, the Blaschke factors are replaced by explicit pole
terms and the outer functions in y are dropped. The poly-

nomials q;l) (v) are designed to reproduce the correct

scaling at the inelastic threshold, i.e., Im qg.” (y) «
/Sin — 5271, While this second parametrization has advan-
tageous analytic properties, the unitarity bound becomes
more complicated than in Eq. (42). In particular, there is no
more approximately diagonal structure in the j summation.
However, given that the bound in Eq. (42) is nondiagonal in
the first place, this does not lead to further complications in
practice. A possible future alternative is the inclusion of
above-threshold resonances through explicit pole terms,
following a first study of the pion vector form factor
in Ref. [58].

B. Reconstruction theorems

To include left-hand cuts in s due to - and u-channel
branch cuts, the discussion of the previous section needs to
be extended. The basic derivation follows Refs. [30,35],
while taking the z and y expansion into consideration. Both
works follow the Khuri-Treiman (KT) formalism [59], first
introduced to describe K — 37 decays, to take into account
two-particle rescattering.

In the KT formalism, decay amplitudes are written as a
sum of single-variable amplitudes (SVAs), i.e., amplitudes
that depend on either s, #, or u with prefactors that can
depend on the other variables. The prefactors are combi-
nations of phase-space factors and functions of the helicity
angles, such as the combinations (v/Az.,)'P;(cos@,),
introduced in the previous section. The SVAs themselves
have an explicit dependence on the relevant scattering
phases, i.e., isoscalar or isovector zz [-wave scattering
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phases for the s channel and isospin 1/2 or 3/2 Bz [-wave
scattering phases for the ¢ and u channels.

To obtain SVAs with the correct scattering phases below
the first inelastic threshold, we need to decompose them
by isospin. To this end, we consider the three s-channel

where the isovector and isoscalar amplitudes, M()# and
MO are antisymmetric and symmetric under exchange
of the pions, respectively. In the 7 and u channels, we obtain

1 2

JB — nr scattering amplitudes in the physical basis: Mg = gMW 24 gM(l/ 24,
_ 2 1
M = (@ (p)a= (p2) (@) B+ (p3)). My =5 MO MO,
Mo = (2°(p1)2°(p2)I9*(q)[B* (p3)).
p . Mo, = Y2 ema Y2 e (4
My = (7 (p1)7" (p2)|7*(q)[B7(p3)). (45) IatenB T3 3 ’
To obtain their isospin decomposition, we study the three  and
different possible crossings for 2 — 2 scattering. In the s
channel, we obtain M= MOB2)u,
1 " _ 2 6u L pmm
Mg =g MO MO Mgy =3 MO 3 MO
V2 V2
M 00 = —\/LEM(O)” M o = TM(S/Z)‘” —TM(I/z)’”- (48)
M- = _L MDu, (46) For the physical amplitudes we cross back to J — Bznx
e V2 amplitudes and thus obtain
|
1 1
M = 3 MOH(5) 4+ 2 MOH(s) = 3 3 (GMEP() 4 MOP0(0) 1 (1 )
1
+3 (MOR() = MOP#(E) = (1 > w)),
1 1
Mo == MO +5(2M3/2 )+ MOPH() + (1o ).
1 2
My =M % (MO2(0) = MOR (1) = (1 > w)), (49)

where we indicated the Mandelstam variable relevant to the
final-state pair. However, the amplitudes themselves at this
stage still depend on the other two variables and are not SVAs.

Note that My, is completely symmetric under exchange
of p; and p,, whereas M" is completely antisymmetric.
The remaining amplitude, M, _ is the most complex due to
having mixed symmetry. However, it can be cleanly
decomposed into a symmetric and an antisymmetric part:

M
M= - M5, 50
7 (50)
J
V2
(-0) I-1p/ Al
g (s, t,u) = ks ' P)(cos @ )g (%, )
\/_1021 1 3

g0 (s, 1,u) =

\/— [ even

|
Consequently, going forward we study the symmetric and
antisymmetric amplitudes My, and M" separately.

We are now in the position to write the amplitudes with
definite isospin in terms of SVAs. The amplitudes can be
expressed through the form factors introduced in Sec. II,
which then can be further written in terms of a single
variable. As the tensorial structure multiplying g and F, are
antisymmetric and symmetric with respect to exchange of
any of the hadron momenta, respectively, their decom-
position is straightforward:

S (k1 Piteos o) (31" (6.0 = 377 (67.0)) = (1 ).
1

1
Zici 1P/(cos 0,)3\" (g2 s +§Z< “1P)( c05931)< i () + 2577 (g ,t))+(t<—>u)),
1
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2 - -
]:g o (s,t,u) ZK P(cos @) 1;( s) —{Z(KﬁPl(cosem)(]:glm(qz,t) —]-"S,/z)(qz,t)) + (1< u))
V21 ]
FO 1, u) kL P;(cos@,) FO s) klP;(cos @ FUD (2, 1) 4 2F32 (g2, ) —(tou ),
2 1;11 Fillg* 32@, o) (Fo (@20 +2F5 (@ 0)) = (1 o w)

(51)

[
where we separated the form factors for the 7% and z°2°  p(o) P F (s tu) + TP f(5.1.u)
channels and

