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Abstract

In this thesis, we develop modular and extendable hardware for superconducting quantum processors. In

the first part, we introduce a qubit-readout system in which the dispersive interaction is mediated by a ki-

netic inductance. This approach enables independent engineering of the dispersive shift without relying

on large capacitances. We experimentally confirm the concept of kinetic-inductive coupling and realize

generalized flux qubits in the plasmon and fluxon regimes. At the half-flux-quantum sweet spot, we

measure dispersive shifts between 60 kHz and 2 MHz. The readout performance is comparable to con-

ventional architectures, with preparation fidelities of 99.7 % (ground state) and 92.7 % (excited state),

and leakage suppressed below 0.1 %. In the second part, we present a flip-chip architecture designed for

arrays of coupled superconducting qubits, with the qubit and coupling chips each placed inside individ-

ual microwave enclosures. The qubit chips are electrically floating, allowing for a simple, fully modular

assembly and significantly reduced microwave crosstalk. We validate the architecture using a chain of

three qubits, in which the central qubit acts as a tunable coupler. We demonstrate a transverse coupling

on/off ratio of approximately 70, 𝑧𝑧-crosstalk below 1 kHz between resonant qubits, and isolation ex-

ceeding 60 dB between the outer qubit enclosures. Together, these results establish a modular flip-chip

platform that combines kinetic-inductive dispersive readout with strong isolation and tunable coupling,

outlining a route towards multi-qubit superconducting processors.



Zusammenfassung

In dieser Arbeit entwickeln wir modulare und erweiterbare Hardware für supraleitende Quantenprozes-

soren. Im ersten Teil stellen wir ein Qubit-Auslesesystem vor, bei dem die dispersive Wechselwirkung

durch eine kinetische Induktivität erzeugt wird. Dieser Ansatz ermöglicht eine unabhängige Gestal-

tung der dispersiven Verschiebung, ohne auf große Kapazitäten angewiesen zu sein. Wir weisen das

Konzept der kinetisch-induktiven Kopplung experimentell nach und realisieren Fluß-Qubits im Plasmon-

und Fluxon-Regime. Am optimalen Arbeitspunkt des halben Fluxquants messen wir dispersive Ver-

schiebungen zwischen 60 kHz und 2 MHz. Die Ausleseleistung ist mit herkömmlichen Architekturen

vergleichbar, mit einer Wiedergabetreue von 99,7 % (Grundzustand) und 92,7 % (angeregter Zustand)

und einer unter 0,1 % unterdrückten Leckage. Im zweiten Teil stellen wir eine Flip-Chip-Architektur

vor, die für Arrays gekoppelter supraleitender Qubits entwickelt wurde, wobei die Qubit- und Kop-

plerchips jeweils in individuellen Mikro-Wellengehäusen untergebracht sind. Die Qubit-Chips sind

elektrisch schwebend, was eine einfache, vollständig modulare Montage und eine deutlich reduzierte

Mikrowellenübersprechung zur Folge hat. Wir validieren die Architektur anhand einer Kette aus drei

Qubits, in der das mittlere Qubit als flussabhängiger Koppler agiert. Wir demonstrieren ein transver-

sales Kopplungs-Ein-/Aus-Verhältnis von etwa 70, ein 𝑧𝑧-Übersprechen unter 1 kHz zwischen resonan-

ten Qubits und eine Isolation von über 60 dB zwischen den äußeren Qubit-Gehäusen. Zusammen ergibt

sich eine modulare Flip-Chip-Plattform, die kinetisch-induktives dispersives Auslesen mit starker Isola-

tion und einstellbarer Kopplung kombiniert und einen Weg zu supraleitenden Multi-Qubit-Prozessoren

ermöglicht.
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1. Introduction

Many modern technologies operate on principles that rely on quantum mechanics, from solar cells,

LEDs, and transistors to lasers and atomic clocks. More advanced applications harness quantum ef-

fects explicitly, including new generations of quantum sensors [1, 2], quantum computers [3, 4, 5, 6],

quantum simulators [7, 8, 9], and quantum communication systems [10, 11, 12]. Examples range from

quantization, band structure, and tunneling in conventional devices [13, 14] to superposition and entan-

glement in advanced technologies [15]. These concepts, which have no analogue in classical physics,

form the foundation of modern quantum technology.

Among emerging quantum technologies, the universal quantum computer occupies a central position, as

computing has become an essential component of modern society. Classical computers operate using bi-

nary logic implemented with transistors, an architecture fundamentally constrained by the discrete nature

of classical bits. Replacing this logic with one grounded in quantum mechanics offers the potential to

solve certain problems with far greater efficiency. A quantum computer uses qubits, which are two-level

quantum systems that exist in superposition and can become entangled with each other [5, 15]. These

properties allow us to perform certain calculations much more efficiently than with conventional bits.

For example, Shor’s algorithm [16] efficiently factors large numbers, Grover’s algorithm [17] searches

unsorted databases faster than classical methods, and quantum simulation techniques [18, 19] model

complex quantum systems that are beyond the reach of classical computers. A practical quantum com-

puter must fulfill the DiVincenzo criteria [3]: scalable and well-defined qubits, the ability to initialize

them to known states, long coherence times, a universal set of quantum gates, and reliable qubit-specific

measurements. Meeting all of these criteria simultaneously remains challenging, and no existing physical

platform fully meets these requirements as of today.

To realize practical quantum computers, multiple physical platforms are being developed. Trapped ions

achieve coherence times of several hours [20] and high single- and two-qubit gate fidelity [21, 22], but

their operations are slow (typically tens of µs for high-fidelity gates) and scaling demands complex

optical control systems [23]. Neutral atoms in optical lattices and tweezer arrays can form large-scale

systems [24], yet despite recent progress in individual addressing [24], parallel entangling gates [25], and

mid-circuit operations [26], scalable low-crosstalk readout and fully error-corrected operation remain

challenging. Photonic qubits are good at transmitting quantum information over long distances, but

unlike many matter-based qubits, they require additional nonlinear elements to implement entangling

gates [27]. Semiconductor spin qubits are compatible with established complementary metal-oxide-
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1. Introduction

semiconductor (CMOS) fabrication methods. However, achieving the required device precision remains

challenging, and the qubits are susceptible to substrate offset charges that are difficult to stabilize [28, 29].

Superconducting circuits stand out for their combination of macroscopic size with fully quantum behav-

ior, as highlighted by the 2025 Nobel Prize in Physics, which recognized quantized energy levels and

quantum tunneling in such circuits [30]. They conduct direct current without dissipation and can be litho-

graphically patterned to realize arbitrary energy spectra and engineered couplings for precise control and

readout in the microwave domain. Circuits with anharmonic spectra act as qubits, while propagating mi-

crowave photons can mediate entanglement between distant devices, enabling chip-to-chip links [31, 32]

and even cryostat-to-cryostat links [33, 34]. Established processes are used for fabrication, which support

large-scale integration. To suppress thermal excitations, they are operated at millikelvin temperatures in

dilution refrigerators [35]. Their large dipole moments make them sensitive to environmental noise,

cross-coupling to nearby circuits, and material defects. Overcoming these decoherence mechanisms re-

mains a major research focus, but the platform’s maturity and versatility have made superconducting

qubits one of the most advanced contenders for large-scale quantum computing [36, 37].

Superconducting qubits are typically operated within the framework of circuit quantum electrodynamics

(cQED) [38, 39], where they interact with on-chip microwave resonators and waveguides. The cQED

framework adapts concepts from atomic cavity QED [40] for implementation in lithographically defined

electrical circuits, enabling strong and controllable coupling between qubits and quantized electromag-

netic fields. A particularly versatile mechanism in cQED is dispersive coupling between qubits and har-

monic oscillators [39], which enables single-shot readout [41, 42, 43, 44], the creation of non-classical

photonic states [45, 46, 47, 48, 49, 50], reservoir engineering for qubit state preparation [51, 52], and

even the autonomous stabilisation of entangled states [53, 54]. Dispersive coupling is typically me-

diated by the electric field via a coupling capacitor, as is standard in transmon-based cQED architec-

tures [6, 55, 56, 57, 58]. In complex devices, stray capacitances can cause crosstalk, alter the dispersive

shift, and drive nonlinear elements when exposed to alternating magnetic fields or gradients [59]. To

mitigate these effects, the community has developed approaches such as air-bridges [60], deep silicon

vias [61, 62, 63], flip-chip devices [62, 64, 57], and chiplet-based architectures [65, 66].

Here, we propose an alternative approach that implements dispersive readout via kinetic-inductance cou-

pling between a generalized flux qubit (GFQ) and a readout resonator. We choose the GFQ because

its large anharmonicity enables fast gates with reduced leakage, and its small electric dipole moment

makes it less sensitive to charge noise [67, 68]. In addition, the loop geometry provides a natural inter-

face for inductive coupling, which we realize in a three-island circuit with two normal modes, a qubit

and a resonator, coupled through a shared inductance. While such an inductance can be realized with

Josephson junction (JJ) arrays, we demonstrate the concept using granular aluminum (grAl) [69, 70], a

high kinetic inductance material that enables compact inductors and avoids the complexity of fabricating

large junction arrays. The symmetry of our design effectively eliminates capacitive contributions to the

qubit-readout interaction, rendering the coupling local and inherently less prone to spurious crosstalk.

2



However, coupling optimization alone does not address the broader challenge of building extendable and

fault-tolerant superconducting quantum processors. Large monolithic two-dimensional (2D) processors

with hundreds of qubits [6, 71] have demonstrated remarkable capabilities, including surface-code error

correction [72, 73, 74, 55, 56], but as their size and complexity increase, new challenges emerge. As

device density grows, phenomena such as correlated quasiparticle and phonon bursts [75, 76], charge

offsets [77], and two-level-system reconfigurations due to ionizing radiation [78, 79] can simultaneously

affect large portions of a processor, creating errors that cannot be corrected by surface-code error cor-

rection. In addition, the high device density in these processors results in non-negligible microwave

crosstalk [56] and frequency crowding, while fabricating a chip with hundreds of qubits and no defec-

tive elements remains extremely challenging. A modular architecture would allow faulty elements to be

isolated or replaced without compromising the entire system. These challenges highlight the need for

scale-up strategies that mitigate microwave and phonon crosstalk while maximizing modularity.

Another approach places superconducting qubits inside three-dimensional (3D) microwave cavities [80],

where the qubit is well isolated from its environment. This improved isolation has enabled coherence

times exceeding hundreds of µs [68, 81, 82]. Scalable 3D integration schemes such as Refs. [83, 84, 85]

have shown that high coherence can be retained in small multi-qubit prototypes. Realizing larger-

scale systems will require solutions to accommodate the substantial physical footprint of cavities and

increase their integration density. Hybrid technologies, such as flip-chip devices [62, 64, 57] and chiplet-

based architectures [65, 66], can help increase integration density, but they often require complex multi-

layer packaging with precise alignment. Additionally, advanced interconnect methods, including indium

bump-bonding [86], deep silicon vias [61, 62, 63], and spring-loaded pogo pins [87], increase the engi-

neering complexity of these architectures.

To address these challenges, we develop a modular flip-chip architecture that combines elements of both

2D and 3D approaches while avoiding the need for highly complex packaging techniques. The design

consists of an array of coupled but crosstalk-resilient superconducting qubits, each placed on its own

electrically floating chip inside an individual microwave enclosure. This arrangement provides strong

isolation between neighboring devices and reduces sensitivity to correlated errors, such as those arising

from phonon propagation.

This thesis is structured as follows: in Chapter 2, we introduce the theoretical background relevant to

the work. We review fundamental concepts such as the quantum harmonic oscillator, the JJ, and the

Bloch sphere representation of qubit states. We discuss decoherence mechanisms, present the charge and

generalized flux qubit, and introduce the concept of a superinductance. We further describe dispersive

readout and the magnetic flux hose, and conclude the chapter with the Schrieffer-Wolff transformation as

a tool for deriving effective qubit-qubit couplings. In Chapter 3, we discuss our inductively coupled qubit

readout circuit. It consists of a three-island GFQ dispersively coupled to a readout resonator through a

shared kinetic inductance. We present the circuit design, analyze its symmetry properties, and provide

3



1. Introduction

experimental evidence for the inductive coupling. We measure the readout fidelity and discuss quantum

state preparation, and finally investigate the performance of our GFQs implemented with JJ arrays. In

Chapter 4, we describe our modular flip-chip architecture, measure the isolation between neighboring

GFQs and demonstrate tunable qubit-qubit coupling. Chapter 6 covers the experimental methods used in

this work, including fabrication details and the cryogenic and room-temperature microwave measurement

setup.

4



2. Theoretical background

Superconductivity is a macroscopic quantum phenomenon observed in many metals and alloys when

cooled below their critical temperature 𝑇c. At this transition, superconductors become perfect diamag-

nets, as first demonstrated by the Meissner effect [88], and their DC resistance vanishes [89]. The Meiss-

ner effect expels external magnetic fields from the superconductor up to a critical value by generating

persistent surface currents, which screen the material’s interior from magnetic fields [90]. This behavior

is a direct signature of a macroscopic quantum state.

The microscopic mechanism underlying conventional superconductivity is described by the Bardeen-

Cooper-Schrieffer (BCS) theory [91]. According to this theory, electrons near the Fermi surface experi-

ence a weak attractive interaction mediated by phonons [89]. This leads to the formation of Cooper pairs,

which are bosonic bound states of two electrons with opposite spin and momentum. The pairs are bound

by an energy Δ, which must be overcome to separate the electrons. The corresponding single-particle ex-

citations at this energy are Bogoliubov quasiparticles. Below a material-specific critical temperature 𝑇c,

the thermal energy 𝑘B𝑇 is insufficient to break the pairs, and they condense into a collective macroscopic

wavefunction

Ψ(®𝑥, 𝑡) = √
𝑛s 𝑒

𝑖𝜑 ( ®𝑥,𝑡 ) , (2.1)

where 𝑛s is the Cooper pair density and 𝜑 is the macroscopic superconducting phase. For conventional

superconductors at temperatures 𝑇 ≪ 𝑇c, the gap is given by

Δ ≈ 1.76𝑘B𝑇c. (2.2)

The macroscopic quantum properties of superconductors lead to flux quantization in superconducting

loops [90]. From the London equation [92], the supercurrent density can be derived as

®𝑗s =
𝑒 𝑛s

𝑚e

[
ℏ

2
®∇𝜑−𝑒 ®𝐴

]
, (2.3)

where ®𝐴 is a vector potential satisfying ®𝐵 = ®∇× ®𝐴. Integrating around a closed superconducting loop, we

obtain the quantization condition ∮
∇𝜑·𝑑ℓ = 2𝜋𝑘 with 𝑘 ∈ Z. (2.4)

This leads to the quantization of magnetic flux inside a superconducting loop in units of the magnetic

flux quantum

Φ0 =
ℎ

2𝑒
≈ 2.067834 ·10−15 Vs. (2.5)

5



2. Theoretical background

Superconducting circuits provide an ideal platform for quantum applications due to their intrinsic macro-

scopic phase coherence, negligible dissipation, and well-defined quantized energy levels. Unlike classi-

cal circuits, where energy is continuously lost due to resistance, superconducting circuits allow quantum

states to persist over long timescales up to the millisecond regime [93, 94]. These properties enable the

implementation of quantum harmonic oscillators, superconducting qubits, and quantum gates, making

them one of the leading architectures for quantum computing.

2.1. Quantum harmonic oscillator

𝐿
𝐶

Φ̂

ground

Figure 2.1.: Circuit diagram of a quantum harmonic oscillator, consist-

ing of a parallel inductor 𝐿 and capacitor 𝐶. The red arrows illustrate the

electric field between the capacitor plates while the blue loops represent the

magnetic field generated by the current through the inductor. Resonance is

achieved when the energy stored in the electric and magnetic fields becomes

equal, which occurs at the frequency 𝜔0 = 1/
√
𝐿𝐶.

A fundamental superconducting circuit is the LC oscillator, which is formed by a parallel inductor and

a capacitor as shown in Fig. 2.1. In the lumped-element approximation, the circuit size is much smaller

than the electromagnetic wavelength, so that each capacitor and inductor can be treated as a single circuit

node. As a result, the circuit is characterized by a single degree of freedom, which can be described either

by the charge on the capacitor, 𝑄̂, or the flux through the inductor, Φ̂. The charge corresponds to the

time integral of the current flowing through the inductor

𝑄̂ =

∫ 𝑡

−∞
𝐼 (𝜏) 𝑑𝜏, (2.6)

while the flux is defined as the time integral of the voltage across the capacitance

Φ̂ =

∫ 𝑡

−∞
𝑉̂ (𝜏) 𝑑𝜏. (2.7)

By convention, the flux Φ̂ is treated as the position-like coordinate, while the charge 𝑄̂ acts as its conju-

gate momentum. As a result, they satisfy the fundamental commutation relation: [Φ̂, 𝑄̂] = 𝑖ℏ. Following

the canonical quantization approach as outlined in [95], the Hamiltonian of a quantum LC oscillator is

derived from its classical counterpart and given by

Ĥ =
𝑄̂2

2𝐶
+Φ̂

2

2𝐿
, (2.8)

6



2.2. Josephson junction (JJ)

where the kinetic energy is associated with the capacitive elements and the potential energy with the

inductive elements. To diagonalize the Hamiltonian, the canonical coordinates Φ̂ and 𝑄̂ are expressed in

terms of the creation and annihilation operators 𝑎̂† and 𝑎̂, respectively:

Φ̂ = ΦZPF (𝑎̂+𝑎̂†) and 𝑄̂ = −𝑖𝑄ZPF (𝑎̂−𝑎̂†), (2.9)

where ΦZPF and 𝑄ZPF are the zero-point fluctuations of flux and charge

ΦZPF =

√︂
ℏ𝑍

2
and 𝑄ZPF =

√︂
ℏ

2𝑍
(2.10)

with the impedance 𝑍 =
√︁
𝐿/𝐶. This notation allows us to bring the Hamiltonian into its more compact

form

Ĥ = ℏ𝜔0 (1
2
+𝑎̂†𝑎̂) (2.11)

where 𝜔0 =
√︁

1/𝐿𝐶 is the system’s resonance frequency.

The LC oscillator is harmonic, with equally spaced energy levels. As a result, it cannot be used to

selectively address only two states, since any drive that couples to the transition |0⟩ ↔ |1⟩ will also

excite higher transitions. To build qubits, a nonlinear element is required to break this degeneracy.

The Josephson junction provides exactly such a nonlinearity while preserving superconductivity, and

therefore forms the core element of superconducting qubits.

2.2. Josephson junction (JJ)

√
𝑛s,1 𝑒

𝑖𝜑1

√
𝑛s,2 𝑒

𝑖𝜑2

=̂

𝐸J 𝐶J

Figure 2.2.: Josephson tunneling junctions (JJs) in this thesis consist of two overlapping aluminum electrodes

(dark and light blue), which are separated by a thin insulating aluminum-oxide barrier (yellow), as shown in the

left panel (oxide barrier is not to scale). This structure forms a superconductor-insulator-superconductor (S-I-S)

junction. The condensate in each electrode is described by its own complex wavefunction Ψ 𝑗 =
√
𝑛s, 𝑗𝑒

𝑖𝜑 𝑗 , coupled

through the tunneling of Cooper pairs through the JJ. To account for the geometric capacitance across the tunnel

barrier 𝐶J, the junction is represented with a parallel capacitor in the equivalent circuit diagram as shown in the

right panel.
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2. Theoretical background

In general, Josephson junctions (JJ) are areas of weak electrical coupling between two superconductors

through which Cooper pairs can tunnel without losing their coherence [96]. In this thesis, superconductor-

insulator-superconductor (S-I-S) JJ are used, where the superconducting electrodes are separated by a

thin insulating barrier that is smaller than the coherence length 𝜉 of the Cooper pairs. A difference in the

phase between the two superconducting electrodes, 𝜑 = 𝜑1−𝜑2, gives rise to two Josephson equations.

The first one describes the dissipationless current of Cooper pairs through the junction [97]

𝐼 (𝜑) = 𝐼c sin(𝜑), (2.12)

where 𝐼c is the critical current. The second Josephson equation

𝑉 (𝑡) = ℏ

2𝑒
d𝜑
d𝑡

=
Φ0
2𝜋

d𝜑
d𝑡

(2.13)

states that the time evolution of the phase difference leads to a voltage drop across the JJ. As a conse-

quence, the inductance 𝐿 =𝑉/ ¤𝐼 of a JJ is given by

𝐿J(𝜑) = 𝐿J
1

cos(𝜑) with 𝐿J =
Φ0

2𝜋𝐼c
. (2.14)

The Josephson coupling energy

𝐸J(𝜑) =
∫
𝐼 (𝜑)𝑉 (𝑡) 𝑑𝑡 = 𝐸J(1−cos(𝜑)) with 𝐸J =

Φ0𝐼c
2𝜋

(2.15)

quantifies the strength of the superconducting coupling (i.e. coherent Cooper pair tunneling) across the

junction.

In addition to these nonlinear relations, a JJ also exhibits a geometric shunt capacitance 𝐶J across the

tunnel barrier (see Fig. 2.2). Its characteristic capacitance per area is CJ ≈ 50-100 fF/µm2 [98, 99, 100,

101].

An important design tool is the Ambegaokar-Baratoff relation [102], which links the critical current 𝐼c
to the normal-state resistance 𝑅n of the junction:

𝐼c𝑅n =
𝜋Δ

2𝑒
tanh

(
Δ

2𝑘B𝑇

)
, (2.16)

where Δ is the energy gap of the superconductor at 0 K, i.e. 2Δ(0)/𝑘B𝑇c = 3.53 with 𝑇c = 1.18 K for bulk

aluminum [103]. For thin film aluminum, values of 𝑇c ≈ 1.3±0.1K were measured [104]. This relation

allows one to determine the Josephson energy 𝐸J directly from resistance measurementsi, so that we can

target qubit parameters during fabrication. With JJs as the nonlinear building blocks, superconducting

circuits can be engineered to behave as qubits with discrete energy spectra. These devices realize quan-

tum two-level systems (qubits) whose states can be described within the Bloch sphere representation.

iTables with measured room-temperature resistances of JJs and inductors are shown in App. A.6
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2.3. Bloch sphere representation of qubits

2.3. Bloch sphere representation of qubits

z

x

y

Figure 2.3.: Bloch sphere. Graphical representation of

a qubit’s Hilbert space spanned by |0⟩ and |1⟩. The

six reference states along the coordinate axes corre-

spond to specific superpositions. Any pure state |𝜓⟩
(red dot) on the sphere is defined by angles 𝜃 and 𝜙.

In the Schrödinger picture, |𝜓⟩ precesses around the 𝑧-

axis at the qubit frequency 𝜔Q. Pure states lie on the

surface; mixed states reside inside.

