KIT | KIT-Bibliothek | Impressum | Datenschutz

Modeling the drying process in hard carbon electrodes based on the phase-field method

Weichel, M. 1,2; Reder, M. ORCID iD icon 1; Daubner, S. ORCID iD icon 1,2; Klemens, J. 3; Burger, D. ORCID iD icon 3; Scharfer, P. 3; Schabel, W. 4; Nestler, B. 1,2; Schneider, D. ORCID iD icon 1,2
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Materialwissenschaftliches Zentrum für Energiesysteme (MZE), Karlsruher Institut für Technologie (KIT)
4 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The present work addresses the simulation of pore emptying during the drying of battery electrodes. For this purpose, a model based on the multiphase-field (MPF) method is used, since it is an established approach for modeling and simulating multiphysical problems. A model based on phase fields is introduced that takes into account fluid flow, capillary effects, and wetting behavior, all of which play an important role in drying. In addition, the MPF method makes it possible to track the movement of the liquid-air interface without computationally expensive adaptive mesh generation. The presented model is used to investigate pore emptying in real hard carbon microstructures. For this purpose, the microstructures of real dried electrodes are used as input for the simulations. The simulations performed here demonstrate the importance of considering the resolved microstructural information compared to models that rely only on statistical geometry parameters such as pore size distributions. The influence of various parameters such as different microstructures, fluid viscosity, and the contact angle on pore emptying are investigated. In addition, this work establishes a correlation between the capillary number and the breakthrough time of the solvent as well as the height difference of the solvent front at the time of breakthrough. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000188826
Veröffentlicht am 17.12.2025
Originalveröffentlichung
DOI: 10.1103/PhysRevMaterials.9.035403
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Lichttechnisches Institut (LTI)
Materialwissenschaftliches Zentrum für Energiesysteme (MZE)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2025
Sprache Englisch
Identifikator ISSN: 2475-9953
KITopen-ID: 1000188826
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Weitere HGF-Programme 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Physical Review Materials
Verlag American Physical Society (APS)
Band 9
Heft 3
Seiten 035403
Vorab online veröffentlicht am 26.03.2025
Schlagwörter Batteries, Contact line dynamics, Evaporation, Flow-structure interactions, Fluid-particle interactions, Flows in porous media, Multiphase flows, Porous materials
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page