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We introduce a novel parametrization of B → ππlν form factors relying on partial-wave decompositions
and series expansions in suitable variables. We bound the expansion coefficients through unitarity and
include left-hand cut contributions using established dispersive methods. The two-hadron line shapes
are treated in a model-independent manner using Omnès functions, thus allowing for a data-driven
determination of the expansion parameters. We study the underlying composition of the di-pion system in
B → ππlν decays through fits to differential spectra of Bþ → πþπ−lþνmeasured by the Belle experiment.
In contrast to previous works, we are able to study the full phase space and are not limited to certain
kinematic regions. As a consequence, we extract branching fractions for the different partial waves of
the di-pion system. We find BðBþ → ðπþπ−ÞSlþνÞ ¼ 2.2þ1.4

−1.0 × 10−5, BðBþ → ðπþπ−ÞPlþνÞ ¼
19.6þ2.8

−2.7 × 10−5, and BðBþ → ðπþπ−ÞDlþνÞ ¼ 3.5þ1.3
−1.1 × 10−5. In addition, we derive predictions

for the thus far unobserved Bþ → π0π0lþν decay and obtain a sizable branching fraction of
BðBþ → π0π0lþνÞ ¼ 2.9þ0.9

−0.7 × 10−5.

DOI: 10.1103/8pm6-9xzq

I. INTRODUCTION

Precise determinations of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements allow for potent tests
of the Standard Model (SM) by overconstraining the CKM
unitarity triangle in global fits [1–3]. A well-established
strategy to determine the magnitude of the matrix
element jVubj is through measurements of semileptonic
B meson decays, which allow for greater theoretical
control than decays involving purely hadronic final states.
Determinations of jVubj are extracted by employing
two complementary approaches: the exclusive approach
focuses on the reconstruction of specific decay modes,
while the inclusive approach aims to measure the sum of all
possible final states entailing the same quark-level tran-
sition. Current world averages of jVubj from exclusive and
inclusive determinations exhibit a disagreement of approx-
imately 3 standard deviations, a longstanding and unre-
solved puzzle to date.
While the most precise exclusive determinations of jVubj

are extracted from measurements of B → πlν decays [2],

measurements of B → ωlν and B → ρlν have also been
performed. Here, ω and ρ refer to the ωð782Þ and ρð770Þ,
respectively. Interestingly, extractions of jVubj using
B → ωlν decays are compatible with each other, but are
systematically lower than determinations from B → πlν
[4,5]. The situation is further complicated when consider-
ing B → ρlν decays where the two most precise measure-
ments are in significant tension with each other [5,6].
Additionally, the result reported by Belle is compatible with
the world average of jVubj from the B → πlν mode, while
BABAR quoted a lower value. Recently, Belle II reported a
tagged analysis of Bþ → ρ0lþν [7] as well as a simulta-
neous analysis of B0 → π−lþν and Bþ → ρ0lþν decays
using an untagged reconstruction method [8]. The branch-
ing fraction extracted in the former is compatible with the
one obtained by Belle, but not with the BABAR measure-
ment. The latter determined jVubj from the Bþ → ρ0lþν
mode that is compatible with the measurements by BABAR
and Belle. Figure 1 shows the current status of extracted
jVubj values for B → ωlν and B → ρlν from different
experiments, updated in Ref. [9] to the more recent form
factor calculation of Ref. [10].
Charmless semileptonic decays are typically modeled as

a mixture of specific exclusive modes and nonresonant
contributions. Various different approaches are employed
to combine simulated decays of known resonances, namely
B → fπ;ω; ρ; η; η0glν, with scaled predictions of the total
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inclusive B → Xulν decay rate. Pythia [13] is then generally
used to hadronize the inclusive spectrum into various
hadronic final states. Both exclusive and inclusive exper-
imental measurements rely on Monte Carlo (MC) simu-
lations to either subtract or include nonresonant B → Xulν
processes, the size of which is highly dependent on the
underlying theoretical description or MC methodology.
Studies that make use of a “hybrid” method, originally
proposed by Ref. [14], to combine exclusive decay modes
with inclusive predictions report a different estimation of
the nonresonant contribution compared to studies that make
use of alternative methods [15]. The modeling of this
inclusive nonresonant component becomes, in turn, one of
the leading sources of systematic error for not only studies
of exclusive modes such as B → ρlν [5–8], Bþ → μþν
[16], and Bþ → γlþν [17], but also inclusive determina-
tions of jVubj [18]. In addition, inclusive analyses meas-
uring kinematic distributions of B → Xclν decays usually
reconstruct B → Xlν decays and subtract the significantly
smaller B → Xulν component, treated as a background
process, based on estimations from simulation. As a
result, this strategy leads to a non-negligible modeling
uncertainty in recent measurements of B → Xclν kin-
ematic spectra [19,20].
To improve future measurements of the ρ0 final state and

investigate further unflavored resonances decaying to a
charged-pion pair, we investigate the four-body semilep-
tonic decay Bþ → πþπ−lþν. This channel is of particular
interest, since the πþπ− system potentially comprises
narrow resonances, broad states with nontrivial line shapes

as well as interference patterns. Differential kinematic
spectra of the Bþ → πþπ−lþν decay have been measured
by the Belle Collaboration in Ref. [21]. By performing a
two-dimensional analysis of the partial branching fractions
as a function of the di-pion invariant mass, Mππ , and the
four-momentum transfer squared, q2, this measurement
allows for a unique probe of the composition of the πþπ−
system. Using the spectra provided by this measurement,
we study the underlying composition of the di-pion system
by employing model-independent information to explicitly
describe the line shapes of different partial waves.
By virtue of Watson’s theorem [22], we are able to

harness the high precision obtained on the ππ scattering
phase shifts by means of Roy equations [23] and available
ππ scattering data in Refs. [24–26]. These analyses were
further refined by including data on eþe− → πþπ− for the
P wave [27] and differential decay rates in BðsÞ → J=Ψππ
decays for the S wave [28,29]. A previous attempt to
develop a theoretical description of B → ππlν decays
based on heavy-meson chiral perturbation theory that
includes the available information on the line shapes, as
well as left-hand cuts, was limited to the large-q2 region of
the phase space [30] and thus cannot be applied directly to
the Belle data. Consequently, we aim to extend the para-
metrization of Ref. [31], developed to study B → Dπlν
decays, which incorporates unitarity bounds on the relevant
form factors and is not limited in the q2 range. However,
left-hand cuts and inelasticities that are relevant for
B → ππlν decays are not accounted for, which we will
resolve in this work.
The remainder of this paper is structured as follows. We

introduce the fivefold differential decay rate of B → ππlν
decays in Sec. II. In Sec. III we present a novel form factor
decomposition with the correct analytic structure for a
three-hadron form factor and derive a parametrization of
the form factors bounded by unitarity. This parametrization
requires a model-independent treatment of the di-pion
invariant-mass spectrum, which is discussed in Sec. IV.
With this parametrization at hand, we perform a fit to the
Belle measurement of Ref. [21] and discuss the results
in Sec. V. Finally, we conclude with a discussion of the
implications of our findings and an outlook on possible
extensions of our work in Sec. VI.

II. THE B → ππlν DECAY RATE

A. Kinematics

The decay BðpBÞ → πðp1Þπðp2ÞlðplÞνðpνÞ is charac-
terized by five independent kinematic quantities: two
invariant masses, q2 ¼ ðpl þ pνÞ2, s ¼ ðp1 þ p2Þ2, the
azimuthal angle between the di-lepton and di-pion decay
planes χ, as well as θl and θπ, the polar angles of the lepton
and the pion in the di-lepton and di-pion rest frames.
To relate the angles to scalar products between the four-

momenta, we introduce the differences

FIG. 1. The extracted jVubj values for B → ωlν and B → ρlν
from BABAR [6,11], Belle [5], and Belle II [8], compared to the
values extracted in a global fit of B → πlν data in Ref. [12] and
the average of inclusive determinations [2]. The B → ωlν and
B → ρlν values for BABAR and Belle have been updated with
new form factor input in Ref. [9].
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δ12 ¼ p1 − p2; δlν ¼ pl − pν ð1Þ

as well as the projectors

PðqÞ
μν ¼ −gμν þ

qμqν
q2

; Pð12Þ
μν ¼ −gμν þ

p12;μp12;ν

s
; ð2Þ

where pμ
12 ¼ pμ

1 þ pμ
2. Computing products between

momenta and projectors, we obtain

q2
�
p12 · PðqÞ · p12

�
¼ s
�
q · Pð12Þ · q

�
¼ λBl

4
;�

δlν · PðqÞ · δlν
�
¼ q2β2l;�

δ12 · Pð12Þ · δ12
�
¼ sβ2π;�

p12 · PðqÞ · δlν
�
¼ κlν

2
cos θl;�

q · Pð12Þ · δ12
�
¼ κ12

2
cos θπ; ð3Þ

where λBl ¼ λðM2
B; q

2; sÞ with the Källén function

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ; ð4Þ

while

βl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðq2; m2

l; 0Þ
q

q2
¼ 1 −

m2
l

q2
;

βπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;M2

π;M2
πÞ

p
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
π

s

r
: ð5Þ

Finally, κlν ¼ βl
ffiffiffiffiffiffiffi
λBl

p
and κ12 ¼ βπ

ffiffiffiffiffiffiffi
λBl

p
.

Furthermore, one additional vector orthogonal to both qμ

and pμ
12 is required for the form factor decomposition.

We take

Tð12Þ
μ ¼ Pð12Þ

μν δν12 −
ðq · Pð12Þ · δ12Þ
ðq · Pð12Þ · qÞ Pð12Þ

μν qν; ð6Þ

which fulfills

δμ12T
ð12Þ
μ ¼ −ðTð12ÞÞ2 ¼ s

κ212
λBl

sin2 θπ: ð7Þ

This scalar product is closely related to contractions of the
Levi-Civita tensor with all three meson momenta:

ðiϵμνρσpν
1p

ρ
2p

σ
BÞ2 ¼ s

κ212
16

sin2θπ: ð8Þ

Finally, for the computation of the decay rate, the
quantities

δμlνT
ð12Þ
μ ¼ ffiffiffi

s
p ffiffiffiffiffi

q2
q

κlνκ12
λBl

sin θπ sin θl cos χ ð9Þ

and

iϵμνρσδ
μ
lνq

νδρ12p
σ
12 ¼ i

ffiffiffi
s

p ffiffiffiffiffi
q2

q
κlνκ12
2
ffiffiffiffiffiffiffi
λBl

p sin θl sin θπ sin χ

ð10Þ

are required.

