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ABSTRACT The Paired Carrier Multiple Access (PCMA) technology is adopted in modern satellite
communication systems. It establishes duplex links between two ground stations while enhancing the
bandwidth efficiency by assigning two single-carrier (SC) signals to the same time-frequency resource.
For a blind receiver for the satellite downlink signal in such system, in contrast to the cooperating transceivers
of the duplex link, no information about signaling, training sequences or data is available. Yet, it requires
accurate knowledge about the signal and channel parameters because the task of jointly demodulating and
detecting the data of both included SC signals is rather challenging. In this paper, we present several statistics
based estimators for the respective powers of the SC signals and the noise from the mixture signal. We illustrate
the benefits of the respective power estimation approaches for different modulation schemes by providing a
performance evaluation based on numerical simulations. To provide the estimators with the knowledge of the
respective roll-off factors that are used by the transmitters to generate the SC signals, we introduce a neural
network classifier for roll-off factor estimation.

INDEX TERMS Blind receiver, carrier power estimation, paired carrier multiple access (PCMA), roll-off
factor estimation.

I. INTRODUCTION
A duplex link between two ground stations (GSs) on earth may

modem manufacturers, and referred to as Carrier-in-Carrier
or Doubletalk by the respective parties [2], [3].

be established by a satellite that acts as a relay. Classically,
the satellite relay allocates the two uplink signals to two
distinct time-frequency resources, e.g., two separate frequency
bands, in the downlink. In order to use the available bandwidth
resources in the downlink more efficiently, in a Paired Carrier
Multiple Access (PCMA) system, the satellite relay amplifies
and adds up the transmit signals of the GSs, and allocates
the sum to a single time-frequency resource [1]. Thereby, the
required bandwidth resources in the downlink are reduced
down to 50%. Such approach of an operational spectrum
sharing mode has been implemented by different satellite
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The receivers at the respective GSs are fed not only with the
received aggregate signal from the satellite downlink but also
with the uplink transmit signal of this respective GS. Using
the known transmit signal, its contribution to the received
downlink signal is detected after passing through the uplink
channel, processing at the satellite and downlink transmission,
and subtracted from the sum signal. Ideally, only the part that
corresponds to the transmit signal of the far-end GS impaired
by additive noise remains as input to the demodulation process.

A. BLIND PCMA RECEIVER

Obviously, the improved utilization of the available frequency
bands is achieved by the cooperation of the satellite relay
and the two GSs at which the self-interference is known. The
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focus of this paper is a further GS on earth, that does not
participate in the aforementioned cooperation. Thus, it is
only receiving the satellite’s downlink sum signal and has
no information on any of the transmit signals. No access to
any signaling information or training sequences which may
be embedded into the respective signal stream is assumed.
Furthermore, we assume that this receiver does not possess any
knowledge about the transmit signal parameters which have
been determined during the setup of the communication link
between the two GSs. We refer to such a GS as blind receiver.
Applications where such a blind receiver is employed include
spectral monitoring and signal interception. In compliance
with such application scenarios, we assume that the blind
receiver is capable to detect and localize a PCMA signal of
interest within the observable frequency spectrum. Moreover,
it is assumed that coarse estimates of the downlink signal
bandwidth and its center frequency can be obtained. Hence,
distortion-free bandpass filtering of the PCMA downlink
signal that removes any adjacent channel interference is
presupposed for the considerations here.

The natural aim of the blind receiver is to demodulate the
data that is transmitted by the two first GSs and their single-
carrier (SC) signals. For the case of similar power levels
of the SC signals, the application of successive interference
cancellation is not promising, and joint detection needs to be
carried out instead. Multi-user sequence estimation algorithms
can be employed if explicit knowledge of the channel state
information and transmit signal parameters is available. In the
blind receiver, estimates of these parameters need to be
obtained by non-data-aided procedures and provided to the
subsequent detection unit. However, also schemes that perform
the detection jointly with estimation and tracking of the
required parameters need to be initialized with parameter
estimates of sufficient accuracy.

In the case of frequency selective channels, e.g. induced
by significant multipath propagation, the sole estimation of
the roll-off factors as covered in this paper does not apply
and estimation of the entire channel impulse response is
necessary. Here, we assume a frequency non-selective channel
which is typical for a satellite downlink. It is determined
mainly by the synchronization parameters as well as the
carrier and noise power levels. Their values are assumed to be
only slowly time-varying and hence, for the time windows
used for processing steps of the parameter estimation at
the receiver, are modeled as constant. This assumption may
become invalid if e.g. significant oscillator drifts related to
the transmitter and receiver hardware need to be regarded
or the satellite movement induces Doppler shifts that result
in quick variations of the frequency and phase quantities.
Yet, if the assumption is met, e.g. by choosing the length of
the processed time segment appropriately short, feedforward
parameter estimators are realizable. The symbol rate as well
as the modulation constellation and transmit pulse shape
are further relevant signal parameters of the assumed linear
digitally modulated transmit signals, and need to be inferred
from the downlink signal at the blind receiver. The transmit
pulse is assumed to be of root-raised-cosine (RRC) type
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with its bandwidth excess being parameterized by a roll-off
factor.

B. SCOPE OF THIS PAPER

In this paper, we focus on the estimation of the powers of the
two SC signals corresponding to the respective transmit signals
contained in the received PCMA downlink signal, as well as
the noise power. In contrast to the assumptions in [4], where
identical RRC transmit pulse shapes and roll-off factors for
both carrier signals are assumed, here, the respective roll-off
factors of the RRC pulses of the carrier signals are modeled
as in general different. Because, in this case, the knowledge
of the roll-off factors facilitates the estimation of the carrier
powers, we further introduce an approach for roll-off factor
estimation as an enabling step.

Obviously, the signal model employed by sequence
estimation schemes will be erroneous and may lead to wrongly
detected symbols and sequences if the powers of the two
individual SC signals within the received PCMA signal do not
match the respective true values. The additional knowledge
of the noise power or, equivalently, the signal-to-noise ratio
(SNR), is not only beneficial for controlling the processing
settings of the receiver, which may in practice be adjusted
to implement certain degrees of performance or complexity.
Its knowledge is also essential for detection schemes that
compute a-posteriori probabilities or equivalent quantities as
inputs for subsequent soft-input channel decoders [5]. As for
the carrier powers, the knowledge of the roll-off factors, and
thus the transmit pulse shapes, is essential for providing an
accurate model of the noise-free receive signal hypotheses.
Obviously, the detection process of the blind receiver operates
in a regime of strong cochannel interference. Hence, avoiding
any additional distortions due to inaccurate description of the
contributions of the signal hypotheses to the received signal
is vital for enabling joint detection of the symbol sequences
of both carriers with tolerably low error rates. Furthermore,
a precise knowledge of the roll-off factors allows for efficient
noise reduction by applying the fitting matched filter at the
receiver and reduces intersymbol interference at the correct
sampling instants.

C. LITERATURE REVIEW AND CONTRIBUTION

1) POWER ESTIMATION

To the knowledge of the authors, the explicit estimation of
the carrier powers of cochannel signals that are comparable
to the PCMA signal is rarely treated in the literature.
Several works that propose detection schemes for PCMA or
cochannel signals include implicit parameter estimation by
decision-aided adaptation of the coefficients of the channel
model, e.g. by employing the per-survivor processing (PSP)-
algorithm [6] or alternating optimization [7]. However, they
require an initialization of the estimate of the channel or its
parameters, respectively, which is not explicitly provided.
In [8], a scheme is proposed that estimates the carrier powers
jointly with classifying the carrier modulation constellations,
based on the minimum squared error fitting of statistical
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features. Here, a set of measured and hypothetical cyclic
cumulant features is used, where the latter are conditioned on
the modulations and the carrier powers. The considered set is
chosen to be distinctive with respect to different modulation
constellations and includes cyclic cumulants of orders up
to eight. Yet, cyclic cumulants of such high orders are not
required for power estimation in the case of various relevant
modulation constellations. At the same time, they are sensitive
with respect to estimation errors that impact the performance
of estimation of the carrier powers. However, the authors do
not provide an explicit evaluation of the power estimation
performance and their focus is on the modulation classification
accuracy. In [9], the authors present a method for estimation of
the amplitudes of the individual signals in a cochannel scenario.
Yet, unequal symbol rates of the individual SC signals are
assumed, which is incompatible to the assumptions we apply
for our considerations here. Also, there are approaches for
the direct estimation of the SNR that exploit the structures
of the fourth and second-order moments of the received
signal [10]. However, typically they cannot be applied to the
PCMA case directly. This is because, in the case of cochannel
signals, the fourth-order moment of the sum signal is scaled
by the squared total power of the noise-free signals, but the
powers of both data-carrying signals impact the fourth-order
moment individually. If instead the power imbalance of the two
carriers is known, an equivalent expression of the fourth-order
statistics of the received signal may derived which may
be exploited for SNR estimation. In principle, the power
imbalance of the SC signals within the PCMA signal can
be estimated [4] if the roll-off factors are identical or assumed
to be known. However, if the knowledge of the roll-off factors
can be assumed, the individual powers may be estimated using
the method presented in this paper and the derivation of the
imbalance becomes unnecessary. Other methods for direct
SNR estimation in the case of SC signal are summarized and
compared e.g. in [11]. Here, intersymbol interference-free
reception is assumed, which is enabled by knowledge of
the carrier frequency and symbol clock and a corresponding
demodulation and sampling. While the respective signal
parameters may also be acquired through blind estimation in
the PCMA case (cf. [12], [13]), compensation of the respective
frequency and symbol timing offsets in general cannot be
fulfilled for both carrier signals simultaneously. Thus, the
corresponding SNR estimation approaches are not applicable
to PCMA signals.