_p@ v ) v (1) v ()
=Py (pLF 7 (s, tou) + piaFy (s.tou) + pssFy 7 (s tu))
t(s —u) = (M3 — M3z)(¢* = M3)

cosfp) = p ; + T,(,lz)fm(s, tu)+ T,(,B)f(’)(s, tu)+ T,(,B)f“‘)(s, tu).
t
—1) = (M3 = M2)(q? — M? (53)
cos0, _ M8 = 1) = (M3 = M3)(¢* ~ M3)
“ The s-channel contributions are now given by
. — \/r o — VApidor o — Vi
s BeFP s t— ’ u ’ f(_())'(s) B 1 IP 0 ﬁ,(l) b
1 (S, £, ”) - \/’ ZKS I(COS 7!) 1.1 (q ’S)’
/lBl ZA(Z,M%,M,ZI), )’BZ :/1<M,M%,M721), ZJBflodd
1 .
hoe =Mt @ M7), Ay = Mu.q* M3, (52)  FO (g 1 u) = —%F(l%(qz, s)
The wu-channel crossings are simply obtained by the 1 -(0)
replacements # <> u and 1 <> 2. The summation over even - NG kP (cos 0:)F 1, (4% ),
[ for the function ¢g(® starts at [ = 2 as Pj(x) = 0. BZ I even
For the two transversal form factors of the axial current, (=0).(5) (g f. 1) = R -1 pr 0V F D (42
the situation is complicated by the nontrivial dependence ! (.8, u) \/Em;iks 1(cos6)f; 7 (q",)

of the tensor structures in the decomposition on two out of

the three momenta. While the decomposition proposed in FOO) (s, 1, u) Z k1 P)(cos 6,) 7o ’ (q s),
Sec. Il is advantageous for the physical decay rate, it is less \/61 even

suited for deriving SVAs with clear threshold behavior and (54)
symmetry properties. To resolve this issue, we include the

tensor structures in the derivation: while the f-channel contributions take the form

. V22 . V2 " i

FrOO (s 1) = == (FUP(@0) = 302 0) = 3 D _ktPi(eos o) (FP (2. 1) = FULP (42.1) ).

20 11
1/~ ~ 1 ~
fgoo)’(t)(s fu) = 3 <]:(1%2)(q2,t) —|—2J":(S(§2)( 2 )> —1—72&&(005931)(]—'gflm(qz,t) + 2.7: 3/2 (¢, ))
20 1>]
V2 [~ . V2 .

FU0 (s ) = =55 (FUP @20 = FEP (02 0) =57 D wiPi(eos o) (1P (62 1) = FE (¢0))

20 1>1

1/~ ~ 1 -
FY0 (st = 3 (B (@20 + 2707 (@20) ) + 5 D stPileos 00) (F17 (q2.0) + 2717 (¢ ).
3 3y )

P00, 1) = = Y2 S b Pleos ) (72 .0) - 720,
l

f(OO) N )(S t, u Zk‘g IP/ COS 93])(f11/2 ( ) + 2fl3/2 ( ’t)>' (55)
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For all functions we separated the S-wave contribution and thus all sums over even [ start at / = 2. The u-channel crossings

are related to the 7-channel ones through

Fi (s, t,u) = =F; (s, u,1),

j_.gom,(u)(s, fou) = _7-‘<100>’(’)(s, u, 1),

FEOW (s, 1, u) = —fEOO (s, u, 1),

f(oo),(u)(& tou) = f(00),<t)(s, u,t) (56)

C. Unitarity bounds and parametrization

With these expressions at hand, we can now compute the contributions to the imaginary parts of the two-point functions

l'[<L /)T All three charge configurations contribute to the bounds and we can write
ImI1y), = / dPS; P}, <M+_,,, T Moo M, + M_O,,,Mio,y)
1 w . 3
= 5 dPS3PL/T 2~/\/100,/r/\/(00,v + EM—O,ﬂ —0 v \/_RC(M OyMOO 1/) (57)

Note that the last term drops out after angular integration, as
the —0 and 00 amplitudes are antisymmetric and symmetric
under exchange of the pions, respectively.

The two other terms contain contributions diagonal in
the Mandelstam variables, but also off-diagonal interfer-
ence terms. These interference terms only constitute small
|

d 2041
122887:3 22 21+1 U S

Im 1'[<Tv)(q2 + ie)

perturbations on top of the dominant resonant contributions
in the diagonal terms and, consequently, we neglect them in
the derivation of a suitable form factor parametrization and
take them into account through a modification of the unitarity
bounds. Focusing on the diagonal terms and writing the
u-channel contributions as 7-channel integrals we obtain

L o 3.
(317P +31"F)

diag
I
+/ dt th21+1(|g§1/2)|2+2| (3/2) )2 | )]
Ly
A2, ! it (L #0320
ImIT d —|F =\ F
mil; (q +l€) ding 2567136]4221‘1'1 |:/ S Ky (4' 2.1‘ +4| 2,l|>
+/‘dn<,2’+‘(| PP 42 ) )}
a8
A . 1 S- K ~(0 1 S- K%lJr 3
Im I (2 + de) ; Zm{/ dszﬂsf|f§,3|2+zzl—+l/ ds e |Jf':1z|2 Zl (1 ?
iag 54 >0 s
- =(1/2) %/2 ZHI (3/2))2
+/ de e (IF107 P + 217G +Zzz 1/ PP+ 2|71
[ >0 +

sk2H

+4q221(1+1) [/Ssds

21 +1
‘
+ [Car
a8

nc,

(If (122 4 970 )]
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The #- and u-channel integration boundaries are given by

t+:u+: (MB+M;1)21

= <M,, - \/})2 (59)