B. Form factors

With the quantities introduced in the previous section at
hand, we can write down a fully general form factor
decomposition for B → ππlν decays:

hπjðp1Þπkðp2ÞjVμjBðpBÞi ¼ iϵμνρσpν
Bp

ρ
1p

σ
2g

ðjkÞðs; t; uÞ;
hπjðp1Þπkðp2ÞjAμjBðpBÞi ¼ Tð12Þ

μ fðjkÞðs; t; uÞ
þ PðqÞ

μν pν
12F

ðjkÞ
1 ðs; t; uÞ

þ qμ

q2
F ðjkÞ

2 ðs; t; uÞ: ð11Þ

Here, the labels j; k∈ f0;þ;−g denote the charges of the
pions, which are relevant to determine the respective
isospin relations later on. To simplify the notation, we write

Mμ
jk ¼ hπjðp1Þπkðp2ÞjVμ − AμjBðpBÞi: ð12Þ

The form factors introduced here differ from those of
Ref. [32] by kinematic factors that can become singular.
Each of the form factors depends on three independent
kinematic variables, making a model-independent des-
cription significantly more cumbersome than in the case
of 1 → 1 transitions.
Various techniques have been applied to parametrize

form factors for B → ππ transitions or similar 1 → 2 or
0 → 3 form factors. For the case of γ� → 3π dispersive
parametrizations exist [33,34], while K → ππlν decays
have been studied using reconstruction theorems to obtain
the full s, t, and u dependence [35]. For phenomenological
studies of B → Dπlν decays [31] and light-cone sum rule
(LCSR) calculations of B → Kπll [36,37] or B → ππlν
[38–41] decays a partial-wave expansion and subsequent
factorization of the q2 and s dependence is employed.
The dispersive treatment of Ref. [30] and the quantum
chromodynamics (QCD) factorization-based calcula-
tions of Refs. [42,43] also include crossed-channel B�
contributions.
In Sec. III we introduce a novel parametrization, com-

bining the strength of the dispersive representations intro-
duced in Refs. [30,35] with the unitarity bounds derived
in Ref. [31].
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C. Fivefold differential decay rate

The fivefold differential decay rate is given by

d5ΓB→πjπklν

dq2 ds d cos θπ d cos θl dχ
¼ Kjkκ12βlM

μ
jkM

�;ν
jk Lμν; ð13Þ

where the constant factor Kjk and the leptonic tensor Lμν

are given by

Kjk ¼
G2

FjVubj2
47π6M3

Bnjk
;

Lμν ¼ PðqÞ;μνðq2 −m2
lÞ þ

qμqν

q2
m2

l − δμlνδ
ν
lν − iϵμνρσqρδlν;σ:

ð14Þ
Here, GF is Fermi’s constant and the symmetrization factor
njk is 2 for j, k ¼ 0 and 1 otherwise. Evaluating the product
between hadronic and leptonic tensor yields

Mμ
jkM

�;ν
jk Lμν ¼ q2βl

�
MðjkÞ

1 þMðjkÞ
2 cos 2θl

þMðjkÞ
3 sin2θl cos 2χ þMðjkÞ

4 sin 2θl cos χ

þMðjkÞ
5 sin θl cos χ þMðjkÞ

6 cos θl

þMðjkÞ
7 sin θl sin χ þMðjkÞ

8 sin 2θl sin χ

þMðjkÞ
9 sin2θl sin 2χ

�
; ð15Þ

where the MðjkÞ
i are combinations of kinematic factors and

form factors:

MðjkÞ
1 ¼

�
1 −

βl
4

��
jAðjkÞ

k j2 þ jAðjkÞ
⊥ j2

�

þ
�
1 −

βl
2

�
jAðjkÞ

0 j2 þm2
l

q2
jAðjkÞ

t j2;

MðjkÞ
2 ¼ βl

�
1

4

�
jAðjkÞ

k j2 þ jAðjkÞ
⊥ j2

�
−
1

2
jAðjkÞ

0 j2
�
;

MðjkÞ
3 ¼ 1

2
βl

�
jAðjkÞ

⊥ j2 − jAðjkÞ
k j2

�
;

MðjkÞ
4 ¼ βlReðAðjkÞ

0 AðjkÞ;�
k Þ;

MðjkÞ
5 ¼ −2

�
ReðAðjkÞ

0 AðjkÞ;�
⊥ Þ þm2

l

q2
ReðAðjkÞ

t AðjkÞ;�
k Þ

�
;

MðjkÞ
6 ¼ 2

�
m2

l

q2
ReðAðjkÞ

t AðjkÞ;�
0 Þ − ReðAðjkÞ

⊥ AðjkÞ;�
k Þ

�
;

MðjkÞ
7 ¼ −2

�
ImðAðjkÞ

0 AðjkÞ;�
k Þ −m2

l

q2
ImðAðjkÞ

t AðjkÞ;�
⊥ Þ

�
;

MðjkÞ
8 ¼ −βl ImðAðjkÞ

0 AðjkÞ;�
⊥ Þ;

MðjkÞ
9 ¼ βl ImðAðjkÞ

⊥ AðjkÞ;�
k Þ; ð16Þ

where

AðjkÞ
⊥ ¼

ffiffiffi
s

p
κ12
4

sin θπgðjkÞ; AðjkÞ
k ¼

ffiffiffi
s

p
κ12ffiffiffiffiffiffiffi
λBl

p sin θπfðjkÞ;

AðjkÞ
0 ¼

ffiffiffiffiffiffiffi
λBl

p

2
ffiffiffiffiffi
q2

p F ðjkÞ
1 ; AðjkÞ

t ¼
ffiffiffiffiffi
q2

q
F ðjkÞ

2 : ð17Þ

Integrating over cos θl and χ leaves us with the triple
differential decay rate,

d3ΓB→πjπklν

dq2 ds d cos θπ
¼ G2

FjVubj2
M3

Bnjk

κ12βl
46π5

�
MðjkÞ

1 −
MðjkÞ

2

3

�
; ð18Þ

which cannot be further simplified without a parametriza-
tion of the form factors.

III. FORM FACTOR PARAMETRIZATION

The form factors introduced in Sec. II depend on
three independent variables: s, t ¼ ðpB − p1Þ2, and
u ¼ ðpB − p2Þ2. Consequently, they exhibit a complex
analytic structure. As the derivation of a model-indepen-
dent parametrization for such form factors is lengthy, we
split this section into several parts. First, we introduce the
main idea that would be valid in the absence of branch cuts
induced by t or u channel Bπ interactions and ignore
the underlying isospin structure. Next, we introduce
single-variable functions and discuss their general isospin
decomposition, relevant to obtain the correct relations
between Bþ → πþπ−lþν, Bþ → π0π0lþν, and B0 →
π−π0lþν form factors. Afterwards, we derive recon-
struction theorems relating the single-variable functions
to the original form factors, depending on s, t, and u.
Finally, we derive the unitarity bounds and a parametriza-
tion for the full system of single-variable functions.

A. Main idea

For the semileptonic decays under study, we are mainly
interested in the analytic properties in q2 and s, while
expressing t and u through more convenient kinematic
variables. To this end, we introduce the helicity angle of the
positively charged pion in the di-pion rest frame,

cos θπ ¼
t − u

βπ
ffiffiffiffiffiffiffi
λBl

p ; ð19Þ

and eliminate the remaining dependence on tþ u in terms
of s, q2 and the particle masses.
To discuss the analytic structure and overall kinematic

factors, we study the form factors in 2 → 2 scattering
kinematics, i.e., we consider the process JB → ππ. First,
we perform a partial-wave expansion of the form factors in
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cos θπ. This step is crucial to disentangle the contribution
of different resonances in the ππ spectrum and separate
isovector and isoscalar configurations, as even partial
waves can only contain isoscalar ππ configurations, while
the odd ones contain only the isovector ones. The exact
form of the partial-wave expansion depends on the form
factor under question: angular momentum conservation
dictates that F 1 and F 2 are expanded in simple Legendre
polynomials of cos θπ , while f and g are expanded in terms
of their derivatives [44]:

F 1ðq2; s; cos θπÞ ¼
X
l¼0

Plðcos θπÞF ðlÞ
1 ðq2; sÞ;

F 2ðq2; s; cos θπÞ ¼
X
l¼0

Plðcos θπÞF ðlÞ
2 ðq2; sÞ;

fðq2; s; cos θπÞ ¼
X
l¼1

P0
lðcos θπÞfðlÞðq2; sÞ;

gðq2; s; cos θπÞ ¼
X
l¼1

P0
lðcos θπÞgðlÞðq2; sÞ: ð20Þ

The partial-wave amplitudes FðlÞðq2; sÞ all share similar
properties. First, for q2 < q2− ≡ ðMB − 2MπÞ2 they are real
in the region 0 < s < 4M2

π and, by virtue of Watson’s
theorem, share the same phase along the branch cut starting
at sþ ¼ 4M2

π with the elastic ππ scattering phases up to the

respective inelastic thresholds sðlÞin . Following Ref. [45], we
can determine the behavior of the partial-wave amplitudes
at the thresholds s ¼ sþ, q2 ¼ q2−, and q2 ¼ q2þ ≡
ðMB þ 2MπÞ2, based on possible kinematic singularities
and angular momentum conservation. Again, the polariza-
tion and parity of the current play a crucial role. For f, g,
and F 2, we find a simple scaling with l:

gðlÞðq2; sÞ ¼ 	 ffiffiffiffiffiffiffi
λBl

p
βπ

l−1g̃ðlÞðq2; sÞ;

fðlÞðq2; sÞ ¼ 	 ffiffiffiffiffiffiffi
λBl

p
βπ

l−1f̃ðlÞðq2; sÞ;

F ðlÞ
2 ðq2; sÞ ¼ 	 ffiffiffiffiffiffiffi

λBl
p

βπ

lF̃ ðlÞ

2 ðq2; sÞ: ð21Þ

In the case of F 1 we have to distinguish the S-wave
contribution from the others. For l ¼ 0 we deal with a
1þ → 0−0þ transition that can only occur with orbital
angular momentum L ¼ 1, while the l ¼ 1 partial wave is a
1þ → 0−1− transition that can proceed with L ¼ 0 or
L ¼ 2. Consequently, we need to include one power offfiffiffiffiffiffiffi
λBl

p
for l ¼ 0, but not for l ¼ 1 [45]. For higher partial

waves, the pattern is the same as for l ¼ 1, i.e., transitions
with orbital angular momentum L ¼ l − 1 and L ¼ lþ 1

are allowed. Including kinematic singularities at q2 ¼ q2�,
we obtain

F ð0Þ
1 ðq2; sÞ ¼ F̃ ð0Þ

1 ðq2; sÞ;

F ðlÞ
1 ðq2; sÞ ¼ 1

λBl

	 ffiffiffiffiffiffiffi
λBl

p
βπ

lF̃ ðlÞ

1 ðq2; sÞ: ð22Þ

In the following, we generalize the derivation of the
unitarity bounds for the B → Dð�Þ form factors by Boyd,
Grinstein, and Lebed (BGL) [46–48]. The starting point is
the observation that, in QCD, the two-point function
ΠðJÞðq2Þμν of currents J obeys once- or twice-subtracted
dispersion relations. First, we decompose

ΠðJÞðq2Þμν ¼ PðqÞ
μν ΠðJÞ

T ðq2Þ þ qμqν
q2

ΠðJÞ
L ðq2Þ; ð23Þ

where L and T denote the longitudinal and transversal
components, respectively. The dispersion relations take the
form

χðJÞL ðQ2Þ≡ dΠðJÞ
L

dQ2
¼ 1

π

Z
∞

0

dq2
ImΠðJÞ

L ðq2Þ
ðq2 −Q2Þ2 ;

χðJÞT ðQ2Þ≡ 1

2

d2ΠðJÞ
T

dðQ2Þ2 ¼
1

π

Z
∞

0

dq2
ImΠðJÞ

T ðq2Þ
ðq2 −Q2Þ3 ; ð24Þ

where the χðJÞL=T for b → u currents can be computed at

Q2 ¼ 0 in perturbation theory or on the lattice [49]. The

imaginary parts of ΠðJÞ
L=T can be expressed through the sum

of all possible intermediate hadronic states,

ImΠðJÞ
L=Tðq2 þ iϵÞ ¼ 1

2

X
X

Z
dPSPμν

L=Th0jJμjXihXjJνj0i;

ð25Þ

where the projection operators are given by

Pμν
T ¼ 1

3
PðqÞ;μν and Pμν

L ¼ qμqν

q2
: ð26Þ

One-particle contributions from poles below the first

two-particle threshold to ImΠðJÞ
L=T can directly be evaluated,

and are given in terms of leptonic decay constants fp and
masses Mp:

χðJÞL ðQ2Þ
����
1-pt

¼
X
p

M2
pf2p

ðM2
p −Q2Þ2 ;

χðJÞT ðQ2Þ
����
1-pt

¼
X
p

M2
pf2p

ðM2
p −Q2Þ3 : ð27Þ

For b → u transitions there are only two subthreshold
poles: the B� resonance contributes to the transverse part of
the vector current, whereas the B meson contributes to the
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longitudinal part of the axial current. Similarly, two-particle
contributions from B decays to ground-state pseudoscalar
mesons will be present for the transverse and longitudinal
part of the vector current. However, these will be neglected
in the following. Omitting any intermediate state in the sum
leads to an inequality, and thus, an upper bound on the
contribution of a given sum of intermediate states to the
two-point function.
In our case, X ¼ Bþπþπ− and the three-particle phase-

space measure can be written as

Z
dPS3 ¼

Z
s−

sþ
ds
Z

1

−1
d cos θπ

ffiffiffiffiffiffiffi
λBl

p
βπ

256π3q2
; ð28Þ

where s− ¼ ðMB −
ffiffiffiffiffi
q2

p
Þ2 depends on q2 and we inte-

grated over the angles that the form factors do not depend
on. Inserting our form factor decomposition into the phase-
space integrals leads to three contributions: one from g to

ΠðVÞ
T , one from f and F 1 to Π

ðAÞ
T , and one from F 2 to Π

ðAÞ
L .