The noise power estimation that is introduced in [4] relies on
the estimation of the noise autocorrelation which is determined
by the characteristics of the receiver input filter. In [4],
it is assumed that the filter has a bandwidth larger than the
bandwidth of the received signal. Consequently, out-of-band
noise is included in the signal at the filter output, which
is exploited for the estimation of the noise power spectral
density. In contrast, in many practical cases, different satellite
signals are narrowly placed in frequency bands next to each
other without significant guard bands between them. Here,
the receiver input filter bandwidth may not be larger than
the bandwidth of the signal of interest and no out-of-band
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noise is present at the filter output. As we adopt the practical
assumptions stated above, the approach of [4] is not employed
in this paper.

CONTRIBUTION

Here, we present an approach for estimating the respective
powers of the individual SC signals that form the PCMA
signal. It exploits the separability of certain higher-order
cyclostationary statistics of the two carriers. This separability
is based on the assumption that their carrier frequency offsets
(CFOs) are non-identical and sufficiently different in the sense
of the given measurement resolution, while the two SC signals
share the same frequency band and hence, the same nominal
carrier frequency. The statistics may be estimated based on
the received PCMA signal, yet the order of the required
statistics for modulation schemes like 8-ary phase-shift keying
(8PSK) renders the estimation of the respective statistics
error-prone for limited signal segment lengths. In order to
circumvent this problem, we propose an alternative scheme
for the inference of the carrier powers for which the order of
the estimated statistics is limited to six. The estimation of the
desired statistics requires prior information on the CFOs and
the symbol rate of the SC signals, respectively. We assume
the information on the required parameters to be obtained
by blind estimation schemes (e.g. [12]) that are employed
precedent to power estimation processing considered in the
present paper. We also compare our presented schemes to
the power estimation scheme that is a part of the modulation
classification scheme of [8].

2) ROLL-OFF FACTOR ESTIMATION

To the best of our knowledge, an explicit estimation of the
roll-off factors of the carrier signals in a blind receiver of a
PCMA signal has not been investigated by other authors in
the literature before. The scheme proposed in [14] estimates
the time-averaged power spectral density (PSDy) of a received
SC signal and computes its inverse Fourier transform for
characterization of the raised-cosine pulse shape. Here, the
ratio of the heights of its main lobe and first side lobe gives
rise to the roll-off factor of the transmit pulse. In general, only
for SC signals the raised-cosine pulse is directly observable
in the inverse Fourier transform of the PSD( estimate. Hence,
the scheme cannot be straightforwardly extended to the model
of a PCMA scenario. Similarly, the inference of the roll-off
factor from the ratio of the peaks of the squared magnitude
of an estimate of the cyclic autocorrelation function of the
received signal according to [15] may not be directly applied
here, since the individual carriers share the same symbol
rate and their cyclic autocorrelations interfere with each
other. Another method that is outlined in [16] is based on
the minimization of the squared distance of the PSDg of
the noise-free receive signal conditioned on the hypothetical
roll-off factor to the PSDy estimate of the received signal.
However, this approach requires explicit knowledge of the
PCMA signal power levels and power spectral density of the
noise. Because their estimation is carried out after inference

VOLUME 13, 2025



A. Feder et al.: Blind Carrier and Noise Power and Roll-Off Factor Estimation for PCMA Signals

IEEE Access

of the roll-off factors in our receiver model, this requirement
is prohibitive for the practical application of the scheme.

CONTRIBUTION

We advocate an alternative scheme employing a standard
artificial neural network (ANN) structure which is adapted to
roll-off factor estimation by a training process using a data set
of estimates of the PSDy of received PCMA signals. We design
the ANN such that it provides sufficiently accurate estimates at
relatively low complexity that allow for the subsequent usage
of the presented power estimation schemes. Our experiments
indicate that the performance of the employed ANN is close
to that of the case where the ground truth values of the roll-off
factors are provided to the subsequent power estimation
scheme. Here, the training data is generated from simulated
received signals. A cross-verification of the ANN based
roll-off factor estimator with measured real world data is
desirable but not within the scope of this paper.

In contrast to previously proposed schemes, the ANN based
approach is specifically tailored to the scenario of co-channel
signals by using examples of PCMA signals during the training
phase. Furthermore, no explicit knowledge of the CFOs or
power spectral density of the noise is required in order to
exploit the spectral features.

D. PAPER STRUCTURE

The remaining part of the paper is organized as follows. The
assumptions on the considered system and its mathematical
model are described in Section II. In Section III, the utilized
cyclostationary quantities and their respective estimators are
introduced, and different approaches for the estimation of the
carrier and noise powers are derived. In Section IV we give
the structure and training setup of an ANN based estimator
that provides the necessary knowledge of the roll-off factors
to enable the deployment of the power estimators. Numerical
evaluations and comparisons of the presented approaches are
given in Section V. We conclude the paper in Section VI.

Il. SYSTEM MODEL
The equivalent complex baseband representation of the linear
digitally modulated transmit signals corresponding to the two

carrier signals that are captured at the blind receiver is given
by

+o00
sty =D aix gi(t —kT), (1

k=—o00

where i € {I,2} denotes the carrier index, k stands for
the symbol interval index and T represents the symbol
period which is identical for both carriers. The symbol
a; of carrier i and symbol interval k is an element of
the respective modulation constellation of carrier i given
by the set A; with zero-mean and unit mean energy. All
symbols are stochastically independent with respect to i and
k and identically distributed with respect to k. The transmit
pulse shape denoted by g;(¢) is of root-raised-cosine type,
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parameterized by the individual roll-off factor p;. The pulses
gi(¢) have unit energy, i.e., ffooo lgi()]? dr = 1.

The transmitters are generally not synchronized with each
other or with the receiver hardware, and the wireless channels
from the GSs to the possibly non-stationary satellite are
distinct, respectively. Accordingly, each carrier signal of index
i is affected by individual carrier frequency and phase offsets f;
and ¢;, and symbol timing offsets ;. The satellite transponder
adds up the received uplink signals and retransmits the sum
signal in the downlink. This downlink signal is then taken up
by the blind receiver on earth and is corrupted by additive
noise. Hence, the received PCMA signal at the blind receiver
is modeled as

2
r(t) =Y VEsi P (1 — 1) +w(t),  (2)

i=1

where the received energy per symbol Es; of carrier i
reflects channel attenuation effects as well as possible power
allocations with respect to each carrier. A lowpass filter at
the input of the blind receiver suppresses interference from
adjacent channels in the equivalent complex baseband domain
and leaves the PCMA signal within its passband free of any
distortion by filtering. At the same time, it limits the bandwidth
and power of the complex additive white Gaussian noise
(AWGN) with power spectral density Ny at the receiver input
resulting in the effective noise w(z).

We restrict the domains of the carrier phases and symbol
timing offsets to ¢; € [0,27) and t; € (—T/2,T/2],
respectively, for convenience of notation and without
restricting generality, here. A limitation of the magnitudes of
the carrier frequency offsets to |f;| < fmax 1S assumed, which
may be derived from hardware and channel specifications in
practice. This further renders the assumption of the lowpass
filter to leave the PCMA signal undistorted practical.

The power estimators in this paper rely on the knowledge
of the symbol rate 1/T and the carrier frequency offsets f;,
which we assume to be retrieved by adequate prior processing,
using e.g. the estimators proposed in [12]. Furthermore, both
modulation schemes of the respective carriers are assumed
to be known, e.g. via neural network based co-channel
classification schemes [17].