In the next step, we derive a parametrization for each of the form factors. To simplify the discussion, we focus on Im H<LA>,

but the other three form factors follow in a similar manner. Inserting the imaginary part of the two-point function into the
dispersion relation yields

t

2N, [odg® [ [s- 1 -~ 3~
4(0) 2 ZT’/ — [/ ds k2! (Z|f<2‘f,)|2 +Z|f§}|2> +/ e (|FLP P 4 2l F5PP)
2 q sy ty
2N, 21 [ 7 Ap! 2y 3 F)
—Z {/ ds f q”i\-d TS\ |7:21| Z\ Fail?
o el
b [Tan e RE (R R 2E ) (60)
a8 7,
|
where  N;!'=51223(21+1), pBz=+2s/t, §%,=  unity. The outer functions are given by
(Mp+ /s)?, and %, = (M, +/1)>. The ¢* integration
can be approached with standard techniques. We express > | (]3(0) (g% s)2 = 7N, d ¢ P>
through Fol20 ;(*L‘(O) oy
N 20+1
2 72 2 ) 2 N2 ¢1¢
V& - =V - b, (a7 9)] = ,
(g, q5) = \/4; = \\;q (61) 7ad 20 ) b
+ _ (1/2) N 20+1
o o B ) = | VI
and replace the kinematic factors depending on g“ through » X (O) dZ @
outer functions: 62, 2 np n3IN,| dg? Nz el
b7 (@ O = | = ra (64)
) b xi— > x2(0) [ dz | &
q _xi_)(pi(q): (2 ) (62)
NCAR where the isospin factors are given by
In contrast to the two-particle case, the x; depend not only 1 3
on particle masses, but also on s or ¢. The full set is given by n0 = R nl = 2’
all values of g> where kinematic factors can vanish:
72 =1 732 =2, (65)
=0,
5 In addition, we need to introduce a Blaschke factor B, to
X2 = (Mp £ +/5)7, cancel the subthreshold pole at g*> = M%:
X34 = (M, £ V1) (63)

g2 qf) — 2(M%. 4})

2 2y _
Some of the x; might be larger than §2, depending on the Br. (" @) = 1—2(¢% q3)z2(M%,43) (66)
kinematic region under consideration. In that case, the
denominator of the corresponding outer function reduces to ~ The bound now takes the form
J
1 o dz -0 = (0 (1 =1
1222 [ 7 a5 § (0 B PO+ 1 B LI, = are(2))
l S+
o (1/2) (1/2) (3/2) (3/2)
b [Tas § T B PP+ B PO 0 ()| (67)
LS
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Here a, = |arg(z(¢2,))| and a, = |arg(z(¢2 )| The 2
integration can now be performed by expressing the form
factors through

x)pi(q?, ay),

Zdl i

( )f/)flq x i
(68)

where the p; are the Szegd polynomials. Note that for
semileptonic decays

(M% +2M2 + ¢* — s + k5 cos0,) < M3  (69)

l\JI'—‘

and thus a, is not necessarily well defined, as z(G?% ;) takes
on real values. To analytically continue the Szegd poly-
nomials in this scenario, we first observe that for ¢ , = 42
the integration covers the full unit circle and the Szegd
polynomials simply reduce to monomials in z. Decreasing
¢~ , further transforms the integration contour to a one-
sided keyhole contour and thus the analytic continuation of
the Szegd polynomials can be obtained by numerical
orthogonalization on the contour and matching to mono-
mials for (ﬁ,, = 4.

Inserting the expansion into the bound and performing
the integral yields

1> Z[/ dﬁ21+1 |dlz|2+|dll|)

+/ depy (PP + 2P| (70)
Ly

As the Br scattering phases are mostly unknown, we
map the whole region of ¢ > ¢, onto the unit circle:

Vi —t—yt — 1 (71)

t,ty) = .
yi(t. to) N N T

The isospin-1/2 P wave has one subthreshold pole, the B*
resonance, that needs to be taken into account through a
Blaschke factor:

yi(t.10) — y,(M3.. 1)

(1/2)
By (t 1) = .
1=y, (t,10)y, (Mg, 1)

(72)

Analogously to the ¢”> dependence we introduce outer
functions, which in this case only depend on the particle
masses:

.f() - O, .551 - (MB —Mﬂ)z. (73)

Consequently, the full 7-dependent outer functions are

7 20+1
A (D) o | dt| (VImTVENTT 74
PO =\ ———) - (74)

dy, bo
Finally, we can write
1/2 1/2) j
dg,i (1) = 2072 (o 3(172) 1/2 Zdlu Vi
¢F211( )

3/2 (3/2)_j

d;,i/ : 3/2 Zdl zj { (75)
]:211

The s-dependent form factors, on the other hand, can be
decomposed into two parts, the Omnes function and a piece
containing crossed-channel contributions and inelasticities:

d)(s) = Q(s)d")(s). (76)

The function ggy(s) is induced by rescattering and real

below threshold, but acquires an imaginary part above. It
can be related to the 7- and u-channel contributions through

dii)(s) = @7 (s) + X)) (s).
(D)
(1 s [ Slnél(s’)dl( s")
X = _ de/ ——— 2 bt 2 7 77
1, (S) 71'/ |Q1(S)S/ S/ ) ( )
where
A dz 21 +1
)+ o) = § Tritea) 7

I
x/ d cos@,P;(cos0,)F,(s,t,u).
-1
(78)

Note that the ﬁgll)(s) represent the contributions of the
t- and wu-channel SVAs to the s-channel partial wave
projections.

Consequently, the only undetermined piece is &E? (s) that
we will express through

S,

ys(s7 SO)

where the position of the first inelastic threshold, s;,,
can differ between partial waves. The outer functions are
given by

2 ds ﬂn’\/ yS(S,O) 2 (|2
Li ‘d_yy (m) )fﬁg,z” (80)

where qﬁg?l is the outer function corresponding to the
Omnes function and is given by
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1 [dyy+ys
2ri )y y—ys

H(50) = e exp ( ln(’Qz()’)D)- (81)

Here, the phase g is arbitrary and by definition |q§g)l (yvs)| =
Q(y,) for |y, =1. Consequently, the outer function
cancels the Omnes factor above the inelastic threshold
up to a relative phase.