Each of these schematically takes the form

ImΠðq2 þ iϵÞjBππ ¼
X
l

Klðq2; sÞjF̃lðq2; sÞj2; ð29Þ

where we integrated over cos θπ and collected all numerical
and kinematic factors in Klðq2; sÞ. Inserting this into the
dispersion relations forQ2 ¼ 0 leads to a bound of the form

χð0Þ > 1

π

X
l

Z
∞

q2þ
dq2

Z
s−

sþ
ds

Klðq2; sÞ
ðq2Þn jF̃lðq2; sÞj2: ð30Þ

To arrive at a compact BGL-type parametrization of the
form factors, we need to disentangle the s and q2

dependence. To this end, we switch the order of integration:

Z
∞

q2þ
dq2

Z
s−

sþ
ds ¼

Z
∞

sþ
ds
Z

∞

q̃2þ
dq2: ð31Þ

The new, s-dependent lower q2-integration boundary is
given by q̃2þ ¼ ðMB þ ffiffiffi

s
p Þ2. We can now write

χð0Þ > 1

π

X
l

Z
∞

4M2
π

dsK̂lðsÞ

⊗
Z

∞

q̃2þ
dq2

K̃lðq2; sÞ
ðq2Þn jF̃lðq2; sÞj2; ð32Þ

where we split Klðq2; sÞ into a q2-independent part and a
remainder. The q2 integration for fixed s can be treated
following the procedure of BGL. This is achieved by
mapping the integration domain in q2 onto the unit circle
in the variable z:

zðq2; q20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2þ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2þ − q20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2þ − q2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2þ − q20

p : ð33Þ

Here, q20 < q̂2þ determines the value of q2 corresponding
to z ¼ 0. Note that the branch point of the mapping
is the lowest two-particle threshold q̂2þ ¼ ðMBð�Þ þMπÞ2,
depending on the current under consideration. As a
consequence, the integration domain is not the full
unit circle, but only an arc with opening angle αs ¼
arg zðq̃2þ; q20Þ [50–53]. We thus rewrite the integral over q2:

Z
∞

q̃2þ
dq2

K̃lðq2; sÞ
ðq2Þn jF̃lðq2; sÞj2

¼ 1

2i

I
dz
z
jϕðlÞ

F ðz; sÞBFðzÞF̃lðz; sÞj2: ð34Þ

The outer functions ϕðlÞ
F ðz; sÞ have the same magnitude as

the product of the Jacobian of the variable change and
kinematic factors on the unit circle, but no zeros or poles
inside of the unit disk, while the Blaschke factors BF

contain subthreshold poles in q2. The integrand is free of
kinematic singularities and zeros and thus can be expanded
in polynomials orthogonal on the arc of the unit circle. This
class of polynomials, characterized by the angle αs, are
known as Szegő polynomials [54] and their appearance in
form factors for semileptonic decays have been first
discussed in Ref. [50]. Expanding the form factors in
terms of the Szegő polynomials pi leads to

F̃lðz; sÞ ¼
1

ϕðlÞ
F ðz; sÞBFðzÞ

X
i

aðFÞl;i ðsÞpiðz; αsÞ;I
dz
iz

jϕðlÞ
F ðz; sÞBFðzÞF̃lðz; sÞj2 ¼

X
i

jaðFÞl;i ðsÞj2: ð35Þ

Inserting the result into Eq. (32), we obtain

χð0Þ > 1

2π

X
l;i

Z
∞

sþ
dsK̂lðsÞjaðFÞl;i ðsÞj2: ð36Þ

In the next step, we need to parametrize the s dependence of

the aðFÞl;i ðsÞ. Along the branch cut, each of them obeys a
unitarity relation of the form

Disc aðFÞl;i ðsÞ ¼ lim
ϵ→0

�
aðFÞl;i ðsþ iϵÞ − aðFÞl;i ðs − iϵÞ

�

¼ 2iaðFÞl;i ðsÞ sin δle−iδlθðs − 4M2
πÞ; ð37Þ

where the δl are the elastic ππ scattering phases for partial
waves with angular momentum l. The solution to this
equation is given by
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aðFÞl;i ðsÞ ¼ ΩlðsÞãðFÞl;i ðsÞ;

ΩlðsÞ ¼ exp

�
s
π

Z
∞

sþ
ds0

δlðs0Þ
s0ðs0 − sÞ

�
; ð38Þ

where ΩlðsÞ is the Omnès function [55] and the functions

ãðFÞl;i ðsÞ are real for 4M2
π < s < sðlÞin . In Ref. [31], the

functions ãðFÞl;i ðsÞ have been assumed to be approximately
s independent. Here, we aim to expand and derive a general
parametrization in s, taking into account additional imagi-

nary parts induced above sðlÞin .
The structure of each integral in the sum is exactly of the

form as for the pion vector form factor, considered in
Ref. [56], and thus we can resort to the methods introduced

there. As we are interested in the region 4M2
π ≤ s ≤ sðlÞin ,

we perform a second conformal mapping,

ylðs; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðlÞin − s

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðlÞin − s0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðlÞin − s

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðlÞin − s0

q ; ð39Þ

where s0 determines the value of s corresponding to y ¼ 0.
The variable y is real below the inelastic threshold and lies
on the unit circle above. Splitting the integral in Eq. (36)
into two regions, one below the inelastic threshold and one
above, we obtain

χð0Þ > 1

2πi

X
l;i

I
dy
y
jϕ̃ðlÞ

F ðyÞB̃ðlÞ
F ðyÞãðFÞl;i ðsÞj2 þ

X
l

Rl:

ð40Þ

Here, again, ϕ̃ðlÞ
F ðyÞ are outer functions and B̃ðlÞ

F ðyÞ possible
Blaschke factors. In none of the ππ partial waves sub-
threshold poles occur, so the Blaschke factors are trivial.
However, as we will discuss later, in the t-channel P wave
the B� resonance is below the Bπ threshold. We can now
express

ãðFÞl;i ðsÞ ¼
1

ϕ̃ðlÞ
F ðyÞB̃ðlÞ

F ðyÞ
X
j

cðFÞl;ij y
j; ð41Þ

where the expansion coefficients cðFÞl;ij are real and con-
strained by

χð0Þ >
X
l;i;j

jcðFÞl;ij j2 þ
X
l

Rl: ð42Þ

The remainders Rl are the contribution of the integral
of Eq. (36) up to the inelastic threshold and depend
nontrivially on the expansion coefficients. While they
are positive definite and can be simply evaluated numeri-
cally, they are not diagonal in the expansion coefficients

cðFÞl;ij and mix different powers in the y expansion.

In summary, our partial-wave expanded form factors take
the form

F̃ðlÞðq2; sÞ ¼ ΩlðsÞ
ϕðlÞ
F ðz; sÞBFðzÞϕ̃ðlÞ

F ðyÞB̃ðlÞ
F ðyÞ

⊗
X
i;j

cðFÞl;ijpiðz; αsÞyj: ð43Þ

Note that this representation does not benefit from approxi-
mate knowledge of the scattering phases above the inelastic
threshold nor does it reproduce the correct scaling of
imaginary parts stemming from inelastic channels. To
ameliorate both issues, we introduce a second form inspired
by the Bourrely-Caprini-Lellouch (BCL) parametrization
of the B → π form factors [57]:

F̃ðlÞðq2; sÞ ¼ ΩlðsÞ
ð1 − s=M2

RÞϕðlÞ
F ðz; sÞBFðzÞ

⊗
X
i;j

cðFÞl;ijpiðz; αsÞqðlÞj ðyÞ: ð44Þ

Here, the Blaschke factors are replaced by explicit pole
terms and the outer functions in y are dropped. The poly-

nomials qðlÞj ðyÞ are designed to reproduce the correct

scaling at the inelastic threshold, i.e., Im qðlÞj ðyÞ ∝ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin − s

p 2lþ1. While this second parametrization has advan-
tageous analytic properties, the unitarity bound becomes
more complicated than in Eq. (42). In particular, there is no
more approximately diagonal structure in the j summation.
However, given that the bound in Eq. (42) is nondiagonal in
the first place, this does not lead to further complications in
practice. A possible future alternative is the inclusion of
above-threshold resonances through explicit pole terms,
following a first study of the pion vector form factor
in Ref. [58].

B. Reconstruction theorems

To include left-hand cuts in s due to t- and u-channel
branch cuts, the discussion of the previous section needs to
be extended. The basic derivation follows Refs. [30,35],
while taking the z and y expansion into consideration. Both
works follow the Khuri-Treiman (KT) formalism [59], first
introduced to describe K → 3π decays, to take into account
two-particle rescattering.
In the KT formalism, decay amplitudes are written as a

sum of single-variable amplitudes (SVAs), i.e., amplitudes
that depend on either s, t, or u with prefactors that can
depend on the other variables. The prefactors are combi-
nations of phase-space factors and functions of the helicity
angles, such as the combinations ð ffiffiffiffiffiffiffi

λBl
p

βπÞlPlðcos θπÞ,
introduced in the previous section. The SVAs themselves
have an explicit dependence on the relevant scattering
phases, i.e., isoscalar or isovector ππ l-wave scattering
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phases for the s channel and isospin 1=2 or 3=2 Bπ l-wave
scattering phases for the t and u channels.
To obtain SVAs with the correct scattering phases below

the first inelastic threshold, we need to decompose them
by isospin. To this end, we consider the three s-channel
JB → ππ scattering amplitudes in the physical basis:

Mμ
þ− ¼ hπþðp1Þπ−ðp2ÞjJμðqÞjBþðp3Þi;

Mμ
00 ¼ hπ0ðp1Þπ0ðp2ÞjJμðqÞjBþðp3Þi;

Mμ
−0 ¼ hπ−ðp1Þπ0ðp2ÞjJμðqÞjB0ðp3Þi: ð45Þ

To obtain their isospin decomposition, we study the three
different possible crossings for 2 → 2 scattering. In the s
channel, we obtain

Mμ
J−Bþ→πþπ− ¼ 1

2
Mð1Þ;μ þ 1ffiffiffi

6
p Mð0Þ;μ;