In a practical blind receiver, the received signal is processed
digitally after Ts-spaced sampling. The sampling frequency
1/T; is chosen large enough such that the relevant statistical
features may be estimated without any corruption due to
aliasing. Here, the knowledge of the symbol rate 1/7, fiax
and the range of possible roll-off factors is exploited in order
to determine the largest expected bandwidth of the received
signal.

Ill. CARRIER AND NOISE POWER ESTIMATORS

In this section, we first establish the cyclostationary properties
that are employed for the proposed estimation schemes. Based
on these properties, we subsequently derive estimators for
energy per symbol of the carriers for different cases of
modulations of the carriers. Here, the estimation of the energy
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per symbol for each carrier is equivalent to carrier power
estimation for known symbol period 7. Furthermore, noise
power estimation is addressed.

A. CYCLIC MOMENTS AND CYCLIC CUMULANTS OF PCMA
SIGNALS

The pth-order moment including g conjugations, m; (4 () =
E{(r())P~9(r*(¢))?} of a PCMA received signal r(¢) is gener-
ally time-varying. For appropriate p and g, E{a’;’ ;q(az D #
0 for at least one i, and m, (5, 4)(t) admits a series expansion

M) = D M pg(@)e®™ 3)
acA; p.g

where A, (, ) is the set of so-called cycle frequencies o for
which the coefficients

z/2

1 .
Mepo@ =i 5 [ mpa0e o a @

-Z/2
which are referred to as (p, g) cyclic moments at cycle
frequency «, are nonzero.
The (p, g) cumulant of r(z), i.e., the pth-order cumulant
of r(t) with ¢ complex conjugations, can be calculated using
moments of orders up to p by the expression

By Ab
@ =D (=D = DU [ .o 1an -
b=1 =1
)
where the sum is over all B, partitions P, (b = 1,..., By),

of a set A{, 4) containing (p — ¢) times r(f) and g times r*(¢).
Each partition contains a respective number A;, of non-empty
subsets Sp; (I =1,...,Ap), ie., Pp = {Sb,l};\i]. Moreover,
each Sp; of size ‘Sb,l’ = pp, contains (pp,; — qp,;) times
r(t) and gy, ; times r*(¢), such that every element of X{, ,) is
included in exactly one of the A; subsets Sp, ; for every b and
therefore U?i 1 Sp1 = Xp.g)-

Assuming that ¢, (, 4)(¢) is not identical to zero for all ¢,
it admits a series expansion

=D, CripgB)e™™ (6)
BEB; (p.g)

with cycle frequencies 8 € B (,,¢) for which the coefficients

z)2
1 ! —j2npt
Crp.9(B) = ZEToo 7 crp.q (e de, (1)
-Z)2

which are referred to as cyclic cumulants, are nonzero.
The (p, g) cyclic cumulant of a transmit signal s;(#) can be
derived to

Ca;,(p,q)
~4®d) G, (B) for B € By,
cs,-,<p,q>(ﬂ)=[0 T si-(p )

else

®)
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where G; ,(f) = fjo(f [gi(D)P e 3% dt, assuming real g;()
Vt, i. Furthermore, ¢y, (p,q) denotes the (p, g) cumulant of
the symbols a; x, which is determined by the modulation
constellation A; and identical for all k. Note that, if for the
particular modulation constellation A; the cumulant of the
constellation equals zero, e.g. c4; 2,00 = 0 if A; is of any
phase-shift keying (PSK) constellation of order larger than 2,
then the set of cycle frequencies B; (,,4) is empty. Provided
that cq;,(p,q) # 0, the set of cycle frequencies of the (p, q)
cyclic cumulant of carrier s;(¢), which is denoted by By; (. ¢),
is composed of integer multiples of 1/7 [18]. In particular,
if transmit pulses g;(¢) of bandwidth B, are assumed, it can be
shown using fundamental properties of the Fourier transform
that the bandwidth of G; ,(8) is pBy;, i.e. G;p(f) # 0 for
[f| < pBg,. As a consequence, the set of cycle frequencies
reduces to By, (p.q) = {ui/T | |luil < pBgT}, fori = 1,2,
here.

Since the additive thermal noise is stationary, hence, the
(p, q) cyclic cumulant of w(z) is given by

©))

Cw,(p,g) forf =0
Co.p.(B) = ’()W(” olse

Hence, the only ““cycle” frequency that is present in the noise
is DC. Furthermore, since the noise is Gaussian, zero-mean
and circularly symmetric, ¢y, (p,q) 7 0 only for (p, g) = (2, 1).

A pivotal property of cumulants is that the cumulant of the
sum of independent signals equals the sum of the respective
cumulants of the signals [19]. Acknowledging this property
and regarding the definition of the PCMA signal (2) allows to
derive the (p, g) cyclic cumulant of the PCMA received signal,
ie.,

2

2 i(— T _ .

Crip(B) = ZEg,/z Cs,—,(p,q)()/i)ej( 2 yiti+(p—29)$1)
i=1

+ G (p.9)(B)s (10)

where y; = B — (p — 2q)f; is used for convenience in notation.
Considering the composition of the PCMA received signal
in (2), the set of cycle frequencies B, (y,4) of ¢, (p.q)(t) can
be determined as By, (p,q) + (? — 29)f;, i = 1,2 and DC for
the noise cumulant in the case of (p, g) = (2, 1). Here, the
cycle frequency sets of the two single-carrier signals are non-
empty sets only if the cumulants of the respective modulation
constellations cg, , , are nonzero for the respective values of
(p, ). However, the expression (10) holds even if ¢4, (p,9) =
0 for any i or ¢y, (p,q) = 0 and the corresponding sets of cycle
frequencies are empty. In that case, the respective contribution
in (10) may be set to zero.

We now focus on a first special case of the cyclic cumulants,
i.e., the (p, 0) cyclic cumulants with no conjugations. Choosing
(P, q) = (p,0) and restricting the cycle frequencies to 8 €
Brp.g.i = pfi + ui/T | luil < pBgT} fori = 1,2, (10)
simplifies to

2 i(— - .
Crp0) (B) = EL2Cy 0y (e T270m090 - (11)
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where fi # f> has been assumed to ensure that the cyclic
cumulants are selective with respect to a single respective
carrier. Further, it is exploited that the (p, 0) cumulants of the
zero-mean circularly symmetric complex noise are zero for
all p.

The second special case we investigate here are the cyclic
cumulants for (p, g) = (p, p/2) for even p. In this case, the
cycle frequency set simplifies to B, (. p/9) = (u/T | u €
Z, lu| < max;(pBg ;T)}. Using g = p/2 conjugations in (10)
yields

2
uy _ p/2 u —i27(u/T)T;
Crp.%) (7) =D EiCopp (7) re T
i=1

u
+ Cuga (3) (12)

which is nonzero for |u| < max; (pBg’iT).
The processing in a practical receiver is carried out digitally
using a segment of the sampled received signal

r(n] = r (nTy) (13)

with a sampling rate of 1/7 chosen large enough to avoid any
aliasing effects over the course of the subsequent processing.
For the one-sided bandwidth B of the receiver input filter,
the condition 1/T5 > 2pB is generally sufficient considering
(p, g) moments and cumulants. It is obvious that the (p, q)
moments of the discrete-time received signal m, (, )[n] =
E{(r[n)?~4 (*[n])?} = m,,(p,q)(t)|t:nTS correspond to the
respective (p, g) moments of the continuous-time received
signal at the particular sampling time instances. In the
same way, the (p, g) cumulants of the discrete-time signal
r[n] correspond to the (p, g) cumulants of the continuous
time signal, ie., ¢, pgln] = Cf~0’»4>(t)|z=nTs' As for
the continuous-time case, the moments and cumulants of
the discrete-time signal admit series expansions whose
coefficients are the cyclic moments M,’(pgq)(&) and cyclic
cumulants C, ,,(p,q)(ﬁ), respectively. The latter relate to their
continuous-time counterparts by [20, Ch. 3,4]

Mrp@ = M@ (14)
Cripa® = Crina B, 1)

where o € A (p.q), B € Br,p,q- Hence, estimates of the
cyclic moments M, (, 4)(a) of the continuous-time signal can
be obtained by estimating the cyclic moments Mr,(p,q)(a Ts)
of the corresponding discrete-time signal. The latter are
obtained from the samples of a finite-length measurement
of the received signal by

N . ~
G N G 10 K

n=—N

A

Mr,(p,q)(&) =

2N +1
(16)

Such estimate is asymptotically unbiased and consistent [21].
In order to derive an estimator for the cyclic (p, ¢) cumulants
using the observed signal segment, the relation of the cyclic
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cumulants to the cyclic moments of orders p’ < p is exploited.
Using the relation between the cumulants and the moments
in the time domain as given in (5) together with the relation
between the cumulants and the cyclic cumulants in (7) yields
the expression of the cyclic cumulants via the cyclic moments,