The remainders are given by

1 Sin
=30 [asp (14 - ap).

N 1 [ 0) (0% 1) (1).%
Rl,ij:;/ dsﬁ%l“(X;’i)XgJ) +X§,i)X§,/’> )

Combining all pieces, we obtain . 7 [ .
Ry ;= _/ dsﬁ%HlRe@( i) —|—d§ l) (,)> (84)
7 Js, L
lz (S) Zdl ljys (82)
fz il Finally, the terms off diagonal in the s-, 7-, and
Therefore, the bound in Eq. (70) takes the form u-channel contributions must be added and numerically
integrated.
1> Z R, + Z Rz s Rl i The derivation of the bpunds for g, F I and f proceeds in
I the same manner, the differences in kinematic and com-
(1/2) (3/2) binatorial factors lead to slight differences in the outer
+ Z(|d1 ,,‘2 + |d1 1,|2 + |dz i 1P \dz ij |2> (83)  functions. In summary, we can write all outer functions in
Lij the form
|
. . N,| dg?
N 22— 1502 (1 2 Vi dg 2 2160 (12
) = B0 P = m S S S (02 0Pl ()Pl P
2 a 2 2\( 2 2\ 21t
. (g% s)]> = <_Z(q ,0)> (¢° = (Mg —/5)")(q° = (Mg + /5)*)
; 7 (g%, (Mg = /5)*)2(q%, (M + /5)?)
2U41-b
P = <—z(q2 o>) %q — (M= V1) (@ = (M, + V1))
) 7’ (% (M, = V1))z(q*, (M + V1)?)
ys(‘g? 0) 2 —S ¢
o) = (52D (2
Vs(s,54) ¥s(s,0)

st = (2 ) ™ ()

The parameters n, a, b, and ¢ are given in Table I.

An alternative parametrization can be derived for d, <0/ b (s)
by not introducing outer functions in s, but observmg that if
Q(s) > 1/sand &52/1) (s) is at most constant for s — oo, the

s integral is finite and we can expand

TABLE I. Parameters of the outer functions for a given form
factor F.

F x(0) n a b c
g )((TV)(O) ﬁl(l +1) 4 0 1
f )(<TA>(0) H({I+1) 4 2 1
Fi )((TA>(0) 11—2 5 2 0
Fs XEA)(O) 1 4 0 0

(85)

(86)

ZC JQIJ ys

J

where the g, ; are constructed such that the imaginary part at
the inelastic threshold grows like (s — s;,)"*!/2, as required
for two-particle inelasticities. For [ = 0, these are simply the
monomials y,, whereas for [ = 1, the appropriate polyno-
mials are constructed in Ref. [57]. For [ = 2, the polynomials
are given by

_ 72
J~ N+l

g ;(y) =y + ) <(N o

3+2N N+1

(N + 1)2 _j2 N+2>

N+2 (87)

where N is the truncation order. The corresponding unitarity
bound is not diagonal in the expansion coefficients, but
can be computed through numerical integration. A slight
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modification of the form factors f and g is required, as can be
seen from the additional factors of s and ¢ in the numerator of
Eq. (58). These require that the corresponding form factors
are expanded as

- 1
d(s) = ﬁzcﬁiiql,, (v,)- (88)
J

Aside from the correct threshold behavior, this parametriza-
tion has the advantage that the Omnes factor is not canceled
by the corresponding outer function above the inelastic
threshold. Consequently, less terms in the expansion are
required if the input phase describes the decay well.

IV. THE DI-PION INVARIANT-MASS SPECTRUM

The factorization of the B — zz/v form factors into
Omnes function and a remainder encoding the ¢> depend-
ence and inelastic effects allows us to exploit the available
high-precision information on the zz scattering phase
shifts. These have been determined precisely using the
constraints from Roy (and similar) equations [23] and low-
energy nzr scattering measurements as well as, crucially for
the S-wave, K — zztv decays [24-26].

For our study in Sec. V, we restrain our partial-wave
expansion to the S, P, and D waves. F waves and higher are
highly phase-space suppressed and show limited phase motion
atlow s. Furthermore, the first F-wave resonance, the p3(1690)
is highly inelastic and located above our region of interest.

In the following, we summarize the relevant knowledge
on the three partial waves under consideration and their
treatment in our analysis.

A. S wave

The isoscalar S wave is the major source of non-P-wave
B — nntv decays in the p region. Consequently, to
determine the P-wave fraction precisely, a reliable descrip-
tion of the S-wave contribution is crucial. Two poles appear
in the S wave at energies below 1 GeV: the f(500) at
/s = (400-550) — i(200-350) MeV and the f,(980) at
Vs = (980-1010) — i(20-35) MeV, near the KK thresh-
old [60]. Although the pole of the f((500) sits far in the
complex plane and is often quoted with a large uncertainty,
advanced dispersive analyses that do not use Breit-Wigner-
like line shapes narrow the position down to /s =
449722 — (2754 12) MeV [61]. For a more detailed dis-
cussion on the pole determinations, see the review on
Scalar Mesons below 1 GeV in Ref. [60]. The line shape
resulting from the interplay of the two poles gets further
complicated by the onset of large inelasticities due to the
KK channel, resulting in a dip, rather than a peak, near the
f0(980) in processes with a light-quark source. In contrast,
in neutral current decays of B; mesons a narrow peak is
observed, rather than a dip [62,63].

As a consequence, the S wave cannot strictly be treated
as a single-channel problem and we must include the
inelasticities due to the KK channel. To this end, we
employ the results of Refs. [28,29], where the solutions to
the Roy equations of Refs. [24,26] are combined with
S-wave zm — KK scattering data [64-66] and angular
analysis of B(;) = J/War decays by LHCb [62,67]. The
resulting two-channel Omnes matrix can be converted into
an effective single-channel function, which has the correct
elastic zzr S-wave scattering phase below the KK threshold,
but follows the line shape of B — J/¥zx decays at higher
di-pion invariant masses. The largest uncertainty of the line
shape is the pion-to-kaon ratio when converting from the
two-channel to the single-channel case and is controlled by
one parameter: ry = '} (0)/I"2(0), where I}, (0) and I'2(0)
are the light-flavor pion and kaon scalar form factors at
s = 0 [28]. While this treatment is similar to Ref. [30]
it introduces a crucial improvement. In general, the
B — J/Wrr and B — zxfv S-wave form factors do not
share the same phase above the KK threshold. However,
the y expansion develops additional phases above si([?) =
4M?% and, consequently, will account for any difference.