Mμ
J−Bþ→π0π0

¼ −
1ffiffiffi
6

p Mð0Þ;μ;

Mμ
J−B0→π−π0

¼ −
1ffiffiffi
2

p Mð1Þ;μ; ð46Þ

where the isovector and isoscalar amplitudes, Mð1Þ;μ and
Mð0Þ;μ, are antisymmetric and symmetric under exchange
of the pions, respectively. In the t and u channels, we obtain

Mμ
J−πþ→πþB− ¼ 1

3
Mð3=2Þ;μ þ 2

3
Mð1=2Þ;μ;

Mμ
J−π0→π0B− ¼ 2

3
Mð3=2Þ;μ þ 1

3
Mð1=2Þ;μ;

Mμ
J−π0→π−B̄0 ¼

ffiffiffi
2

p

3
Mð3=2Þ;μ −

ffiffiffi
2

p

3
Mð1=2Þ;μ; ð47Þ

and

Mμ
J−π−→π−B− ¼ Mð3=2Þ;μ;

Mμ
J−π0→π0B− ¼ 2

3
Mð3=2Þ;μ þ 1

3
Mð1=2Þ;μ;

Mμ
J−πþ→π0B̄0 ¼

ffiffiffi
2

p

3
Mð3=2Þ;μ −

ffiffiffi
2

p

3
Mð1=2Þ;μ: ð48Þ

For the physical amplitudes we cross back to J → Bππ
amplitudes and thus obtain

Mμ
þ− ¼ 1

2
Mð1Þ;μðsÞ þ 1ffiffiffi

6
p Mð0Þ;μðsÞ − 1

3

�
2Mð3=2Þ;μðtÞ þMð1=2Þ;μðtÞ þ ðt ↔ uÞ

�

þ 1

3

�
Mð3=2Þ;μðtÞ −Mð1=2Þ;μðtÞ − ðt ↔ uÞ

�
;

Mμ
00 ¼ −

1ffiffiffi
6

p Mð0Þ;μðsÞ þ 1

3

�
2Mð3=2Þ;μðtÞ þMð1=2Þ;μðtÞ þ ðt ↔ uÞ

�
;

Mμ
−0 ¼

1ffiffiffi
2

p Mð1Þ;μðsÞ þ
ffiffiffi
2

p

3

�
Mð3=2Þ;μðtÞ −Mð1=2Þ;μðtÞ − ðt ↔ uÞ

�
; ð49Þ

where we indicated the Mandelstam variable relevant to the
final-state pair. However, the amplitudes themselves at this
stage still depend on the other two variables and are not SVAs.
Note that Mμ

00 is completely symmetric under exchange
of p1 and p2, whereas M

μ
−0 is completely antisymmetric.

The remaining amplitude,Mμ
þ− is the most complex due to

having mixed symmetry. However, it can be cleanly
decomposed into a symmetric and an antisymmetric part:

Mμ
þ− ¼ Mμ

−0ffiffiffi
2

p −Mμ
00: ð50Þ

Consequently, going forward we study the symmetric and
antisymmetric amplitudes Mμ

00 and Mμ
−0 separately.

We are now in the position to write the amplitudes with
definite isospin in terms of SVAs. The amplitudes can be
expressed through the form factors introduced in Sec. II,
which then can be further written in terms of a single
variable. As the tensorial structure multiplying g andF 2 are
antisymmetric and symmetric with respect to exchange of
any of the hadron momenta, respectively, their decom-
position is straightforward:

gð−0Þðs; t; uÞ ¼ 1ffiffiffi
2

p
X
l odd

κl−1s P0
lðcos θπÞg̃ð1Þl ðq2; sÞ −

ffiffiffi
2

p

3

X
l

�
κl−1t P0

lðcos θB1Þ
�
g̃ð1=2Þl ðq2; tÞ − g̃ð3=2Þl ðq2; tÞ

�
− ðt ↔ uÞ

�
;

gð00Þðs; t; uÞ ¼ −
1ffiffiffi
6

p
X
l even

κl−1s P0
lðcos θπÞg̃ð0Þl ðq2; sÞ þ 1

3

X
l

�
κl−1t P0

lðcos θB1Þ
�
g̃ð1=2Þl ðq2; tÞ þ 2g̃ð3=2Þl ðq2; tÞ

�
þ ðt ↔ uÞ

�
;
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F ð−0Þ
2 ðs; t; uÞ ¼ 1ffiffiffi

2
p
X
l odd

κlsPlðcos θπÞF̃ ð1Þ
2;l ðq2; sÞ −

ffiffiffi
2

p

3

X
l

�
κltPlðcos θB1Þ

�
F̃ ð1=2Þ

2;l ðq2; tÞ − F̃ ð3=2Þ
2;l ðq2; tÞ

�
þ ðt ↔ uÞ

�
;

F ð00Þ
2 ðs; t; uÞ ¼ −

1ffiffiffi
6

p
X
l even

κlsPlðcos θπÞF̃ ð0Þ
2;l ðq2; sÞ þ

1

3

X
l

�
κltPlðcos θB1Þ

�
F̃ ð1=2Þ

2;l ðq2; tÞ þ 2F̃ ð3=2Þ
2;l ðq2; tÞ

�
− ðt ↔ uÞ

�
;

ð51Þ

where we separated the form factors for the π−π0 and π0π0

channels and

cos θB1 ¼
tðs − uÞ − ðM2

B −M2
πÞðq2 −M2

πÞ
κt

;

cos θB2 ¼
uðs − tÞ − ðM2

B −M2
πÞðq2 −M2

πÞ
κu

;

κs ¼
ffiffiffiffiffiffiffi
λBl

p
βπ; κt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λB1λ2l

p
t

; κu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λB2λ1l

p
u

;

λB1 ¼ λðt;M2
B;M

2
πÞ; λB2 ¼ λðu;M2

B;M
2
πÞ;

λ2l ¼ λðt; q2;M2
πÞ; λ1l ¼ λðu; q2;M2

πÞ: ð52Þ
The u-channel crossings are simply obtained by the
replacements t ↔ u and 1 ↔ 2. The summation over even
l for the function gð00Þ starts at l ¼ 2 as P0

0ðxÞ ¼ 0.
For the two transversal form factors of the axial current,

the situation is complicated by the nontrivial dependence
of the tensor structures in the decomposition on two out of
the three momenta. While the decomposition proposed in
Sec. II is advantageous for the physical decay rate, it is less
suited for deriving SVAs with clear threshold behavior and
symmetry properties. To resolve this issue, we include the
tensor structures in the derivation:

PðqÞ
μν pν

12F 1ðs; t;uÞþTð12Þ
μ fðs; t;uÞ

¼PðqÞ
μν ðpν

12F
ðsÞ
1 ðs; t;uÞþpν

13F
ðtÞ
1 ðs; t;uÞþpν

23F
ðuÞ
1 ðs; t;uÞÞ

þTð12Þ
μ fðsÞðs; t;uÞþTð13Þ

μ fðtÞðs; t;uÞþTð23Þ
μ fðuÞðs; t;uÞ:

ð53Þ

The s-channel contributions are now given by

F ð−0Þ;ðsÞ
1 ðs; t; uÞ ¼ 1ffiffiffi

2
p

λBl

X
l odd

κlsPlðcos θπÞF̃ ð1Þ
1;l ðq2; sÞ;

F ð00Þ;ðsÞ
1 ðs; t; uÞ ¼ −

1ffiffiffi
6

p F̃ ð0Þ
1;0ðq2; sÞ

−
1ffiffiffi
6

p
λBl

X
l even

κlsPlðcos θπÞF̃ ð0Þ
1;l ðq2; sÞ;

fð−0Þ;ðsÞðs; t; uÞ ¼ 1ffiffiffi
2

p
X
l odd

κl−1s P0
lðcos θπÞf̃ð1Þl ðq2; sÞ;

fð00Þ;ðsÞðs; t; uÞ ¼ −
1ffiffiffi
6

p
X
l even

κl−1s P0
lðcos θπÞf̃ð0Þl ðq2; sÞ;

ð54Þ
while the t-channel contributions take the form

F ð−0Þ;ðtÞ
1 ðs; t; uÞ ¼ −

ffiffiffi
2

p

3

�
F̃ ð1=2Þ

1;0 ðq2; tÞ − F̃ ð3=2Þ
1;0 ðq2; tÞ

�
−

ffiffiffi
2

p

3λ2l

X
l≥1

κltPlðcos θB1Þ
�
F̃ ð1=2Þ

1;l ðq2; tÞ − F̃ ð3=2Þ
1;l ðq2; tÞ

�
;

F ð00Þ;ðtÞ
1 ðs; t; uÞ ¼ 1

3

�
F̃ ð1=2Þ

1;0 ðq2; tÞ þ 2F̃ ð3=2Þ
1;0 ðq2; tÞ

�
þ 1

3λ2l

X
l≥1

κltPlðcos θB1Þ
�
F̃ ð1=2Þ

1;l ðq2; tÞ þ 2F̃ ð3=2Þ
1;l ðq2; tÞ

�
;

F ð−0Þ;ðtÞ
1 ðs; t; uÞ ¼ −

ffiffiffi
2

p

3

�
F̃ ð1=2Þ

1;0 ðq2; tÞ − F̃ ð3=2Þ
1;0 ðq2; tÞ

�
−

ffiffiffi
2

p

3λ2l

X
l≥1

κltPlðcos θB1Þ
�
F̃ ð1=2Þ

1;l ðq2; tÞ − F̃ ð3=2Þ
1;l ðq2; tÞ

�
;

F ð00Þ;ðtÞ
1 ðs; t; uÞ ¼ 1

3

�
F̃ ð1=2Þ

1;0 ðq2; tÞ þ 2F̃ ð3=2Þ
1;0 ðq2; tÞ

�
þ 1

3λ2l

X
l≥1

κltPlðcos θB1Þ
�
F̃ ð1=2Þ

1;l ðq2; tÞ þ 2F̃ ð3=2Þ
1;l ðq2; tÞ

�
;

fð−0Þ;ðtÞðs; t; uÞ ¼ −
ffiffiffi
2

p

3

X
l

κl−1t P0
lðcos θB1Þ

�
f̃ð1=2Þl ðq2; tÞ − f̃ð3=2Þl ðq2; tÞ

�
;

fð00Þ;ðtÞðs; t; uÞ ¼ 1

3

X
l

κl−1t P0
lðcos θB1Þ

�
f̃ð1=2Þl ðq2; tÞ þ 2f̃ð3=2Þl ðq2; tÞ

�
: ð55Þ
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For all functions we separated the S-wave contribution and thus all sums over even l start at l ¼ 2. The u-channel crossings
are related to the t-channel ones through

F ð−0Þ;ðuÞ
1 ðs; t; uÞ ¼ −F ð−0Þ;ðtÞ

1 ðs; u; tÞ;
F ð00Þ;ðuÞ

1 ðs; t; uÞ ¼ F ð00Þ;ðtÞ
1 ðs; u; tÞ;

fð−0Þ;ðuÞðs; t; uÞ ¼ −fð−0Þ;ðtÞðs; u; tÞ;
fð00Þ;ðuÞðs; t; uÞ ¼ fð00Þ;ðtÞðs; u; tÞ: ð56Þ

C. Unitarity bounds and parametrization

With these expressions at hand, we can now compute the contributions to the imaginary parts of the two-point functions

ΠðJÞ
L=T . All three charge configurations contribute to the bounds and we can write