By Ab
Cripa® =K D [Mrprawnsn). (A7

b=1 A =1
>t vei=B

where we use the definition K, = (—1)“_1 (Ap — 1)! for
convenience. Here, for each partition index b, the inner
sum is over all combinations of cycle frequencies yp; of
moments 1y (p, ,.q,)(t) for which M, ¢, , ¢, n(¥6,1) # 0,
respectively, and sum up to B. With this, estimates for
the cyclic cumulants C‘r,(,,,q)(ﬁ) are obtained by replacing
My py1.q5.)(¥p,1) in (17) by the corresponding estimates

My oy 1,950 (Vb1 = Mr,(pb,t,q;;.l)(VbJTs)-

B. CARRIER POWER ESTIMATION

1) APPROACH USING C; (p.0)(pf; +u;/T)

Rearranging the carrier selective representation (11) for cycle
frequencies B € B, (p,q),i fori = 1, 2 yields

e Cr..0) (B) A Cryiti—pei)

SET G0y (B=1f)
_ |Cr.0.0) (B
|Csi.0.0) (B — PfY)

where for deriving the second equation it is recognized that
the energy per symbol is equal to its absolute value. If the
modulation scheme and the pulse shape g;(¢) (or, respectively,
the roll-off factor p; that parameterizes it) are known, cq;, (»,0)
and G; (B) can be derived, respectively. Thus, Cy; (»,0)(8)
can be determined (cf. (8)), where also the known symbol rate
1/T is used. Together with an estimate C‘r,(p,q)(ﬂ) of the (p, 0)
cyclic cumulant at cycle frequency B € B, (y,¢),i fori =1, 2,
the energy per symbol of carrier i can be estimated as

) (18)

2/p

Cro) B - T
|¢ai,p0)| |Gip (B — P

Obviously, g, (»,0) 7 0 needs to be fulfilled for the estimator,
i.e., p has to be greater than or equal to the order of
non-circularity of the respective A;. Note that the number
of required calculations and the complexity that comes with
computing the estimates can be kept relatively low if p is
chosen to be the lowest possible order, i.e., the order of non-
circularity. This is because in this case all involved moments
of orders p’ < p in (17) are known to be zero and the (p, 0)
cumulant is equal to the (p, 0) moment.

Esi= (19)

2) APPROACH USING C; (6 3,(%) AND C; (4.2 (%)

It turns out in experimental evaluations that the estimates
of cumulants of high orders p suffer from large estimation
variances. This also becomes apparent in the presented
numerical results in Section V. As an example, p = 8 needs
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to be chosen for 8PSK modulation. This case requires a
large length of the signal segment for obtaining ér’(g,o) (8f)
with sufficient accuracy for a high-quality power estimation
according to (19). Therefore, we derive an alternative
procedure to estimate the carrier powers that employs (p, p/2)
cumulants of lower orders p < 8, which are nonzero for also
the frequently used higher-order PSK or quadrature amplitude
modulation (QAM) schemes. The particular choice of the
cyclic cumulants whose estimates serve as features from which
the carrier powers are inferred, is based on the following
considerations. For the reasons stated above, we target to
utilize estimates of cumulants of order p < 8. While the
(p, p/2) cumulants are nonzero for any other PSK and QAM
modulations, they are the only cumulants with p < 8 that
are nonzero for 8PSK. From (12) we observe that the cyclic
cumulants for cycles B # 0 for which C; (5 p/2)(8) # 0 holds
depend on the symbol timing offsets 7; for i = 1, 2. Although
the symbol timing offsets may be estimated [13], we prefer
features that do not require their respective knowledge,
as the values of the symbol timings may themselves be
subject to estimation errors. Furthermore, the magnitude of
Cr,(p.p/2(B) # 0 for B # 0 can in general be attenuated by
the incoherent summation in (cf. (12)) which may result in
destructive superposition of the respective contributions of the
two SC signals to this cyclic cumulant. Also, the magnitude
of the respective cyclic cumulants C; p/2)(8) # 0 at
B = |ul/T,u = 1,2,... is determined by G; ,(u/B), i.e.,
the p-fold convolution of the Fourier transform of the transmit
pulse, which may take on small values for small roll-off
factors p;. Consequently, we expect the cyclic cumulants
Crpp/(B) # 0 for B # 0 to be more susceptible to
estimation errors. Therefore, we restrict the set of considered
(p, p/2) cyclic cumulants to those of cycle 8 = 0. With respect
to the remaining cyclic cumulants, we exclude C, 2,1)(0),
which corresponds to the time-averaged power of the received
signal, as it also contains contributions of the noise, of which
we assume the power to be unknown at this stage of the
processing in the blind receiver. As a result, the two cyclic
cumulants C; 6,3)(0) and C, (4,2)(0) are employed as features
for our alternative approach to the estimation of the carrier
powers.

For p € {4,6}, we observe the corresponding cyclic
cumulant expressions

2
1
T > Carpp2GipO S, (20)
=1

Cr.pp/2) (0) =

Aipp/2)
and introduce the definition A; (p.q) = cq,(p,9)Gi,p(0) for
convenience in notation. Obviously, the cyclic cumulants
in (20) contain contributions of both individual carriers such
that the respective powers may not be inferred from only one
cyclic cumulant. In order to obtain an expression that depends
on only a single variable, we employ the quotient

2
3 3
(Cr6.3 (0) - T)° (A1,<6,3>Es,1 +A2,<6,3)Es,z)

(Cr,2) (0) - T)

Y =

2 2 3
(A1,<4,2>Es,1 +Az,(4,2>Es,z)
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FIGURE 1. Example of a normalized version of the fitting function with two
minima. The two vertical lines point out the found minima.
3 2
_ (A1, 6,317 +A2,6.3))
= 3
(Ar@I? +A24.2)

ey

where we have used the power imbalance of the two carriers,
I = Es1/Es 2, which serves as solitary parameter to be
estimated in the first step of this approach.

The formulation (21) can be rearranged to a polynomial
equation in / of order six. The preknowledge / € R,/ >
0 along with information on the largest expected carrier power
imbalance of the system governed by the specific application
scenario, e.g. |1010g10 (1)| < 1dB, can be exploited for
its solution. By restricting the domain of / according to
the considerations above, we observe that we can solve the
polynomial equation for the correct / numerically in all
considered cases.

A practical receiver is restricted to use estimates of the
cyclic cumulants and roll-offs for any of the statistical
estimators described above. Hence, we need to replace Y
or Cr (p.)(B) and also Gj p(B) or A; ) by their respective
estimates ¥ or C, .(p.(B) and G, 2(B) orAl (v.q)- Consequently,
instead of solving (21), we therefore decide to search for those
values of / that minimize the squared error for fitting (21). For
this purpose, we develop (21) as

(Cri63 (0 -T)°
(Cr,2) (0) - T)3

whose expansion yields the function

—Y=0 (22)

5 2 3 76 2 74
fi) = (Al,(6,3) _Al,(4,2)Y) "= (3A1’(4’2)A2,(4,2)Y) 4
+ (2A16342,63) 1 — (3A1,(4,2>A§,(4,2)Y) r

2 3
+ (Az,(6,3) - Az,(4,2)Y) (23)

which equals zero for I1=1. Supported by our numerical
investigations, we find that (f (/ ))2 has two minima for real /.
Examples for the two respective cases are shown in Fig. 1 and
Fig. 2.

In the case of a single minimum we find the estimate for
the carrier power imbalance numerically as

= argmin (f())*, (24)
1
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FIGURE 2. Example of a normalized version of the fitting function with one
minimum. The vertical line points out the found minimum.

and can subsequently derive estimates for the respective
energies per symbol Es ; for i = 1,2 by

Esa = \/ér,(4,2)(0) -T/ (Al,(4,2)j2 +A2,(4,2)), (25)
Es|=FEs,-1. (26)

In the case of two local minima, we find both corresponding
solutions for I and respectively denote them by I forl € {1,2}.
For each solution for the imbalance we derive a solution for
Es 1 and Eg 7, respectively, i.e.,

Esny = \/ér,(4,2)(0) -T/ (Al,(4,2)i12 +A2,<4,2)), 27
Esii=Esp; 1. (28)

Finally, we choose

(Es.1, Es2) = (Eg ;. Eg 7). (29)
~ 2/p
i 2 [ Crp0 BT
| = argminz Esijj— | ———7— ,
letl2) 55 |Ai.p.0]
(30)

which means that we use that solution (Es, 1.1 Es,g, ;) that has
the smaller Euclidean distance to the possibly relatively noisy
estimate that is obtained via the approach of (19).