B. P wave

Given the prominence of the p° peak observed in the
Belle analysis [21], having good control over the isovector
P-wave line shape is paramount. To this end, we employ the
high-precision determination of the P-wave phase shift
obtained in Ref. [27]. In this work, the results of the Roy
analysis of Refs. [24,26] are further constrained by data on
the spacelike and timelike pion vector form factor from
F2 [68] and NA7 [69], as well as SND [70,71], CMD-2
[72-75], BABAR [76,77], and KLOE [78-81], respectively.
The resulting phase shift has negligible uncertainty in the
(quasi)elastic region below the 7w threshold and, conse-
quently, we neglect it in our analysis. Uncertainties in the
region above the zw threshold can also be ignored, as any
deviation from the elastic P-wave phase shift is absorbed in
the y expansion of the P-wave form factors, similar to the
S-wave case.

While mixing between the isovector and isoscalar P
wave is only induced through small isospin-breaking
effects, it is enhanced in the region around the p peak
due to the small mass difference between the p and the .
As the w is very narrow, the effect of p—@ mixing can be
included by replacing the isovector P-wave Omnes factor
according to Ql(s) = G, (s)Q1(s) [82,83], where

2\ 4
s feo o Tmg,(s") 1 -2

G(s) =1+~ [ ds' " 7
=g e

M,

(89)
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Here, G, has the correct analytic structure at the 3z thresh-
old, while it is real below and ¢, is a real parameter.
In general, ¢, acquires a small imaginary part through
the presence of the 7’y and other radiative channels [84].
While straightforward to include, at the current level of
precision of the available data on B — zzx£v decays, this
effect cannot be resolved. The constant ¢, determined from
the pion vector form factor in Ref. [27] cannot directly
be applied to B — znfv decays. However, following
Refs. [28,29,85], we rescale €, by the relative isoscalar-
to-isovector ratio between B — zz£v decays and the pion
vector form factor. To this end, we decompose the relevant
quark currents:

1 _ 1 _
Jow = 5 aru = dyd) + ¢ (ayu + dy'd).

1 - 1 -
iytu = 5 (ay*u — dy*d) + > (ay*u + dy*d). (90)

Evidently, the isoscalar-to-isovector ratio is a factor of 3
greater than for the electromagnetic current and we obtain
€, = 3¢EM. As a consequence, the sharp edge seen in the
pion vector form factor will also occur in B — zz£v decays,
but will be further enhanced.

At higher invariant masses, the p’ and p” resonances con-
tribute, yet they predominantly decay to four pions. In prin-
ciple, they could be approximated by continuing the P-wave
phase shift appropriately in the inelastic regime [86], but it is
unclear how reliable this procedure is in the case at hand.
Instead, the y expansion is able to account for effects due to
the higher resonances, should the data require it.

C. D wave

Compared to the other two partial waves, the isoscalar 7z
D wave is relatively simple. In the p region the D-wave phase
increases slowly, but above the KK threshold the phase
motion becomes significant and crosses through /2
around /s ~ 1270 MeV. This fast motion is associated
with the lightest tensor resonance, the f,(1270) with a
well-determined pole location at /s = (1260-1283) —
i(90-110) MeV [60]. The f,(1270) line shape is generally
well described by a Breit-Wigner and is largely elastic, i.e., it
dominantly couples to the zz final state. This can be
understood from the D-wave suppression of inelasticities,
which can only grow as (s —4M%)>/? near threshold.
Furthermore, the next isoscalar tensor resonance, the
f5(1525), dominantly couples to kaons and s§ sources
and we do not expect it to contribute to B — nafv decays
in any significant manner.

While the f,(1270) is located in the inelastic region, we
take the elastic D-wave phase shift from Ref. [25] and
absorb any deviations in the y expansion.1 However, given

'Recently, Ref. [87] improving the description of the D-wave
appeared, allowing for further improvements of our work in the
future.

the largely elastic nature of the f,(1270), the suppressed
onset of inelasticities and the absence of nearby resonances
that couple to the zz final state, this treatment results in an
accurate description of the D-wave line shapes for energies
up to /s~ 1.5 GeV.

In the Belle measurements of Refs. [5,21], a resonant
structure was observed in the region where the f,(1270) is
expected. However, neither analysis could unambiguously
establish the existence of BT — f,(1270)¢"v decays due
to the lack of control over the S and P wave in this energy
region. With our model-independent parametrization we
are able to study the resonant structure seen in Ref. [21] and
determine if it is caused by the f,(1270).

V. FIT TO BELLE DATA

The analysis in Ref. [21] was carried out using a
hadronic tagged reconstruction approach with the complete
Belle dataset comprising a total integrated luminosity of
711 fb~!, collected by the Belle detector at the Y(4S5)
resonance. While the main result is the measurement of the
total branching fraction of B™ — z7z~/Tv decays, the
partial branching fractions are also provided in bins of M,
g*, as well as a two-dimensional analysis in 13 bins of both
variables. These results are unfolded to correct for detector
resolution and acceptance effects. The analysis did not
consider a nonresonant inclusive component, since the
simulated contributions from high-multiplicity mass modes
such as BT — ata 2% v and BT — ntn n°2%*v
decays were found to be negligible after the full selection
criteria were applied. The most significant source of
systematic uncertainty was due to the modeling of signal
processes and the lack of precise knowledge of hadronic
form factors describing specific exclusive decay modes,
ranging between 4.46% to 29.9% in different bins of M,
and g’ for the two-dimensional fit scenario.