ImΠðJÞ
L=T ¼ 1

2

Z
dPS3P

μν
L=T

�
Mþ−;μM�þ−;ν þM00;μM�

00;ν þM−0;μM�
−0;ν

�

¼ 1

2

Z
dPS3P

μν
L=T

�
2M00;μM�

00;ν þ
3

2
M−0;μM�

−0;ν −
ffiffiffi
2

p
ReðM−0;μM�

00;νÞ
�
: ð57Þ

Note that the last term drops out after angular integration, as
the −0 and 00 amplitudes are antisymmetric and symmetric
under exchange of the pions, respectively.
The two other terms contain contributions diagonal in

the Mandelstam variables, but also off-diagonal interfer-
ence terms. These interference terms only constitute small

perturbations on top of the dominant resonant contributions
in the diagonal terms and, consequently, we neglect them in
the derivation of a suitable form factor parametrization and
take them into account through amodification of the unitarity
bounds. Focusing on the diagonal terms and writing the
u-channel contributions as t-channel integrals we obtain

ImΠðVÞ
T ðq2 þ iϵÞ

����
diag

¼ 1

12288π3q2
X
l

lðlþ 1Þ
2lþ 1

�Z
s−

sþ
ds sκ2lþ1

s

�
1

4
jg̃ð0Þl j2 þ 3

4
jg̃ð1Þl j2

�

þ
Z

t−

tþ
dt tκ2lþ1

t

	jg̃ð1=2Þl j2 þ 2jg̃ð3=2Þl j2
�;
ImΠðAÞ

L ðq2 þ iϵÞ
����
diag

¼ 1

256π3q4
X
l

1

2lþ 1

�Z
s−

sþ
ds κ2lþ1

s

�
1

4
jF̃ ð0Þ

2;l j2 þ
3

4
jF̃ ð1Þ

2;l j2
�

þ
Z

t−

tþ
dt κ2lþ1

t

	jF̃ ð1=2Þ
2;l j2 þ 2jF̃ ð3=2Þ

2;l j2
�;
ImΠðAÞ

T ðq2 þ iϵÞ
����
diag

¼ 1

3072π3q4

�Z
s−

sþ
ds

κs
4
λBljF̃ ð0Þ

1;0j2 þ
X
l>0

1

2lþ 1

Z
s−

sþ
ds

κ2lþ1
s

λBl

�
1

4
jF̃ ð0Þ

1;l j2 þ
3

4
jF̃ ð1Þ

1;l j2
�

þ
Z

t−

tþ
dt κtλ2l

	jF̃ ð1=2Þ
1;0 j2 þ 2jF̃ ð3=2Þ

1;0 j2
þX
l>0

1

2lþ 1

Z
t−

tþ
dt
κ2lþ1
t

λ2l

	jF̃ ð1=2Þ
1;l j2 þ 2jF̃ ð3=2Þ

1;l j2


þ 4q2
X
l

lðlþ 1Þ
2lþ 1

�Z
s−

sþ
ds

sκ2lþ1
s

λBl

�
1

4
jf̃ð0Þl j2 þ 3

4
jf̃ð1Þl j2

�

þ
Z

t−

tþ
dt
tκ2lþ1

t

λ2l

	jf̃ð1=2Þl j2 þ 2jf̃ð3=2Þl j2
�
: ð58Þ
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The t- and u-channel integration boundaries are given by

tþ ¼ uþ ¼ ðMB þMπÞ2;

t− ¼ u− ¼
�
Mπ −

ffiffiffiffiffi
q2

q �
2

: ð59Þ

In the next step, we derive a parametrization for each of the form factors. To simplify the discussion, we focus on ImΠðAÞ
L ,

but the other three form factors follow in a similar manner. Inserting the imaginary part of the two-point function into the
dispersion relation yields

χALð0Þ ≥
X
l

2Nl

π

Z
∞

q2þ

dq2

q8

�Z
s−

sþ
ds κ2lþ1

s

�
1

4
jF̃ ð0Þ

2;l j2 þ
3

4
jF̃ ð1Þ

2;l j2
�
þ
Z

t−

tþ
dt κ2lþ1

t

	jF̃ ð1=2Þ
2;l j2 þ 2jF̃ ð3=2Þ

2;l j2
�

¼
X
l

2Nl

π

�Z
∞

sþ
ds β2lþ1

π

Z
∞

q̃2þ;s

dq2
ffiffiffiffiffiffiffi
λBl

p
2lþ1

q8

�
1

4
jF̃ ð0Þ

2;l j2 þ
3

4
jF̃ ð1Þ

2;l j2
�

þ
Z

∞

tþ
dt β2lþ1

B

Z
∞

q̃2þ;t

dq2
ffiffiffiffiffiffi
λ2l

p
2lþ1

q8
	jF̃ ð1=2Þ

2;l j2 þ 2jF̃ ð3=2Þ
2;l j2
�; ð60Þ

where N−1
l ¼ 512π3ð2lþ 1Þ, βB ¼ ffiffiffiffiffiffiffi

λB1
p

=t, q̃2þ;s ¼
ðMB þ ffiffiffi

s
p Þ2, and q̃2þ;t ¼ ðMπ þ

ffiffi
t

p Þ2. The q2 integration
can be approached with standard techniques. We express q2

through

zðq2; q20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2þ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2þ − q20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2þ − q2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2þ − q20

p ð61Þ

and replace the kinematic factors depending on q2 through
outer functions:

q2 − xi → ϕiðq2Þ ¼
xi − q2

zðq2; xiÞ
: ð62Þ

In contrast to the two-particle case, the xi depend not only
on particle masses, but also on s or t. The full set is given by
all values of q2 where kinematic factors can vanish:

x0 ¼ 0;

x1=2 ¼ ðMB � ffiffiffi
s

p Þ2;
x3=4 ¼ ðMπ �

ffiffi
t

p Þ2: ð63Þ

Some of the xi might be larger than q̂2þ, depending on the
kinematic region under consideration. In that case, the
denominator of the corresponding outer function reduces to

unity. The outer functions are given by

jϕ̄ð0Þ
F 2;l

ðq2; sÞj2 ¼ ηð0ÞNl

χALð0Þ
���� dq2dz

����
ffiffiffiffiffiffiffiffiffiffi
ϕ1ϕ2

p
2lþ1

ϕ4
0

;

jϕ̄ð1Þ
F 2;l

ðq2; sÞj2 ¼ ηð1ÞNl

χALð0Þ
���� dq2dz

����
ffiffiffiffiffiffiffiffiffiffi
ϕ1ϕ2

p
2lþ1

ϕ4
0

;

jϕ̄ð1=2Þ
F 2;l

ðq2; tÞj2 ¼ ηð1=2ÞNl

χALð0Þ
���� dq2dz

����
ffiffiffiffiffiffiffiffiffiffi
ϕ3ϕ4

p
2lþ1

ϕ4
0

;

jϕ̄ð3=2Þ
F 2;l

ðq2; tÞj2 ¼ ηð3=2ÞNl

χALð0Þ
���� dq2dz

����
ffiffiffiffiffiffiffiffiffiffi
ϕ3ϕ4

p
2lþ1

ϕ4
0

; ð64Þ

where the isospin factors are given by

ηð0Þ ¼ 1

4
; ηð1Þ ¼ 3

4
;

ηð1=2Þ ¼ 1; ηð3=2Þ ¼ 2: ð65Þ

In addition, we need to introduce a Blaschke factor BF 2
to

cancel the subthreshold pole at q2 ¼ M2
B:

BF 2
ðq2; q20Þ ¼

zðq2; q20Þ − zðM2
B; q

2
0Þ

1 − zðq2; q20ÞzðM2
B; q

2
0Þ
: ð66Þ

The bound now takes the form

1 ≥
1

π

X
l

�Z
∞

sþ
ds β2lþ1

π

I
dz
z

	jϕ̄ð0Þ
F 2;l

BF 2
F̃ ð0Þ

2;l j2 þ jϕ̄ð1Þ
F 2;l

BF 2
F̃ ð1Þ

2;l j2


θðαs − j argðzÞjÞ

þ
Z

∞

tþ
dt β2lþ1

B

I
dz
z

	jϕ̄ð1=2Þ
F 2;l

BF 2
F̃ ð1=2Þ

2;l j2 þ jϕ̄ð3=2Þ
F 2;l

BF 2
F̃ ð3=2Þ

2;l j2
θðαt − j argðzÞjÞ
�
: ð67Þ

MODEL-INDEPENDENT PARAMETRIZATION OF … PHYS. REV. D 112, 014037 (2025)

014037-11



Here αs ¼ j argðzðq̃2þ;sÞÞj and αt ¼ j argðzðq̃2þ;tÞÞj. The z
integration can now be performed by expressing the form
factors through

F̃ ðIÞ
2;lðq2; xÞ ¼

1

BF 2
ðq2Þϕ̄ðIÞ

F 2;l
ðq2; xÞ

X
i

dðIÞl;i ðxÞpiðq2; αxÞ;

ð68Þ

where the pi are the Szegő polynomials. Note that for
semileptonic decays

t ¼ 1

2
ðM2

B þ 2M2
π þ q2 − sþ κ12 cos θπÞ ≤ M2

B ð69Þ

and thus αt is not necessarily well defined, as zðq̃2þ;tÞ takes
on real values. To analytically continue the Szegő poly-
nomials in this scenario, we first observe that for q̃2þ;t ¼ q̂2þ
the integration covers the full unit circle and the Szegő
polynomials simply reduce to monomials in z. Decreasing
q̃2þ;t further transforms the integration contour to a one-
sided keyhole contour and thus the analytic continuation of
the Szegő polynomials can be obtained by numerical
orthogonalization on the contour and matching to mono-
mials for q̃2þ;t ¼ q̂2þ.
Inserting the expansion into the bound and performing

the integral yields

1 ≥
1

π

X
l;i

�Z
∞

sþ
ds β2lþ1

π

	jdð0Þl;i j2 þ jdð1Þl;i j2



þ
Z

∞

tþ
dt β2lþ1

B

	jdð1=2Þl;i j2 þ jdð3=2Þl;i j2
�: ð70Þ

As the Bπ scattering phases are mostly unknown, we
map the whole region of t > tþ onto the unit circle:

ytðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p : ð71Þ

The isospin-1=2 P wave has one subthreshold pole, the B�
resonance, that needs to be taken into account through a
Blaschke factor:

B̃ð1=2Þ
F 2;1

ðt; t0Þ ¼
ytðt; t0Þ − ytðM2

B� ; t0Þ
1 − ytðt; t0ÞytðM2

B� ; t0Þ
: ð72Þ

Analogously to the q2 dependence we introduce outer
functions, which in this case only depend on the particle
masses:

t − x̃i → ϕ̃i ¼
x̃i − t
ytðt; x̃iÞ

;

x̃0 ¼ 0; x̃1 ¼ ðMB −MπÞ2: ð73Þ

Consequently, the full t-dependent outer functions are

jϕ̂ðIÞ
F 2;l;i

ðtÞj2 ¼
���� dtdyt

����
� ffiffiffiffiffiffiffiffiffiffiffiffi

t − tþ
p ffiffiffiffiffi

ϕ̃1

p
ϕ̃0

�2lþ1

: ð74Þ

Finally, we can write

dð1=2Þl;i ðtÞ ¼ 1

ϕ̂ð1=2Þ
F 2;l;i

ðtÞB̃ð1=2Þ
F 2;l

X
j

dð1=2Þl;ij yjt ;

dð3=2Þl;i ðtÞ ¼ 1

ϕ̂ð3=2Þ
F 2;l;i

ðtÞ
X
j

dð3=2Þl;ij yjt : ð75Þ

The s-dependent form factors, on the other hand, can be
decomposed into two parts, the Omnès function and a piece
containing crossed-channel contributions and inelasticities:

dðIÞl;i ðsÞ ¼ ΩlðsÞd̄ðIÞl;i ðsÞ: ð76Þ

The function d̄ðIÞl;i ðsÞ is induced by rescattering and real
below threshold, but acquires an imaginary part above. It
can be related to the t- and u-channel contributions through

d̄ðIÞl;i ðsÞ ¼ d̃ðIÞl;i ðsÞ þ XðIÞ
l;i ðsÞ;

XðIÞ
l;i ðsÞ ¼

s
π

Z
∞

sþ
ds0

sin δlðs0Þd̂ðIÞl;i ðs0Þ
jΩlðs0Þjs0ðs0 − sÞ ; ð77Þ

where

d̂ðIÞl;i ðsÞ þ dðIÞl;i ðsÞ ¼
I

dz
z
p�
i ðz; αsÞ ⊗

2lþ 1

2κls

×
Z

1

−1
d cos θπPlðcos θπÞF 2ðs; t; uÞ:

ð78Þ

Note that the d̂ðIÞl;i ðsÞ represent the contributions of the
t- and u-channel SVAs to the s-channel partial wave
projections.