3) MIXED APPROACH

If only one of the carriers is PSK-modulated and the other one
uses a modulation of non-circularity order lower than eight,
a simplified approach can be derived that provides an enhanced
accuracy for estimating the power of the 8PSK-modulated
carrier using the cumulants C, (5 0(f;) and C; 4,2)(0). Without
loss of generality, we assume that the carrier withindex i = 21is
8PSK-modulated and the carrier with index i = 1 uses a
modulation with lower non-circularity order, e.g., quadrature
PSK (QPSK). Here, we exploit the fact that C; (,,0)(pf1) can
be more accurately estimated for p < 8, i.e., p = 2, 4 than
for p = 8. For this purpose, the estimate Es,l is obtained first
using ér,(ol,O) (01f1) along with (19), where o; is the order
of non-circularity of the carrier i = 1, 2, and here 07 < 8.
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From (20) with p = 4 we find that

Cr.42) (0)T — cay.(4.2)G1.4(0)EZ
ES,2=\/ r,(4,2) a1,(4,2)U1,4 S,l’ (31)

Cay,(4,2)G2,4(0)

and replace C; (4,2)(0) and ESZ’1 in (31) by their respective
estimates C‘r,(4’2)(0) and ES,] to obtain an estimate Es’z for
Es.

C. NOISE POWER ESTIMATION

After having estimated the energies per symbol of both carriers,
a straightforward approach for estimating the power of the
noise contained in the PCMA received signal is adopted.
As pointed out above, the noise power is represented in the
time-averaged power of the received signal, i.e., the C, (2,1)(0)
cyclic cumulant, which is obtained from (20) for (p, ¢) = (2, 1)
and 8 = 0 with (9) as

2
Cr21)0) = ZES,iCs,-,(Z,l)(O) +cw,2,1)
i=1
12
=7 ZES,i + cw,2,1) (32)
i=1
where the second equation results from inserting the
expression for Cy; 2, 1)(8) of (8) and acknowledging that the
modulation symbols and the transmit pulses are defined to
have unit variance ¢, (2,1) = 1 and unit energy G; 2(0) = 1,
i = 1,2, respectively. .
Hence, using the obtained estimates Eg ; tggether with an
estimate for the received PCMA signal power C, (2,1)(0) yields
the noise power estimate

2
Cw,2,1) = Cr2,1n(0) — % ZES,i~ (33)
i=1

Note that the variance of the estimates of the energies per
symbol may result in very small positive or even negative
values for ¢,, (2,1). In a practical receiver, this noise variance
estimate may be biased by setting up a lower threshold below
which it is not allowed to drop. This limit can be derived from
side-knowledge about the application scenario or properties
of the receiver hardware. We do not consider such approach
here, since it does not affect the essence of our scheme and is

highly dependent on the particular use case.

IV. NEURAL NETWORK FOR ROLL-OFF FACTOR
ESTIMATION

With respect to the power estimation approaches introduced
above, it is obvious that the knowledge of the transmit pulse
shapes, or equivalently, the roll-off factors that parameterize
them, is essential as the selected cyclic cumulant features
depend on the frequency representations of the pth powers of
the transmit pulses, i.e., G; ,(8). Consequently, the transmit
pulse shapes need to be determined before the proposed power
estimation procedures are conducted. We introduce an ANN
classifier based roll-off factor estimation scheme which shows
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the advantage that it does not require an exact knowledge of
other channel parameters, e.g., the CFOs.

Despite the roll-off factors are generally parameters in
a continuous valued domain, we adopt an approach for
estimation of the roll-off factors that is based on classification
by an ANN, here. Not only is the concept of conducting
estimation via classification known in the literature on
machine learning [22]. We could verify in our previous study
on roll-off factor estimation for PCMA signals [23], that a
similar ANN based classification approach outperforms a
corresponding scheme that employs a regression ANN of
equivalent size. Hence, we do not investigate ANNs with
regression output, here.

In order to construct a blind roll-off factor estimator for
PCMA signals, we formulate the estimation problem as a
supervised learning based classification task. To that end,
we assume that the possible roll-off factor values that may
occur in the respective PCMA satellite system can be expected
to lie within a range [ Pmin, Pmax] that is known at the receiver
and is in line with the respective system specifications. Even
though in general the roll-off factors may take any value
from this range, a classifier may choose an estimate, which
then is inherently only an approximation, from a limited
number of values. For this, we discretize this expected range
of roll-off factor values [Omin, Pmax] for each carrier into a
finite discrete set of V roll-off factor values {p1, ..., py} with
Ov = Pmin + (Pmax — Pmin)/V - (v = 1/2),v = 1,...,V,
such that each value lies at the center of one of N equally
sized intervals that cover the expected range. Extending this
idea to the PCMA signal here, we discretize the space of
possible combinations of the two roll-off factors [ omin, ,omax]2
analogously, such that V2 possible combinations (5, P2
w=1,...,V?are considered in the constructed classification
problem with C = V2 classes.

We use an estimate of the time-averaged power spectral
density of the received PCMA signal as input to the ANN
classifier in our approach. The PSDg is a favorable data
representation because it contains spectral features that are
relevant to the inference of the roll-off factors but is invariant
to the symbol timing and carrier phase offsets. Since it
is a second-order statistic, it is not affected by the large
estimation variances of higher-order statistics. The estimation
variance can be further reduced by averaging a large number
of windowed sub-segments of a long segment of the signal.
An accurate representation of the PSDy by its estimate is
especially beneficial for a blind receiver. At the same time,
the input dimension L is kept constant for varying lengths of
the signal segment used for the estimation of the PSDy.

Given the assumption that the data symbols a;; are
independent with respect to i, and k, the PSDy of the received
signal is given by (cf. e.g. [24, Ch. 4])

2

- 1

Sr(f) = 7 D Esi|Giaf = + Q). (B4
i=1

where ®,,,(f) is the power spectral density of the noise
w(t), which is primarily determined by Ny and the input

51840

filter transfer function. Averaging M periodograms of distinct
frames of L consecutive values of 7[n] yields an asymptotically
unbiased estimate of the PSDg by [25]

2 T, "< ol 2 fuT.
S () =+ > rinle . (3%)
m=0 | n=nom

where ng,, = np + mL and the choice of the anchor
sample index ny is arbitrary and does not restrict generality
if a PCMA signal with infinite support is assumed. For our
experiments, we choose to evaluate (35) for frequencies
f=0,...,(L—1)/(LTs), which corresponds to the standard
grid of the discrete Fourier transform domain. Thus, each
PSDy estimate is represented by L frequency values.

The goal of the design of the ANN is to map the estimated
PSDy input to a hypothesis of the pair of roll-off factors of the
two carriers of the received signal. The implementation of such
mapping is accomplished by a supervised learning process
using synthetic training data which is generated by standard
simulation software according to the system model (1), (2).
The collection of data samples which are labeled PSDg

estimates form the training data set D = {(®,, s(f), ys), 8 =
1,..., DI} of size |D|, where ys € {1,..., C} are the class
labels of the §-th training example Cbrr,(; (f). Here, for PCMA
signals, each class number y € {1, ..., C} stands for a certain
roll-off factor combination (o1, 02)y € {p1,..., ,ov}z. For
training the ANN, the roll-off factors of the generated signals
from which the input examples are obtained by the estimation
procedure (35) are chosen from the discrete set {p1, ..., ,ov}z.

It should be emphasized here, that the ANN is provided
only with the estimate of PSDg. No further side information
like, e.g., on the CFOs is available at the input of the ANN.
Further, apart from adjusting the sampling rate to an integer
multiple of the symbol rate and adjusting the power levels
such that they lie within a certain range, no synchronization is
performed prior to the PSDg estimation. Consequently, neither
the respective channel nor signal parameters are conveyed to
the network implicitly and follow the same assumptions as
outlined in Section II. Only the range of parameter values
represented by the training is thereby known to the trained
ANN. Further details on the particular parameter values used
for our numerical evaluations are provided in Section V.

The employed network architecture is based on a con-
ventional convolutional neural network (CNN) architecture,
which is generally a subcategory of ANNs. This choice
is in line with other related works on the estimation of
communication signal parameters by deep learning based
classifiers [26]. The details of the layout of the adopted
ANN are specified in Table 1. As pointed out above, the
network input is the PSDq estimate comprised in a real
one-dimensional vector of L elements that correspond to L
frequencies. We choose L = 1024 for a trade-off between
processing a detailed representation of the PSDg estimate and
limiting the network complexity.

First, two convolutional blocks process the input data. The
convolutional blocks consist of several layers as follows.
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TABLE 1. Architecture layout of the CNN roll-off classifier.