In general, qubits are quantum two-level systems whose states reside in a two-dimensional Hilbert ℋ

space spanned by a computational basis {|0⟩ , |1⟩}. Any pure quantum state of a qubit can be written as

a linear combination |𝜓⟩ = 𝛼 |0⟩+𝛽 |1⟩, where 𝛼, 𝛽 ∈ C and |𝛼 |2+|𝛽 |2 = 1. A convenient way to visualize

such a state is the Bloch sphere, where each pure state corresponds to a point on the surface of a unit

sphere in three-dimensional space. A convenient parametrization for pure states is

|𝜓⟩ = cos
(
𝜃

2

)
|0⟩+sin

(
𝜃

2

)
𝑒𝑖𝜙 |1⟩ , (2.17)

where 𝜃 and 𝜙 define the orientation of the Bloch vector. Using these two angles each point on the Bloch

sphere surface is uniquely defined as shown in Fig. 2.3. The poles represent by convention the basis

states |0⟩ (north-pole) and |1⟩ (south-pole), while the equator contains equal superpositions with varying

phase. In the laboratory frame, the qubit state |𝜓⟩ precesses around the 𝑧-axis at the qubit frequency 𝜔Q.

In the frame rotating with 𝜔Q, the state is stationary for an undriven qubit. When a drive with frequency

𝜔 is applied, it is convenient to use a frame rotating at 𝜔, where the state appears stationary only on

resonance (𝜔 = 𝜔Q). This simplifies the visualization of driven dynamics such as Rabi oscillations.

An ideal qubit in the laboratory frame, restricted to the Hilbert space ℋ = span{ |0⟩, |1⟩ }, is described

by the Hamiltonian

Ĥ =
ℏ𝜔Q

2
𝜎̂𝑧 , (2.18)

where 𝜎̂𝑧 is the Pauli operator and 𝜔Q = (𝐸1−𝐸0)/ℏ is the qubit’s transition frequency between the |0⟩
and |1⟩ states.
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2. Theoretical background

Rabi oscillations

−4 −2 0 2 4
∆Q/Ω
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Ω
t/
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)
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0.4

0.6

0.8
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P
1

Figure 2.4.: Rabi chevron pattern. Probability 𝑃1 to

find the qubit in the excited state |1⟩ vs. drive detun-

ing ΔQ. The drive is detuned by ΔQ = 𝜔Q−𝜔 from the

qubit frequency. A continuous microwave drive with

amplitude Ω is applied at time 𝑡0 = 0.

To induce transitions between qubit states, a resonant microwave drive is applied. The dynamics are

described by the Rabi Hamiltonian:

ĤRabi =
ℏ𝜔Q

2
𝜎̂𝑧+ℏΩcos(𝜔 𝑡)𝜎̂𝑥 , (2.19)

where 𝜔 is the drive frequency, Ω the drive amplitude, and 𝜎̂𝑥 is the Pauli operator. This transverse

coupling enables coherent transitions between |0⟩ and |1⟩. To simplify the dynamics, we move to a

frame rotating at 𝜔, defined by the unitary transformation 𝑈̂ (𝑡) = exp(𝑖𝜔𝜎̂𝑧𝑡/2). In this frame, the qubit

appears stationary when on resonance, and the Hamiltonian becomes time independent:

𝐻̂Rabi =
ℏΔQ

2
𝜎̂𝑧+

ℏΩ

2
𝜎̂𝑥 , (2.20)

with detuning ΔQ = 𝜔Q−𝜔. The eigenstates of this Hamiltonian are superpositions of |0⟩ and |1⟩, and

transitions occur at the generalized Rabi frequency

ΩR =

√︃
Ω2+Δ2

Q. (2.21)

On the Bloch sphere, the qubit state vector precesses around a fixed axis in the rotating frame, given by

®𝑛 = 1
ΩR

(Ω,0,ΔQ). (2.22)

On resonance (ΔQ = 0) the axis becomes ®𝑛 = (1,0,0), resulting in full-amplitude Rabi oscillations be-

tween |0⟩ and |1⟩. For finite detuning, the axis tilts toward 𝑧, increasing the rotation speed while reducing

the oscillation amplitude:

𝑃1 =

(
Ω

ΩR

)2
sin2

(
ΩR𝑡

2

)
. (2.23)

Fig. 2.4 shows the excited state probability 𝑃1 as a function of time and detuning. The resulting interfer-

ence pattern is known as the chevron pattern.

2.4. Decoherence

In the Bloch sphere picture, pure states evolve on the surface under unitary dynamics, assuming an

isolated system. In practice, quantum systems interact with external degrees of freedom that are not
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2.4. Decoherence
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Figure 2.5.: Energy relaxation and dephasing of qubit q7, see App. A.2 and App. A.3. a) Energy relaxation

measurement. The qubit is excited with a 𝜋-pulse (𝜋) and measured with a readout pulse (R) after a delay 𝜏. For

each 𝜏, the experiment is performed repeatedly, and the outcomes are averaged to determine the probability 𝑃1

of finding the qubit in the |1⟩ state. Fitting Eq. 2.27 to the measured data we extract 𝑇1 = 11.2µs. b) Dephasing

measurement using Ramsey interferometry. The qubit is prepared on the equator of the Bloch sphere with an 𝜋
2

pulse, detuned by ΔQ = 936 kHz. After time 𝜏, a second 𝜋
2 pulse maps the qubit back onto the 𝑧-axis. This is

repeated multiple times for each 𝜏 to obtain 𝑃1. Fitting Eq. 2.29 to the measured data, we extract 𝑇∗
2 = 6.0µs. The

data shown here serve as illustrative examples of how 𝑇1 and 𝑇∗
2 are extracted. Detailed descriptions of the devices

and the sample box are given in section 3.1 and section 4.1, respectively.

directly accessible. This interaction leads to decoherence, i.e. the loss of information about the quantum

state over time. The extent of the interaction with the environment is quantified by two characteristic time

scales: the energy relaxation time 𝑇1 and the decoherence time 𝑇2. The examples in Fig. 2.5 illustrate

how these quantities are extracted from experiment.

Energy relaxation

Energy relaxation describes the decay of qubit population toward thermal equilibrium due to coupling

with the environment. It is characterized by the longitudinal relaxation time 𝑇1, or the rate Γ1 = 1/𝑇1. In

the Bloch sphere picture, this corresponds to a contraction of the Bloch vector along the 𝑧-axis towards

the thermal equilibrium state. Relaxation is driven by transverse noise coupling to 𝜎̂𝑥 or 𝜎̂𝑦 , which

mediates transitions between |0⟩ and |1⟩ via energy exchange. These transitions are described by upward

and downward rates Γ↑
1 and Γ

↓
1 , with a total rate

1/𝑇1 = Γ1 = Γ
↓
1+Γ

↑
1 . (2.24)
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2. Theoretical background

For typical experimental conditions (𝑇 ≈ 10mK, 𝑓Q ∈ [2,5]GHz), the qubit transition energy satisfies

ℏ𝜔Q ≫ 𝑘B𝑇 , such that

Γ
↑
1 = Γ

↓
1 𝑒

−ℏ𝜔Q/𝑘B𝑇 ≪ Γ
↓
1 . (2.25)

The qubit relaxes predominantly from |1⟩ to |0⟩. The total relaxation rate can be decomposed into two

contributions: a rate 𝜅Q due to coupling to the measurement port, and a rate 𝛾 due to uncontrolled loss

channels:

Γ1 = 𝜅Q+𝛾. (2.26)

In a direct measurement, 𝜅Q quantifies the rate at which information about the quantum state is extracted.

Experimentally, 𝑇1 is extracted by preparing the qubit in |1⟩ using a 𝜋-pulse, waiting for a time 𝜏, and

measuring the excited-state population 𝑃1. Repeating the sequence yields an ensemble-averaged decay

𝑃1(𝜏) = 𝑃1(0) 𝑒−𝜏/𝑇1 , (2.27)

as shown in Fig. 2.5a.

Dephasing

Dephasing contributes to the overall decoherence characterized by the transverse relaxation (decoher-

ence) time 𝑇2 = 1/Γ2, which includes both energy relaxation and dephasing:

Γ2 =
Γ1
2
+Γ𝜙, (2.28)

where Γ𝜙 is the dephasing rate. In the limit Γ𝜙 → 0, decoherence is dominated by energy relaxation and

𝑇2 = 2𝑇1. Dephasing describes loss of phase coherence in a superposition state without energy exchange.

It is caused by longitudinal noise coupling to 𝜎̂𝑧 , which leads to fluctuations in the qubit transition fre-

quency.

Dephasing is typically measured using Ramsey interferometry. A 𝜋/2 pulse initializes the Bloch vector

along the 𝑥-axis. In the rotating frame, the state precesses about the 𝑧-axis at a detuning ΔQ. After a

time 𝜏, a second 𝜋/2 pulse maps the accumulated phase onto the 𝑧-axis for measurement. Repeating

the experiment yields an average of 𝑃1 as a function of 𝜏. The resulting signal shows oscillations at a

frequency ΔQ that decay exponentially with characteristic time 𝑇∗
2 :

𝑃1(𝜏) = 𝐴𝑒−𝜏/𝑇
∗
2 cos(ΔQ𝜏+𝜙0) + offset, (2.29)

where 𝜙0, 𝐴, and the offset are fit parameters. This is illustrated in Fig. 2.5b. The symbol ∗ indicates that

the decoherence time 𝑇∗
2 is obtained from a Ramsey experiment, which is sensitive to inhomogeneous

broadening caused by low-frequency quasistatic noise (e.g., 1/ 𝑓 ). To mitigate sensitivity to quasistatic

noise, a Hahn echo sequence can be used. In an echo sequence, a refocusing 𝜋 pulse is inserted at 𝜏/2,

12



2.5. Charge qubit

canceling low-frequency phase errors. The echo signal decays with a time constant 𝑇echo
2 ≥ 𝑇∗

2 , which

reflects the high-frequency dephasing rate.

The impact of relaxation and dephasing depends strongly on the circuit implementation. In the following,

we introduce the most relevant superconducting qubit types.

2.5. Charge qubit

a) b) c)

Cg

EJ

Cs
Vg

ϕ

CJ

Figure 2.6.: Charge qubit. a) Circuit diagram of a charge qubit. Charge transfer between the environment and the

small superconducting island (red) occurs through the JJ characterized by the Josephson energy 𝐸J. The charging

energy is given by 𝐸C = 𝑒2/2𝐶Σ, where 𝐶Σ is the island’s total capacitance. An external gate voltage 𝑉g applied

via a gate capacitance 𝐶g induces an offset charge 𝑛g = 𝑉g𝐶g/2𝑒 on the island. b,c) Energy spectra as functions

of the offset charge 𝑛g for 𝐸J/𝐸C ≈ 1 and 𝐸J/𝐸C ≈ 50, respectively. For better comparison, all energy levels are

normalized to the |0⟩ → |1⟩ transition energy at 𝑛g = 0, 𝐸01 (𝑛g = 0). As 𝐸J/𝐸C increases, the spectrum becomes

increasingly flat, reflecting the exponential suppression of offset charge sensitivity with 𝑒−
√

8𝐸J/𝐸C in the transmon

regime (𝐸J/𝐸C ≫ 1).

One of the most fundamental superconducting qubits is the charge qubit, which is based on the Cooper

pair box, introduced as the first superconducting qubit in 1999 [105]. It consists of a JJ that is shunted

by a capacitance, so that at least one of the electrodes forms a superconducting island (see Fig. 2.6a).

The island can exchange Cooper pairs with a reservoir through the JJ. A gate voltage 𝑉g applied via 𝐶g

allows control of the offset charge 𝑛g =𝑉g𝐶g/2𝑒 of the island. The Hamiltonian of the charge qubit is

Ĥ =
(𝑞−𝑞g)2

2𝐶Σ

+𝐸J (1−cos(𝜑̂)) = 4𝐸C (𝑛̂−𝑛g)2+𝐸J (1−cos(𝜑̂)), (2.30)

where 𝐸C = 𝑒2/2𝐶Σ and 𝐶Σ = 𝐶s+𝐶g+𝐶J. Here, 𝑛̂ = 𝑞/2𝑒 is the Cooper pair number operator on the

island, and 𝜑̂ = 2𝜋𝜙/Φ0 is the superconducting phase difference across the junction. They obey the

canonical commutation relation [𝜑̂, 𝑛̂] = 𝑖.
For small ratios 𝐸J/𝐸C ≤ 1 the qubit is typically described in the charge basis |𝑛⟩, representing the

number of Cooper pairs on the island. The Josephson term couples neighboring charge states, hybridiz-
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2. Theoretical background

ing the parabolic charging-energy bands as a function of 𝑛g and creating avoided crossings (Fig. 2.6b).

While this coupling introduces the necessary anharmonicity for qubit operation, it also makes the energy

levels highly sensitive to charge noise, leading to strong dephasing and coherence times of only a few

nanoseconds.

To mitigate charge noise we can operate the qubit in the limit 𝐸J/𝐸C ≫ 1 (typically ≥ 50). In this

regime, the wavefunctions extend over many charge states, making the spectrum nearly independent of

𝑛g (Fig. 2.6c). The charge dispersion is suppressed by 𝑒−
√

8𝐸J/𝐸C , and the dynamics are more naturally

described in the phase basis |𝜑⟩ [106]. The trade-off is a decreased anharmonicity, leading to an energy

level spacing dominated by ℏ𝜔01 ≈
√

8𝐸J𝐸C−𝐸C which makes it more difficult to operate a transmon

qubit as a two-level system.

An alternative strategy is the flux qubit, which trades charge sensitivity for flux tunability.

2.6. Generalized flux qubit

a) c)

EJC

CJ

L

Φext

b)

d) e)

ϕL ϕ

Figure 2.7.: Generalized flux qubit. a) Circuit diagram of a generalized flux qubit (GFQ), consisting of a JJ with

Josephson energy 𝐸J and capacitance 𝐶J shunted by a capacitor 𝐶 and an inductor 𝐿. The superconducting loop

allows for external magnetic flux biasing Φext. b,c) Potential energy landscape for Φext = 0.5Φ0 in the plasmon

(𝐸J < 𝐸L) and fluxon (𝐸J > 𝐸L) regime, respectively. d,e) Energy spectra of the GFQ as a function of Φext in both

regimes. The flux periodicity of the spectrum and first-order insensitivity to flux noise at the extremal points are

evident. Enhanced anharmonicity 𝛼 in the fluxon regime enables fast qubit control while minimizing transitions to

higher levels.
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2.6. Generalized flux qubit

A generalized flux qubit (GFQ) is a superconducting circuit with a JJ and a parallel capacitor, addition-

ally shunted by an inductor that screens charge offsets, as shown in Fig. 2.7a. The superconducting loop

formed by the JJ and the inductance can be biased by an external magnetic flux Φext. Using Kirch-

hoff’s voltage law together with flux quantization around the loop [90], Eq. 2.7 and Eq. 2.13, the total

generalized flux in the loop satisfies

𝜙L−𝜙+Φext = 𝑘Φ0 with 𝑘 ∈ Z, (2.31)

where 𝜙L and 𝜙 are the flux assigned to the inductance and junction respectively. We choose the junction

flux variable 𝜙 as the independent degree of freedom and express the inductor flux as 𝜙L = 𝜙−Φext+𝑘Φ0.

Substituting this into the system, we obtain the Hamiltonian

Ĥ =
𝑞2

2𝐶Σ

+ 1
2𝐿

(𝜙−Φext+𝑘Φ0)2−𝐸J cos(2𝜋𝜙/Φ0), (2.32)

where we neglect the constant term of the Josephson energy because it does not affect the transition

energies. If no magnetic flux is trapped inside the loop (𝑘 = 0) and if Φext remains static, we can perform

a gauge transformation 𝜙→ 𝜙′ = 𝜙+Φext, which shifts Φext into the argument of the Josephson cosine

term [106]. Introducing the dimensionless phase variable 𝜑̂ = 2𝜋𝜙/Φ0, the Hamiltonian takes the more

intuitive form

Ĥ =
𝑞2

2𝐶Σ

+ 1
2𝐿
𝜙2−𝐸J cos

(
2𝜋
Φ0

(𝜙+Φext)
)
= 4𝐸C𝑛̂

2+1
2
𝐸L𝜑̂

2−𝐸J cos(𝜑̂+𝜑ext), (2.33)

where 𝑛̂ = 𝑞/2𝑒 is the number of Cooper pairs and 𝐸L = (Φ0/2𝜋)2/𝐿 the inductive energy. Eq. 2.33 is

numerically solvable in the basis of the harmonic oscillator, where the non-linear Josephson potential is

treated as a perturbation [107]. This yields the matrix elements

Ĥ𝑚,𝑛 = ⟨ℎ𝑚 | Ĥ |ℎ𝑛⟩ = ℏ𝜔

(
𝑎̂†𝑎̂+1

2

)
𝛿𝑚,𝑛−𝐸J ⟨ℎ𝑚 | cos(𝜑̂+𝜑ext) |ℎ𝑛⟩ . (2.34)

The zero-point fluctuations of the harmonic mode are given by

ΦZPF = Φ0

√︄
𝑍

4𝜋𝑅Q
and 𝑄ZPF = 2𝑒

√︂
𝑅Q

4𝜋𝑍
, (2.35)

where 𝑅Q = ℎ/(2𝑒)2 ≈ 6.45kΩ is the resistance quantum.

Depending on the ratio 𝐸J/𝐸L, different regimes of the universal double-well potential can be ac-

cessed [108]. These range from the fluxon-tunneling regime (𝐸J > 𝐸L), where the barrier height exceeds

the confining quadratic potential, to the single-well plasmon regime (𝐸J < 𝐸L), where the system behaves

as a single harmonic well as shown in Fig. 2.7b,c for Φext = 0.5Φ0. In Fig. 2.7d,e we show the frequency

spectrum of a GFQ in the fluxon and plasmon regime as a function of Φext. As can be seen, the energy

levels of a GFQ are periodic in flux with a period of Φ0 and are first-order insensitive to flux noise at their

extremal points. The enhanced anharmonicity 𝛼, particularly in the fluxon regime of GFQs, is a major

advantage, allowing for fast control of the |0⟩ → |1⟩ transition while minimizing unintended excitations

to higher energy levels.
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2. Theoretical background

2.7. Superinductance

Superinductors are a main component in the GFQs used in this thesis. These elements are engineered to

possess large inductances of tens to hundreds of nH, enabling the realization of circuits with high charac-

teristic impedance 𝑍 =
√︁
𝐿/𝐶≫ 𝑅Q. Entering this high impedance regime suppresses charge fluctuations

which minimizes decoherence due to environmental charge noise. In this regime, the zero-point charge

fluctuations 𝑄ZPF are smaller than the elementary charge 𝑒.

In addition to high impedance, a superinductor must fulfill several additional requirements: it should ex-

hibit low microwave losses to preserve qubit coherence, maintain DC conductivity to short-circuit static

offset charges, and avoid spurious resonances within the qubit’s operational frequency range. Conven-

tional geometric inductors based on aluminum thin films are limited in their achievable impedance due

to low kinetic inductance and significant parasitic capacitance to ground. These constraints typicallyii

restrict the impedance to values below the vacuum impedance 𝑍0 = 377 Ω, rendering them unsuitable for

the realization of superinductors with 𝑍 ≫ 𝑅𝑄 [110].

Kinetic inductance originates from the inertia of Cooper pairs in a superconductor, which causes a de-

layed response of the supercurrent to an alternating electric field. When a supercurrent flows, energy is

stored in the motion of the charges. The total kinetic energy is given by

𝐸 =

∫
1
2
𝑛s𝑚𝑣

2 d𝑉 =
1
2
𝐿kin𝐼

2, (2.36)

where 𝑚 = 2𝑚e is the Cooper pair mass, 𝑣 is the superfluid velocity, and 𝐼 is the supercurrent. For a

uniform wire of length ℓ and cross-sectional area 𝑆, the current is

𝐼 = 2𝑒𝑛s𝑣𝑆, (2.37)

which leads to the kinetic inductance

𝐿kin =
2𝑚eℓ

𝑛s(2𝑒)2𝑆
. (2.38)

Josephson junction arrays as superinductors

One-dimensional chains of JJs were employed as superinductors in the original fluxonium qubit de-

sign [111]. They consist of 𝑁 identical JJs connected in series, each characterized by a critical current

𝐼c, junction capacitance 𝐶J, and Josephson energy 𝐸J. For drive frequencies 𝜔≪ 𝜔p, where

𝜔p = 1/
√︁
𝐿J𝐶J =

√︂
2𝑒𝐼c
ℏ𝐶J

(2.39)

is the junction plasma frequency, the chain behaves as a lumped-element linear inductor with effective

inductance

𝐿array = 𝑁 ·𝐿J = 𝑁 ·
Φ0

2𝜋𝐼c
, (2.40)

iiNote that with specialized geometry and fabrication, even geometric coils can surpass the resistance quantum [109]
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2.7. Superinductance

a)
φ

Cg

Larray = N·LJ

b)

φ

Figure 2.8.: Implementation of a superinductance with a JJ array. a) Schematic of a JJ array consisting of 𝑁

identical junctions with Josephson energy 𝐸J = (Φ0/2𝜋)2/𝐿J and capacitance𝐶𝐽 . Each island is coupled to ground

via a capacitance𝐶g. The collective phase difference across the chain is denoted by 𝜑. In the lumped-element limit,

the JJ array can be modeled as a linear inductor with total inductance 𝐿array = 𝑁𝐿𝐽 . b) Dispersion relation of the

plasma modes for an array with 𝑁 = 50 junctions, calculated for different ratios 𝐶J/𝐶g. The mode frequencies

𝜔𝑛 are normalized by the single-junction plasma frequency 𝜔p = 1/
√
𝐿J𝐶J. Larger values of 𝐶J/𝐶g compress the

mode spectrum and raise the lowest mode frequency.

as illustrated in Fig. 2.8a. Although each individual junction is nonlinear, the phase drop 𝜑𝑛 across

each junction becomes small for large 𝑁 , such that a Taylor expansion of the collective cosine potential

becomes valid:

H = −
𝑁∑︁
𝑛=0

𝐸J cos (𝜑𝑛) = −𝑁 · (Φ0/2𝜋)2

𝐿J
cos

( 𝜑
𝑁

)
≈ −𝑁𝐸J+

1
2

(
Φ0
2𝜋

)2

𝐿array
𝜑2− 1

24

(
Φ0
2𝜋

)2

𝐿array

1
𝑁2 𝜑

4. (2.41)

The quartic term reflects the weak residual nonlinearity of the array, which scales as 1/𝑁2 and gives rise

to a photon-number-dependent frequency shift. This effect is captured by the self-Kerr coefficient 𝐾11 of

the fundamental mode 𝜔1. For a JJ array in the weakly nonlinear regime (𝐾11𝑛 = 𝛿𝜔𝐾 ≪ 𝜔1 with 𝑛 the

average photon number in the mode) the Kerr coefficient is approximately [112]:

𝐾11 ≈
(
1
2
+1

8

)
ℏ2𝜔2

1
2𝑁𝐸J

. (2.42)

While the Kerr effect is suppressed in arrays with large 𝑁 , it remains observable for high drive powers

or near resonance with multi-photon transitions.