Consequently, the only undetermined piece is d̃ðIÞl;i ðsÞ that
we will express through

ysðs; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðlÞin − s

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðlÞin − s0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðlÞin − s

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðlÞin − s0

q ; ð79Þ

where the position of the first inelastic threshold, sin,
can differ between partial waves. The outer functions are
given by

���ϕ̂ðIÞ
F 2;l;i

���2 ¼ ���� dsdys
����
 
βπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ysðs; 0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ysðs; sþÞ

p
!

2lþ1���ϕðIÞ
Ω;l

���2; ð80Þ

where ϕðIÞ
Ω;l is the outer function corresponding to the

Omnès function and is given by
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ϕðIÞ
Ω;lðysÞ ¼ eiφ exp

�
1

2πi

I
dy
y
yþ ys
y − ys

ln ðjΩlðyÞjÞ
�
: ð81Þ

Here, the phase φ is arbitrary and by definition jϕ̃ðIÞ
Ω;lðysÞj ¼

ΩlðysÞ for jysj ¼ 1. Consequently, the outer function
cancels the Omnès factor above the inelastic threshold
up to a relative phase.
Combining all pieces, we obtain

d̃ðIÞl;i ðsÞ ¼
1

ϕ̂ðIÞ
F 2;l;i

ðsÞ
X
j

dðIÞl;ijy
j
s: ð82Þ

Therefore, the bound in Eq. (70) takes the form

1 ≥
X
l

Rl þ
X
l;ij

	
R̂l;ij þ R̃l;ij




þ
X
l;i;j

�
jdð0Þl;ijj2 þ jdð1Þl;ijj2 þ jdð1=2Þl;ij j2 þ jdð3=2Þl;ij j2

�
: ð83Þ

The remainders are given by

Rl ¼
1

π

X
i

Z
sin

sþ
ds β2lþ1

π

�
jdð0Þl;i j2 þ jdð1Þl;i j2

�
;

R̂l;ij ¼
1

π

Z
∞

sþ
ds β2lþ1

π

�
Xð0Þ
l;i X

ð0Þ;�
l;j þ Xð1Þ

l;i X
ð1Þ;�
l;j

�
;

R̃l;ij ¼
2

π

Z
∞

sþ
ds β2lþ1

π Re
�
d̃ð0Þ;�l;i Xð0Þ

l;j þ d̃ð1Þ;�l;i Xð1Þ
l;j

�
: ð84Þ

Finally, the terms off diagonal in the s-, t-, and
u-channel contributions must be added and numerically
integrated.
The derivation of the bounds for g, F 1, and f proceeds in

the same manner, the differences in kinematic and com-
binatorial factors lead to slight differences in the outer
functions. In summary, we can write all outer functions in
the form

jϕðIÞ
F;l;iðq2; xÞj2 ¼ jϕ̃ðIÞ

F;lðq2; xÞϕ̂ðIÞ
F;l;iðxÞj2 ¼ nl

ηðIÞNl

χð0Þ
���� dq2dz

����
���� dxdyx

����jϕz;lðq2; xÞj2jϕx;lðxÞj2jϕðIÞ
Ω;lðxÞj2;

jϕz;lðq2; sÞj2 ¼
�
−zðq2; 0Þ

q2

�
a
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq2 − ðMB −
ffiffiffi
s

p Þ2Þðq2 − ðMB þ ffiffiffi
s

p Þ2Þ
zðq2; ðMB −

ffiffiffi
s

p Þ2Þzðq2; ðMB þ ffiffiffi
s

p Þ2Þ

s !2lþ1−b

;

jϕz;lðq2; tÞj2 ¼
�
−zðq2; 0Þ

q2

�
a
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq2 − ðMπ −
ffiffi
t

p Þ2Þðq2 − ðMπ þ
ffiffi
t

p Þ2Þ
zðq2; ðMπ −

ffiffi
t

p Þ2Þzðq2; ðMπ þ
ffiffi
t

p Þ2Þ

s !2lþ1−b

;

jϕs;lðsÞj2 ¼
�
βπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ysðs; 0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ysðs; sþÞ

p �2lþ1� −s
ysðs; 0Þ

�
c
;

jϕt;lðtÞj2 ¼
�
βB

ytðt; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ytðt; ðMB −MπÞ2Þ

p �
2lþ1
�

−t
ytðt; 0Þ

�
c
: ð85Þ

The parameters n, a, b, and c are given in Table I.

An alternative parametrization can be derived for d̄ð0=1Þl;i ðsÞ
by not introducing outer functions in s, but observing that if

ΩlðsÞ → 1=s and d̃ð0=1Þl;i ðsÞ is at most constant for s → ∞, the
s integral is finite and we can expand

d̄ðIÞl;i ðsÞ ¼
X
j

cðIÞl;ijql;jðysÞ; ð86Þ

where the ql;j are constructed such that the imaginary part at
the inelastic threshold grows like ðs − sinÞlþ1=2, as required
for two-particle inelasticities. For l ¼ 0, these are simply the
monomials ys, whereas for l ¼ 1, the appropriate polyno-
mials are constructed inRef. [57]. For l ¼ 2, the polynomials
are given by

q2;jðyÞ ¼ yj þ ð−1Þj−Nj
3þ 2N

�ðN þ 2Þ2 − j2

N þ 1
yNþ1

þ ðN þ 1Þ2 − j2

N þ 2
yNþ2

�
; ð87Þ

whereN is the truncation order. The corresponding unitarity
bound is not diagonal in the expansion coefficients, but
can be computed through numerical integration. A slight

TABLE I. Parameters of the outer functions for a given form
factor F.

F χð0Þ nl a b c

g χðVÞT ð0Þ 1
48
lðlþ 1Þ 4 0 1

f χðAÞT ð0Þ 1
3
lðlþ 1Þ 4 2 1

F 1 χðAÞT ð0Þ 1
12

5 2 0

F 2 χðAÞL ð0Þ 1 4 0 0
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modification of the form factors f and g is required, as can be
seen from the additional factors of s and t in the numerator of
Eq. (58). These require that the corresponding form factors
are expanded as

d̄ðIÞl;i ðsÞ ¼
1ffiffiffi
s

p
X
j

cðIÞl;ijql;jðysÞ: ð88Þ

Aside from the correct threshold behavior, this parametriza-
tion has the advantage that the Omnès factor is not canceled
by the corresponding outer function above the inelastic
threshold. Consequently, less terms in the expansion are
required if the input phase describes the decay well.

IV. THE DI-PION INVARIANT-MASS SPECTRUM

The factorization of the B → ππlν form factors into
Omnès function and a remainder encoding the q2 depend-
ence and inelastic effects allows us to exploit the available
high-precision information on the ππ scattering phase
shifts. These have been determined precisely using the
constraints from Roy (and similar) equations [23] and low-
energy ππ scattering measurements as well as, crucially for
the S-wave, K → ππlν decays [24–26].
For our study in Sec. V, we restrain our partial-wave

expansion to the S, P, and D waves. F waves and higher are
highly phase-space suppressed and show limited phasemotion
at low s. Furthermore, the first F-wave resonance, theρ3ð1690Þ
is highly inelastic and located above our region of interest.
In the following, we summarize the relevant knowledge

on the three partial waves under consideration and their
treatment in our analysis.

A. S wave

The isoscalar S wave is the major source of non-P-wave
B → ππlν decays in the ρ region. Consequently, to
determine the P-wave fraction precisely, a reliable descrip-
tion of the S-wave contribution is crucial. Two poles appear
in the S wave at energies below 1 GeV: the f0ð500Þ atffiffiffi
s

p ¼ ð400–550Þ − ið200–350Þ MeV and the f0ð980Þ atffiffiffi
s

p ¼ ð980–1010Þ − ið20–35Þ MeV, near the KK̄ thresh-
old [60]. Although the pole of the f0ð500Þ sits far in the
complex plane and is often quoted with a large uncertainty,
advanced dispersive analyses that do not use Breit-Wigner-
like line shapes narrow the position down to

ffiffiffi
s

p ¼
449þ22

−16 − ið275� 12ÞMeV [61]. For a more detailed dis-
cussion on the pole determinations, see the review on
Scalar Mesons below 1 GeV in Ref. [60]. The line shape
resulting from the interplay of the two poles gets further
complicated by the onset of large inelasticities due to the
KK̄ channel, resulting in a dip, rather than a peak, near the
f0ð980Þ in processes with a light-quark source. In contrast,
in neutral current decays of Bs mesons a narrow peak is
observed, rather than a dip [62,63].

As a consequence, the S wave cannot strictly be treated
as a single-channel problem and we must include the
inelasticities due to the KK̄ channel. To this end, we
employ the results of Refs. [28,29], where the solutions to
the Roy equations of Refs. [24,26] are combined with
S-wave ππ → KK̄ scattering data [64–66] and angular
analysis of BðsÞ → J=Ψππ decays by LHCb [62,67]. The
resulting two-channel Omnès matrix can be converted into
an effective single-channel function, which has the correct
elastic ππ S-wave scattering phase below theKK̄ threshold,
but follows the line shape of B → J=Ψππ decays at higher
di-pion invariant masses. The largest uncertainty of the line
shape is the pion-to-kaon ratio when converting from the
two-channel to the single-channel case and is controlled by
one parameter: rK ¼ Γn

Kð0Þ=Γn
πð0Þ, where Γn

Kð0Þ and Γn
πð0Þ

are the light-flavor pion and kaon scalar form factors at
s ¼ 0 [28]. While this treatment is similar to Ref. [30]
it introduces a crucial improvement. In general, the
B → J=Ψππ and B → ππlν S-wave form factors do not
share the same phase above the KK̄ threshold. However,

the y expansion develops additional phases above sð0Þin ¼
4M2

K and, consequently, will account for any difference.