Given the large uncertainty and coarse binning of the
data, especially at low M, crossed-channel effects, such
as enhancements from the B* pole, cannot be resolved at
present. Thus, we focus on the s channel only and neglect
the isospin 1/2 and 3/2 #- and u-channel contributions.
Once more precise data becomes available, the full for-
malism of Sec. III B can be applied.

We perform a Bayesian fit to the 2D spectrum with the
EOS software [88], in which we implemented our para-
metrization. We employ the version of the parametrization
implementing the correct scaling at the inelastic threshold
at the price of a more complex form of the unitarity bound,
choosing ¢} =0 GeV? and sy =4M2. The inelastic
thresholds are set to \/s;, = (M, + M) for the P wave,
as well as /s, = 2M for the S and D waves.

In a first step, we scan the range of the expansion
coefficients allowed by unitarity to increase the efficiency
during the actual fit. For the fititself we use uniform priors for
the expansion coefficients, as well as a uniform prior for rg
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between 0.4 and 0.6 [28]. Since we do not have external
constraints on the form factors, our fit is insensitive to |V ;|
and we take the default values in EOS, |V,;,| = 0.0036.
To implement the unitarity bounds we follow Ref. [89]
and implement a penalty term in the likelihood. We

take y\ = V) = 5742 x 10* GeV~2, obtained from
the three-loop calculation of Ref. [90], and assign an
uncertainty of 5%. For the vector current we subtract the
contribution of the B* subthreshold resonance, which
amounts to 9% of the bound.

To study different truncations of the y-z expansion, we
choose three different fit scenarios. In the simplest scenario,
the 2/0/0 scenario, we terminate the y expansion at leading
order, but include two terms in the z expansion for each
form factor. In the 2/1/0 scenario we have two terms in the
z expansion at O(y°) and one at O(y'), while for the 3/2/1
scenario we have three at O(y?), two at O(y'), and one at
O(y?). The three scenarios have 15, 22, and 43 parameters,
compared to the 13 data points, and result in a perfect fits.
In the following, we present our results for the 3/2/1 fit
scenario. Results for the other two scenarios can be found
in the Appendix.

A. Partial branching ratios and M, spectrum

Because of the distinct line shapes of the individual
partial waves, the fit to Belle data effectively distinguishes
the different contributions. For the branching fractions, we
obtain

B(B* = (ztn™)s¢v) = 22114 x 1073,
B(B* — (z77)pt*v) = 19.6738 x 1073,
B(B* = (ztn™)pttv) =3.57]3 x 1075 (91)

The correlations between the different contributions are
small and the D wave is more than 26 away from O.

In Fig. 2 we present our results for the Bt —
atx~¢*tuM,, spectrum and compare it to the 1D meas-
urement of Ref. [21]. Note that coarser 2D data is used in
the fit, yet we find excellent agreement with the finer
binned 1D data. At low invariant masses, near the thresh-
old, the S and P wave are of similar size, while the D wave
is completely negligible, as expected. In the region around
the p peak there is only a small contamination from the S
and D waves, while the p—®» mixing leads to a significant
distortion of the line shape. At current precision, this
structure is not resolved by the available data, but mea-
surements at Belle II and LHCb should be able to observe
such a drastic feature. Near the P-wave inelastic threshold
at (M, + M), there is a significant increase in the uncer-
tainty on the P-wave contribution, demonstrating the power
of our parametrization: despite making assumptions on the
line shape also above the inelastic threshold, the higher
terms in the y expansion smear them out if the data allows.
Similarly, the S-wave uncertainty grows near the KK
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0.0012 3/2/1, P-wave |
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g
~
< 0.0008
=

Y
g
w
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=
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& 0.0004 1
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FIG.2. TheB" — n"n~¢*vM,, spectrum. The different bands
show the contributions of the three partial waves as well as their
sum. The data points are from the 1D measurement of Ref. [21].

threshold, overshooting the uncertainty due to the limited
knowledge of rx. Above 1 GeV, the D wave becomes
relevant and exhibits a Breit-Wigner-like peak for the
f2(1270). In the z* z~ mode there is a sizable background
from the P and the S wave in this region, complicating the
extraction of the D-wave component without the use of
additional angular information.

It is interesting to compare our results to those reported
by Ref. [91], where a fit to the 1D M,, spectrum of
Ref. [21] below 1.02 GeV is performed using a resonance
model for the S and P waves. Reference [91] quotes
AB(BT = (atn7)s¢*v) < 5.1 x 107 at 90% confidence
level for invariant masses below 1.02 GeV, as well as
B(BT — p’¢v) = 14.17}7 x 107, We can directly com-
pare the upper limit on the S wave, for which we obtain
AB(B* = (ntn7)gf"v) < 2.4 x 107> at 90% confidence
level, an improvement by more than a factor of 2. A direct
comparison for the P wave is not possible. While Ref. [91]
also includes p—w mixing, albeit without resorting to the
methods used here, it is unclear up to which value in M, it
can directly be compared to our P-wave results. However,
when comparing the uncertainty of Ref. [91] to our results
in Eq. (91) we find a significant improvement.

B. ¢*> dependence and saturation of the
unitarity bounds

In Fig. 3 we compare the > spectrum we obtain from the
fit to the 2D measurement of Ref. [21] to the respective 1D
measurement. Overall, the agreement is excellent and the
uncertainties on the obtained spectra are under control.
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FIG. 3. The Bt — 272~ ¢"v ¢ spectrum. The different bands
show the contributions of the three partial waves as well as their
sum. The data points are from the 1D measurement of Ref. [21].

While the high-g® region is saturated by the P-wave
contribution, the other two partial waves contribute sig-
nificantly below 12 GeV2. At ¢*> = 0 GeV?, the sum of
S and D waves is approximately of the same size as the
P-wave contribution. The P wave and, to a lesser extent the D
wave, quickly rise below the kinematic endpoint, which is
due to the presence of the B* pole in the vector form factor.
This behavior is similar to the case of B — Dz decays,
where the B} pole in the vector form factor is the closest to
the kinematic region [31]. Furthermore, in contrast to a
narrow-width treatment of the p, the P-wave spectrum
extends to ¢* values beyond (M — M,)* ~20.3 GeV-.