To describe the electrodynamics of JJ arrays beyond the lumped-element approximation, their collective

modes must be taken into account. The array forms a discrete transmission line with harmonic eigen-

modes, where the dispersion relation is determined by the ratio 𝐶J/𝐶g between the junction capacitance

and the capacitance to ground. The dispersion relation is given by [113]:

𝜔𝑛 = 𝜔p

√︄
1−cos(𝜋𝑛/𝑁)

𝐶g/(2𝐶J)+1−cos(𝜋𝑛/𝑁) , (2.43)
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2. Theoretical background

where 𝑛 ∈ [0, 𝑁]. A large 𝐶J/𝐶g ratio pushes the self-resonant frequency of the array above the qubit’s

|0⟩ → |1⟩ transition frequency and avoids spurious mode hybridization, as shown in Fig. 2.8b. For a

typical array junction with 𝐴JJ = 1µm2, C = 50 fF
µm2 and 𝑗c = 450 nA

µm2 we calculate 𝑓p = 𝜔p/2𝜋 ≈ 26GHz.

Phase coherence across the array can be disrupted by quantum phase slips, i.e. tunneling events where the

superconducting phase changes by 2𝜋 across a single junction. For junctions in the regime 𝐸J/𝐸C ≫ 1
the phase slip rate is exponentially suppressed [114]:

Γps = 𝑁 ·
1
ℎ
· 4
√
𝜋

(
8𝐸3

J 𝐸C

)1/4
𝑒−

√
8𝐸J/𝐸C . (2.44)

In large-area junctions with 𝐸J/𝐸C ≈ 100 phase slips are negligible, with measured rates of less than

1 mHz [113].

Granular aluminum
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Figure 2.9.: Modeling granular aluminum (grAl) as a Josephson junction (JJ) array. a) Schematic of a grAl

strip with length ℓ, height ℎ, and depth 𝑑. For modeling purposes, the strip is divided into equally sized segments of

length 𝑥. b) Sketch of the microstructure of grAl. The aluminum (Al) grains (blue) are embedded in an amorphous

AlO𝑥 matrix (grey). Cooper pair tunneling between grains leads to a nonlinear kinetic inductance, allowing the

electrodynamics of grAl thin films to be modeled as networks of JJs. c) Circuit model of the grAl strip, where each

segment is represented by an effective JJ with critical current 𝐼c and capacitance 𝐶J.

Granular aluminum (grAl) is obtained by evaporating pure aluminum (Al) in an oxygen atmosphere. By

adjusting the partial oxygen pressure during deposition, its room-temperature resistivity can be tuned

over several orders of magnitude, typically in the range of

𝜌 = 𝑅n·𝐴/ℓ ≈ 10−104µΩcm [115, 116], (2.45)

for a grAl film with normal-state resistance 𝑅n, cross-section 𝐴 = ℎ·𝑑 and length ℓ. For grAl films fab-

ricated at room-temperature with resistivities 𝜌 ≥ 10µΩcm, the granular structure consists of crystalline

aluminum grains with a uniform diameter of 3±1nm [110]. These grains are separated by amorphous

AlO𝑥 barriers, as shown in Fig. 2.9. This microstructure allows grAl to be modeled as a disordered

network of weakly coupled JJs, enabling its use as a superinductance in superconducting circuits. The
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2.8. Dispersive readout

kinetic inductance dominates the electrodynamic response and can be estimated in the low-temperature

limit 𝑇 ≪ 𝑇c with the Mattis-Bardeen relation [117]:

𝐿kin =
ℏ𝑅n

𝜋Δ
, (2.46)

where Δ ≈ 1.76 𝑘B𝑇c (𝑇c,grAl ≈ 1.6−3K [118, 119]) is the superconducting gap. The nonlinear current-

phase relation of the effective JJ network in grAl gives rise to a finite Kerr nonlinearity. For the funda-

mental mode, the self-Kerr coefficient 𝐾11 is [110]:

𝐾11 =
3

16
𝜋𝑒𝑎·

𝜔2
1

𝑗c𝑉grAl
, (2.47)

where 𝑎 is the grain size, 𝜔1 is the mode’s frequency, 𝑗c is the critical current density, and 𝑉grAl is

the volume of the grAl inductor. This relation shows that the nonlinearity can be tuned via both ma-

terial resistivity and circuit geometry. Kerr coefficients can range from sub-kHz to MHz, allowing the

use of grAl in low-loss superinductors, parametric amplifiers, kinetic inductance detectors, and even

qubit elements [120, 69, 121, 122]. Highly inductive grAl films with resistivity 𝜌 = 4000µΩ·cm (cor-

responding to a sheet resistance 𝑅n,□ ≈ 2kΩ and kinetic inductance 𝐿□ ≈ 2nH/□) have been shown to

exhibit plasma frequencies 𝑓p ≈ 70GHz [110], consistent with the absence of spurious resonances up

to 20 GHz [110, 120]. As evident from Eq. 2.16 and Eq. 2.39, a lower normal-state resistivity implies

an increased plasma frequency. The amorphous grain structure also suppresses coherent quantum phase

slips, as local phase fluctuations can relax without inducing global 2𝜋 slips.

Compared to JJ arrays, grAl offers a simpler and more scalable fabrication process, at the expense of

in-situ tunability and increased sensitivity to quasiparticles [120]. GrAl superinductors exhibit internal

quality factors 𝑄𝑖 ≥ 105 and maintain high performance under magnetic fields up to 1T [123], making

them well suited for hybrid quantum circuits. A key limitation of high impedance grAl devices is their

susceptibility to non-equilibrium quasiparticles, typically generated by cosmic rays and environmental

radiation [120, 77]. These events cause sudden frequency shifts and can lead to correlated errors in multi-

qubit architectures. Mitigation strategies include phonon trapping, substrate engineering, and radiation

shielding [75, 124, 125].

2.8. Dispersive readout

The dispersive readout scheme originates from cavity quantum electrodynamics [126, 127], and it is

based on the interaction between a quantized electromagnetic field and the two levels of an atom. In

circuit quantum electrodynamics (cQED), this concept has been translated to solid-state platforms by

replacing the atom with a superconducting qubit and the cavity with a microwave resonator [128, 38].

The qubit-resonator interaction is described by the Jaynes-Cummings Hamiltonian [129],

ĤJC = ℏ𝜔R𝑎̂
†𝑎̂+

ℏ𝜔Q

2
𝜎̂𝑧+ℏ𝑔(𝜎̂+𝑎̂+𝜎̂− 𝑎̂

†), (2.48)
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Figure 2.10.: Comparison of transverse and longitudinal qubit-resonator coupling. a) Normalized eigenfre-

quencies (𝜔−𝜔R)/𝑔 of a qubit-resonator system with transverse coupling, plotted against the normalized detuning

(𝜔Q−𝜔R)/𝑔. The dashed lines indicate the uncoupled modes, with 𝜔R corresponding to the resonator (horizontal)

and 𝜔Q to the qubit (diagonal). Their hybridization results in an avoided crossing with a minimum gap of 2𝑔,

which is an experimental signature of transverse coupling. b) Simulated resonator phase response arg(𝑆11) as a

function of normalized frequency detuning (𝜔−𝜔R)/𝜅, with 𝜅 denoting the resonator linewidth. A longitudinal

interaction produces a qubit-state-dependent frequency shift, yielding two distinct phase responses for the states

|0⟩ (blue) and |1⟩ (red), separated by the dispersive shift 𝜒 (see Eq. 2.49).

where 𝜔R is the resonator frequency and 𝑔 is the transverse coupling rate. Transverse coupling allows

for the coherent exchange of excitations between the modes and gives rise to a characteristic avoided

level crossing when 𝜔Q is tuned into resonance with 𝜔R as shown in Fig. 2.10a. The minimum splitting

at resonance is 2𝑔 and provides a direct spectroscopic signature of the coupling strength.

In the dispersive regime, where the detuning Δ = |𝜔Q−𝜔R | ≫ 𝑔, no energy is exchanged between the

two modes. Instead, the interaction leads to a qubit-state-dependent frequency shift of the resonator

𝜒 ≈ 2𝑔2/Δ. This results in an effective Hamiltonian of the form [128]:

Ĥdisp = ℏ(𝜔R+
𝜒

2
𝜎̂𝑧)𝑎̂†𝑎̂+

ℏ

2
(𝜔Q+

𝜒

2
)𝜎̂𝑧 . (2.49)

This Hamiltonian is of longitudinal form, since the interaction term is proportional to 𝜎̂𝑧 𝑎̂†𝑎̂ and therefore

commutes with (and thus conserves) both the qubit state 𝜎̂𝑧 and the resonator photon number 𝑎̂†𝑎̂. As

a result, the resonator response splits into two distinct frequencies for |0⟩ and |1⟩, separated by the

dispersive shift 𝜒, as shown in Fig. 2.10b. Because the qubit state is conserved during the measurement,

this scheme implements a quantum non-demolition (QND) readout of the qubit.

Typically the dispersive shift is chosen to be on the order of the resonator linewidth 𝜅 ≈𝜔R/𝑄 ≈ 𝜒, so that

𝜒 is small enough to minimize unwanted losses but large enough to remain detectable. The dispersive

shift is calculated from the resonator and qubit spectrum using

𝜒 =
(
𝐸 |1,1⟩−𝐸 |0,1⟩

)
/ℎ−

(
𝐸 |1,0⟩−𝐸 |0,0⟩

)
/ℎ, (2.50)
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2.8. Dispersive readout

where 𝐸 |𝑛R,𝑛Q ⟩ is the energy level sorted by the readout (𝑛R) and qubit (𝑛Q) photon number.

Input-output theory

g

bin

bout

Figure 2.11.: Circuit schematic for dispersive qubit measurement in reflection. The readout resonator with

frequency 𝜔R is coupled through the capacitor 𝐶c to a 50Ω transmission line with coupling rate 𝜅. A probe signal

𝑏in is sent through the line and reflects off the resonator. At the output the reflected signal 𝑏out is measured. The

qubit is modeled as a two-level system coupled to the resonator with strength 𝑔. In the dispersive regime, the

resonator acquires a qubit-state-dependent frequency shift 𝜔R = 𝜔R,0±𝜒/2.

The derivation of the dispersive Hamiltonian (Eq. 2.49) assumes an isolated qubit-resonator system.

However, to perform a measurement, the resonator must be coupled to a classical measurement apparatus.

Typically, this is achieved by coupling the resonator capacitively to a 50Ω transmission line. In this

work, we focus on the reflection setup, shown schematically in Fig. 2.11. The qubit is excluded from the

dynamical treatment, reducing its effect to a dispersive shift 𝜒 of the resonator frequency. The resulting

open-system dynamics are described by input-output theory [130], which is summarized below.

To analyze the signal response, we treat the resonator as a harmonic oscillator coupled to a semi-infinite

transmission line. The total Hamiltonian includes three parts: the resonator, the transmission line, and

their interaction,

Ĥtot = ĤR+Ĥtl+Ĥint. (2.51)

The transmission line is modeled as a continuum of harmonic modes, described by bosonic creation and

annihilation operators 𝑏̂†𝜔 and 𝑏̂𝜔 , which satisfy the commutation relation [𝑏̂𝜔 , 𝑏̂†𝜔′] = 𝛿(𝜔−𝜔′). The

corresponding Hamiltonian is

Ĥtl =

∫ ∞

0
d𝜔ℏ𝜔 𝑏̂†𝜔 𝑏̂𝜔 . (2.52)

The resonator is coupled to the transmission line via a capacitive interaction, leading to the interaction

Hamiltonian

Ĥint =
1

√
2𝜋

∫ ∞

0
d𝜔

√︁
𝜅(𝜔) (𝑏̂†𝜔−𝑏̂𝜔) (𝑎̂†−𝑎̂), (2.53)

where 𝜅(𝜔) is the frequency-dependent coupling rate determined by the coupling capacitance 𝐶c. We

use two simplifications on Ĥtot: the rotating wave approximation (RWA) and the Markov approxima-

tion. The RWA allows us to neglect the fast oscillating terms in Ĥint. The Markov approximation allows
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2. Theoretical background

us to replace 𝜅(𝜔) with a constant 𝜅, if the drive is narrowband around the resonator frequency (𝜅≪ 𝜔R).

In the Heisenberg picture, the evolution of the resonator field operator is given by

¤̂𝑎(𝑡) = 𝑖

ℏ
[Ĥtot, 𝑎̂(𝑡)] . (2.54)

Using the two approximations, the quantum Langevin equation in a frame rotating at the drive frequency

𝜔 is given by:
¤̂𝑎(𝑡) = −𝑖(𝜔R−𝜔)𝑎̂(𝑡)−

𝜅

2
𝑎̂(𝑡)−

√
𝜅 𝑏̂in(𝑡), (2.55)

where 𝑏̂in(𝑡) is the input field incident on the resonator. The field reflected from the resonator is described

by the output operator 𝑏̂out(𝑡), related to the internal field via the input-output relation

𝑏̂out(𝑡) = 𝑏̂in(𝑡)+
√
𝜅 𝑎̂(𝑡). (2.56)

In steady state, when ¤̂𝑎(𝑡) = 0, we solve Eq. 2.55 to obtain

𝑎̂(𝑡) = −
√
𝜅

−𝑖(𝜔R−𝜔)+𝜅/2
𝑏̂in(𝑡). (2.57)

Substituting into Eq. 2.56 yields the reflected field,

𝑏̂out(𝑡) = 𝑏̂in(𝑡)
[
1− 𝜅

−𝑖(𝜔R−𝜔)+𝜅/2

]
. (2.58)

We define the complex reflection coefficient 𝑆11(𝜔), as the ratio of the reflected to incident fields in

frequency space:

𝑆11(𝜔) =
𝑏̂out(𝜔)
𝑏̂in(𝜔)

= 1− 𝜅

−𝑖(𝜔R−𝜔)+𝜅/2
. (2.59)

This complex function describes the frequency-dependent reflection response of the resonator. The mag-

nitude |𝑆11(𝜔) | gives the amplitude of the reflected signal, while arg[𝑆11(𝜔)] determines the phase shift.

At resonance (𝜔 = 𝜔R), the reflection exhibits a phase flip and a minimum in amplitude, corresponding

to maximum energy absorption by the resonator.

Signal-to-noise ratio

The dispersive Hamiltonian in Eq. 2.49 implies a qubit-state-dependent resonator frequency 𝜔 (0/1)
R =

𝜔R∓𝜒/2. Probing the resonator at𝜔 =𝜔R gives detunings of𝜔−𝜔 (0/1)
R =±𝜒/2. Substituting into Eq. 2.59

yields:

𝑆
(0/1)
11 =

±𝑖 𝜒/2−𝜅/2
±𝑖 𝜒/2+𝜅/2

. (2.60)

Identifying the measured quadratures with 𝐼 = Re(𝑆11) and 𝑄 = Im(𝑆11) (scaled by |⟨𝑏in⟩|) gives:

⟨𝐼0,1⟩ =
𝜅2−𝜒2

𝜅2+𝜒2 |⟨𝑏in⟩| and ⟨𝑄0,1⟩ = ± 2𝜅𝜒
𝜅2+𝜒2 |⟨𝑏in⟩|. (2.61)
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2.8. Dispersive readout

At 𝜔 = 𝜔R and with our phase convention, the qubit information lies entirely in 𝑄 while 𝐼 contains

only noise. In general, the information appears along some axis in the (𝐼,𝑄) plane. Measuring both

quadratures with a heterodyne setup captures the full complex reflection (amplitude and phase) and

allows a digital rotation of (𝐼,𝑄) onto any axis [37, 131, 39].

The output signal is amplified to match the level of classical readout electronics. A quantum-limited

phase-preserving amplifier adds half a photon of noise [132, 133]. Including vacuum fluctuations, the

total variance is 𝜎2
0 = 1/2 for both quadratures. In a heterodyne detection scheme, the reflected signal

is downconverted to an intermediate frequency 𝜔IF and digitally mixed with two reference signals at

the same frequency, phase-shifted by 90◦ relative to each other. This process separates the signal into

two orthogonal components 𝐼 and 𝑄. The resulting traces are integrated over the measurement time 𝜏int,

yielding the measured components 𝑄m and (analogously) 𝐼m:

𝑄m =

∫ 𝑡0+𝜏int

𝑡0

(
⟨𝑄̂⟩+𝛿𝑄

)
𝑑𝑡. (2.62)

Here, ⟨𝑄̂⟩ is given by Eq. 2.61, and 𝛿𝑄 is normally distributed noise. Both the mean ⟨𝑄m⟩ = ⟨𝑄̂⟩𝜏int and

variance 𝜎2
𝑚 ∝ 𝜏int grow linearly with 𝜏int.

The resonator photon number 𝑛̄ in the dispersive regime can be calculated via the AC-Stark shift 𝛿𝑓ac

(or more accurately by the procedure outlined in App. A.5). The AC-Stark shift is a shift in the qubit’s

frequency 𝑓Q → 𝑓Q+𝛿𝑓ac, caused by an increasing number of photons in the resonator. We derive from

Hamiltonian Eq. 2.49:

𝛿𝑓ac =
𝜒

2𝜋
𝑛̄, (2.63)

and define the measurement photon number as:

𝑛m =
𝑛̄𝜅𝜏int

4
. (2.64)
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Figure 2.12.: Qubit state separation in the IQ plane. The two

disks correspond to the |0⟩ (blue) and |1⟩ (red) pointer states

of the resonator with equal variance ⟨(Δ𝐼𝑚)2⟩ = ⟨(Δ𝑄𝑚)2⟩ =
𝜎2
𝑚. The 𝐼 and 𝑄 quadratures are rescaled to the square root of

measurement photons,
√
𝑛𝑚 =

√︁
𝑛̄𝜅𝜏int/4 [134, 135].

In Fig. 2.12 we show a typical dispersive readout result. The IQ-plane shows two Gaussian pointer states

corresponding to the qubit in ground (g, |0⟩) and excited (e, |1⟩) state. The quadratures are rescaled by
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√
𝑛m, so that the variance 𝜎m becomes independent of 𝜏int. For quantum-limited readout, the variance is

𝜎2
0 = 1/2.

The separation of the |0⟩ and |1⟩ pointer states and their variances 𝜎m defines the signal-to-noise ratio

(SNR):

SNR =
|⟨𝑄m,g⟩−⟨𝑄m,e⟩|
𝜎m,g+𝜎m,e

=

√
𝑛m

𝜎m
sin(𝜑). (2.65)

The angle 𝜑 is defined as the angle between the ground-state pointer and the I-axis, 𝜑 = arctan(⟨𝑄g⟩/⟨𝐼g⟩),
and is given by

sin(𝜑) = 2𝜅𝜒
𝜅2+𝜒2 . (2.66)

The optimal SNR is achieved for 𝜒 = 𝜅, corresponding to a 180◦ phase shift between the pointer states.
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3. Kinetic inductance coupling for cQED with flux qubits

This chapter is based on results previously published in Ref. [136]. Adaptations and extensions have

been made to better integrate the material into this thesis.

In this chapter, we present a coupling scheme between a readout resonator and a GFQ based on kinetic

inductance, which enables dispersive interaction without direct capacitive coupling. First, we introduce

the circuit design and highlight the role of geometric symmetry in suppressing unwanted capacitive in-

teractions. We then develop a full quantitative model based on circuit quantization and derive the system

Hamiltonian that we compare to an idealized inductively coupled qubit-readout system. The coupling

mechanism is analyzed in detail and shown to result from a controlled inductive asymmetry, while the

symmetric sample box is key to suppressing unwanted capacitive contributions. We validate the induc-

tive coupling by comparing model predictions to measured data. In the final section, we characterize the

readout fidelity and demonstrate high-fidelity active state preparation.

3.1. Circuit design and symmetry

The design of the qubit-resonator system (QR-system) shown in Fig. 3.1 follows three key principles.

First, we employ the minimal configuration required to support two electromagnetic modes, a three-node

circuit. Second, we assign distinct physical roles to the common and differential modes: the qubit mode

corresponds to the differential excitation between two nodes connected by a Josephson junction (JJ),

acquiring strong anharmonicity from the nonlinear Josephson potential, while the orthogonal common-

mode excitation remains linear and defines the readout resonator. Third, to suppress undesired electric

field coupling between the two modes, the capacitive environment of the qubits JJ is designed to be

symmetric. This symmetry enforces a permutation invariance in the capacitance matrix for these nodes.

A simplified lumped-element implementation of the circuit is shown in Fig. 3.1a. It consists of three

superconducting islands: nodes 1, 2, and 3, which are connected through grAl inductors. Nodes 1 and 2

form a closed superconducting loop interrupted by a JJ and threaded by an external magnetic flux Φext,

realizing a GFQ [108]. The total loop inductance 𝐿q sets the inductive energy scale 𝐸L of the qubit.

When the circuit is symmetric with respect to the vertical axis through node 3, so that nodes 1 and 2

exhibit identical capacitances 𝐶r and inductances 𝐿q/2, the differential and common electromagnetic

modes become orthogonal. In this case, the current associated with the readout mode divides equally

between the two branches of the qubit loop, resulting in zero net current shared with the qubit mode. To
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3. Kinetic inductance coupling for cQED with flux qubits
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Figure 3.1.: Qubit-readout circuit schematics and implementation, figure and caption taken from [136]. a) The

circuit consists of three islands labeled 1 to 3 (black dots). Islands 1 and 2 form the qubit loop, which consists of a

JJ with energy 𝐸𝐽 and capacitance 𝐶𝐽 in parallel with a grAl inductance 𝐿q and a capacitance 𝐶s, together forming

a GFQ. The third island defines the readout mode through its connection to the qubit loop via a grAl inductance

𝐿r, resulting in an in-phase charge oscillation of islands 1 and 2. The qubit-resonator coupling strength is set by an

inductance asymmetry Δk between the two branches of the grAl loop. The readout mode is loaded by capacitances

𝐶r and coupled to the feedline through 𝐶c. The materials used are indicated by color: aluminum (blue), grAl (red),

and structures of Al covered with grAl (purple), resulting from the three-angle evaporation process. b) Image of

the device layout. The coupling capacitor 𝐶c features a skeletal shape to suppress screening currents and vortex

trapping. c) False-colored scanning electron micrograph of the qubit loop. The length and width of the grAl

strips determine the resonator frequency, coupling strength, and qubit spectrum. Insets show the Al/AlO𝑥 /Al JJ

(𝐴J ≈ 0.06µm2) and a section of the grAl wire. The visible granularity is due to an evaporated gold film used

for imaging. d) Simplified schematic of the microwave reflection measurement setup used for characterization at

10 mK. The full measurement setup is shown in section 6.4.

introduce a controlled interaction between the qubit and resonator, we deliberately break this symmetry

by engineering a kinetic inductance imbalance Δk = Δ□𝐿□/2, where Δ□ is the difference in the number of

squares of grAl wire in the two loop branches, and 𝐿□ denotes the sheet inductance of the grAl film. In

the case of JJ arrays, this corresponds to a mismatch in either the number or size of the JJs in each branch.