Layer Output dimension
Input 1 x 1024

Convolutional layer 1 4 x 1024
Batch normalization 4 x 1024
ReLU activation 4 x 1024
Max-pooling 4 x 512
Convolutional layer 2 4 x 512
Batch normalization 4 x 512
ReLU activation 4 x 512
Max-pooling 4 x 256
Fully-connected 1 512
ReLU activation 512
Fully-connected 2 N2
Softmax N2

The first layer is a convolutional layer with four trainable
1D filters of size 64 that are convolved with the respective
input and are meant to extract features from the input signal.
Before the respective convolution operation, zero-padding is
applied to the input such that the second output dimension
equals the input dimension. The second layer performs batch
normalization in order to regularize and stabilize the learning
process. Each data batch is normalized by normalization
during training. Third, a rectified linear unit (ReLU) activation
function performs non-linear mapping in the ANN. The final
step of the convolutional block is max-pooling. Here, the
output dimension is reduced by a factor of 2 by downsampling
while the most important extracted information shall be
retained.

The learned features at the output of the second con-
volutional block are flattened and processed by two fully-
connected layers. The first fully-connected layer comprises
512 neurons and is followed by another ReLU activation layer.
The number of neurons of the second fully-connected layer
equals the number of classes C. The last layer is a Softmax
activation function which estimates the occurrence probability
pyofeachclassy € {1, ..., C}, given the input ®,,(f). Finally,
the estimated roll-off factor combination is inferred from the
output of the ANN as the roll-off factor pair (o1, p2), that
corresponds to the class label index y, for which the output of
the Softmax layer is maximized, i.e,

y = argmax py. (36)

(b1, B2) = (o1, P2)5 »
yel,...,.C

In this paper, we focus on investigating the processing
chain comprising the ANN-based roll-off factor estimation
that acts as key enabling step for the subsequent power
estimation by the schemes described in Section III. The
design of the ANN, including the choice of the number of the
convolutional blocks and the number and size of filters therein,
as well as the number of neurons in the fully-connected
layer are based on our experience from experimenting across
several data sets. Here, we have focused on achieving a
satisfactory and robust classification performance while
maintaining a relatively low computational complexity, which
is especially advantageous during the inference phase. Further,
we emphasize that no exhaustive tuning of the hyperparameters
has been conducted, and we do not claim their respective
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selection to be optimal. The performance of the ANN based
scheme may be further improved by a rigorous tuning
for specific system models. Strictly optimizing the ANN
design towards maximal classification accuracy or minimal
estimation error is beyond the scope of this paper. Yet, we show
in Section V on the experimental system evaluation that
the attained performance is sufficiently good such that the
performance of the subsequent power estimation deteriorates
only slightly, compared to ideal knowledge of the roll-off
factors.

In practice, the training of the ANN may rely on a training
data set of limited size. Such limitation can lead to overfitting
of the trained model. This behavior can be addressed by
employing regularization methods for the ANN like Dropout
or L2 regularization.

V. NUMERICAL PERFORMANCE EVALUATION

In this section, the estimation accuracy of the power and
roll-off factor estimation schemes presented above is evaluated.
For this purpose, we have generated synthetic discrete-time
representations of the PCMA signals according to the
model (1), (2). We normalize the sampling period to Ts =
1 with a symbol period of T = 10, i.e., 10 samples per symbol
are taken. The modulation schemes used for both carriers are
specified for each of the subsequent experiments. The upper
and lower limits of the interval within which the roll-off factors
pi of the respective root-raised-cosine transmit pulses shall
be assumed to lie are ppin = 0.2 and ppmax = 0.5. These
choices are in line with the specification of roll-off factors in
modern commercial standards [27]. Concerning the channel
parameters, the carrier phases and symbol timing offsets of
the two carriers are chosen randomly from the respective
domains following a uniform distribution, i.e. ¢; ~ U [0, 27)
and ; ~ U (=T/2,T/2], for i = 1,2, respectively. The
frequency offsets f; of both carriers are chosen subject to a
uniform distribution around zero with a magnitude of not more
than five percent of the symbol rate, i.e., f; ~ U [—fmax,fmax]
with finax = 0.05/T. The filter at the receiver input is designed
to approximate an ideal lowpass with one-sided bandwidth
B = (1 + pmax) /(2T) + fmax- The energy per symbol of the
respective carriers is uniformly distributed with deviation of
£1 dB around unity, i.e., 10log; (ES,i) ~ [—1dB, 1dB].
The SNR used for illustrating the following results is defined
by SNR = (Es,1 + Es.2)/(T - 2BNp). The PSDy estimates are
obtained from the received signals according to (35).

A. EVALUATION OF THE ANN BASED ROLL-OFF-FACTOR
ESTIMATOR

For training the ANN-based estimator for the roll-off-factors
of the two carriers, we have generated data sets that contain
PSDy estimates of simulated received signals with parameters
as described in the beginning of this section. In the training
process, a Stochastic Gradient Decent with momentum
algorithm is employed for the minimization of the categorical
cross-entropy loss function as metric for the classification
performance, running over 100 epochs with a learning rate of
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0.0045 and a batch size of 64. For training the classification
ANNESs, the roll-off factors have been chosen from a discrete
grid on the interval [ omin, Pmax] as described in Section IV,
i.e., {omin + (Omax — Pmin)/V -(v—1/2),v € {1, ..., V}}. The
respective sample of a training data set features the roll-off
factor combination (o1, p2),, where p thus represents the
class that the data sample is associated with. In the training data
set, each sample includes a PSDy estimate that serves as ANN
input and the corresponding label, that is used for calculating
the loss during training. Regardless of the number of classes,
data sets for training contain |D| = 27 - 10* signal examples.
Because the data symbols of the modulation constellation
have unit average power, the actual used modulation has
no effect on the PSDy. Accordingly, we could verify that
the particular symbol constellation selected from the set of
considered modulation schemes has negligible influence on
the roll-off factor estimation by the ANN, which uses an
estimate of the PSDy as input. Hence, QPSK modulation has
been chosen for the generation of all training set samples.
The SNR in dB-scale of the training data set is uniformly
distributed according to SNR ~ [0dB, 25 dB].

Meanwhile, we test the trained ANN-based roll-off
estimators on signal examples that were generated with roll-off
factors which are not picked from the discrete training grid but
are continuously uniformly distributed on [pmin, Pmax], i-€-,
they do not exactly match the roll-off factors of the training
examples. However, the classification ANN is supposed to
infer the roll-off factors of the test input signal according to
the discrete values it is trained on. While the roll-off factors of
the test data sets are random, the SNR is respectively constant
and each distinct set contains 107 examples per SNR value.
The employed performance metric for our experiments is
the empirical mean-square error (MSE), which is adequate
because the roll-off factors of the test data sets are continuously
distributed. The MSE is calculated across the estimates for
the roll-off factors of both carriers, i.e., the estimates for both
carriers are treated as independent from each other and both
respective errors contribute to the total MSE.

For the performance evaluation of the roll-off factor
estimation scheme we average the performance of the ANNs
obtained for three different training trials for the same test
data set in order to mitigate the effect of random initialization
of the training on the analysis. In contrast, the performance
evaluation of the power estimation schemes in the next
subsection is based on the roll-off factor estimates of the ANN
that achieved the best test performance after training.

In Fig. 3, the MSE of the estimator (36) based on the
ANN architecture presented in Section IV (summarized in
Table 1) is given for classifiers with different number of classes.
Here, the range of possible roll-off factors was discretized
into V = 3, 4, 5, 6 values such that the respective classifiers
distinguish between C = V2 = 9,16, 25, 36 classes. The
number of periodograms for estimating the PSDy for training
and testing is M = 100 for all cases. Regardless of the
employed number of classes C, the MSE is decreasing for
increasing SNR, as expected. For low SNR, the MSE is similar
for all C, while for high SNR, the MSE for the respective cases
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FIGURE 3. MSE of the ANN classifier based roll-off factor estimator for
PCMA signals for different numbers of classes representing discrete
samples of the roll-off factor domain.

reaches an error floor with an individual level of MSE. Based
on the results in Fig. 3 we observe that increasing C yields a
decreased MSE throughout almost the entire evaluated SNR
range. Yet, the gain from increasing the number of discrete
considered values per roll-off factor V by one is getting smaller
for higher number of classes, e.g., the gain from increasing
C = V? from 16 to 25 is larger than the gain from increasing
C = V2 from 25 to 36. A higher resolution of discrete roll-off
factor values naturally allows for an increased precision of
the estimates, as the distance from the output estimate to a
value that lies within the domain between two discrete values
becomes smaller. Assuming that the closest discrete value to
the true value is selected by the classifier based estimator,
the minimum obtainable error is thus decreased. However,
a saturation effect is observed from Fig. 3. This behavior
is an indication for underfitting which may occur due to
the incapability of the ANN to approximate the inference
function that maps the PSDy at the input to estimator outputs
that represent values close to each other. The effect becomes
especially apparent in the case of a large number of classes.
Unless the complexity of the ANN or the training set size is
increased, the gain from increasing the number of classes is
not promising [23]. By increasing the network complexity,
altering its architecture and optimizing the hyperparameters of
the learning process, the MSE may be further decreased. In this
paper, the goal of introducing the ANN-based roll-off factor
estimator is not to obtain arbitrarily low estimation variance,
but to enable the usage of the subsequent carrier power
estimators. We show that this goal is sufficiently attained in
the next subsection, where an ANN-based estimator of the
presented type is used to provide the respective roll-off factor
estimates for the statistics-based power estimators.