Figures 4 and 5 show the saturation of the unitarity
bounds in the three different fit scenarios, which is
calculated by determining the right-hand side of the
relevant versions of Eq. (70) for the transverse components
of the vector and axial currents. While the saturation
remains largely unaffected by increasing the expansion
order from 2/0/0 to 2/1/0, the inclusion of more terms in
the z expansion for the 3/2/1 scenario increases the
saturation significantly. A similar behavior is observed in
the fits of Ref. [53] for form factors where only LCSR
calculations at low g2, but no lattice-QCD (LQCD) results
at high ¢ are available. In this case, the saturation increases
with increasing truncation order of the z expansion and
finally peaks near 1. Consequently, the unitarity bounds are
saturated and, given that |z| <1 in the decay region,
increasing the truncation order does not change the
resulting form factors. While we are not dealing with an
extrapolation here, as the Belle data covers both low- and

EOS v1.0.13

— 2/0/0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Saturation 1~

FIG. 4. Saturation of the 1~ unitarity bound due to the B — zx
form factors for the three different fit scenarios discussed in the
text. The shaded regions correspond to 68% confidence intervals.
The scale of the y axis is given in arbitrary units.

high-g> regions, the coarse binning in ¢> and large
uncertainties leave significant freedom for the expansion
coefficients and, thus, we observe a similar behavior. The
main effect of the unitarity bounds in this work is the
restriction of the allowed shape of the ¢ spectrum, as can
be seen from the significantly smaller uncertainty of the ¢>
spectrum that we obtain, compared to the measured
spectrum provided by Belle.

The slightly lower saturation of the 1~ saturation
compared to the 17 saturation is due to the B* contribu-
tion to the 1~ unitarity bound. The uncertainties on the

susceptibilities ;((TA ) and )((TV)

sharp edge at 1.

smear out of the otherwise

EOS v1.0.13

— 2/0/0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Saturation 17

FIG. 5. Saturation of the 17 unitarity bound due to the B — zx
form factors for the three different fit scenarios discussed in the
text. The shaded regions correspond to 68% confidence intervals.
The scale of the y axis is given in arbitrary units.
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Given the relatively large saturation, a global fitof » — u
form factors extending the one performed in Ref. [12] could
result in reduced uncertainties for less well known form
factors, such as those for B — n#v, B — 1'fv, or B — wfv
decays.

C. Predictions for B* — 7°z"¢*v decays

With our results for BT — z"z~¢*v decays at hand,
we can obtain predictions for the yet unobserved BT —
72972°¢* v decay. Only the S and D waves contribute, as the
7%72° system is always in an isoscalar configuration,
resulting in a sizable branching fraction of

B(B* — n°2°%¢*v) = 2.9709 x 1073, (92)

comparable to the BT — n£*v and Bt — /£ *v branching
fractions [60]. While the relative precision is still limited, it
is similar in size to that of the B — #’£v branching fraction.
In addition, we obtain the M, and ¢*> dependence of the
decay rate, shown in Figs. 6 and 7, respectively.

The absence of the P-wave contribution leads to a clearly
visible f,(1270) peak in the M, spectrum, in contrast to
the #t7~ mode, making the 7°z° channel a promising,
yet experimentally difficult, discovery channel for B —
f2(1270)¢*v decays. The region of M,, <1 GeV is
dominated by the S wave and measurements in this region
will help to establish the size without resorting to angular
information. The ¢? spectrum falls off towards high ¢, but
a sizable contribution remains in the region beyond the
B — X_.Zv end point.
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3/2/1, total
3/2/1, S-wave
3/2/1, D-wave

0.00008 -

0.00006

0.00004 4

dB(B* — 1970+ v) /d M, [GeV ™!

0.00002 A

0.00000

06 05 10 12 14
M [GeV]
FIG. 6. The B* — n°2°¢*v M, spectrum. The different bands

show the contributions of the two contributing partial waves as
well as their sum.
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3/2/1, S-wave
3/2/1, D-wave

dB(B* — 1) /d¢? [GeV~?

10 15 20 25
¢ [GeV?]

o

FIG. 7. The B* — n%2%*v ¢* spectrum. The different bands
show the contributions of the two contributing partial waves as
well as their sum.

VI. IMPLICATIONS AND OUTLOOK

The model-independent form factor parametrization
introduced here allows us, for the first time, to extract
the contributions of different partial waves to B — zzfv
decays. The branching fractions obtained in Eq. (91)
together with the M, spectrum shown in Fig. 2 allow
for an assessment of the discrepancy between the deter-
minations of the B — p’Zv branching fractions obtained by
BABAR, Belle, and Belle II: we find only moderate S- and
D-wave components below the p peak and, consequently, it
is likely that the BABAR and Belle II measurements
overestimate the nonresonant B — nnv background, low-
ering the observed BT — p’/*v branching fraction. Our
P-wave branching fraction is somewhat larger, but com-
patible with the B* — p°/*v branching fraction reported
by Belle [5]. We confirm the evidence for a second
resonance in the z 7~ spectrum near 1.3 GeV, correspond-
ing to the D-wave f,(1270) resonance, at the 2o level.

Isospin relations allow us to obtain predictions for
B’ > 77 72°%*v and B* — 2°2°/*v decays. Only odd
partial waves contribute to the former and, consequently,
it is almost entirely made up by P-wave contributions, i.e.,
B = p~¢*v decays, at low invariant masses. Thus, there
are negligible additional zz contributions in the p~ region.
The latter is an experimentally challenging process, but
the sizable branching fraction we obtain shows that it can
be of importance as a background to interesting measure-
ments such as BY — yZ v or a substantial signal compo-
nent for inclusive B — X,Zv decays. Our form factor
parametrization and fit results will allow us to incorporate
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this component into future analyses, reducing uncertainties
related to this mode.