The resulting asymmetry leads to an uneven current distribution in the readout mode, establishing a finite

coupling to the qubit. In this picture, the parameter Δk acts as an effective shared inductance, and the

circuit becomes functionally equivalent to an inductively coupled qubit-resonator system [107].

Unlike conventional capacitive [111, 138] or geometric inductive [107, 69] coupling schemes for flux

qubits, the approach presented here eliminates an additional circuit node by embedding the readout mode

directly into the qubit loop. This integration offers several practical advantages. First, removing a circuit

node increases the frequency of parasitic modes, thereby enhancing the spectral purity of the device.
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3.1. Circuit design and symmetry

Second, the resonator is coupled to the measurement line via the capacitor 𝐶c at node 3, while the qubit

mode remains largely unaffected due to the circuit’s axial symmetry. Third, the coupling between qubit

and resonator arises purely from kinetic inductance, relaxing design constraints on capacitive elements

and potentially enabling advanced schemes such as flux pumping [59].

Fig. 3.1b,c show the layout of the QR-system and a scanning electron micrograph of the qubit loop,

respectively. The circuit parameters can be independently tuned by modifying purely geometrical fea-

tures of the layout. Specifically, the inductance 𝐿q is set by the length and width of the grAl wire, the

Josephson energy 𝐸J and JJ capacitance 𝐶J are determined by the area of the JJ, and the shunt capaci-

tance 𝐶s is defined by the size of the capacitor electrodes. Importantly, these adjustments do not require

changes to the overall circuit topology or to the fabrication parameters of the JJ or grAl film. The bottom

inset in Fig. 3.1c shows a magnified view of a section of the grAl inductor. Through the large kinetic

inductance of grAl, inductive asymmetries Δk of several nH can be introduced by adding just a few ad-

ditional squares of grAl in one of the qubit loop branches. This enables fine control of the coupling

strength with negligible impact on the total geometric inductance or the capacitance matrix. The central

inset in Fig. 3.1c depicts the Al/AlOx/Al JJ. Details of the QR-systems fabrication are provided in sec-

tion 6.1. Different designs of the circuit, including the evolution of the JJ, are described in section 6.1.

Experiments are performed at 10 mK in a dilution cryostat, as shown in Fig. 3.1d.

Circuit model

To accurately describe the QR-system introduced in section 3.1 we need a circuit model which takes

into account all capacitive and inductive elements as they are shown in Fig. 3.2a. This includes: four

superconducting islands, the inductances 𝐿q, 𝐿r and Δk, all capacitances between the island 𝐶𝑖 𝑗 and the

capacitances of the islands to ground𝐶0𝑖 with 𝑖, 𝑗 ∈ [1,2,3,4] ∧ 𝑖 ≠ 𝑗 . The flux variables for the islands are

denoted by ®𝜙⊤ = (𝜙1, 𝜙2, 𝜙3, 𝜙4). Using the canonical circuit quantization procedure as outlined in [95],

the Lagrangian is given by

L =
1
2
¤®𝜙⊤C ¤®𝜙−1

2
®𝜙⊤L−1 ®𝜙+𝐸J cos

(
2𝜋
Φ0

(𝜙2−𝜙1−Φext)
)

(3.1)

= Llin+𝐸J cos
(

2𝜋
Φ0

(𝜙2−𝜙1−Φext)
)
, (3.2)

where C is the capacitance matrix and L−1 the inverse inductance matrixi. Here, Llin collects all linear

contributions to the Lagrangian, encompassing both capacitive and inductive terms. The nonlinear dy-

iNote that inserting Φext into the cosine potential assumes a quasi-static external flux bias [106]
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3. Kinetic inductance coupling for cQED with flux qubits
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Figure 3.2.: Extended and idealized circuit model, figure and caption taken from [136]. a) Expansion of the three

island configuration shown in Fig. 3.1. The island 1 to 3 are indicated as black dots, while island 4 is highlighted by

a grey dot. Capacitances of the island to ground are labeled as 𝐶0𝑖 with 𝑖 ∈ [1,2,3,4]. Additional non-neglectable

capacitances 𝐶𝑖 𝑗 with 𝑖, 𝑗 ∈ [1,2,3,4] ∧ 𝑖 ≠ 𝑗 between the island are shown in grey. The colors, blue, red and purple

indicate the used materials and are consistent with Fig. 3.1. b) Assuming symmetric capacitances and neglecting

the influence of island 4, the circuit simplifies to an idealized inductively coupled model with an effective shared

inductance 𝐿S = Δk. In this representation, the qubit and resonator modes are described by effective inductances

𝐿Q, 𝐿R and capacitances 𝐶Q, 𝐶R, respectively. c) The four panels illustrate the transformation steps used to extract

the effective circuit parameters of the idealized model. The upper two diagrams show the decomposition of the

qubit capacitance 𝐶Q and inductance 𝐿Q, while the lower two panels represent the corresponding quantities 𝐶R

and 𝐿R for the readout resonator.

namics of the system arise solely from the JJ, which introduces a cosine potential between islands 1 and

2. The capacitance matrix C is given by:

C =

©­­­­­­«
𝐶11+𝐶J −𝐶12−𝐶J −𝐶13 −𝐶14

−𝐶12−𝐶J 𝐶22+𝐶J −𝐶23 −𝐶24

−𝐶13 −𝐶23 𝐶33 −𝐶34

−𝐶14 −𝐶24 −𝐶34 𝐶44

ª®®®®®®¬
. (3.3)

The entries𝐶𝑖 𝑗 are calculated via electrostatic finite element simulations performed with Ansys Maxwell,

which are discussed in section 3.1. The JJ capacitance 𝐶J is not captured in the simulation and therefore

added as an additional capacitive contribution between nodes 1 and 2. The inverse inductance matrix

L−1 is given by:

L−1 =

©­­­­­­«

1
𝐿q/2+Δk

0 0 − 1
𝐿q/2+Δk

0 1
𝐿q/2−Δk

0 − 1
𝐿q/2−Δk

0 0 1
𝐿r

− 1
𝐿r

− 1
𝐿q/2+Δk

− 1
𝐿q/2−Δk

− 1
𝐿r

1
𝐿q/2+Δk

+ 1
𝐿q/2−Δk

+ 1
𝐿r

ª®®®®®®¬
. (3.4)
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3.1. Circuit design and symmetry

It captures the grAl inductances in the resonator branch and in the qubit loop with the inductive asym-

metry Δk.

Circuit Hamiltonian

To derive the circuit Hamiltonian H , we begin by transforming the flux coordinates ®𝜙 to ®𝑥 = C1/2 ®𝜙. This

transformation brings the linearized Lagrangian into a form where the kinetic term is diagonal and the

normal mode problem becomes a standard eigenvalue equation. The linearized Lagrangian takes the

form

Llin =
1
2
¤®𝑥⊤ ¤®𝑥︸︷︷︸

kinetic

− 1
2
®𝑥⊤C−1/2L−1C−1/2®𝑥︸                     ︷︷                     ︸

potential

. (3.5)

The eigenfrequencies 𝜔 𝑗 are obtained by solving the eigenvalue problem

C−1/2L−1C−1/2 ®𝜂 𝑗 = 𝜔2
𝑗 ®𝜂 𝑗 , (3.6)

with corresponding eigenvectors ®𝜂 𝑗 . The eigenvectors form the transformation matrix S = ( ®𝜂1, ®𝜂2, ®𝜂3, ®𝜂4),
so that the original coordinates are expressed in the eigenmode basis as

®𝜂 = S⊤®𝑥. (3.7)

Introducing the canonical conjugate momenta 𝑝𝑖 = 𝜕Llin/𝜕 ¤𝜂𝑖 , we perform a Legendre transformation [139]

to obtain the diagonalized Hamiltonian of the linear system:

Hlin =
∑︁
𝑖

𝑝𝑖 ¤𝜂𝑖−Llin =
1
2

∑︁
𝑖

(
𝑝2
𝑖 +𝜔2

𝑖 𝜂
2
𝑖

)
. (3.8)

This describes a set of uncoupled harmonic oscillators in the normal mode basis.

1 2 3 4
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−0.5

0.0
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η i
(a

.u
.)

i = 1: qubit

i = 2: readout

i = 3: parasitic

i = 4: ground

Figure 3.3.: Mode structure of the circuit obtained from the eigen-
vectors ®𝜂𝑖 of the linearized Lagrangian, for the example qubit qex

ii.

Each curve represents the components 𝜂𝑖, 𝑗 of the 𝑖-th eigenvector

across the four superconducting islands 𝑗 of the extended circuit

model, see Fig. 3.2. Based on the spatial profiles, we identify mode

𝑖 = 1 (blue) as the qubit mode, characterized by a strong differential

signal between islands 1 and 2; mode 𝑖 = 2 (red) as the readout mode,

which primarily modulates islands 1 and 2 in phase with respect to

island 3; mode 𝑖 = 3 (dark grey) as a parasitic mode; and mode 𝑖 = 4
(light grey) as a common mode with respect to ground mode.

The eigenmodes are identified based on the spatial profiles of the eigenvector components 𝜂𝑖, 𝑗 , where

𝑖 labels the mode number and 𝑗 indexes the superconducting islands. These components indicate the

ii For the example qubit qex, we assume 𝐿r = 11.73 nH, 𝐿q = 39.06 nH, Δk = 0.28 nH, 𝐸J = 4.83 GHz and 𝐶J = 1.85 fF. The

capacitance matrix elements are listed in App. A.1.
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3. Kinetic inductance coupling for cQED with flux qubits

relative participation of each island’s flux coordinate in the corresponding normal mode, as shown in

Fig. 3.3. The qubit mode is defined as 𝜂Q = 𝜂1, characterized by the strongest differential signal across

nodes 1 and 2, i.e. |S21−S11 | > |S2 𝑗−S1 𝑗 | ∀ 𝑗 ≠ 1. The readout mode is defined as 𝜂R = 𝜂2, corresponding

to the dominant common-mode contribution, |S22+S12 | > |S2 𝑗+S1 𝑗 | ∀ 𝑗 ≠ 2.

To evaluate the nonlinear interactions of the JJ in the eigenmode basis, we re-express the original node

flux variables ®𝜙 in terms of the normal mode coordinates ®𝜂. This is done using the inverse transformation

®𝜙 = C− 1
2 S︸︷︷︸

S′

®𝜂. (3.9)

Using this transformation, the differential and common-mode fluxes across the JJ can be expressed in

terms of the qubit 𝜂Q and readout 𝜂R mode coordinates as

𝜙2−𝜙1 ≈
(
S′

2Q−S′
1Q

)
𝜂Q+

(
S′

2R−S′
1R

)
𝜂R,

𝜙2+𝜙1 ≈
(
S′

2Q+S′
1Q

)
𝜂Q+

(
S′

2R+S′
1R

)
𝜂R.

(3.10)

In this approximation, we neglect both the zero-frequency common-mode and the high-frequency mode

associated with island 4 [140]. This is justified because the zero mode carries no dynamics, and the

high-frequency mode lies around 30GHz and is sufficiently detuned to have negligible impact on the low

energy spectrum.

If we neglect the nonlinearity of the grAl wire, the JJ remains the sole source of nonlinearity in the

circuit. In the harmonic oscillator basis, it enters as a cosine potential that is driven by the differential

flux mode across nodes 1 and 2. Substituting Eq. 3.10 into the cosine argument in Eq. 3.2, we obtain

𝑈JJ = 𝐸𝐽 cos
(

2𝜋
Φ0

(𝜙2−𝜙1−Φext)
)
= 𝐸𝐽 cos

(
2𝜋
Φ0

[(
𝑆′2Q−𝑆

′
1Q

)
𝜂Q+

(
𝑆′2R−𝑆

′
1R

)
𝜂R−Φext

] )
. (3.11)

Applying canonical quantization, the mode coordinates become

𝜂R,Q =

√︄
ℏ

2𝜔R,Q

(
𝑎̂R,Q+𝑎̂†R,Q

)
and 𝑝R,Q = 𝑖

√︂
ℏ𝜔R,Q

2

(
𝑎̂
†
R,Q−𝑎̂R,Q

)
, (3.12)

so that the Josephson potential enters the Hamiltonian as

𝑈JJ = −𝐸J cos
(
𝜆Q(𝑎̂Q+𝑎̂†Q)+𝜆R(𝑎̂R+𝑎̂†R)−

2𝜋
Φ0

Φext

)
, (3.13)

with the dimensionless coupling strengths defined as

𝜆R =
2𝜋
Φ0

√︄
ℏ

2𝜔R

(
S′

2R−S′
1R

)
and 𝜆Q =

2𝜋
Φ0

√︄
ℏ

2𝜔Q

(
S′

2Q−S′
1Q

)
. (3.14)

The full system Hamiltonian then becomes:

H = ℏ𝜔Q

(
𝑎̂
†
Q𝑎̂Q+

1
2

)
+ℏ𝜔R

(
𝑎̂
†
R𝑎̂R+

1
2

)
−𝐸J cos

(
𝜆Q(𝑎̂Q+𝑎̂†Q)+𝜆R(𝑎̂R+𝑎̂†R)−

2𝜋
Φ0

Φext

)
.

(3.15)
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3.1. Circuit design and symmetry

The intuitive picture of a nonlinear qubit mode coupled to a linear readout mode remains valid in the

regime where 𝜆R ≪ 𝜆Q. In the limit of perfect symmetry, i.e. for Δk → 0, the coupling between the qubit

and readout mode vanishes, as 𝜆R → 0.

In this thesis we numerically diagonalize the Hamiltonians from Eq. 3.15 in the photon number basis

with 𝑁R = 15 photons in the readout resonator and 𝑁Q = 30 photons in the qubit.

Idealized circuit model
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Figure 3.4.: Comparison between the extended and idealized circuit models, for the example qubit qex
ii. a)

Qubit and resonator frequencies are calculated for both the extended (red and orange) and idealized (dark and

light-blue) models as a function of external magnetic flux Φext. b) Zooms into the avoided crossing, indicating

the qubit-resonator coupling strength 𝑔/2𝜋. c) Dispersive shift 𝜒/2𝜋 as a function of Φext for both models. The

idealized model captures the essential qualitative features of the qubit-resonator coupling and spectrum. Quantita-

tive deviations arise due to the non-negligible capacitances associated with island 4, which are not included in the

idealized model.

While the extended circuit model introduced above enables accurate numerical calculation of the qubit-

resonator spectrum, a simplified version can be more insightful. It provides a clearer analytical under-

standing of the underlying circuit behavior. We reduce the full linearized model to its two most relevant

degrees of freedom: the flux coordinates ®𝜙⊺ = (𝜙1, 𝜙2) associated with islands 1 and 2.

Neglecting the capacitances associated with node 4, we eliminate this inactive node using Kirchhoff’s

current conservation law

𝜙4−𝜙3
𝐿r

=
𝜙2−𝜙4
𝐿q
2 −Δk

+𝜙1−𝜙4
𝐿q
2 +Δk

. (3.16)
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3. Kinetic inductance coupling for cQED with flux qubits

We fix the reference potential by choosing 𝜙3 = 0 and solve for 𝜙4:

𝜙4 =
1
ΣL

(
𝐿r

(
𝐿q

2
+Δk

)
𝜙2+𝐿r

(
𝐿q

2
−Δk

)
𝜙1

)
, (3.17)

where

ΣL = 𝐿r𝐿q+
𝐿2

q

4
−Δ2

k. (3.18)

Substituting Eq. 3.17 into the inductive energy terms associated with node 4 yields the effective potential:

𝑈 =
∑︁

𝑗∈{1,2,3}

1
2𝐿4 𝑗

(𝜙4−𝜙 𝑗)2 =
1

2𝐿r
𝜙2

4+
1

2
(
𝐿q
2 +Δk

) (𝜙1−𝜙4)2+ 1

2
(
𝐿q
2 −Δk

) (𝜙2−𝜙4)2, (3.19)

where 𝐿4 𝑗 are the inductive elements between node 4 and the nodes 1, 2 and 3. Using Eq. 3.18, we

rewrite Eq. 3.19 as:

𝑈 =
1

2ΣL

[(
𝐿r+

𝐿q

2
−Δk

)
𝜙2

1+
(
𝐿r+

𝐿q

2
+Δk

)
𝜙2

2−2𝐿r𝜙1𝜙2

]
. (3.20)

In matrix form, the inductive energy is written as𝑈 = 1
2
®𝜙⊺L−1 ®𝜙 with the inverse inductance matrix

L−1 =
1
ΣL

(
𝐿r+

𝐿q
2 −Δk −𝐿r

−𝐿r 𝐿r+
𝐿q
2 +Δk

)
. (3.21)

To account for stray capacitances to ground, we eliminate the ground node by enforcing charge conser-

vation. This yields

𝐶10( ¤𝜙0− ¤𝜙1)+𝐶20( ¤𝜙0− ¤𝜙2)+𝐶30( ¤𝜙0− ¤𝜙3) = 0 ⇒
𝜙3=0

¤𝜙0 =
𝐶J0

𝐶30+2𝐶J0
( ¤𝜙1+ ¤𝜙2), (3.22)

with 𝐶J0 = 𝐶10 = 𝐶20. The capacitive energy becomes

𝑇 =
1
2

∑︁
𝑖, 𝑗∈{1,2}

C𝑖 𝑗 ¤𝜙𝑖 ¤𝜙 𝑗 =
1
2

(
𝐶r+𝐶s+𝐶J0−

𝐶2
J0

𝐶30+2𝐶J0

) (
¤𝜙2
1+ ¤𝜙2

2

)
−
(
𝐶s+

𝐶2
J0

𝐶30+2𝐶J0

)
¤𝜙1 ¤𝜙2, (3.23)

or in matrix form 𝑇 = 1
2
¤®𝜙⊺C ¤®𝜙, with

C =
©­«
𝐶r+𝐶s+𝐶J0−

𝐶2
J0

𝐶30+2𝐶J0
−𝐶s−

𝐶2
J0

𝐶30+2𝐶J0

−𝐶s−
𝐶2

J0
𝐶30+2𝐶J0

𝐶r+𝐶s+𝐶J0−
𝐶2

J0
𝐶30+2𝐶J0

ª®¬ . (3.24)

For Δk = 0, the differential and common-mode basis

𝜙Q = 𝜙2−𝜙1, (3.25)

𝜙R =
1
2
(𝜙1+𝜙2), (3.26)

diagonalizes both C and L−1, with transformed coordinates

®𝜙∗ =
(
𝜙R

𝜙Q

)
. (3.27)
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3.1. Circuit design and symmetry

For finite Δk, the matrices in this basis read

L∗−1
=

1
ΣL

(
𝐿q −Δk

−Δk 𝐿r+
𝐿q
4

)
(3.28)

and

C∗ =
©­«
2𝐶r+

(
1

2𝐶J0
+ 1
𝐶30

)−1
0

0 𝐶r
2 +𝐶s+𝐶J0

2

ª®¬ . (3.29)

To provide a more intuitive description of the circuit in terms of its normal modes, we introduce effective

parameters for the qubit and resonator branches. These are defined as

𝐿Q = 𝐿q−Δk,

𝐿R = 𝐿r+
𝐿q

4
−Δk,

𝐿S = Δk,

𝐶R = 2𝐶r+
(

1
2𝐶J0

+ 1
𝐶30

)−1
,

𝐶Q =
𝐶r

2
+𝐶s+

𝐶J0
2
,

(3.30)

and represent their lumped inductance and capacitance values. A schematic overview of this param-

eterization is shown in Fig. 3.2c for clarity. Using these definitions, the transformed inductance and

capacitance matrices in the qubit-resonator basis take the form

L∗−1
=

1
𝐿R𝐿Q+𝐿R𝐿S+𝐿Q𝐿S

(
𝐿Q+𝐿S −𝐿S

−𝐿S 𝐿R+𝐿S

)
, (3.31)

and

C∗ =

(
𝐶R 0
0 𝐶Q

)
, (3.32)

respectively. This formulation corresponds to the simplified lumped-element circuit shown in Fig. 3.2b,

and highlight the role of 𝐿S = Δk as the effective coupling element. We can now write down the Hamil-

tonian of the idealized circuit in the qubit-resonator basis as [141]

H =
1
2
𝐶Q ¤𝜙2

Q+
1
2
𝐶R ¤𝜙2

R+
1
2
𝜙2

Q

𝐿Q
+1

2
𝜙2

R

𝐿R
+1

2
(𝜙Q−𝜙R)2

𝐿S
−𝐸J cos

(
2𝜋
Φ0

(𝜙Q−Φext)
)
. (3.33)

A numerical comparison with the full extended model is presented in Fig. 3.4. While the idealized model

captures the qualitative features of the qubit-resonator spectrum, quantitative differences arise due to the

neglected capacitances associated with island 4. For example, in the case where 𝐶14∧𝐶24 ≈ 𝐶13, a non-

neglectable portion of the resonator-mode charge resonates between the JJs electrodes and island 4. As
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3. Kinetic inductance coupling for cQED with flux qubits

a result, much less current flows through 𝐿r, effectively increasing the resonator frequency compared to

the prediction of the idealized model. This redistribution of current also reduces the mutual participation

of the shared inductance 𝐿S = Δk, leading to a weaker effective coupling 𝑔 between qubit and resonator

than estimated from the idealized circuit.
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3.1. Circuit design and symmetry

Figure 3.5.: Symmetric environment for experiments and simulation, figure and caption adapted from [136]. a)
Cross-section of the copper sample box showing the three enclosures (e1-e3). The outer enclosures (e1 & e3) each

house a control chip (dark green) and an upside-down qubit chip (light green) on which the QR-system is located.

Both chips are made out of sapphire. The control chips are attached to the sample box using titanium or copper

screws and wire bonded to the coaxial ports. The qubit chips are glued with a tiny amount of vacuum grease to

pedestals which are part of the sample box. The pedestals define the 50±10µm gap between the chips. The central

enclosure (e2) is left empty. Empty pockets are added to the left of e1 and to the right of e3. As a result, the

QR-systems in the outer enclosures experience a symmetric capacitive environment. Static flux biasing for each

enclosure is achieved via a coil integrated into the lid (black X). b) Optical image of the sample box equipped with

qubit and control chips. Experiments are performed in reflection with THz-tight magnetic shielding in a dilution

refrigerator that has a base temperature of 10mK. A complete schematic of the cryogenic measurement setup is

provided in section 6.4 c) Simplified 3D model used to simulate the capacitance matrix C with the electrostatic

finite element solver Ansys Maxwell. To allow visual access to the interior of the model, the lid is rendered

transparent. The control chip inhibits a band-pass filter whose center frequency is tuned to the readout resonator’s

frequency. The model captures all essential features of the experimental setup, including the exact design of the

QR-system, the exact design of the control chip and the correct material properties of the substrate and the sample

box. Al structures are colored in blue, Al covered by grAl is colored in purple. d) Zoom-in on the central region

to highlight the QR-system. The inductive elements (pure grAl wires) are omitted, as they do not contribute to

the electrostatic simulation. The coupling capacitor 𝐶c is formed with the capacitive pad on the bottom chip.