B. EVALUATION OF THE POWER ESTIMATORS

In this subsection, we evaluate the power estimation
approaches introduced in Section III. For this purpose,
we parameterize the length of the signal segment that is used
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for the estimation of the statistical quantities employed in the
different power estimators by the number of contained symbol
intervals Ng. Thus, matching our definition of the cyclic
moment estimator (16), which is used for obtaining all required
statistics, the processed signal segments contain 2N + 1 signal
samples and N is chosen such that Ng symbol intervals are
contained in this segment, i.e., N = [(NsT /Ts — 1)/2], where
an integer oversampling factor 7 /T is assumed. The PSDg
estimates contained in the training data sets for the learning
process as described in the previous subsection were obtained
by using a fixed number of periodograms M which translates
to a respective signal segment length. In contrast, the PSDy
estimates used for the inference phase of the ANN in the
current section are obtained exploiting the whole available
signal segment, such that M = (2N +1)/L | periodograms are
obtained from distinct windowed sub-segments. The specific
ANN employed in the roll-off factor estimator that is used to
provide the respective values to the subsequent estimators for
the powers or energies per symbol, respectively, is trained with
PSDy estimates calculated using M = 100 frames of length
L = 1024 and C = 25 classes for inference of the roll-off
factor combination.

Throughout this subsection, we abbreviate the symbol
energy estimator (19) of Section HI-B1 as “V1”, the
estimator (29) or (25), (26), respectively, of Section I1I-B2
as “V2”°, and the mixed approach of (31) of Section III-B3
by “Mix”. Additionally, we evaluate the performance of
the approach for estimation of the energy per symbol that
is conducted implicitly in the scheme in [8]. An explicit
expression is derived to

N X N - p/2
By =argmin > |G o0)(@f) — Es.iCor0©) .+ B7)
Esi pepP

where P = {2, 4, 6, 8} is the set of employed cumulant orders.
This scheme is used as a benchmark scheme for the energy
per symbol estimators introduced in this paper and is labeled
by “Wang” in Fig. 4 and Fig. 5.

The metric for evaluating the accuracy of estimating the
energy per symbol of the respective carriers is again the
empirical MSE, averaged over both carriers.

In Fig. 4, we compare the MSE of estimators V1, V2 and
Mix versus SNR for different modulation schemes. Estimators
V1 and V2 are evaluated for the case where both carriers are
QPSK-modulated (referred to as QxQ in the figure legend), the
case of 8PSK modulation for both carriers (denoted as 8 x 8),
and the case in which one carrier is of QPSK modulation and
the other carrier is of 8PSK modulation (denoted as Qx8 in
the figure legend). Since the Mix estimator is designed for the
case where only one of the two carriers is 8PSK-modulated,
we showcase the estimation performance of the Mix approach
for the case in which one carrier is 8PSK-modulated and
the other one is QPSK-modulated, only. The utilized signal
segment contains Ns = 10° symbol intervals for all schemes
and modulation combinations, here.

It can be seen that the MSE for all schemes and modulation
combinations is decreasing over SNR for values up to
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FIGURE 4. MSE of the V1, V2, and Mix energy per symbol estimation
approaches for PCMA signals versus SNR for different combinations of

carrier modulation schemes and a signal segment length of Ng = 105
symbol intervals.

approximately 22 dB until an error floor is reached. For the
estimators V1 and V2, the MSE for the 8 x 8 modulation
combination case is highest, followed by the mixture case Qx8,
and the MSE for the case of QxQ modulation combination is
lowest, of the evaluated ones. Further, the MSE of the estimator
V1 for the QxQ case is almost one order of magnitude below
the MSE of the V2 estimator evaluated for the same case.
However, for the cases, in which one or both carriers are
8PSK-modulated, employing the estimator V2 provides a
significant performance gain over estimator V1. We interpret
this gain as being achieved through avoiding the estimation of
cyclostationary properties of order p = 8, and employing the
sixth-order (6,3) cumulant as statistic with highest necessary
order, instead. The best possible performance for the Qx8
case is obtained by the Mix estimator, that exploits statistics
of orders not higher than p = 4, i.e., C, 4,2)(0), here. These
observations support the notion that estimates of statistics
of high orders are error-prone for limited SNR and signal
segment length, and corresponding parameter estimators are
less accurate. The MSE of the “Wang” reference scheme
is identical to that of the V1 scheme in the cases of Qx8
and 8 x 8 modulation and slightly above the MSE of the
V1 estimator in the QxQ case for low-to-medium SNR. Thus,
the proposed V1 scheme outperforms the “Wang’ reference
scheme in the QxQ case. At the same time, the proposed
V2 scheme outperforms the “Wang” reference scheme for all
cases that include 8PSK modulation.

In Fig. 5, the same combinations of estimation approaches
and modulation schemes as before are evaluated for a fixed
SNR of 20 dB, and different lengths of the signal segment. For
all investigated cases, the MSE decreases for increasing Ns.
The ordering of achieved MSE of different estimation schemes
in each case is identical to the order in the previous experiment
throughout the entire range of the segment length Ng. It can
though be observed for estimator V2 that for increasing Ns in a
high Ng regime no further MSE improvement can be obtained.
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FIGURE 5. MSE of the V1, V2, and Mix energy per symbol estimation
approaches for PCMA signals versus the length of the signal segment

specified by the number of contained symbol intervals Ng for different
combinations of carrier modulation schemes and an SNR of 20 dB.

Consequently, for Ng at the upper edge of the evaluated range,
the performance of the estimators V1 and V2 and the “Wang”
reference scheme is similar if at least one of the modulations
is 8PSK. Again, for the QxQ-case, the performance of the
V1 estimator is unmatched by the V2 estimator and surpasses
the performance of the “Wang” reference scheme for large
Ns. For the Qx8 case, the Mix approach yields the lowest
MSE of the evaluated estimation schemes. From the results
of Fig. 4 and Fig. 5 we can conclude that in the case of
8PSK modulation of both carriers, the estimation accuracy
of approach V1 and the “Wang” reference scheme can be
improved by approach V2 for medium sized segment lengths.

Results of an experiment that investigates the impact of the
errors of the ANN-based roll-off factor estimator are depicted
in Fig. 6. Here, the MSE of the energy per symbol estimators
is considered for the case in which the roll-off factor estimate
of the ANN is used in the subsequent processing steps of the
energy per symbol estimators, and for two genie-aided cases.
The results for the case in which the actual estimate of the
ANN is used are illustrated by the blue lines in Fig. 6, and the
corresponding legend label is ““estimate”. In the first genie-
aided case, the true roll-off factors are provided to the power
estimators. It is depicted in Fig. 6 by the red lines and labeled
with “true” in the figure legend. In the second genie-aided
case, that roll-off factor combination on the classifier grid is
provided to the subsequent power estimators, which is closest
to the true combination. The results for this case are shown
by the yellow lines in Fig. 6 and labeled by “nearest on grid”
in its legend. All estimates are obtained from signal segments
containing Ns = 10° symbols. Since we could observe that
for the case of QxQ modulation the V1 estimator provides the
lowest MSE, and for the Qx8-case the Mix estimator and for
the 8 x 8 case the V2 estimator have the best performance, only
the results for those estimators are shown for the respective
modulations. From the results for the QxQ and Qx8 cases,
it can be seen that for low-to-medium SNR, the performance
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FIGURE 6. MSE of the energy per symbol estimators versus SNR for PCMA
signals for true and estimated roll-off factors. The estimates are obtained
from signal segments containing N = 10> symbols.

of the power estimators deteriorates due to the influence of
the errors of the roll-off factor estimator, while for medium-
to-high SNR the performance when using the actual estimates
is close to that for genie-based knowledge of the roll-off
factors. Hence, we can conclude that our goal of designing
an estimator that provides sufficiently accurate roll-off factor
estimates in order to facilitate the subsequent power estimation
is achieved by the ANN-based estimator of Section IV. Further,
by inspecting the results for the case in which the closest
possible roll-off factor combination on the grid corresponding
to the discrete roll-off factors that are represented by the
classifier is chosen, we observe that the finite resolution of
the classifier has only limited influence on the accuracy of
the power estimation. The case of the genie-aided choice of
the roll-off factor combination on the grid which is closest to
the true combination is a performance upper bound for the
case where the actual ANN-based estimate is used, and it can
be seen that this bound is nearly attained by the estimator.
We conclude that the design and training of the ANN is
appropriate with respect to the desired power estimation. In the
8 x 8 case of 8PSK modulation, where only a rather high MSE
can be achieved, even if the true roll-off factors are provided by
a genie-based scheme, the performance is almost unaffected.
Thus, we see that the influence of imperfect roll-off factor
estimates is limited.