B. P wave

Given the prominence of the ρ0 peak observed in the
Belle analysis [21], having good control over the isovector
P-wave line shape is paramount. To this end, we employ the
high-precision determination of the P-wave phase shift
obtained in Ref. [27]. In this work, the results of the Roy
analysis of Refs. [24,26] are further constrained by data on
the spacelike and timelike pion vector form factor from
F2 [68] and NA7 [69], as well as SND [70,71], CMD-2
[72–75], BABAR [76,77], and KLOE [78–81], respectively.
The resulting phase shift has negligible uncertainty in the
(quasi)elastic region below the πω threshold and, conse-
quently, we neglect it in our analysis. Uncertainties in the
region above the πω threshold can also be ignored, as any
deviation from the elastic P-wave phase shift is absorbed in
the y expansion of the P-wave form factors, similar to the
S-wave case.
While mixing between the isovector and isoscalar P

wave is only induced through small isospin-breaking
effects, it is enhanced in the region around the ρ peak
due to the small mass difference between the ρ and the ω.
As the ω is very narrow, the effect of ρ–ω mixing can be
included by replacing the isovector P-wave Omnès factor
according to Ω1

1ðsÞ → GωðsÞΩ1
1ðsÞ [82,83], where

GωðsÞ ¼ 1þ s
π

Z
∞

9M2
π

ds0
Im gωðs0Þ
s0ðs0 − sÞ

 
1 − 9M2

π
s0

1 − 9M2
π

M2
ω

!
4

;

gωðsÞ ¼ 1þ ϵω
s	

Mω − i
2
Γω



2 − s

: ð89Þ
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Here, Gω has the correct analytic structure at the 3π thresh-
old, while it is real below and ϵω is a real parameter.
In general, ϵω acquires a small imaginary part through
the presence of the π0γ and other radiative channels [84].
While straightforward to include, at the current level of
precision of the available data on B → ππlν decays, this
effect cannot be resolved. The constant ϵω determined from
the pion vector form factor in Ref. [27] cannot directly
be applied to B → ππlν decays. However, following
Refs. [28,29,85], we rescale ϵω by the relative isoscalar-
to-isovector ratio between B → ππlν decays and the pion
vector form factor. To this end, we decompose the relevant
quark currents:

jμEM ¼ 1

2
ðūγμu − d̄γμdÞ þ 1

6
ðūγμuþ d̄γμdÞ;

ūγμu ¼ 1

2
ðūγμu − d̄γμdÞ þ 1

2
ðūγμuþ d̄γμdÞ: ð90Þ

Evidently, the isoscalar-to-isovector ratio is a factor of 3
greater than for the electromagnetic current and we obtain
ϵω ¼ 3ϵEMω . As a consequence, the sharp edge seen in the
pion vector form factor will also occur inB → ππlν decays,
but will be further enhanced.
At higher invariant masses, the ρ0 and ρ00 resonances con-

tribute, yet they predominantly decay to four pions. In prin-
ciple, they could be approximated by continuing the P-wave
phase shift appropriately in the inelastic regime [86], but it is
unclear how reliable this procedure is in the case at hand.
Instead, the y expansion is able to account for effects due to
the higher resonances, should the data require it.

C. D wave

Compared to the other two partial waves, the isoscalar ππ
Dwave is relatively simple. In the ρ region the D-wave phase
increases slowly, but above the KK̄ threshold the phase
motion becomes significant and crosses through π=2
around

ffiffiffi
s

p
≈ 1270 MeV. This fast motion is associated

with the lightest tensor resonance, the f2ð1270Þ with a
well-determined pole location at

ffiffiffi
s

p ¼ ð1260–1283Þ −
ið90–110Þ MeV [60]. The f2ð1270Þ line shape is generally
well described by a Breit-Wigner and is largely elastic, i.e., it
dominantly couples to the ππ final state. This can be
understood from the D-wave suppression of inelasticities,
which can only grow as ðs − 4M2

KÞ5=2 near threshold.
Furthermore, the next isoscalar tensor resonance, the
f02ð1525Þ, dominantly couples to kaons and ss̄ sources
and we do not expect it to contribute to B → ππlν decays
in any significant manner.
While the f2ð1270Þ is located in the inelastic region, we

take the elastic D-wave phase shift from Ref. [25] and
absorb any deviations in the y expansion.1 However, given

the largely elastic nature of the f2ð1270Þ, the suppressed
onset of inelasticities and the absence of nearby resonances
that couple to the ππ final state, this treatment results in an
accurate description of the D-wave line shapes for energies
up to

ffiffiffi
s

p
≈ 1.5 GeV.

In the Belle measurements of Refs. [5,21], a resonant
structure was observed in the region where the f2ð1270Þ is
expected. However, neither analysis could unambiguously
establish the existence of Bþ → f2ð1270Þlþν decays due
to the lack of control over the S and P wave in this energy
region. With our model-independent parametrization we
are able to study the resonant structure seen in Ref. [21] and
determine if it is caused by the f2ð1270Þ.

V. FIT TO BELLE DATA

The analysis in Ref. [21] was carried out using a
hadronic tagged reconstruction approach with the complete
Belle dataset comprising a total integrated luminosity of
711 fb−1, collected by the Belle detector at the ϒð4SÞ
resonance. While the main result is the measurement of the
total branching fraction of Bþ → πþπ−lþν decays, the
partial branching fractions are also provided in bins ofMππ ,
q2, as well as a two-dimensional analysis in 13 bins of both
variables. These results are unfolded to correct for detector
resolution and acceptance effects. The analysis did not
consider a nonresonant inclusive component, since the
simulated contributions from high-multiplicity mass modes
such as Bþ → πþπ−π0lþν and Bþ → πþπ−π0π0lþν
decays were found to be negligible after the full selection
criteria were applied. The most significant source of
systematic uncertainty was due to the modeling of signal
processes and the lack of precise knowledge of hadronic
form factors describing specific exclusive decay modes,
ranging between 4.46% to 29.9% in different bins of Mππ

and q2 for the two-dimensional fit scenario.
Given the large uncertainty and coarse binning of the

data, especially at low Mππ, crossed-channel effects, such
as enhancements from the B� pole, cannot be resolved at
present. Thus, we focus on the s channel only and neglect
the isospin 1=2 and 3=2 t- and u-channel contributions.
Once more precise data becomes available, the full for-
malism of Sec. III B can be applied.
We perform a Bayesian fit to the 2D spectrum with the

EOS software [88], in which we implemented our para-
metrization. We employ the version of the parametrization
implementing the correct scaling at the inelastic threshold
at the price of a more complex form of the unitarity bound,
choosing q20 ¼ 0 GeV2 and s0 ¼ 4M2

π . The inelastic
thresholds are set to

ffiffiffiffiffi
sin

p ¼ ðMω þMπÞ for the P wave,
as well as

ffiffiffiffiffi
sin

p ¼ 2MK for the S and D waves.
In a first step, we scan the range of the expansion

coefficients allowed by unitarity to increase the efficiency
during the actual fit. For the fit itselfweuse uniformpriors for
the expansion coefficients, as well as a uniform prior for rK

1Recently, Ref. [87] improving the description of the D-wave
appeared, allowing for further improvements of our work in the
future.
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between 0.4 and 0.6 [28]. Since we do not have external
constraints on the form factors, our fit is insensitive to jVubj
and we take the default values in EOS, jVubj ¼ 0.0036.
To implement the unitarity bounds we follow Ref. [89]
and implement a penalty term in the likelihood. We

take χðAÞT ¼ χðVÞT ¼ 5.742 × 10−4 GeV−2, obtained from
the three-loop calculation of Ref. [90], and assign an
uncertainty of 5%. For the vector current we subtract the
contribution of the B� subthreshold resonance, which
amounts to 9% of the bound.
To study different truncations of the y-z expansion, we

choose three different fit scenarios. In the simplest scenario,
the 2=0=0 scenario, we terminate the y expansion at leading
order, but include two terms in the z expansion for each
form factor. In the 2=1=0 scenario we have two terms in the
z expansion atOðy0Þ and one atOðy1Þ, while for the 3=2=1
scenario we have three at Oðy0Þ, two at Oðy1Þ, and one at
Oðy2Þ. The three scenarios have 15, 22, and 43 parameters,
compared to the 13 data points, and result in a perfect fits.
In the following, we present our results for the 3=2=1 fit
scenario. Results for the other two scenarios can be found
in the Appendix.

A. Partial branching ratios and Mππ spectrum

Because of the distinct line shapes of the individual
partial waves, the fit to Belle data effectively distinguishes
the different contributions. For the branching fractions, we
obtain

BðBþ → ðπþπ−ÞSlþνÞ ¼ 2.2þ1.4
−1.0 × 10−5;

BðBþ → ðπþπ−ÞPlþνÞ ¼ 19.6þ2.8
−2.7 × 10−5;

BðBþ → ðπþπ−ÞDlþνÞ ¼ 3.5þ1.3
−1.1 × 10−5: ð91Þ

The correlations between the different contributions are
small and the D wave is more than 2σ away from 0.
In Fig. 2 we present our results for the Bþ →

πþπ−lþνMππ spectrum and compare it to the 1D meas-
urement of Ref. [21]. Note that coarser 2D data is used in
the fit, yet we find excellent agreement with the finer
binned 1D data. At low invariant masses, near the thresh-
old, the S and P wave are of similar size, while the D wave
is completely negligible, as expected. In the region around
the ρ peak there is only a small contamination from the S
and D waves, while the ρ–ω mixing leads to a significant
distortion of the line shape. At current precision, this
structure is not resolved by the available data, but mea-
surements at Belle II and LHCb should be able to observe
such a drastic feature. Near the P-wave inelastic threshold
at ðMω þMπÞ, there is a significant increase in the uncer-
tainty on the P-wave contribution, demonstrating the power
of our parametrization: despite making assumptions on the
line shape also above the inelastic threshold, the higher
terms in the y expansion smear them out if the data allows.
Similarly, the S-wave uncertainty grows near the KK̄

threshold, overshooting the uncertainty due to the limited
knowledge of rK . Above 1 GeV, the D wave becomes
relevant and exhibits a Breit-Wigner-like peak for the
f2ð1270Þ. In the πþπ− mode there is a sizable background
from the P and the S wave in this region, complicating the
extraction of the D-wave component without the use of
additional angular information.
It is interesting to compare our results to those reported

by Ref. [91], where a fit to the 1D Mππ spectrum of
Ref. [21] below 1.02 GeV is performed using a resonance
model for the S and P waves. Reference [91] quotes
ΔBðBþ → ðπþπ−ÞSlþνÞ < 5.1 × 10−5 at 90% confidence
level for invariant masses below 1.02 GeV, as well as
BðBþ → ρ0lνÞ ¼ 14.1þ4.9

−3.8 × 10−5. We can directly com-
pare the upper limit on the S wave, for which we obtain
ΔBðBþ → ðπþπ−ÞSlþνÞ < 2.4 × 10−5 at 90% confidence
level, an improvement by more than a factor of 2. A direct
comparison for the P wave is not possible. While Ref. [91]
also includes ρ–ω mixing, albeit without resorting to the
methods used here, it is unclear up to which value inMππ it
can directly be compared to our P-wave results. However,
when comparing the uncertainty of Ref. [91] to our results
in Eq. (91) we find a significant improvement.

B. q2 dependence and saturation of the
unitarity bounds

In Fig. 3 we compare the q2 spectrum we obtain from the
fit to the 2D measurement of Ref. [21] to the respective 1D
measurement. Overall, the agreement is excellent and the
uncertainties on the obtained spectra are under control.