To ensure accurate simulation of fine features, the mesh is locally refined within the light grey-marked region.

e) Mesh (in blue) used during the electrostatic simulations, shown within the refined region. Inside the orange-

marked area, the mesh is further refined to accurately capture the geometry of sensitive circuit structures. f) Zoom

in on the red region to highlight the tetrahedral mesh around the qubit loop, with precision of more than 1µm. The

superconducting islands are labeled 1 through 4. Slight derivations of the meshes’ symmetry along the vertical

axis between islands 1 and 2 are due to automatic mesh generation.

The qubit-resonator devices are operated in a copper sample box, shown in Fig. 3.5a,b. The box contains

an array of three enclosures (e1,e2,e3). The outer enclosures house qubit-control chip pairs mounted in

a flip-chip configuration, separated by a 50±10µm vacuum gap. The QR-systems are located on the top

qubit chip. The bottom control chip houses the circuitry required to read out the QR-system. The central

enclosure e2 is left empty. This ensures that the electromagnetic environment of the qubits is symmetric

with respect to the vertical midplane through the qubit loop. In the ideal case, this symmetry cancels all

parasitic capacitances of the qubit islands. As a result, the qubit couples to the resonator only through

the designed inductive asymmetry Δk in the grAl loop.

To model the capacitive environment, we perform electrostatic simulations using the finite-element solver

Ansys Maxwell. The simplified 3D model used for the simulation is shown in Fig. 3.5c. The kinetic

inductors and the JJ are omitted to isolate the capacitive contributions of the four islands in the QR-

system, see Fig. 3.5d. To ensure a homogeneous mesh around the QR-system, we define multiple mesh
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3. Kinetic inductance coupling for cQED with flux qubits

refinement regions with varying precision, as shown in Fig. 3.5e. This is particularly important for

islands 1 and 2, as meshing inaccuracies here directly affect the dispersive shift 𝜒 that we calculate from

the simulations. Both islands are therefore placed inside the same high precision mesh refinement zone

(resolution better than 1µm) to ensure identical mesh quality, see Fig. 3.5e. Despite this, minor meshing

asymmetries remain, resulting in convergence errors up to 10aF. Simulations are run overnight until

the available system memory (32 GB RAM) is fully used to achieve the highest possible precision. The

extracted capacitance values are listed in App. A.1.

Capacitive asymmetry from chip misalignment
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Figure 3.6.: Simulation to estimate the capacitive asymme-
try ΔC. Compared to Fig. 3.5d the qubit chip is displaced by

±40µm along the x- and y-axis and rotated by 10◦ around the

z-axis. From the finite-elements simulations we estimated a

maximum of ΔC = ±25aF due to chip misalignment.

A possible misalignment of the floating chip with respect to the symmetric sample holder breaks the

capacitive symmetry between islands 1 and 2 resulting in an unequal coupling of the islands to ground.

This is illustrated in Fig. 3.6, where the qubit chip is rotated by 10◦ around the z-axis and shifted by

±40µm along the x- and y-axis. As a result, the effective capacitances between islands 1 and 3 and

between islands 2 and 3 change. Neglecting any contribution from island 4, as𝐶𝑖3 ≫𝐶 𝑗4 with 𝑖, 𝑗 ∈ [1,2],
we model this effect by introducing a capacitive asymmetry

ΔC =
𝐶13−𝐶23

2
(3.34)

in the capacitance matrix

C′ =

©­­­­­­«
𝐶11+𝐶𝐽+ΔC −𝐶12−𝐶𝐽 −𝐶13+ΔC −𝐶14

−𝐶12−𝐶𝐽 𝐶22+𝐶𝐽−ΔC −𝐶23−ΔC −𝐶24

−𝐶13+ΔC −𝐶23−ΔC 𝐶33 −𝐶34

−𝐶14 −𝐶24 −𝐶34 𝐶44

ª®®®®®®¬
. (3.35)

By comparing the capacitance matrices C (Eq. 3.3) and C′ (Eq. 3.35) of the simulations with/without

displaced qubit chip we estimate a maximum ΔC ≤ ±25aF.

For ΔC ≠ 0, a residual electric dipole interaction adds to the designed inductive coupling between the

qubit and resonator modes. The combined influence of both effects is illustrated for an example qubit

qex in Fig. 3.7. As can be seen, technologically relevant dispersive shifts of 𝜒/2𝜋 ≈ 1 MHz can be
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3.2. Experimental proof for kinetic inductance coupling
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Figure 3.7.: Effects of capacitive asymmetry ΔC and inductive asymmetry Δk, for the example qubit qex
ii.

Numerical simulation of the resonator’s frequency 𝑓R (left), the qubit’s frequency 𝑓Q (center) and the dispersive

shift 𝜒 (right) as a function of Δk for various values of ΔC at Φext = Φ0/2. The red line visualizes the case ΔC = 0.

To highlight the effect of capacitive and inductive contributions, we eliminated all asymmetric contributions from

the capacitance matrix: 𝐶11=𝐶22 ∧ 𝐶13=𝐶23 ∧ 𝐶14=𝐶24. Therefore, in a symmetric setting with Δk = ΔC = 0 the

qubit-resonator coupling vanishes (𝜒 = 0). Deviations from symmetry (inductive Δk ≠ 0 or capacitive ΔC ≠ 0)

introduce qubit-resonator coupling, as indicated by non-zero 𝜒.

implemented either with a capacitive asymmetry of ΔC ≈ 100 aF or an inductive asymmetry of Δk ≈
200 pH. This emphasizes the importance of precise chip alignment and a symmetric sample holder design

to suppress unwanted capacitive contributions.

3.2. Experimental proof for kinetic inductance coupling

To validate the concept of kinetic coupling, we measure the spectra of 14 GFQs as a function of external

flux Φext (see App. A.2) using two-tone spectroscopy. An example spectrum for q6 is shown in Fig. 3.8a.

We fit the qubit and resonator spectra simultaneously using the circuit Hamiltonian from Eq. 3.15. This

yields the parameters 𝐿r, 𝐿q, Δk, 𝐶J, and 𝐸J, which are listed in App. A.2 for all measured qubits. The

capacitances 𝐶r and 𝐶s are fixed from finite-element simulations and can be found in App. A.1. The

coupling asymmetry Δk is extracted from the width of the avoided crossing. The parameters 𝐿q, 𝐶J, and

𝐸J are determined by the qubit level structure.

The qubit spectra are explained by universal double-well physics [108] that was introduced in section 2.6.

As shown in Fig. 3.8b, the GFQs range from the fluxon-tunneling regime (𝐸J > 𝐸L) to the single-well

plasmon regime (𝐸J < 𝐸L). Towards the plasmon regime, frequencies increase and anharmonicities

decrease. Towards the fluxon regime, frequencies decrease and anharmonicities increase, consistent
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3. Kinetic inductance coupling for cQED with flux qubits

a)

b) c)

d)

Figure 3.8.: From plasmon to fluxon: summary of measured qubit parameters, figure and caption taken

from [136]. a) Combined plot of typical single and two tone spectroscopy of 0→1 and 0→2 qubit transitions

(blue circles) vs. flux bias Φext of device q6 as well as the 5.77 GHz resonance of the readout resonator (grey

horizontal line). The inset on the left shows the measured phase response arg(𝑆11) of the readout mode in the

vicinity of the qubit-readout avoided level crossings when probing the system with a single tone. The inset on the

right shows the phase response of the resonator on resonance when probing the qubit with a second tone near the

qubit frequency in the vicinity of the half-flux sweet spot Φext = Φ0/2. The blue lines (dashed and continuous)

correspond to the fitted circuit model with fit parameters 𝐸J, 𝐿q, 𝐿r, 𝐶J and Δk. b) Phase diagram 𝐸L vs. 𝐸J for

the measured GFQs. The grey-scale intensity of the marker filler indicates the 0→1 transition frequency 𝑓q at the

half-flux point, with corresponding labels indicating the anharmonicity. The diagonal grey line separates the plas-

mon regime on the left from the fluxon regime on the right. Devices for which the dispersive shift 𝜒 was measured

(was not measured) have a circular (cross-shaped) marker. c) Qubit loop asymmetry Δk for selected devices. The

filled circles indicate the values of Δk extracted from the joint fit of the qubit and resonator spectroscopy (cf. left

inset of panel a and App. A.2). The errorbars correspond to possible capacitive coupling arising from asymmetries

ΔC = ±25aF < 0.01×𝐶r in the capacitance matrix. The design values, shown as empty circles, are given by the

product of the sheet inductance and the length difference between the qubit branches. The sheet inductance is

extracted from the fitted 𝐿q and the designed number of squares in the loop. The discrepancy between the mea-

sured and design values is shown in grey labels in units of squares. The marker color assigned to each sample is

consistent in all panels. d) Qubit state dependent dispersive shift 𝜒/2𝜋 at Φext = Φ0/2 for selected devices. Filled

circles show 𝜒 values extracted from complex plane distributions of single shot measurements (cf. App. A.2).

Empty circles indicate the calculated 𝜒 assuming pure kinetic inductance coupling.
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3.3. Readout fidelity and quantum state-preparation

with exponential scaling of the qubit frequency with barrier height [143]. At half-flux bias, we measure

coherence times between 1µs and 10µs. Coherence times for all qubits are listed in App. A.3.

In Fig. 3.8c we compare the fitted and designed values of the inductive coupling asymmetry Δk. The

total qubit-readout coupling includes both the designed inductive part Δk and spurious capacitive asym-

metries ΔC, as introduced in section 3.1. We estimate a maximum ΔC = ±25aF, arising from potential

misalignment of the qubit chip. These uncertainties in the fitted Δk are shown as error bars in Fig. 3.8c.

To calculate the designed value of Δk, we first determine the sheet inductance 𝐿□ of the grAl films used:

𝐿□ =
𝐿q𝑤q,grAl

𝑙q,grAl
, (3.36)

where 𝐿q is the fitted qubit loop inductance, 𝑤q,grAl the designed film width, and 𝑙q,grAl the designed loop

length. All calculated 𝐿□ values are listed in App. A.2. Using these, the designed inductive asymmetry

is obtained as

Δk =
𝐿□ 𝑙Δk,grAl

𝑤q,grAl
, (3.37)

where 𝑙Δk,grAl is the designed length of the asymmetry segment in the grAl loop.

As can be seen in Fig. 3.8c, most of the measured and fitted data points agree within 0.5□ of grAl, indi-

cating that the observed qubit-resonator coupling is primarily due to the intentional inductive asymmetry

Δk.

In Fig. 3.8d we compare for nine qubits the measured dispersive shifts 𝜒 to the model predictions.

To measure 𝜒, we sweep the readout probe frequency while applying a 𝜋/2 qubit pulse and record

single-shot 𝐼𝑄 distributions at each probe frequency. The data are fitted with a two-state Gaussian

mixture model. The state-dependent resonator response, given by arg(𝑆11) (see App. A.2), yields 𝜒. We

use Eq. 2.50 to calculate the modeled 𝜒. The data matches the model assuming ΔC = 0, confirming the

validity of the kinetic inductive coupling design. The small deviations in 𝜒 observed for q1 and q2 arise

from an old qubit design that lacked vertical mirror symmetry across the loop. More details on the initial

device layout can be found in section 6.1.

3.3. Readout fidelity and quantum state-preparation

To quantify readout performance, we performed the following characterizations on qubit q7 at its half

flux point (Φext = 0.5Φ0): contiguous measurement correlations and active state reset.

All readout powers in this section are given in units of average circulating photons in the readout res-

onator 𝑛̄. We use the AC Stark shift of the qubit’s frequency 𝛿𝑓ac to calculate 𝑛̄ as explained in sec-

tion 2.8iii. We extract 𝛿𝑓ac from Ramsey interferometry by fitting the qubit inversion to a damped oscil-

lation (see Eq. 2.29), as shown in Fig. 3.9a for example drive powers. The extracted frequency shifts 𝛿𝑓ac

iiiAlthough the photon-number calibration based on measurement-induced dephasing (see App. A.5) provides higher accu-

racy, we decided to use the AC-Stark-shift method as it is faster and sufficiently precise for our measurements
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3. Kinetic inductance coupling for cQED with flux qubits
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Figure 3.9.: Photon number calibration, figure and caption taken from [136]. a) Ramsey fringes are recorded

while simultaneously populating the readout resonator with three different drive powers 𝑃: 0 (red), 0.17 ·10(−3) V2

(blue) and 0.6 ·10(−3) V2 (purple). The fringes are fitted to Eq. 2.29 (continuous lines) to obtain the AC Stark shift

of the qubit frequency 𝛿𝑓ac with respect to 𝑃. b) The linear fit of 𝛿𝑓ac vs. 𝑃 (continuous line) gives the photon

number calibration. The three colored markers correspond to the Ramsey fringes shown in panel a. For q7 we

measured 𝜒/2𝜋 ≈ 0.9MHz.

are plotted against readout power and fitted linearly to determine the photon number per drive power, see

Fig. 3.9b. We determine a photon number calibration of 690 photons/V2.

Contiguous measurement correlation

In this subsection, we discuss contiguous measurement correlation. The pulse sequence is shown in

Fig. 3.10a. We use a SNR of ≈ 3.7, as defined in section 2.8. The SNR is obtained by adjusting the

integration times 𝜏int ∈ (1600,208) ns depending on 𝑛 ∈ (10,150). Fig. 3.10b shows a section of a con-

tiguously measured quantum jump trace for q7. We apply a Gaussian mixture model to traces with 106

points at fixed 𝑛̄ to extract qubit populations in |0⟩, |1⟩, and |2+⟩ (see Fig. 3.10c), where |2+⟩ denotes

all qubit states ≥ |2⟩. From the same data, we compute the correlations 𝑃00 and 𝑃11 between successive

measurements. The conditional probability 𝑃𝑥𝑥 for remaining in the same qubit state |𝑐 𝑗⟩ across two

successive data points is given by

𝑃𝑥𝑥 =

∑𝑁−1
𝑗=1 𝛿𝑐 𝑗 , 𝑥 ·𝛿𝑐 𝑗+1, 𝑥∑𝑁−1

𝑗=1 𝛿𝑐 𝑗 , 𝑥
, (3.38)

where 𝑥 ∈ {0,1}, 𝛿𝑎,𝑏 is the Kronecker delta, 𝑐 𝑗 ∈ {0,1,2+} is the assigned state at index 𝑗 , and 𝑁 is the

total number of samples. The correlations are shown in Fig. 3.10d.
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3.3. Readout fidelity and quantum state-preparation

a) b)

c) d)

Figure 3.10.: Readout fidelity, figure and caption taken from [136]. a) Pulse sequence for the continuous-wave

measurement protocol: 106 contiguous readout pulses are sent and integrated for different photon numbers 𝑛. For

each 𝑛, the integration time 𝑡int is adapted to keep the SNR = 3.7±0.2. b) Typical quantum jump trajectory visible

in the measured phase of the reflection coefficient S11 shown in a window of 25µs for device q7. The qubit states

are assigned using a Gaussian mixture model and indicated by the color of the background: blue (|0⟩ = ground),

red (|1⟩ = excited) and green (|2+⟩ = other). c) Measured states population vs. 𝑛. Note that leakage to the |2+⟩-states

accelerates for 𝑛≳ 130. d) Correlation 𝑃𝑥𝑥 for consecutive measurements in the ground (𝑥 =0) or excited (𝑥 =1)

state vs. 𝑛. The minimal integration time, 200 ns, is approximately three times larger than the resonator response

time.

Similarly to Ref. [144], the resilience of the grAl GFQ to readout-induced leakage [145, 146, 147] is

illustrated by the fact that up to 𝑛̄ ≈ 100, the qubit populations remain approximately constant. For

𝑛̄ = 85 this corresponds to an effective temperature of

𝑇eff =
ℎ 𝑓q

𝑘B ln(𝑃0/𝑃1)
= 42.5±2.5mK, (3.39)

with 𝑓q = 4.640 GHz. Leakage outside the computational subspace stays below 0.1 %.

Within the qubit subspace, we observe a clear difference in readout correlations between the ground

and excited state. Ground-state measurements are highly correlated, with 𝑃00 > 99.9% across a broad

range of readout powers. In contrast, 𝑃11 depends on the readout strength and reaches 𝑃11 ≥ 90% for

𝑛̄ ∈ (75,140). The deviation of 𝑃11 from unity can be attributed to three effects. First, energy relaxation

during the measurement reduces 𝑃11. Using 𝜏int = 352ns for 𝑛̄ = 85 and 𝑇1 = 8.0±2.4µs, we calculate a

reduction of

𝑃decay = 1−exp(−𝜏int/𝑇1) ≤ 6%. (3.40)
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3. Kinetic inductance coupling for cQED with flux qubits

Second, the readout tone modifies the qubit’s spectral position and linewidth, which can increase its over-

lap with environmental noise and thus enhance relaxation [148]. Third, increasing 𝑛̄ activates demolition

effects [149], including leakage outside the qubit subspace [145]. The latter two contributions account

for at least 4 % of the 𝑃11 infidelity. They reflect the limits of the qubit-readout coupling scheme and

motivate further optimization.

Active state reset

a) b)

Figure 3.11.: 𝜋-pulse fidelity, figure and caption taken from [136]. a) The qubit population is plotted versus a

subsequently played number of 𝜋-pulses for three individual experiments conducted 13 min apart. Oscillations in

this measurement indicate the imperfection of the 𝜋-pulse over- or undershooting a perfect bit-flip that sum up to

an inversion of the qubit population after half a period of the oscillation. The oscillations are dampened by energy

relaxation. b) The experiment in a) is conducted contiguously over the course of one hour and we plot 𝐹𝜋 ( 𝑓 , 𝛾)
and 𝐹𝜋 ( 𝑓 , 𝛾 = 0) as black and grey lines, respectively. 𝐹𝜋 ( 𝑓 , 𝛾 = 0) drifts continuously with a period of tens of

minutes.

In this subsection, we discuss active state reset. This requires calibrated 𝜋-pulses. We fine-tune the 𝜋-

pulse amplitude by minimizing the beating in the qubit population after a sequence of 𝑛 pulses. Three

representative measurements are shown in Fig. 3.11a. The qubit population as a function of pulse number

is modeled by

𝑃(𝑛) = 𝑎
(
1
2
−1

2
cos(𝜋𝑛+2𝜋 𝑓 𝑛)

)
exp(−𝛾𝑛)+𝑜, (3.41)

where 𝑓 is the detuning-induced beating frequency and 𝛾 accounts for energy decay. The parameters 𝑎

and 𝑜 account for readout errors. From the fit parameters, we define the 𝜋-pulse fidelity as

𝐹𝜋 ( 𝑓 , 𝛾) =
𝑃(1)−𝑃(0)

𝑎
=

(
1
2
−1

2
cos(𝜋+2𝜋 𝑓 )

)
exp(−𝛾).

Fig. 3.11b shows 𝐹𝜋 ( 𝑓 , 𝛾) and the calibration-only fidelity 𝐹𝜋 ( 𝑓 , 𝛾 = 0) over the course of one hour.

While 𝐹𝜋 ( 𝑓 , 𝛾 = 0) varies due to calibration drift, the dominant fidelity loss is due to energy decay. The
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3.3. Readout fidelity and quantum state-preparation

𝜋-pulse has a length of 40 ns and its fidelity exceeds 99 %.

a) b)

c) d)

Figure 3.12.: Quantum state preparation, figure and caption taken from [136]. a) Pulse sequence used for active

state reset. The measurement outcome of the first readout pulse is used to condition a 𝜋-pulse on the qubit. The

result of the second readout is used to assess the fidelity of the reset protocol. We use 𝑛 = 85 and 𝑡int = 208 ns

resulting in a state separation of ≈ 6𝜎. We repeat the sequence 5 × 105 times with a waiting time of 𝑡wait = 100µs

in between. The measured pointer state distributions for 50 % polarization, active reset to |0⟩ and |1⟩ are shown in

panels b, c and d, respectively. The grey line is the threshold used for state assignment in the active reset protocol.

The green label indicates leakage into higher states. The measurement outcomes are depicted as histograms in

logarithmic scale.

With the calibrated 𝜋-pulses, we perform active state reset experiments. We initialize the qubit from

its thermal state and apply a conditional 𝜋-pulse for state preparation. The pulse sequence is shown in

Fig. 3.12a. The discrimination threshold between |0⟩ and |1⟩ is determined from the measured 𝐼𝑄 cloud

distributions after a saturation pulse, see Fig. 3.12b. At 𝑛̄ = 85, this results in a state separation of

𝑑√︁
𝜎2

max
≈ 6𝜎, (3.42)

where 𝑑 =
√︁
(𝐼0−𝐼1)2+(𝑄0−𝑄1)2 is the distance between the two Gaussian means and 𝜎2

max is the maxi-

mum variance of the two fitted Gaussian. Using this setting, we achieve reset fidelities of 𝑃active
0 = 99.7%

for the ground state and 𝑃active
1 = 92.7% for the excited state, see Fig. 3.12c,d. The dominant error

sources are energy decay during readout and quantum demolition effects. Contributions of the 𝜋 pulses

used are negligible. The measured performance matches previous results for fluxoniums and trans-
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3. Kinetic inductance coupling for cQED with flux qubits

mons [144, 150, 151], but remains below state-of-the-art fidelities reaching 99 % [152]. The primary

limitation is the qubit relaxation time 𝑇1, which may be improved through materials and design opti-

mization [153].

3.4. GFQs with junction arrays
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Figure 3.13.: GFQ with JJ arrays. a) Image of a GFQ that uses Al (blue) JJ arrays as inductances instead of grAl.

The circuit diagram is identical to Fig. 3.2. The JJ array in the left branch has 𝑛, in the right branch 𝑛−2 and at

the top 𝑚 JJs. For this device: 𝑛 = 32, 𝑚 = 0. b) False-colored SEM image of a JJ array. The array is fabricated

using Dolan bridges as described in section 6.1. The bottom Al layer is colored dark blue, the top layer light blue.

c) False-colored SEM image of the Al/AlO𝑥 /Al 𝛼 JJ (𝐴J ≈ 0.06µm2). d) Three consecutive VNA traces (i: black,

ii: darkgrey, iii: lightgrey) with increasing readout power (𝑃VNA = −47,−46,−45 dBm) of the phase response

arg(𝑆11) of the harmonic mode at 𝑓r = 6.250GHz vs. time. We apply a 1D Gaussian filter (𝜎 = 2) to the traces for

better visibility. The red line indicates the threshold used to distinguish between the two phase states. e,f) 𝑇1 /𝑇∗
2

measurement of q15 at the half flux point showing the imaginary part of the reflected signal Im(𝑆11) with 250,000

averages per data point, yielding 𝑇1 = 633 ns /𝑇∗
2 = 362 ns. 𝑇∗

2 was measured using Ramsey interferometry.