To obtain competitive and theoretically clean determi-
nations of |V ;| in B —» zzfv decays, significant work is
required, both from theory and experiment. On the theo-
retical side, determinations of the P-wave form factors
beyond the narrow-width limit need to mature. To this end,
the LCSR calculations of Refs. [38—41] need to be revisited
using the form factor parametrization presented here and
combined with LQCD calculations, which have recently
been calculated at unphysical pion masses [92], but will
become available at the physical point in the next years.
Furthermore, constraining the S and D waves through
LCSR calculations is feasible; see Ref. [37] for the Kz S
wave in B — Kz¢ decays. Experimentally, it would be
advantageous to study kinematic distributions beyond the
g*> and M,, spectra. A measurement of the asymmetry of
the cos@, spectrum as a function of M, is directly
sensitive to the interference between S and P waves.
Given the knowledge of their relative phase, this would
allow for an improved separation of the two components.
Furthermore, an explicit incorporation of the line shapes
and form factors presented in this work directly into
experimental analyses is paramount to the upcoming
LHCb B — p°/*v measurement [93] and future mea-
surements at Belle II. Using hadronization algorithms or
simulations following phase-space distributions to obtain
these two-body contributions otherwise leads to systematic
uncertainties that are both large and difficult to assess.

Our results for B¥ — 7°2°¢*v present additional phys-
ics opportunities. While the uncertainties for the S and D
waves are still sizable, a measurement of the BT —
2°72°¢*v with a precision better than 25% would already
reduce the uncertainties on the two components. A meas-
urement of partial branching fractions in the two regions
M, €2M,,1.0GeV] and M, €[1.0GeV,1.5 GeV]
could effectively constrain the S-wave contribution and
strengthen the evidence for B — f,(1270)¢v decays.

The parametrization presented here can be directly
applied to processes of interest beyond B — zz£v decays.
One promising process is the study of semileptonic D —
Kn¢v decays, measured to high precision at BES III
[94-96]. This would allow for an improved determination
of the K scattering phase shifts, especially for the S wave,
in a similar manner to the S-wave zz phase shift in K —
zrtv decays [35]. Furthermore, in this case the crossed-
channel contributions cannot simply be neglected, given
the precision of the available data, providing an ideal
scenario to study their impact. In this context, alternative
treatments of the left-hand cut, e.g., with conformal trans-
formations similar to the ones discussed in Ref. [97], could
be investigated. The determined phase shifts can then be
used to improve the description of By — Kzxv decays, a
background to |V, | determinations in B; — K£v decays at
LHCD [98], as well as rare B — KzZ¢ decays.

Further applications are also in reach: By extending our
parametrization to the multichannel case it will be applicable
to S-wave B — Dx/v decays, improving over Ref. [31], and
can control the uncertainty of the S-wave contributions in
B, - DKZv decays, relevant for future measurements at
LHCb [99]. This extension would also allow us to get a
better handle on the uncertainty of the zz S wave above the
kaon threshold. If measurements of B — KKZv decays at
Belle II and LHCb become available, a simultaneous study
could be conducted, allowing for a better isolation of the
B — f((980)¢v contribution. However, the K™K~ channel
alone would be insufficient due to an admixture of iso-
vector and isoscalar KK contributions. To this end, either
the K$K or K=K final states need to be measured as well,
or pure isovector B — nnfv decays need to be studied
(cf. the analogous discussion for B® — J/¥{zn, KK} in
Ref. [100]). These measurements would not only improve
our understanding of isoscalar BT — f(980)¢"v and
Bt — f,(1270)¢"v decays, but also their isovector rela-
tives, B — a,(980)Zv and B — a,(1320)¢v decays.

While this work only presents a necessary first step into
the study of semileptonic decays with two or more final-
state hadrons, the results we obtained have far-reaching
consequences for determinations of |V,,| in B — pfv
decays and the description of inclusive B — X, v decays
as a whole. It opens the door to model-independent studies
that will improve our understanding of fundamental param-
eters and light-meson spectroscopy.
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APPENDIX: FURTHER FIT SCENARIOS

In this appendix we present the M, and ¢* spectra for
lower truncation orders.

1. 2/0/0

The first scenario does not include any terms in the y
expansion and thus the line shapes are entirely fixed by the
respective Omnes functions. In comparison to the 3/2/1
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FIG.8. TheB"™ - n"n~¢TvM,, spectrumin the2/0/0 scenario.
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FIG.9. The Bt — nta~¢*v ¢” spectrum in the 2/0/0 scenario.

scenario in Fig. 2, the 2/0/0 M ,, spectrum in Fig. 8 shows
only minor differences. The most important one is the
smaller uncertainty of the P wave near the inelastic
threshold, due to the absence of terms in the y expansion.

The major difference in the g> spectrum shown in Fig. 9
is the faster dropoff of the full spectrum towards lower
values of ¢> compared to Fig. 3. This is driven primarily by
a flatter slope of the S-wave ¢> spectrum.
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FIG. 10. The BT - atn ¢TvM,, spectrum in the 2/1/0
scenario.
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2.2/1/0

Adding a term in the y expansion leads to an increase in
the uncertainty of the P-wave contribution in the M,
spectrum, shown in Fig. 10, around the inelastic threshold,
similar to the 3/2/1 scenario, but not quite as pronounced.
Compared to the 2/0/0 scenario, the S-wave contribution

is reduced, with a slight increase of the P-wave
contribution.

The ¢? spectrum shown in Fig. 11 remains unchanged
with respect to the 2/0/0 scenario which can be traced back
to a similar saturation of the unitarity bounds, displayed in
Figs. 4 and 5.
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