The performance of the noise power estimation according
to (33), which exploits the previously obtained energy per
symbol estimates, is shown in Fig. 7. In particular, the cases of
QPSK modulation (QxQ) and 8PSK modulation (8 x 8) of both
carriers, respectively, are considered. Here, the normalized
MSE (NMSE), i.e., mean-square of the error of the noise
power estimation divided by the actual squared noise power,
is shown versus SNR. For both cases, we compare the NMSE
of the noise power estimation based on the energy per symbol
estimates of the V1 estimator, the V2 estimator and the
ground-truth values of the energy per symbol, respectively. For
increasing SNR, the noise power decreases compared to the
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FIGURE 7. Normalized MSE (NMSE) of the noise power estimation for
PCMA signals versus SNR using the energy per symbol estimates of the V1
and V2 estimator with N = 10> and the true energies per symbol for
different carrier modulation combinations.

total signal power. Consequently, it can observed in Fig. 7 that
the NMSE increases with increasing SNR for all cases, even
if the true values for Es ;, i = 1, 2 are used for the estimation
of the noise power. While there is a significant gap between
the noise power NMSE of QxQ and 8 x 8 modulation in the
case of estimating the energies per symbol by the estimator
V1, the noise power estimation based on the estimates of the
energy per symbol of the V2 estimator shows almost identical
NMSE for both considered modulations. Interestingly, for
both modulations, utilizing the energy per symbol estimates
of V2 results in an improved NMSE compared to adopting
the estimates of V1. This seems counterintuitive for the case
of QxQ modulation, since for this case it can be concluded
from Fig. 4 that the MSE of the individual energy per symbol
estimate by V1 is lower than that of the V2 estimate. However,
a numerical evaluation shows that the sum of the estimates
for the energy per symbol by the approach V2 yields a lower
MSE w.r.t. the sum of the true energies per symbol, compared
to the sum of the energy per symbol estimates obtained using
V1. As a direct consequence, the NMSE of the noise power
estimation is lower when the energy per symbol estimates
of V2 are used, compared to V1. For both modulations, the
NMSE that is achieved when the true energy per symbol values
are used for noise power estimation cannot be attained by using
values provided by any of the estimators.

C. EVALUATION OF SYMBOL DETECTION USING THE
PROPOSED ESTIMATORS

Finally, we evaluate the effect of using the proposed estimators
on the detection performance of a sequence estimation scheme
for PCMA. Our adopted detection scheme is based on the joint
maximum-likelihood sequence estimation (MLSE) approach
according to [28], which is adapted to the PCMA signal
model. Here, simplifications are introduced in order to limit
the computational complexity. Thus, we refer to the scheme
as approximate joint MLSE. Furthermore, QPSK modulated
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FIGURE 8. SER of the approximate joint MLSE for PCMA signals with QPSK
modulation versus SNR for the estimation of the roll-off factors and
energies per symbol by the ANN and V1 estimator, respectively, using the
corresponding true values and using values chosen as the centers of the
range of possible values.

signals are considered in order to limit the complexity
of the detector used in the evaluation. Since we aim at
assessing the performance of the roll-off factor and energy per
symbol estimators when used in detection, all other channel
parameters are assumed to be known to the receiver and
selected randomly for each Monte-Carlo trial. The obtained
symbol error rate (SER) shown in Fig. 8 is averaged over both
carriers. We have observed that the SER is especially affected
by the symbol clock phases of both carriers. Thus, additional
results are shown for fixed values 7; = 0, 7o, = 0.37T, for
which a relatively low SER can be achieved. The roll-off
factors are obtained using the same ANN based estimator
as in the previous subsection, and the V1 estimator is used
for estimating the energies per symbol. We investigate two
cases of signal segment length of Ng = 10* and Ng = 10°,
respectively, used by the estimators. The SER is compared
to that of the case in which the true values of the roll-off
factors and energies per symbol are used in the detector
and the case in which no estimation is performed but the
center of the respective interval of a parameter is chosen by
default. The two latter cases are termed “true” and “‘guess”,
respectively, in the figure legend. For random symbol clock
offsets, only relatively high SERs of approximately 102 can
be achieved within the considered SNR range by the detection
in both cases of using either true or estimated roll-off factors
and energies per symbol, because the SER is dominated by
simulation runs with t; ~ 1 which is unfavorable for PCMA
detection. Only for the ‘““guess’” case in which no actual
estimation is performed, the SER is even higher. We conclude
that for harsh random channels, the estimation accuracy of the
proposed estimators is sufficient, even for short-to-medium
signal segments containing Ng = 10* symbols. For the more
advantageous channel with symbol clock offsets 71 = 0,
7o = 0.37, the SER that can be achieved by the detector that
uses the ground-truth parameter values is approximately three
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to four orders of magnitude lower than that in the previous
case. On the other hand, if no estimation is carried out and
the respective parameter values used in the detector are just
selected as the centers of their domains (label “guess’), the
SER is increased by about two orders of magnitude. Hence,
we conclude that providing accurate estimates for the roll-off
factors and energies per symbol is crucial for obtaining a low
SER in relatively good channel conditions. When a signal
segment of Ns = 10* symbols is used for estimation, the
attained SER is more than one order of magnitude higher
than in the case of the true parameters and the respective
curve in Fig. 8 flattens out to an error floor. This error floor
is very likely due to the distortion that is introduced by the
inaccurate modeling of the received signal with imperfect
parameter estimates in the detector. On the contrary, when
the signal segment length is increased to Ns = 10°, the SER
can be reduced to become almost identical to that of the case
where the true parameters are used in the detector. Thus, for
medium signal segment lengths, the estimates for the roll-off
factors and energies per symbol are sufficiently accurate to
ensure no deterioration of the detector performance.

VI. CONCLUSION

In this paper, we have presented estimation schemes for the
power, or equivalently the energy per symbol, of the carriers
of a PCMA signal, based on estimation of cyclostationary
properties of the received signal. Simulation results show that
the carrier powers can be estimated with good precision by
the presented approaches. For higher-order modulation, e.g.
8PSK, the V1 estimator relies on the statistics of high order,
i.e., in this case, the eighth-order cyclic cumulant C, (g 0)(8f;)
and suffers from a high estimation variance for limited-size
signal segments. Therefore, we have introduced alternative
estimation schemes that only require statistics of lower
orders. Hence, in the case in which both carriers are 8PSK-
modulated, the V2 power estimator that employs the sixth- and
fourth-order cyclic cumulants C; (6,3)(0) and C; (4,2)(0) can
achieve lower MSE for medium-sized signal segments. In this
case, it may be attempted in future investigations to identify
other lower-order statistics with which an MSE comparable to
that for QPSK modulation can be achieved. If only one carrier
is 8PSK-modulated, the best performance is achieved by the
Mix estimator, that estimates the power of the other carrier
first and then uses the fourth-order cyclic cumulant C; (4,2)(0)
to infer the power of the carrier with 8PSK modulation.

Interestingly, the noise power estimation is more robust
if the V2 estimator is used for the carrier power estimation,
because the sum of the powers is more accurately estimated
by this scheme for all considered modulations.

Applying the presented estimation schemes for the carrier
power is facilitated through a preceding roll-off factor
estimation. For this purpose, we have introduced a simple
ANN-based estimator to infer the combination of the roll-off
factors of the two carriers, based on an estimate of the PSD
of the received signal. Designing this estimator as a classifier
proved to be effective for different resolutions of the discrete
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set representing a limited range of possible roll-off factors.
Furthermore, our experiments showed that the accuracy of the
power estimators is only slightly affected by the roll-off factor
estimation errors for sufficiently high SNR.

We could also confirm that a subsequent sequence
estimation scheme employing parameters delivered by the
proposed estimators achieves SERs similar to those for the
case of perfect knowledge of the parameters.
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