In an effort to improve the coherence times of our GFQs, we replaced the granular aluminum (grAl)

inductances with arrays of JJs, as shown in Fig. 3.13a,b,c. We distinguish between the large JJs forming

the inductive arrays, denoted as 𝛽 JJs, and the small JJ at the bottom of the loop, referred to as the 𝛼

JJ. Substituting grAl with JJ arrays eliminates inductive losses inherent to disordered superconductors,

which can be estimated using Fermi’s Golden Rule [154]:

1
𝑇1

=
8𝜋3𝐸L

ℎ𝑄ind
| ⟨0|𝜑̂|1⟩ |2

(
1+coth

(
ℎ 𝑓q

2𝑘B𝑇

))
, (3.43)
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3.4. GFQs with junction arrays

with the inductive energy 𝐸𝐿 , the flux operator 𝜑̂ in units of Φ0, and the qubit frequency 𝑓q. The matrix

elements | ⟨0|𝜑̂ |1⟩ |2 are listed in App. A.4. The energy relaxation times observed in GFQs correspond

to inductive quality factors in the range 105 < 𝑄ind ⪅ 106, consistent with loss estimates for grAl [120].

Measured relaxation times and the corresponding 𝑄ind values are provided in App. A.3. Fabrication

details for the JJ arrays using Dolan bridges are discussed in section 6.1.

As in the case of the grAl-based GFQs, these devices have two modes: an anharmonic differential mode

and a harmonic readout mode as described in section 3.1. The resonator phase fluctuates between two

discrete values at a rate of Γjp ≈ 2 mHz, as shown in Fig. 3.13d for an example qubit q15. We distinguish

the two states using a threshold and extract rates of Γ↑ ≈ 3.2 mHz and Γ↓ ≈ 1.7 mHz, which yields

𝑇1,jp ≈ 200µs (see Eq. 2.24). These random phase jumps hinder qubit spectroscopy, and we were only

able to resolve the spectrum near the half-flux point for two out of four JJ array GFQs.

In App. A.2, we fit the spectrum of q15 and extract the following parameters: 𝐿q = 31.1nH, 𝐶q = 33.9 fF

(⇒ 𝐸c ≈ 0.6GHz), and 𝐸J,𝛼 = 7.6GHz. Using Eq. 2.14 and Eq. 2.15 and having 62 JJs in the qubit loop,

we estimate 𝐸J,𝛽 = 326GHz. Assuming a JJ capacitance density CJ ≈ 50 fF/µm2 (see section 2.2) and

JJ area 𝐴J,𝛽 ≈ 4µm2, we obtain 𝐸c, 𝛽 ≈ 0.1GHz. Finally, from Eq. 2.44, we calculate a phase-slip rate

Γps,𝛽 ≪ 1/day, indicating that the observed jumps are not caused by quantum phase slips in the 𝛽 JJs.

A possible explanation for the phase jumps observed in Fig. 3.13d are quantum jumps of the qubit, which

we investigated through time-domain measurements at the half-flux point. These measurements proved

even more challenging than spectroscopy, and we were only able to extract coherence times for q15.

As shown in Fig. 3.13e,f, we measure 𝑇1 = 633ns and 𝑇∗
2 = 362ns, both over two orders of magnitude

shorter than the jump-limited lifetime 𝑇1,jp. We therefore conclude that the observed phase jumps of the

resonator are not caused by quantum jumps of the qubit.

Compared to the relaxation times in the grAl-based GFQs (see App. A.3), these coherence times are

approximately an order of magnitude lower. As all other parameters (sapphire chips, box environment,

cryogenic setup, fabrication process) remained unchanged, we attribute this additional loss to the re-

placement of grAl inductances with JJ arrays in the qubit loop. This result is surprising, since transmon

qubits fabricated in the same evaporator, using identical oxidation parameters, and measured in the same

sample box show 𝑇1 times above 25µs. While the exact mechanism behind the reduced coherence re-

mains to be identified, our results show that JJ arrays cannot be straightforwardly used as replacements

for grAl inductances in our QR-system and require further work to reach acceptable performance.

In inductively coupled circuits based on JJ-array superinductors, long coherence times and stable res-

onator operation have been demonstrated. For example, Ref. [113] reports JJ arrays with 𝐸𝐽/𝐸C ≈ 180
exhibiting phase-slip-induced resonator jumps only at sub-mHz rates (≤ 1 per hour), while the QR-
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3. Kinetic inductance coupling for cQED with flux qubits

system in Ref. [135] achieves coherence times exceeding 100µsiv. The significantly shorter coherence

times and resonator instabilities observed in our devices therefore point to additional loss mechanisms

not intrinsic to JJ-array-based inductors. One possible source of loss are fabrication-related imperfec-

tions in our JJ arrays (e.g., variations in 𝐼c or 𝐶J, or defects and residues within the JJs), to which our JJs

may be more susceptible due to their larger area (4µm2) compared to those in Refs. [113, 135]. How-

ever, optical microscopy of all four devices revealed no visible defects and only slight asymmetries in

the array JJs, which we confirmed for q15 using SEM imaging.

ivIn fluxonium circuits capacitively coupled to readout resonators, such as Refs. [111, 155, 156], no readout current flows

through the superinductor. A direct comparison to our architecture therefore does not apply. These circuits reach coherence

times well above 100µs without resonator instabilities.
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4. Modular flip-chip architecture

This chapter is based on results previously published in Ref. [157]. Adaptations and extensions have

been made to better integrate the material into this thesis.

In this chapter, we present our modular flip-chip architecture for superconducting qubits, where each

qubit resides on a dedicated chip in its own microwave enclosure, enabling high isolation between the

GFQs. We describe the mechanical and microwave properties of the architecture and evaluate them

through finite-element simulations. We measure an isolation of over 60dB between the outer enclosures

and extract residual 𝜎𝑧𝜎𝑧 crosstalk below 700Hz between the outer qubits. Finally, we demonstrate

tunable coupling of 𝑔max
13 /2𝜋 ≈ 1.6MHz between these qubits and observe population swapping.

4.1. Architecture

The sample box contains three electromagnetic enclosures (e1,e2,e3), each measuring 𝑎×𝑏×𝑑 = 6.0×
6.1×6.1mm3, see Fig. 4.1a. These dimensions push the lowest cavity mode for each enclosure [131]

above

𝑓𝑚𝑛𝑙 = 𝑓011 =
𝑐

2√𝜇𝑟 𝜖𝑟

√︄(𝑚
𝑎

)2
+
( 𝑛
𝑏

)2
+
(
𝑙

𝑑

)2
> 30GHz, (4.1)

with 𝜇𝑟 = 1 and 𝜖𝑟 = 1 for vacuum. This matches with finite-element simulations. Enclosures are spaced

by 6.5 mm to ease assembly. In e1 and e3, we mount an upside-down qubit-chip above a control-chip, see

Fig. 4.1b. In e2 we place a single coupler-chip. The qubit-chips measure 2.85×10.0mm2 and extend into

neighboring enclosures for inter-chip coupling. The qubit-chips are fixed with vacuum grease to metal

pedestals, while bottom chips are screwed to the box and wire-bonded to coaxial lines. The spacing

between bottom and top chips is 𝑑 = 50±10µm, defined by the pedestal height. We omit ground planes

on all chips to keep the microwave environment clean (to avoid parasitic modes in the ground planes).

Each qubit-chip hosts a qubit-resonator (QR) system as described in section 3.1 to which we added

capacitive extenders that reach into adjacent enclosures, see Fig. 4.1c,d. Capacitive extenders need to

be added on both sides of the QR-system to preserve symmetry, so that the concept of purely inductive

coupling between qubit and readout modes remains valid, as described in detail in App. A.9. Several

types of capacitive extenders were tested, and a 𝜆/2-resonator-like design made of a single Al strip was

chosen, as detailed in App. A.9. To ensure a high resonance frequency, the extenders should be made as

short as possible [131]:

𝑓r,extenders =
𝑐

2𝐿√𝜀r
> 30GHz, (4.2)
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4.1. Architecture

Figure 4.1.: Modular flip-chip architecture based on individual qubit and coupler enclosures, figure and

caption adapted from [157]. a) Cross-section of the sample box: two of the three enclosures (e1 & e3) contain

control (dark green) and qubit (light green) chips, while the middle enclosure (e2) houses a qubit-chip used as a

coupler (orange). Each enclosure can be accessed by two coaxial cables perpendicular to the cross-section plane,

one cable on each side. The static magnetic field in each enclosure is controlled by coils integrated into the top lid,

which are highlighted via the black X symbols. b) Optical image of the qubit-chip above the control-chip in e1,

without a coupler-chip present. c-f) Layouts of the qubit-chip, zoomed-in qubit region, control chip, and coupler-

chip, respectively. The qubit(Q)-resonator(R) system consists of a generalized flux qubit inductively coupled to a

readout resonator, as described in section 3.1 and in [136]. The QR-system is indicated by the red frames in panels

c and f. Two capacitive extenders are capacitively coupled to the qubit JJ electrodes to enable capacitive coupling

to the adjacent chips via the skeletal-shaped pads. The middle pad in panel c is used to couple the QR-system to

the input-output line on the control-chip shown in panel e. The band-pass filter implemented by the meandered

inductor and finger capacitor visible in the center of the chip in panel e is used to reduce Purcell decay [158, 159].

Through pulses on the flux bias line (FBL) visible in panel f, the frequency of the coupler qubit is tunable. The color

legend indicates the material used for each circuit element: blue for aluminum (Al), red for granular aluminum

(grAl) and purple for Al covered with grAl. g) Optical image of the fully equipped sample box and schematics of

the reflection measurement setup in a magnetically shielded environment at 10 mK. A complete schematic of the

cryogenic measurement setup is provided in section 6.4. The FBL is connected to a commercial low-pass filter

with a cutoff frequency of 300 MHz. h) Circuit diagram of the coupled qubit array. Each qubit-chip (chip 1 & 3)

contains a QR-system [136] with a corresponding band-pass filter (cf. panel e) on its control-chip (chip 4 & 5,

respectively). The QR-system used as coupler is located on chip 2. The coupling capacitances 𝐶12, 𝐶23, 𝐶14 and

𝐶35 bridge the gaps between individual chips, enabling a modular flip-chip architecture. The capacitance 𝐶13 is

not implemented on the chips and represents the direct capacitive coupling between the outer qubits.

with 𝑐 ≈ 3·108 m/s, 𝐿 ≤ 4.5 mm the length of the extender and 𝜀r ≈ 1i. Coupling pads at the chip center

and extender tips enable capacitive inter-chip connections. The skeletal pad design prevents flux trapping.

The coupler-chip in e2 also holds a QR-system, with extenders aligned to the neighboring qubit pads,

see Fig. 4.1f.

Control-chips in e1 and e3 include a band-pass filter that is capacitively coupled to the qubit-chip via the

central coupling pad, as shown in Fig. 4.1e. These filters reduce Purcell loss [158, 159] and define the

readout-feedline interface. We chose a lumped-element design rather than a 𝜆/2-resonator for the band-

pass filter, as it minimizes crosstalk. Supporting simulations are shown in App. A.9. Control structures

on the coupler-chip include a readout line and fast flux bias line (FBL). The FBL is wire-bonded to a

coaxial port equipped with a commercial 300 MHz low-pass filter. Simulations (see App. A.9) show that

the FBL on this coupler-chip has a mutual inductance of 1/𝑀 ≈ 7mA/Φ0. Following Ref. [160], we

i𝜀r ≈ 1 is justified as the thickness of the sapphire chips is much smaller than the dimensions of the enclosure: 330µm ≪
𝑎/2 = 6mm/2.
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4. Modular flip-chip architecture

estimate the critical current 𝐼c of the FBL using the Ginzburg-Landau depairing current density 𝐽d. This

approach yields:

𝐼c,FBL ≈ 𝐽d 𝐴 ≈ 2.8mA with 𝐽d =
2
√

2
3
√

3
𝐻c

𝜆
= 27.9mA/µm2, (4.3)

where 𝐴 ≥ 20nm×5µm = 0.1µm2 is the minimal cross section of the Al-filmii. We use a critical field

for thin film Al of 𝐵c(0K) = 10.5mT ⇒ 𝐻c = 𝐵c/𝜇0 = 8.38nA/µm [161] and a thin film penetration

depth of 𝜆(0K) ≈ 163nm [162]. In this configuration, a full Φ0 cannot be induced in the qubit loop.

However, the FBL must still respond on short timescales, which requires a small self-inductance. The

chosen parameters therefore represent a compromise between minimizing self-inductance and achieving

sufficient mutual inductance to switch the coupler on and off.

In early versions of the sample box we considered adding FBLs to the outer enclosures and explored on-

chip low-pass filters to suppress their associated losses, as discussed in App. A.10. However, given the

excellent qubit-qubit isolation of our architecture even with qubits being on resonance (see section 4.3),

FBLs are not needed and were omitted in the final design to avoid additional complexity. While the

architecture works reliably without FBLs, it would still be advantageous to have the possibility of tuning

the qubit frequencies on fast timescales. An alternative solution are magnetic flux hoses, which we

became aware of only later in the project. Their integration into the sample box is discussed in App. A.12.

Fig. 4.1g shows the full five-chip assembly mounted in the copper sample box and anchored to the 10 mK

base plate of a dilution refrigerator. The electromagnetic enclosures are defined by the metallic lid, not

shown in the picture. Fig. 4.1f provides the corresponding circuit diagram. Fig. 4.1g shows a simpli-

fied schematic of the microwave readout and control lines. Qubit readout is performed in reflection via

the on-chip resonators. We use dimer JJ array parametric amplifiers (DJJAAs) [137] for amplifying the

readout signals from e1 and e3. Qubit control pulses are sent through the same lines.

For the QR-systems it is paramount to shunt the two capacitive extenders among themselves and with

islands 1 and 2 during fabrication. This is done to avoid static discharges that break the JJ. The shunt

must only be removed immediately before the sample is mounted inside the box. For more detail about

the fabrication and the static discharge see section 6.1.

Simulations

To assess the impact of chip misalignment, band-pass filter mismatch, and losses through the copper

box, we perform eigenmode simulations using Ansys HFSS. The 3D model used for the simulations is

shown in Fig. 4.2. To save computational resources our model consists of a single enclosure, with a QR-

system that has no capacitive extenders. We can omit the capacitive extenders in the simulations, since

iiThe effective 𝐼c,FBL may be further reduced, for example due to non-ideal interfaces between the Al film and the Al wire

bonds.
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Figure 4.2.: Samplebox for Ansys eigenmode simulations, figure and caption taken from [157]. a) Simplified

copper sample box in which we perform the Ansys finite-element eigenmode simulations with transparent lid

for better visibility. The band-pass filter is capacitively coupled to the bond pad through a circular capacitor

with variable radius 𝑟 . To save computational resources, we omit the capacitive extenders and replace the finger

capacitance of the band-pass filter with a variable lumped capacitance. Boundary conditions consist of perfect

conductors (PerfE) on the outside of the sample box and a 𝑅 = 50Ω resistor at the coaxial port. b) Zoom-in

towards the overlapping capacitive pad on the control-chip and the QR-system on the top chip, which is based on

QR-system 1 (see Tab. 4.2). Readout inductance 𝐿r and qubit inductance 𝐿q are replaced by lumped inductors,

while the JJ is replaced by a lumped capacitor 𝐶J. Both chips are spaced by 50µm. As indicated by the coordinate

system in the bottom left corner, the qubit-chip is shifted up to ±40µm in X, Y & Z direction and rotated by ±0.5◦

in X&Y / by ±1.0◦ in Z direction. The color legend indicates the material used for each circuit element: blue for

Al, red for grAl and purple for Al covered with grAl.

the qubit coherence times remain unchanged with or without extenders (see App. A.3), indicating that

they are not the dominant loss mechanism. Simulations are based on the parameters of Q1 (see Tab. 4.2)

and terminated at a convergence error below 1%. We model the grAl inductors as lumped elements

with 𝐿r = 15nH, 𝐿q = 25nH, and Δk = 0.5nH. Since ANSYS cannot simulate the nonlinearity of the

JJs directly, we replace the JJ by a lumped capacitor 𝐶J = 4fF, such that the resulting mode is purely

harmonic and has a simulated resonance frequency of 𝑓sim ≈ 7.7GHz.

To analyze the architecture’s susceptibility to misalignment, we simulate the bandwidth 𝜅/2𝜋 = 𝑓R/𝑄
of the readout mode for a qubit-chip that is shifted and rotated in X, Y & Z directions. The results are

shown in Fig. 4.3. As can be seen, shifts in X and Y direction of up to ±40µm and rotations of the

qubit-chip of ±0.5◦ around the X and Y axis and ±1.0◦ around the Z axis have no impact on 𝜅, i.e. the

coupling strength of the resonator to port 1. Only deviations in Z direction (i.e. pedestal height) impact

𝜅. However, this effect can be compensated by coupling the resonator stronger to the readout port by

increasing the radius 𝑟 of the coupling pads, see Fig. 4.4a.

In Fig. 4.4a, we show the dependence of 𝜅/2𝜋 = 𝑓R/𝑄 on the band-pass frequency 𝑓b and the capacitive

coupling strength to the rf-port (expressed by the radius 𝑟 of the circular capacitance). We observe a

reduction of 𝜅 with 𝑟 . When the band-pass and resonator have the same frequency, 𝑓b ≈ 𝑓R, both modes
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Figure 4.3.: Simulations for chip misalignment, figure and caption taken from [157]. Bandwidth of the readout

resonator 𝜅/2𝜋 vs. a) shift in X, Y & Z direction and (b/c) shift in X/Y direction for rotations of ±0.5◦ around the

X&Y axis and ±1.0◦ around the Z axis of the qubit-chip.

a) b)

Figure 4.4.: Simulations for band-pass filter and material losses, figure and caption taken from [157].

a) Bandwidth 𝜅/2𝜋 for different radii 𝑟 of the circular capacitor vs. the frequency of the band-pass filter

𝑓b. The frequencies of the readout resonators are indicated by the dashed lines. b) Simulated quality

factor 𝑄 of a harmonic mode including the JJ, oscillating at a frequency of 𝑓sim ≈ 7.7GHz versus the

conductivity of the bulk sample holder material. The predicted qubit energy relaxation time 𝑇1 for

inductive loss is calculated via Eq. 3.43.

hybridize, increasing 𝜅 significantly. For 𝑓R ≲ 𝑓b we observe destructive interference between the two

modes resulting in 𝜅/2𝜋 < 0.05 MHz.

To assess the contribution of the copper box to qubit energy relaxation, we simulate the quality factor 𝑄

of the mode that includes the JJ while reducing the conductivity of the box. At 300 K the conductivity

of copper is 𝜎0 = 5.8·107 S/m. To calculate the qubit relaxation time 𝑇1 from the simulated 𝑄, we use

Fermi’s Golden Rule (see Eq. 3.43 and App. A.4). The simulated 𝑄 factors and resulting 𝑇1 values
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for 𝐸L ≈ 5.3GHz, 𝑓q ≈ 3.9 GHz, 𝜑̂ = 0.5 and 𝑇 = 45 mK, are shown in Fig. 4.4. For copper, we find

𝑇1(𝜎0) > 103µs, indicating that box losses are currently not a limiting factoiii.

Flux calibration

We use the superconducting coils on top of each enclosure to statically control the magnetic flux Φext

inside the enclosure. Due to their large self-inductance, these coils cannot be used for fast flux biasing.

For a coil with radius 𝑟 , height ℎ, number of turns 𝑛, and current 𝐼, the magnetic flux Φext through a

qubit loop of area 𝐴, placed a distance 𝑧 along the coil axis, can be approximated for ℎ ≪ 𝑧 and 𝑟 ≪ 𝑧

by [163]:

Φext(𝑟, 𝑛, 𝑧, 𝐴, 𝐼) = 𝐵·𝐴 =
𝜇0𝑛𝐼𝑟

2

2(𝑟2+𝑧2)3/2 ·𝐴. (4.4)

Using the formula with typical parameters 𝑟 = 1.2mm, ℎ = 2mm, 𝑛 = 10, 𝑧 = 3.9mm, and 𝐴 = 60×45µm2

(ℎ/𝑧 ≈ 0.51, 𝑟/𝑧 ≈ 0.31), we estimate the induced flux and find Φext = Φ0 for a current of 𝐼 ≈ 5.7mA.

A value of 5.7mA/Φ0 can be easily controlled using our Yokogawa GS200 [164] DC voltage/current

source.

−2 −1 0 1
Icoil 1 (mA)

6.40

6.45

6.50

6.55

f
(G

H
z)

QR 1

I
s,1

=
1.195

m
A

−40 −20 0 20
Icoil 2 (mA)

−100 −50 0 50
Icoil 3 (mA)

Figure 4.5.: Calibrating magnetic crosstalk.
Flux sweep of QR-system 1 with coil 1, 2

and 3 to determine the mutual inductances

𝑀11, 𝑀12, 𝑀13 between coils 1, 2 and 3 and

the device. The half flux point of coil 1 is

highlighted by the red line at 𝐼s,1 = 1.195mA.

The three coils on top of the enclosures create magnetic crosstalk to neighboring and next neighboring

enclosures as shown in Fig. 4.5 for QR-system 1. To compensate the crosstalk the following equation

system must be solved:
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1
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ª®®®¬ , (4.5)

iiiNote that the conductivity 𝜎0 of copper is further reduced at millikelvin temperatures, which would make box losses even

less relevant.
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4. Modular flip-chip architecture

where 𝑀𝑖 𝑗 with 𝑖, 𝑗 ∈ [1,2,3] are the mutual inductances between each QR-system (index 𝑖) and each

coil (index 𝑗), 𝐼coil 𝑗 is the current through each coil and 𝐼s,𝑖 the current at the half flux point (Φext =
Φ0
2 )

from coil 𝑖 in QR-system 𝑖. All mutual inductances 𝑀𝑖 𝑗 and the current 𝐼s,𝑖 must be determined in cal-

ibration measurements (similar to Fig. 4.5) and are listed in Tab. 4.1. In addition it must be ensured

that the current is flowing in the correct direction through the coils, which may make a change of sign

for some of the off-diagonal matrix elements in Eq. 4.5 necessary (signs of the off-diagonal terms are

mirror-symmetric with respect to the diagonal).

1/𝑀𝑖 𝑗 j=1 (mA/Φ0) j=2 (mA/Φ0) j=3 (mA/Φ0) 𝐼𝑠,𝑖= 𝑗 (mA)

i=1 3.17 49.8 148.0 1.195

i=2 52.7 4.68 58.7 1.95

i=3 106.5 33.4 2.40 -0.825

Table 4.1.: Calibration values needed to compensate flux crosstalk. Mutual inductances 1/𝑀𝑖 𝑗 in mA/Φ0 and

current at half-flux point 𝐼s,𝑖 (Φext =
Φ0
2 ) needed to compensate flux crosstalk. Index 𝑖 denotes QR-systems and

index 𝑗 the coils.

In total, nine calibration measurements are required for a three-qubit setup. While manageable at this

scale, the procedure becomes a bottleneck for larger systems. This motivates the integration of mag-

netic flux hoses for magnetic biasing, which are expected to simplify calibration and reduce magnetic

crosstalk as detailed in App. A.12. In principle, magnetic crosstalk could also be suppressed by encas-

ing the coils inside superconducting individual enclosures. To explore this approach, we replaced the

copper sample box and lid with Al, making the enclosures superconducting. In this configuration, the

coils must be mounted on the inside of the Al walls, since magnetic fields in a superconductor are ex-

ponentially suppressed on the length scale of the London penetration depth (𝜆L ≈ 45 nm for Al [103]).