FIG. 2. TheBþ → πþπ−lþνMππ spectrum. The different bands
show the contributions of the three partial waves as well as their
sum. The data points are from the 1D measurement of Ref. [21].
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While the high-q2 region is saturated by the P-wave
contribution, the other two partial waves contribute sig-
nificantly below 12 GeV2. At q2 ¼ 0 GeV2, the sum of
S and D waves is approximately of the same size as the
P-wave contribution. The P wave and, to a lesser extent the D
wave, quickly rise below the kinematic endpoint, which is
due to the presence of the B� pole in the vector form factor.
This behavior is similar to the case of B → Dπlν decays,
where the B�

c pole in the vector form factor is the closest to
the kinematic region [31]. Furthermore, in contrast to a
narrow-width treatment of the ρ, the P-wave spectrum
extends to q2 values beyond ðMB −MρÞ2 ≈ 20.3 GeV2.
Figures 4 and 5 show the saturation of the unitarity

bounds in the three different fit scenarios, which is
calculated by determining the right-hand side of the
relevant versions of Eq. (70) for the transverse components
of the vector and axial currents. While the saturation
remains largely unaffected by increasing the expansion
order from 2=0=0 to 2=1=0, the inclusion of more terms in
the z expansion for the 3=2=1 scenario increases the
saturation significantly. A similar behavior is observed in
the fits of Ref. [53] for form factors where only LCSR
calculations at low q2, but no lattice-QCD (LQCD) results
at high q2 are available. In this case, the saturation increases
with increasing truncation order of the z expansion and
finally peaks near 1. Consequently, the unitarity bounds are
saturated and, given that jzj < 1 in the decay region,
increasing the truncation order does not change the
resulting form factors. While we are not dealing with an
extrapolation here, as the Belle data covers both low- and

high-q2 regions, the coarse binning in q2 and large
uncertainties leave significant freedom for the expansion
coefficients and, thus, we observe a similar behavior. The
main effect of the unitarity bounds in this work is the
restriction of the allowed shape of the q2 spectrum, as can
be seen from the significantly smaller uncertainty of the q2

spectrum that we obtain, compared to the measured
spectrum provided by Belle.
The slightly lower saturation of the 1− saturation

compared to the 1þ saturation is due to the B� contribu-
tion to the 1− unitarity bound. The uncertainties on the

susceptibilities χðAÞT and χðVÞT smear out of the otherwise
sharp edge at 1.

FIG. 3. The Bþ → πþπ−lþν q2 spectrum. The different bands
show the contributions of the three partial waves as well as their
sum. The data points are from the 1D measurement of Ref. [21].

FIG. 4. Saturation of the 1− unitarity bound due to the B → ππ
form factors for the three different fit scenarios discussed in the
text. The shaded regions correspond to 68% confidence intervals.
The scale of the y axis is given in arbitrary units.

FIG. 5. Saturation of the 1þ unitarity bound due to the B → ππ
form factors for the three different fit scenarios discussed in the
text. The shaded regions correspond to 68% confidence intervals.
The scale of the y axis is given in arbitrary units.
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Given the relatively large saturation, a global fit of b → u
form factors extending the one performed in Ref. [12] could
result in reduced uncertainties for less well known form
factors, such as those for B → ηlν, B → η0lν, or B → ωlν
decays.

C. Predictions for B+ → π0π0l+ ν decays

With our results for Bþ → πþπ−lþν decays at hand,
we can obtain predictions for the yet unobserved Bþ →
π0π0lþν decay. Only the S and D waves contribute, as the
π0π0 system is always in an isoscalar configuration,
resulting in a sizable branching fraction of

BðBþ → π0π0lþνÞ ¼ 2.9þ0.9
−0.7 × 10−5; ð92Þ

comparable to the Bþ → ηlþν and Bþ → η0lþν branching
fractions [60]. While the relative precision is still limited, it
is similar in size to that of the B → η0lν branching fraction.
In addition, we obtain the Mππ and q2 dependence of the
decay rate, shown in Figs. 6 and 7, respectively.
The absence of the P-wave contribution leads to a clearly

visible f2ð1270Þ peak in the Mππ spectrum, in contrast to
the πþπ− mode, making the π0π0 channel a promising,
yet experimentally difficult, discovery channel for Bþ →
f2ð1270Þlþν decays. The region of Mππ < 1 GeV is
dominated by the S wave and measurements in this region
will help to establish the size without resorting to angular
information. The q2 spectrum falls off towards high q2, but
a sizable contribution remains in the region beyond the
B → Xclν end point.

VI. IMPLICATIONS AND OUTLOOK

The model-independent form factor parametrization
introduced here allows us, for the first time, to extract
the contributions of different partial waves to B → ππlν
decays. The branching fractions obtained in Eq. (91)
together with the Mππ spectrum shown in Fig. 2 allow
for an assessment of the discrepancy between the deter-
minations of the B → ρ0lν branching fractions obtained by
BABAR, Belle, and Belle II: we find only moderate S- and
D-wave components below the ρ peak and, consequently, it
is likely that the BABAR and Belle II measurements
overestimate the nonresonant B → ππlν background, low-
ering the observed Bþ → ρ0lþν branching fraction. Our
P-wave branching fraction is somewhat larger, but com-
patible with the Bþ → ρ0lþν branching fraction reported
by Belle [5]. We confirm the evidence for a second
resonance in the πþπ− spectrum near 1.3 GeV, correspond-
ing to the D-wave f2ð1270Þ resonance, at the 2σ level.
Isospin relations allow us to obtain predictions for

B0 → π−π0lþν and Bþ → π0π0lþν decays. Only odd
partial waves contribute to the former and, consequently,
it is almost entirely made up by P-wave contributions, i.e.,
B0 → ρ−lþν decays, at low invariant masses. Thus, there
are negligible additional ππ contributions in the ρ− region.
The latter is an experimentally challenging process, but
the sizable branching fraction we obtain shows that it can
be of importance as a background to interesting measure-
ments such as Bþ → γlþν or a substantial signal compo-
nent for inclusive B → Xulν decays. Our form factor
parametrization and fit results will allow us to incorporate

FIG. 7. The Bþ → π0π0lþν q2 spectrum. The different bands
show the contributions of the two contributing partial waves as
well as their sum.

FIG. 6. The Bþ → π0π0lþνMππ spectrum. The different bands
show the contributions of the two contributing partial waves as
well as their sum.
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this component into future analyses, reducing uncertainties
related to this mode.
To obtain competitive and theoretically clean determi-

nations of jVubj in B → ππlν decays, significant work is
required, both from theory and experiment. On the theo-
retical side, determinations of the P-wave form factors
beyond the narrow-width limit need to mature. To this end,
the LCSR calculations of Refs. [38–41] need to be revisited
using the form factor parametrization presented here and
combined with LQCD calculations, which have recently
been calculated at unphysical pion masses [92], but will
become available at the physical point in the next years.
Furthermore, constraining the S and D waves through
LCSR calculations is feasible; see Ref. [37] for the Kπ S
wave in B → Kπll decays. Experimentally, it would be
advantageous to study kinematic distributions beyond the
q2 and Mππ spectra. A measurement of the asymmetry of
the cos θπ spectrum as a function of Mππ is directly
sensitive to the interference between S and P waves.
Given the knowledge of their relative phase, this would
allow for an improved separation of the two components.
Furthermore, an explicit incorporation of the line shapes
and form factors presented in this work directly into
experimental analyses is paramount to the upcoming
LHCb Bþ → ρ0lþν measurement [93] and future mea-
surements at Belle II. Using hadronization algorithms or
simulations following phase-space distributions to obtain
these two-body contributions otherwise leads to systematic
uncertainties that are both large and difficult to assess.
Our results for Bþ → π0π0lþν present additional phys-

ics opportunities. While the uncertainties for the S and D
waves are still sizable, a measurement of the Bþ →
π0π0lþν with a precision better than 25% would already
reduce the uncertainties on the two components. A meas-
urement of partial branching fractions in the two regions
Mππ ∈ ½2Mπ; 1.0 GeV� and Mππ ∈ ½1.0 GeV; 1.5 GeV�
could effectively constrain the S-wave contribution and
strengthen the evidence for B → f2ð1270Þlν decays.
The parametrization presented here can be directly

applied to processes of interest beyond B → ππlν decays.
One promising process is the study of semileptonic D →
Kπlν decays, measured to high precision at BES III
[94–96]. This would allow for an improved determination
of the Kπ scattering phase shifts, especially for the S wave,
in a similar manner to the S-wave ππ phase shift in K →
ππlν decays [35]. Furthermore, in this case the crossed-
channel contributions cannot simply be neglected, given
the precision of the available data, providing an ideal
scenario to study their impact. In this context, alternative
treatments of the left-hand cut, e.g., with conformal trans-
formations similar to the ones discussed in Ref. [97], could
be investigated. The determined phase shifts can then be
used to improve the description of Bs → Kπlν decays, a
background to jVubj determinations in Bs → Klν decays at
LHCb [98], as well as rare B → Kπll decays.

Further applications are also in reach: By extending our
parametrization to themultichannel case it will be applicable
to S-waveB → Dπlν decays, improving over Ref. [31], and
can control the uncertainty of the S-wave contributions in
Bs → DKlν decays, relevant for future measurements at
LHCb [99]. This extension would also allow us to get a
better handle on the uncertainty of the ππ S wave above the
kaon threshold. If measurements of B → KK̄lν decays at
Belle II and LHCb become available, a simultaneous study
could be conducted, allowing for a better isolation of the
B → f0ð980Þlν contribution. However, the KþK− channel
alone would be insufficient due to an admixture of iso-
vector and isoscalar KK̄ contributions. To this end, either
the K0

SK
0
S or K

�K0
S final states need to be measured as well,

or pure isovector B → ηπlν decays need to be studied
(cf. the analogous discussion for B0 → J=Ψfπη; KK̄g in
Ref. [100]). These measurements would not only improve
our understanding of isoscalar Bþ → f0ð980Þlþν and
Bþ → f2ð1270Þlþν decays, but also their isovector rela-
tives, B → a0ð980Þlν and B → a2ð1320Þlν decays.
While this work only presents a necessary first step into

the study of semileptonic decays with two or more final-
state hadrons, the results we obtained have far-reaching
consequences for determinations of jVubj in B → ρlν
decays and the description of inclusive B → Xulν decays
as a whole. It opens the door to model-independent studies
that will improve our understanding of fundamental param-
eters and light-meson spectroscopy.
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APPENDIX: FURTHER FIT SCENARIOS

In this appendix we present the Mππ and q2 spectra for
lower truncation orders.

1. 2=0=0

The first scenario does not include any terms in the y
expansion and thus the line shapes are entirely fixed by the
respective Omnès functions. In comparison to the 3=2=1

scenario in Fig. 2, the 2=0=0Mππ spectrum in Fig. 8 shows
only minor differences. The most important one is the
smaller uncertainty of the P wave near the inelastic
threshold, due to the absence of terms in the y expansion.
The major difference in the q2 spectrum shown in Fig. 9

is the faster dropoff of the full spectrum towards lower
values of q2 compared to Fig. 3. This is driven primarily by
a flatter slope of the S-wave q2 spectrum.

FIG. 8. TheBþ → πþπ−lþνMππ spectrum in the2=0=0 scenario.
FIG. 10. The Bþ → πþπ−lþνMππ spectrum in the 2=1=0
scenario.

FIG. 11. TheBþ→πþπ−lþνq2 spectrum in the 2=1=0 scenario.FIG. 9. TheBþ → πþπ−lþν q2 spectrum in the 2=0=0 scenario.
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2. 2=1=0

Adding a term in the y expansion leads to an increase in
the uncertainty of the P-wave contribution in the Mππ

spectrum, shown in Fig. 10, around the inelastic threshold,
similar to the 3=2=1 scenario, but not quite as pronounced.
Compared to the 2=0=0 scenario, the S-wave contribution

is reduced, with a slight increase of the P-wave
contribution.
The q2 spectrum shown in Fig. 11 remains unchanged

with respect to the 2=0=0 scenario which can be traced back
to a similar saturation of the unitarity bounds, displayed in
Figs. 4 and 5.
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