The corresponding design is shown in App. A.11. However, implementing this configuration is techni-

cally challenging, and the first design iteration did not show a significant reduction of magnetic crosstalk

between neighboring enclosures compared to the copper box.

4.2. Qubit spectra

Fig. 4.6 shows two-tone spectroscopy of the used qubits and coupler near their half-flux sweet spots.

The measurements are fitted with the flux qubit Hamiltonian (see Eq. 2.33 and App. A.2). Fit results

and coherence times are listed in Tab. 4.2, while Tab. 4.3 shows the resonator parameters. Qubit fre-

quencies are tuned independently via the three calibrated magnetic field coils (see section 4.1). The

idle configuration sets qubit 1 (Q1) and the coupler (Q2) to their sweet spots at 𝑓Q1(Φ0
2 ) = 3.465GHz and

𝑓Q2(Φ0
2 ) = 3.147GHz and qubit 3 (Q3) to its bias point at Φext,3 = 0.539Φ0 ( 𝑓Q3(0.539Φ0) = 3.465GHz).

Qubits 1 and 3 are always operated on resonance. Coupling is activated by fast flux pulses on the FBL,
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4.2. Qubit spectra
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Figure 4.6.: Overview of qubit and coupler spectra with bias points (bp). The measured (circles) and fitted

(lines) spectra of a) qubit 1 (Q1, blue) in e1, b) the coupler (qubit 2 (Q2), orange) in e2 and c) qubit 3 (Q3, red)

in e3 vs. the external flux Φext through the respective qubit/coupler loops are shown. During all experiments both

qubits (Q1 & Q3) are operated at a frequency of 𝑓Q1 ≈ 𝑓Q3 ≈ 3.465 GHz (see the corresponding bp in panel a and

c), corresponding to the half-flux point of Q1 (Φext, Q1 = Φ0/2). To switch the coupler off, coil 2 is used to park the

coupler at its half flux point (Φext, Q2 = Φ0/2), corresponding to bp off at a frequency of 3.147 GHz. To switch the

coupler on, a DC pulse is played on the FBL, aligning 𝑓Q2 at bp on, resonant with 𝑓Q1 and 𝑓Q3.

tuning the coupler into resonance with the qubits.

device 𝐸J/ℎ [GHz] 𝐿Q [nH] 𝐶Q+𝐶J [fF] 𝑓q @ Φ0
2 [GHz] 𝑇1 @ Φ0

2 𝑇∗
2 @ Φ0

2 𝑇1 @ bp 𝑇∗
2 @ bp

Q1 6.14 25.32 27.93 3.465 2.1µs 1.9µs – –
coupler (Q2) 10.14 20.53 22.19 3.147 – – – –

Q3 6.59 26.71 29.52 2.927 1.7µs 1.1µs 800 ns 160ns

Table 4.2.: Qubit parameters. The fitted lumped element parameters, frequencies 𝑓q and measured coherence

timesiv for the qubits at the sweet spot or the bias point, respectively.

device 𝑓R @ Φ0/2 [GHz] 𝜅/2𝜋 [MHz] 𝑄L

R1 (readout 1) 6.508 2.2 3000

R2 (rout-coupler) 6.274 4.2 1500

R3 (readout 3) 5.226 1.3 3900

Table 4.3.: Readout parametersiv. The frequencies 𝑓R, bandwidth 𝜅/2𝜋 and total quality factors𝑄L of the devices

readout resonators.

iv Coherence times, readout parameters and population swaps were measured in a previous cooldown using the same setup.
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4. Modular flip-chip architecture

4.3. Isolation

Since the qubits operate on resonance ( 𝑓Q1 = 𝑓Q3 = 3.465 GHz), it is crucial to know the isolation and

crosstalk between enclosures with the coupling turned off. In this section, we measure the port-to-port

isolation, and the transverse and longitudinal crosstalk between qubit Q1 and Q3 with switched off cou-

pler. Switched off coupler means that for all experiments in this section the coupler is tuned to its half

flux point at 𝑓Q2 = 3.147 GHzv.

Isolation between enclosures
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Figure 4.7.: Power calibration via measurement-induced dephasing, figure and caption taken from [157]. a)
Additional dephasing 𝛾m,1 of Q1 due to resonator photons measured from Ramsey fringes for different drive

frequencies 𝑓d and drive amplitudes 𝐴port3 when driven through port 3. The features correspond to driving at 𝑓d =

𝑓R1± 𝜒/2𝜋
2 . The horizontal dotted lines indicate the cross sections which are shown in panel b. b) The plot shows

the data points and individual fits for different drive amplitudes, yielding a set of possible transfer coefficients 𝜂𝑖 𝑗
for different drive amplitudes. The vertical blue line at 𝑓d− 𝑓R,1 = 2.4 MHz indicates where we extracted 𝛾m,1 for

the data points (squares) in Fig. 4.9.

To identify the port-to-port isolation, we drive resonators 1 ( 𝑓R1 = 6.508 GHz) and 3 ( 𝑓R3 = 5.226 GHz)

through the port of e3 and measure the resulting readout-induced dephasing 𝛾m,𝑖 of Q1 and Q3 as a

vThe isolation experiments were performed at a coupler detuning of Δ 𝑓Q2 ≈ −300 MHz. Only later did we calibrate an

even weaker coupling between the resonant qubits at Δ 𝑓Q2 ≈ −100 MHz (see section 4.4).
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4.3. Isolation

function of drive power and frequency. This dephasing, arising from photon number fluctuations in the

dispersively coupled resonator, is modeled by Ref. [165] as:

𝛾m,𝑖 = 𝜖
2
𝑖 2𝜋

©­­­­­­«
1

𝜅2
𝑖
/4+(2𝜋 𝑓d−2𝜋 𝑓R,𝑖+𝜒𝑖/2)2︸                                ︷︷                                ︸
photon number for qubit in |0⟩

+ 1
𝜅2
𝑖
/4+(2𝜋 𝑓d−2𝜋 𝑓R,𝑖−𝜒𝑖/2)2︸                                ︷︷                                ︸
photon number for qubit in |1⟩

ª®®®®®®¬
𝜅𝑖𝜒

2
𝑖
/4

𝜅2
𝑖
/4+𝜒2

𝑖
/4+(2𝜋 𝑓d−2𝜋 𝑓R,𝑖)2

,

(4.6)

where 𝑓R,𝑖 , 𝜅𝑖 and 𝜒𝑖 are the resonator’s frequency, linewidth and dispersive shift. The two terms in

parentheses represent the circulating photon number for the qubit in each of these statesvi. The drive

amplitude 𝜖𝑖 at resonator 𝑖 relates to the input amplitude as 𝜖2
𝑖
= 𝜂𝑖 𝑗𝐴

2
port, 𝑗 , where 𝜂𝑖 𝑗 is the power transfer

coefficient. We define the port-to-resonator isolation as

𝑑 = 10log10(𝜂13/𝜂33). (4.7)

In Fig. 4.7a we plot for Q1 the dephasing rate 𝛾m,1 vs. drive power at port 3 (𝐴port3) and drive frequency

𝑓d. Each 𝛾m,1 ≈ 1/𝑇2 value in the colormap is extracted from an individual Ramsey experiment. We

observe two maxima of 𝛾m,1 in 𝑓d which are spaced by 𝜒/2𝜋 and correspond to the qubit in the |0⟩ and

|1⟩ states. In panel b we shows 𝛾m,1 vs. 𝑓d for selected drive amplitudes along with fits to Eq. 4.6. To

determine the dephasing rate for Q3, analog measurements are performed (see App. A.7).

Q1 Q3

𝜂𝑖 𝑗 (1.5±0.3)·104 (3.5±0.3)·1010

𝑓R,𝑖 6508±0.1 MHz 5226±0.1 MHz

𝜒𝑖/2𝜋 11.8±0.2 MHz 11.3±0.3 MHz

𝜅𝑖/2𝜋 2.3±0.3 MHz 5.6±0.6 MHz

Table 4.4.: Average fit parameters for dephasing
rates when fitting Eq. 4.6 to measured dataset for each

amplitude. The errors given are the errors of the mean.
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Figure 4.8.: Calculated dephasing rate 𝛾m,1 for Q1
(figure and caption taken from [157]), using the aver-

age fit parameters from Tab. 4.4 and Eq. 4.6. The blue

line at 𝑓d− 𝑓R,1 = 2.4 MHz indicates where we extract

the calculated 𝛾m,1 values for Fig. 4.9.

viA comparison of this approach for photon number calibration with the AC Stark shift method introduced in section 2.8, is

provided in App. A.5.
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Figure 4.9.: Isolation between enclosures, figure and

caption taken from [157]. Measurement-induced de-

phasing rate 𝛾m,𝑖 of Q1 (blue) and Q3 (red) as a func-

tion of drive power at port 3. The squares corre-

spond to the rates extracted from the fits to Eq. 4.6

at 𝑓d− 𝑓R,𝑖 = 2.4 MHz. The lines are calculated using

the average fit parameters listed in Tab. 4.4. Using

Eq. 4.7 we extract an isolation between enclosures 1

and 3 of 64±0.5 dB. The black double-arrow serves as

a guide to the eye.

For Q1 and Q3 we fit each trace using 𝜂𝑖 𝑗 , 𝑓R,𝑖 , 𝜒𝑖 , and 𝜅𝑖 as free parameters. The average fit parameters

are listed in Tab. 4.4. Using these average fit parameters we calculate with Eq. 4.6 predictions for 𝛾m,𝑖 .

This is shown for Q1 in Fig. 4.8. We extract the fitted dephasing rates 𝛾m,𝑖 for 𝑓d− 𝑓R,𝑖 = 2.4 MHz (see the

blue line in Fig. 4.8 for Q1 and the red line in App. A.7 for Q3) and plot them vs. the drive power 𝐴port3

in Fig. 4.9. The red and blue lines in Fig. 4.9 are calculated using Eq. 4.6 and the average fit parameters

from Tab. 4.4. Using the spread of the fitted 𝜂𝑖 𝑗 and Eq. 4.7, we extract an isolation of 𝑑 = 64±0.5 dB

from the comparison of Q1 and Q3.

Isolation between qubits

To evaluate control crosstalk, we drive through port 3 and measure power Rabi oscillations on both qubits

using a 𝑡pulse = 640ns pulse. To calculate the Rabi frequency Ω3 for Q3 we use:

Ω3 =
0.5+𝑛
𝑡pulse

, (4.8)

where 𝑛 ∈N0 is the number of full oscillation cycles observed in the Rabi oscillation curve (excluding the

initial rise) for Q3 within the pulse duration 𝑡pulse, as shown in the top panel in Fig. 4.10a. The calculation

of the Rabi frequency Ω1 for Q1 when driven through port 3 (Q1(P3)) is more challenging, as even at

full generator power we observe less than 1 % of a full oscillation period (see Fig. 4.10a, bottom). To

extract Ω1, we normalize the Q1(P3) signal to the Q1(P1) reference, yielding the qubit inversion 𝑃inv for

Q1(P3). Using the Bloch sphere relation 𝑃inv = sin2 (
𝜃
2
)

(see section 2.3) and the trigonometric identity

sin2(𝜃) = (1−cos(𝜃))/2 we obtain the Rabi frequency in Hz as:

Ω1 =
arccos(1−2𝑃inv)

2𝜋𝑡pulse
. (4.9)
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a) b)

Figure 4.10.: Port to qubit isolation, figure and caption taken from [157]. a) Power Rabi oscillations of Q3

through port 3vii (P3, red) at the bp at the top and of Q1 through port 1 (P1, grey) or port 3 (P3, blue) at the bottom

at the half flux point (Φext,1 =Φ0/2) using a 𝑡pulse = 640ns pulse. Rabi frequency Ω1 and Ω3 are calculated for each

circular marker. b) Rabi frequencies Ω𝑖 of Q1 (blue) and Q3 (red) extracted from Rabi oscillations induced by

driving at port 3. The lines are linear fits to the measured Rabi frequencies. The measured port-to-qubit isolation

using Eq. 4.10 is 60 dB.

The Rabi frequencies Ω𝑖 scale linearly with drive amplitude, as shown in Fig. 4.10b. From the ratio of

slopes (Ω1/𝐴 ≈ 0.086MHz/V and Ω3/𝐴 ≈ 84MHz/V), we extract the port-to-qubit crosstalk (or drive

selectivity) [84, 58] as

10log10

((
Ω1
Ω3

)2
)
≈ −60 dB, (4.10)

enabling simultaneous on-resonance Rabi driving of Q1 and Q3 ( 𝑓Q1 = 𝑓Q3 = 3.465 GHz) with a crosstalk

error below 1‰.

To further highlight the isolation of our architecture, we perform simultaneous power Rabi oscillations

on the resonant qubits Q1 and Q3, through their respective ports. No measurable crosstalk is observed,

as evidenced by the orthogonal Rabi patterns in Fig. 4.11a.

We quantify the longitudinal (𝑧𝑧) interaction between Q1 and Q3 by measuring Ramsey fringes on Q1,

with and without applying a 𝜋-pulse to Q3. We repeat this measurement 2000 times. The resulting fre-

quency differences 𝛿 𝑓Q1 depending on the Q3 state are shown in Fig. 4.11b. The data follow a Gaussian

distribution with mean of 𝛿 𝑓Q1 = −690±60 Hz.

viiThe Rabi oscillations of Q3 are measured at the bp with 𝑇1≈ 800 ns and 𝑇2≈ 160 nsiv. The Rabi drive pulse has a duration

𝑡pulse=640ns >𝑇2, which limits the visible contrast and prevents a full qubit inversion. Nevertheless, the number of Rabi cycles

can be reliably extracted from Re(𝑆11).
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4. Modular flip-chip architecture

a) b)
QR1

Q

Figure 4.11.: Simultaneous Rabi drive and zz-crosstalk, figure and caption taken from [157]. a) Simultaneous

Rabi drive of Q1 and Q3 on resonance taken in an earlier cooldown ( 𝑓Q1 = 𝑓Q3 = 3.689GHz) with the coupler

switched off ( 𝑓Q2 = 3.437GHz). The x- and y-axis depict the drive amplitudes at port 1 and port 3, respectively.

The qubits can be manipulated independently while being on resonance. b) Measured 𝑧𝑧-crosstalk between Q1 and

Q3. We extract 𝛿 𝑓Q1 from the difference of Ramsey fringe frequency of Q1 when the Q3 population is inverted.

From a Gaussian fit to the measured 𝛿 𝑓Q1 histogram we extract 𝛿 𝑓Q1 = −690±60 Hz.

Compared to conventional flip-chip architectures based on coplanar waveguides [58], our design achieves

several orders of magnitude higher isolation. Relative to similar 3D-integrated floating chip architec-

tures [84], the isolation is at least comparable and often an order of magnitude better. This demonstrates

effective microwave shielding across enclosures, even with capacitive extenders present and qubits oper-

ated on resonance.

4.4. Coupling the qubits

The effective transverse coupling strength 𝑔eff
13/2𝜋 between Q1 and Q3 can be tuned by varying the cou-

pler detuning Δ 𝑓Q2 = 𝑓Q2− 𝑓Q1, which is controlled using the FBL. We extract 𝑔eff
13/2𝜋 from avoided cross-

ings between Q1 and Q3, which we measure using Ramsey interferometry or spectroscopy. Fig. 4.12

shows examples of avoided crossings measured at three different coupler detunings. At Δ 𝑓Q2 =−127MHz,

we extract a coupling of 𝑔eff
13/2𝜋 = 23±23kHz from Ramsey measurements, which could not be re-

solved more accurately due to the limited 𝑇2 ≈ 1.9µs of Q1. For Δ 𝑓Q2 = 0MHz, spectroscopy yields

𝑔eff
13/2𝜋 = 1.6±0.5MHz, while at Δ 𝑓Q2 = 226MHz, Ramsey data gives 𝑔eff

13/2𝜋 = 111±15kHz.
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4.4. Coupling the qubits

a) b) c)

Figure 4.12.: Avoided crossing between Q1 and Q3 for different coupler Q2 detuning, a) Δ 𝑓Q2 = −127 MHz,

b) Δ 𝑓Q2 = 0 MHz and c) Δ 𝑓Q2 = 226 MHz measured by Ramsey fringes (blue) and spectroscopy (red) on Q1.

The colormap in b) shows the amplitude of the reflected measurement signal on Q1, |𝑆11 |. We fit the avoided

crossings (black lines) and estimated fit errors, highlighted by the colored areas. During measurements Q1 is fixed

at 𝑓Q1 = 3.465GHz, while 𝑓Q3 is swept through this frequency. The horizontal axis is expressed as 𝑓ALC+ 𝑓Q3,

where 𝑓ALC denotes the center frequency of the avoided level crossing.

Frequencies from Ramsey fringes are extracted by fitting a damped oscillation (see Eq. 2.29), and are

shown as blue points in Fig. 4.12a,c. Spectroscopy data is analyzed by fitting Lorentzian line shapes to

the I-quadrature signal to extract the center frequencies 𝑓0, modeled as:

𝐿 ( 𝑓 ) = 𝑎 𝛾2

𝛾2+( 𝑓− 𝑓0)2 + offset, (4.11)

where 𝛾 is the half-width at half-maximum, and 𝑎 the peak amplitude. The extracted spectroscopy points

are shown in red in Fig. 4.12b.

To extract the coupling strength from the observed avoided crossings, we model the system using a

two-level Hamiltonian:

H2lv/ℎ =
(
𝑓Q1 𝑔13/2𝜋

𝑔13/2𝜋 𝑓Q3

)
, (4.12)

which has eigenfrequencies

𝑓± =
𝑓Q1+ 𝑓Q3

2
±

√︄(
𝑓Q1− 𝑓Q3

2

)2
+(𝑔13/2𝜋)2. (4.13)

We fit these to the measured frequency splittings to extract 𝑔13/2𝜋 for each detuning. For detunings

where the coupler is close to resonance with the qubits, the interaction becomes effectively three-body.

In this regime, we use a three-level Hamiltonian:

H3lv/ℎ =
©­­­«

𝑓Q1 𝑔12/2𝜋 𝑔13/2𝜋
𝑔12/2𝜋 𝑓Q2 𝑔23/2𝜋
𝑔13/2𝜋 𝑔23/2𝜋 𝑓Q3

ª®®®¬ , (4.14)
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4. Modular flip-chip architecture

which we diagonalize numerically. The extracted couplings 𝑔𝑖 𝑗/2𝜋 are obtained by fitting the eigenvalues

to the measured avoided crossings. Errors for the two- and three-level avoided crossings are estimated by

adjusting 𝑔13/2𝜋 until the computed curves span the full range of observed data points near the crossings.

The adjusted curves for error estimation correspond to the colored regions in Fig. 4.12.

−200 −100 0 100 200

∆fQ2 (MHz)

10−2

0.1

1

g
eff 1
3
/2
π

(M
H

z)

numerical

analytical

data (spec.)

data (Ramsey)

Figure 4.13.: Effective qubit-qubit coupling
strength 𝑔eff

13 /2𝜋 vs. coupler detuning Δ 𝑓Q2.
The data points show the measured cou-

pling strength 𝑔eff
13/2𝜋 between Q1 & Q3

that are operated on resonance ( 𝑓Q1 = 𝑓Q3 =

3.465GHz) for different coupler detunings

Δ 𝑓Q2 measured using spectroscopy (red) or

Ramsey fringes (blue). The error-bars are

estimated, see Fig. 4.12. The numerical

(continuous) and analytical (dashed) theoret-

ical curves correspond to an effective two-

qubit model obtained using a Schrieffer-Wolff

transformationviii.

To quantitatively describe the dependence of the effective coupling 𝑔eff
13 on the coupler detuning, we

employ the Schrieffer-Wolff transformationviii (SWT) [166, 167]. The SWT is a perturbative unitary

transformation that block-diagonalizes the full three-qubit Hamiltonian, eliminating non-participating

degrees of freedom. In our setting it reduces the Hilbert space of the three coupled qubits (Q1,Q2,Q3) to

an effective two-qubit Hamiltonian where the coupler remains in its ground state,

Heff =
𝜔1
2
𝜎𝑧1+

𝜔3
2
𝜎𝑧3+𝐽𝑥𝑥 𝜎

𝑥
1 𝜎

𝑥
3 +𝐽𝑦𝑦𝜎

𝑦

1 𝜎
𝑦

3 +𝐽𝑧𝑧𝜎
𝑧
1𝜎

𝑧
3 . (4.15)

Here, 𝐽𝑥𝑥 and 𝐽𝑦𝑦 encode the transverse exchange, and 𝐽𝑧𝑧 is the residual longitudinal (𝑧𝑧) coupling.

We evaluate 𝑔eff
13 using two complementary routes: a numerically exact SWT that retains the full circuit

nonlinearity, and a second-order analytical SWT that provides a compact parametric dependence on the

coupler detuning. Further information on both approaches is given in App. A.8.

The extracted 𝑔eff
13/2𝜋 values are plotted in Fig. 4.13. The avoided crossings of each data point are shown

in App. A.13. The solid (numerical) and dashed (analytical) lines in Fig. 4.13 represent fits of the SWT

viiiThis work was done in collaboration with the research group of Juan Jose Garcia-Ripoll (CSIC, Madrid). Gabriel Jauma

and Manuel Pino performed the calculation for the SWT.
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models to the measured effective coupling strength 𝑔eff
13/2𝜋. To fit the SWT we use two parameters:

the effective qubit-coupler coupling capacitances 𝐶12 = 𝐶23 ≈ 44 aF, and the direct qubit-qubit coupling

𝐶13 ≈ 1 aF, which results from the combined effect of capacitive extenders and shunt paths to ground

(see Fig. 4.1). The individual qubit and coupler parameters needed for the SWT are independently deter-

mined from fits to their respective flux-dependent spectra and listed in Tab. 4.2.

We identify two points of interest in Fig. 4.13. At Δ 𝑓Q2 = 0MHz, the coupling reaches a maximum of

𝑔
eff,max
13 /2𝜋 ≈ 1.6MHz, while around Δ 𝑓Q2 ≈ −100MHz destructive interference leads to a vanishing ef-

fective coupling, 𝑔eff
13/2𝜋 ≈ 0MHz. We achieve a measured on/off ratio of: 𝑅on/off = 1.6MHz/23kHz≈ 70

in our architecture.

The observed dependence of 𝑔eff
13 on the coupler detuning is in qualitative agreement with our full-system

simulations of two qubits and a coupler which are shown in App. A.9.

Population swapping

Q Q Figure 4.14.: Qubit inversion between Q1
(blue circles) and Q3 (red circles) vs. pulse
length 𝜏, figure and caption taken from [157].

We excite Q1 (top plot) / Q3 (bottom plot)

with a 𝜋 pulse and then use the FBL to tune

the coupler with a rectangular flux pulse from

the idle point to the bp. The qubit inversion

is simultaneously measured for varying pulse

lengths 𝜏. We observe a population swapping

in 𝑇 = 112 ns.

In a previous cooldowniv using the same setup, we characterized population transfer between Q1 and

Q3. During that cooldown, we measured a maximal effective coupling of 𝑔eff,max
13 /2𝜋 ≈ 2.5MHz at the

coupler bias point (Δ 𝑓Q2 = 0MHz), see Ref. [157] and App. A.13.

To demonstrate coherent population exchange, we apply a rectangular flux pulse to tune the coupler

from its idle point to the bias point. Both qubits are read out simultaneously following the pulse of

length 𝜏. Initializing either Q1 or Q3 in the excited state with a 𝜋-pulse leads to coherent oscillations in

the qubit populations, as shown in Fig. 4.14. We extract a swap time of 𝑇swap ≈ 112 ns, consistent with

𝑔eff
13/2𝜋 ≈ 2.5MHz ≈ 𝜋/𝑇swap. We achieve a population transfer of approximately 59 % from Q1 to Q3
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4. Modular flip-chip architecture

and of 47 % from Q3 to Q1.

To realize high-fidelity two-qubit gates in this architecture, coherence times must be improved. For

example, Q3 has coherence times of 𝑇1 ≈ 800 ns and 𝑇∗
2 ≈ 160 ns at the bias point. Improving coherence

at these operating points is therefore essential and remains the focus of ongoing research.
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Through the developments described in this thesis, modular and scalable hardware platforms for super-

conducting quantum processors have been demonstrated and validated. At the core of this work are

two complementary advances: a dispersive readout scheme based on kinetic-inductive coupling and a

modular flip-chip architecture for arrays of coupled qubits.

In Chapter 3, we demonstrated dispersive coupling between a harmonic readout mode and a GFQ consist-

ing of a single JJ shunted by a grAl superinductor. By embedding the readout mode into the high kinetic

inductance qubit-loop, we implemented an effective inductive coupling, where the loop asymmetry acts

as a shared inductance. In this work we derived a full circuit model of the system and confirmed its

validity by comparing the predicted spectra and dispersive shifts to measurements of nine devices. The

effectiveness of the coupling mechanism for dispersive readout was demonstrated through quantum non-

demolition measurements, which yielded more than 90% active state preparation fidelity and less than

0.1% leakage outside the computational subspace. The presented design enables a local qubit-resonator

interaction without using any large on-chip capacitors, making it a compact and robust approach. It is

therefore well suited for scaling superconducting quantum devices.

In Chapter 4, we demonstrated a linear array of three coupled GFQs. Each qubit was hosted on a dedi-

cated chip inside an individual microwave enclosure. The „one qubit one enclosure“ design suppresses

microwave crosstalk between the outermost qubits below −60 dB. This level of isolation enables their

operation on resonance. The center qubit acts as a flux-tunable coupler, such that the architecture si-

multaneously provides strong isolation and tunable coupling. In addition, the system is fully modular

and allows for the replacement of individual circuit parts without disturbing the remaining setup. These

features distinguish our approach from planar coplanar waveguide architectures, where qubits are lim-

ited by spurious chip modes and residual capacitive coupling, and they demonstrate the combination of

modularity and tunable coupling in a single scalable platform.

The inductively coupled QR-system was designed to operate within the modular flip-chip architecture.

The kinetic-inductance-based GFQ enables dispersive readout, while the modular design provides strong

isolation and tunable coupling. In combination, these elements form a hardware concept that enables

modular and scalable superconducting quantum processors.
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Outlook

37 mm37 mm 18.9 mm

feedtroughs that couple
capacitively to control chip

dc-coil

titanium screw

bottom part of aluminum box

top part of aluminum box

coupler chip

qubit c
hip

contro
l chip

placed on top of each
other when closing

aluminum 
wire-bond

i/o c1 & FBL1

i/o c2  & FBL2

i/o c3 & FBL3

i/o c4 & FBL 4

i/o q1

i/o q2

i/o q3

i/o q4

feedtroughs that are wire-
bonded to the coupler chip

Figure 5.1.: Concept for a scalable two-dimensional grid in a modular architecture, adapted from [157]. The

aluminum box hosts individual enclosures for four qubits on the sides and a single center enclosure containing the

coupling elements. Each qubit enclosure contains one control and one qubit chip, is accessed via a feedthrough

through the lid that couples capacitively to the control chip (i.e. the pad for bonding in Fig. 4.1.e), and has an

individual dc-coil. The dc-coils are attached on the inside of the lid and their bottom plates must be in direct

electrical contact with the enclosure walls. The middle enclosure holds the coupler chip that is wire-bonded to

four feed-throughs embedded in the bottom part of the box. The coupler enclosure is divided into 4 subsections

to increase the cavity’s eigenfrequency.
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Building on these results, the next steps focus on improving coherence and finding innovative two-qubit

gates, while exploring extensions of the architecture towards larger processor modules. In the following,

we summarize the ongoing efforts and near-term extensions of this work.

A priority is the improvement of qubit coherence times 𝑇1 and 𝑇2. We explored the replacement of grAl

superinductances with arrays of JJs. However, as discussed in section 3.4, this approach introduced

additional decoherence channels which need to be identified and suppressed. Another possibility is

the use of transmon qubits, which do not require a superinductor and are therefore not limited by the

inductive losses of grAl.

After demonstrating strong isolation and static tunable coupling, the next step is the implementation of

two-qubit gates within this architecture using on-resonant qubits. Such gates can be realized by dynamic

modulation of the coupler via the FBL. In this scheme, the data qubits remain fixed in frequency and

require no FBL, while only the coupler chip is driven dynamically. Demonstrating such gates, however,

remains challenging with the present coherence times and is therefore the subject of ongoing work.

The next step towards scalability is the extension of the three-qubit linear array to a four-qubit prototype

arranged in a two-dimensional grid, as shown in Fig. 5.1. Access to the enclosures is provided by out-

of-plane feedthroughs, which couple capacitively to the control chips and are wire-bonded to the coupler

chip in the central enclosure. The coupler enclosure should be subdivided to suppress cavity modes to

preserve the strong isolation observed in the linear array. An all-to-all reconfigurable router, similar to

Ref. [168], could serve as the coupling element. Such a four-qubit module represents a first step towards

scalable two-dimensional lattices. A systematic characterization of isolation, crosstalk, and gate fideli-

ties in this geometry will provide a key benchmark on the path towards larger modular processors.

In summary, the developed modular flip-chip architecture with kinetic-inductance-based readout pro-

vides a scalable platform with strong qubit isolation, and its extension towards larger grids defines a

clear path for the realization of multi-qubit superconducting processors.
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6. Methods

6.1. Fabrication of QR-systems

The fabrication process described in this section is an improved and more reproducible version of the

„old“ process described in Ref. [136], incorporating additional pre-cleaning steps (Piranha cleaning, iso-

propanol and ultrasonic bath), temperature control during spin-coating, and an oxygen plasma cleaning

step.

---- -a) b)

Ly3: grAl

Ly1: Al

Ly2: Al

gold

A4

EL13

300 μm
700 μm

sapphire

Figure 6.1.: Fabrication with electron-beam and three angle evaporation process. a) We use

electron-beam lithography to write structures into our bi-layer (1. MMA(8.5)MAA EL13: 700 nm;

2. 950 PMMA A4: 300 nm) resist stack. A 5 nm gold layer is sputtered on top of the resist stack to

mitigate charging effects arising from the insulating nature of the resist layers. Different sensitivity of

the resists allows the formation of undercuts, as shown in panel b. b) After development of the resist

stack for 90 s in a cold IPA:H2O (3:1) solution maintained at 6◦C, shadow evaporation is performed in

three steps. The first two aluminum layers are deposited under a tilt angle of 𝛼 ≈ ±30◦, with an inter-

mediate controlled oxidation to form the tunnel barrier. Subsequently, the granular aluminum (grAl)

layer is deposited at 0 ◦ to complete the structure. In a subsequent lift-off process, the resist stack and

all metal deposited on top of it are removed, leaving only the patterned structures in direct contact with

the substrate.

The devices are fabricated on a double-side polished c-plane 2 inch sapphire wafer with a thickness of

330µm. We choose sapphire wafers for their low microwave dielectric losses, high crystalline quality,

and chemical stability [169]. The wafers are pre-cleaned using a Piranha solution (3:1 mixture of 96 %

H2SO4 and 35 % H2O2) for 10 minutes. This aggressive oxidizer effectively removes organic residues,

as well as metallic and carbon contaminants [170]. For additional pre-cleaning, we place the wafers for

5 min in an isopropanol bath at 60 ◦C, followed by 5 min in an ultrasonic cleaner operated at maximum
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a) b) c) d)

50µm

250nm

2µm

Figure 6.2.: Fabrication using a three-angle evaporation process, figure and caption taken from [136]. a) Scan-

ning electron microscope image of the device during fabrication after e-beam patterning and development of the

two-layer resist stack. The surface is covered by a gold film for imaging. b) Zoom-in on the pattern defining the

connection of the thin grAl inductor to the Al-shunted islands. c) Zoom-in on the cross-junction pattern used to

fabricate the JJ. In the brown-highlighted area, an undercut is used to separate the Al depositions from the zero-

angle grAl deposition. d) Sketch of the Dolan-bridge and the depositions of the three different layers of Al (blue)

and grAl (red). The undercut in the EL-13 (700 nm) + PMMA-A4 (300 nm) resist stack allows to create the entire

device in a single three-angle evaporation step with subsequent evaporation angles −𝛼,0◦, 𝛼, where 𝛼 ∈ [26◦,32◦],
depending on the sample.

power. We then blow dry the wafers and place them on a 200 ◦C hotplate for 5 min to ensure complete

evaporation of any isopropanol residues.

A bilayer resist stack consisting of MMA(8.5)MAA EL13 (700 nm) and 950 PMMA A4 (300 nm) is

spin-coated onto the wafer. To ensure consistent resist viscosity during spin-coating, we store small

quantities of resist for daily use at room-temperature. Each layer is spin-coated using the following

recipe: a 2 s acceleration ramp at 1000 rot/s2 to 2000 rot/s, followed by 100 s at constant speed, and a

2 s deceleration ramp with 1000 rot/s2. After spin-coating, the wafer is baked for 5 min at 200◦C on a

hotplate. To ensure thermal equilibration before applying the resist layers, the wafers are placed for 30 s

on a 10× 10× 5 cm3 stainless steel block. Prior to electron-beam lithography, an approximately 5 nm

thick gold layer is sputtered onto the resist surface to suppress charging during exposure, as shown in

Fig. 6.1a.

Electron-beam lithography is performed using a 50 keV system to define the mask pattern. At this rela-

tively low acceleration voltage, forward scattering of electrons in the resist leads to a lateral broadening

of the exposed region near the substrate. In addition, backscattered electrons generate a second undercut

in the lower resist layer after development. Following exposure, the gold layer is removed by immersion

in a 15 % Lugol-iodine solution and then rinsed in deionized water to remove Lugol residues. The resist

is developed for 90 s in a cold IPA:H2O (3:1) solution maintained at 6◦C, stop-bathed in deionized water,

and blow-dried using a nitrogen gun. Representative images of the resulting mask structures are shown

in Fig. 6.2.

To remove any resist residues from the developed structures, the wafer is placed in an oxygen plasma

cleaner. We use an oxygen flow of 20 % of 50 sccm at 50 % of the generator’s maximum power (type:

RFG 13.56 MHz / 300 W Generator). The plasma is applied for 1 min and 36 s. Using white-light
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6.1. Fabrication of QR-systems

interferometry [171], we estimate an etch rate of 10 nm/min and 9 nm/min for the resists EL13 and

A4, respectively. While the oxygen plasma cleaner removes organic residues through uniform chemical

etching in an oxygen plasma, cleaning with a Kaufman ion source as it is used in our shadow evaporator

relies on the directed bombardment of ions, resulting in a more aggressive cleaning process that combines

physical sputtering and chemical activation [172].

The JJs are built using a Niemeyer-Dolan bridge [173] structure, visible in Fig. 6.2c.d, with an asym-

metric undercut for the Al feedlines [174]. The full three-angle evaporation process is carried out in a

commercial Plassys MEB 550STM system. A schematic of the evaporation steps is shown in Fig. 6.1b.

After evaporation, liftoff is performed by immersing the wafer in a 60◦C acetone bath for one hour. Dur-

ing this time, the bath is stirred briefly (2 minutes) every 20 minutes to promote removal of the resist.

Following the acetone bath, the wafer is transferred to an ethanol bath and placed in an ultrasonic cleaner

at the lowest power setting for 1 minute. Finally, the wafer is blow-dried using a nitrogen gun.

A comparison of the relaxation times obtained with the fabrication process detailed in Ref. [136] and

with the process described here is shown in App. A.3. All qubits measured after 1 January 2025 were

fabricated using the new process. No significant improvement of 𝑇1 or 𝑇∗
2 is observed.

Evaporation Procedure

Our shadow evaporator (Plassys MEB 550STM) has two chambers: a load-lock chamber used for sample

loading and oxidation, and an ultra-high vacuum (UHV) main chamber for deposition. The detailed

evaporation sequence is as follows:

- Pump the load-lock chamber for at least 2 hours until the base pressure is below 5×10−7 mbar.

- If the plasma cleaner is used, this step is omitted: Plasma clean the substrate at 0◦ angle using a

Kaufman ion source (200 V beam voltage, 10 mA, 10 sccm O2, 5 sccm Ar).

- Deposition of a thin titanium layer at 0◦ angle with the shutter closed (10 s at 0.2 nm/s) serves

as a titanium gettering step to suppress outgassing and reduce contamination from the evaporator

during the initial stage of the main deposition [175].

- Evaporate aluminum at −𝛼 (first angle) with open shutter using crucible 1 (22 nm at 1 nm/s).

- Oxidize the junction statically in pure O2 at pressure 𝑝O2 and for a time 𝑡O2 . The pressure is

increased linearly at a rate of 2.5 mbar/s until 𝑝O2 is reached. After oxidation, depending on 𝑝O2

an additional 10 s to 30 s are required to evacuate the O2 from the load-lock chamber. This rise and

pump time is not included in 𝑡O2 .

- Evaporate aluminum at +𝛼 (second angle) using crucible 1 (33 nm at 1 nm/s).

- Perform a argon milling step at 0◦ (400 V beam voltage, 15 mA, 4 sccm Ar, no O2).
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- Regulate the aluminum evaporation rate at 0◦ to 2 nm/s using crucible 2.

- Introduce O2 flow at 9.4 sccm and start planetary rotation at 5 rpm.

- Evaporate for approximately 40 s (corresponding to 80 nm of grAl) with open shutter.

- Terminate the process by closing the shutter, stopping oxygen flow, halting planetary rotation, and

ramping down the deposition rate.

Tables of measured room-temperature resistances of the JJs and the grAl inductors can be found in

App. A.6.

Static discharges

a) 8500 μm

b) c)10 μm 

2 μm 

c)10 μm 

2 μm 

d)

100 μm

Figure 6.3.: Static discharges, figure and caption adapted from [157]. a) The layout of the qubit chip shows the

capacitive extenders reaching close to the edges of the sapphire chip with dimensions of approx. 9 mm. The QR

system in the middle of the chip couples capacitively to the extenders via the Josephson junction electrodes. b)
The inset shows an optical image of the center part of the chip after the final dicing process of the 2" sapphire wafer

into 2.85×10mm2 qubit chips. Residues from discharge events are visible in the protective resist (Microposit

S1818) used during dicing, both at the position of the JJ and the coupling capacitor. c) A scanning-electron

micrograph of an exploded junction reveals that the explosion happened exactly at the junction position, leaving

intact the bigger capacitive pads, but destroying the junction and its connecting films. d) Layout of a GFQ

with capacitive extenders shunted to the junction electrodes via a bridges. Three test pads are added for room-

temperature probing. The bridges must be removed before mounting the sample.

The capacitive extenders that we added to the GFQs have a length of approx. 4 mm (Fig. 6.3a). They

introduce additional fabrication challenges by increasing the risk of electric discharge during resist spin-

ning and dicing. As shown in Fig. 6.3bc, electrostatic discharges can arc across the gap between the

capacitive extenders and the junction electrodes, resulting in an explosion of the JJ. To prevent this, we

shunt the junctions with a Al film during fabrication as shown in Fig. 6.3d. The Al shunts should be

removed only directly before mounting the sample in the box, as electrostatic discharges can, for ex-

ample, already occur from walking through the building. Removal can be done either mechanically by
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6.1. Fabrication of QR-systems

scratching through the shunts at a probe station using a needle, or via optical lithography and wet etching.

In the case of wet etching, the sample is first spin-coated with S1805 resist from Shipley. The resist is

then exposed to UV light for 4 s at 13 mW/cm2 through a mask that defines the etch pattern. Finally, the

sample is developed in MF319, which removes the Al in the exposed regions after approx. 10 min.

Device evolution

The GFQ architecture has undergone several generations of design refinements. The first and newest

generations are shown in Fig. 6.4 and Fig. 6.5. Each iteration improved layout symmetry, enhanced

fabrication robustness, and added compatibility with extensions such as capacitive extenders and the

optional replacement of grAl with JJ arrays.

Junction array from Dolan bridges

Two different JJs form in each Dolan bridge unit cell due to the double-angle evaporation process. One

JJ with length 𝑙j1, forms underneath the bridge and the other JJ of length 𝑙j2 forms between two adjacent

bridges, as shown in Fig. 6.6. Due to the shadow geometry, these JJs generally differ in size. To achieve

identical JJs (𝑙j1 = 𝑙j2), the bridge and gap geometry must be adjusted.

The outer JJ length is determined by the overlap of shadows from both edges of a single bridge:

𝑙j1 = 2tan(𝛼)ℎr1−𝑙bridge. (6.1)

The inner JJ length is set by the shadowing across the resist gap between two bridges:

𝑙j2 = 𝑙gap−tan(𝛼) (ℎr2+ℎly1). (6.2)

Setting 𝑙j1 = 𝑙j2 yields the condition:

𝑙gap = 2tan(𝛼)ℎr1−𝑙bridge−tan(𝛼) (ℎr2+ℎly1). (6.3)

This expression defines the required bridge spacing to obtain equal junctions for a given resist stack and

evaporation angle.
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a)
b)

c)

50 μm

500 nm

Al + grAl

grAl

Al

d) Al
Al

grAl

20 μm

Figure 6.4.: First-generation GFQ device. a) Layout

of the first-generation GFQ. All grAl segments are

oriented perpendicular to the vertical symmetry axis

of the device due to the JJ design, necessitating a

meandered geometry for the readout inductance.

During shadow evaporation the device is tilted along

the axis perpendicular to the vertical symmetry axis.

Al is shown in blue, pure grAl in red, and grAl shunted

by Al in purple. b) Zoom-in on the grAl segments.

c) SEM micrograph of the device JJ. In this design,

slight angular misalignment during evaporation can

alter the JJ size. d) Schematic of the resist stack

for JJ fabrication (taken from [69]), combining a

Niemeyer-Dolan bridge [173] at the center with an

asymmetric undercut for the Al feedlines [174].

400 nm

1.5 μm

a)

b)

50 μm

Al + grAl

grAl

Al

c)
d)

20 μm

Short from collapsed
Dolan bridge

Figure 6.5.: Current generation of GFQ devices. a)
Layout of the current GFQ design. Compared to the

previous generation, all grAl segments are rotated by

90 ◦, allowing a more symmetric arrangement of cir-

cuit elements. As a result, the evaporation tilt axis

is rotated by 90 ◦ compared to the previous designs.

b) Zoom-in on the grAl segments. All corners are re-

moved to suppress electric field localization. The new

JJ design permits alignment of all grAl inductors along

the vertical symmetry axis. c) SEM micrograph of

the fabricated JJ. This design is less sensitive to slight

angular misalignments during shadow evaporation, as

the JJ size remains largely unaffected. d) SEM im-

age of the resist stack and evaporated layers before

liftoff, cut open with a focused ion beam (FIB). The

image shows a faulty JJ where the Niemeyer-Dolan

bridge [173] collapsed, forming a short (highlighted

in yellow).
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Figure 6.6.: Schematic cross-section of a Dolan bridge JJ ar-
ray. The JJs have lengths 𝑙j1 and 𝑙j2, with bridge widths 𝑙bridge and

gaps between bridges 𝑙gap defined in 𝑥-direction. In 𝑧-direction,

the height of the lower resist is ℎr1, the height of the top re-

sist (defining the Dolan bridge) is ℎr2, and the thickness of the

first evaporated Al layer is ℎly1. The first Al layer (dark blue)

is evaporated under an angle of −𝛼, while the second aluminum

layer (light blue) is evaporated under an angle of +𝛼. Due to the

shadowing geometry, two different junction lengths 𝑙j1 and 𝑙j2 are

formed. These can be made equal by appropriate choice of 𝑙gap

and 𝑙bridge for a fixed resist stack and evaporation angle ±𝛼.

sapphire

resist

Cr                                 mask

a) b) c) d)UV light

AZ for 30 s

Al

Figure 6.7.: Fabrication with positive resist. a) UV exposure in the mask aligner (500 W XeHg lamp, 𝜆 =

365nm, hard contact with 13 mW/cm2 for 4 s) through a Cr mask on a spin-coated S1805 resist layer (thickness

approx. 500 nm). b) Development for 30 s in AZ developer (or MF319, which etches Al) removes the exposed

resist, resulting in an overcut profile. c) Aluminum is deposited uniformly over the patterned resist. d) Liftoff for

1 h in acetone removes the resist and excess metal, leaving behind the defined Al features.

6.2. Fabrication of control chips

The control chips are fabricated using optical lithography in a SUSS MA6 mask aligner with a 500 W

XeHg lamp (𝜆 = 365nm). We use the positive photoresist (exposed areas are dissolved by the developer)

S1805 (DuPont™). The resist is spin-coated at room-temperature at 4500 rpm for 60 s, resulting in an

approx. 500 nm thick layer. The wafer is baked at 115 ◦C for 60 s. UV exposure is performed in hard

contact mode (13 mW/cm2) for 4 s through a Cr mask. As shown in Fig. 6.7, exposed regions are devel-

oped in AZ developer or MF319 (which etches Al) for 30 s, stop-bathed in deionized water, and dried

with a nitrogen gun. The developed resist exhibits an overcut profile due to UV absorption in the resist,

which causes different dissolution rates at the top and bottom. After development, Al is evaporated at 0 ◦

angle. Liftoff was performed in acetone at 60 ◦C for 60 min, with brief stirring (2 min) every 20 min.
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Figure 6.8.: Wet etching of Al using MF319. a) UV exposure through a Cr mask on a spin-coated S1805 resist

layer (thickness approx. 500 nm), using the same mask aligner settings as in Fig. 6.7. b) Development for 30 s

in MF319 removes the exposed resist. c) Prolonged exposure (10 min) to MF319 selectively etches away the

exposed Al. d) Resist stripping is done for 5 min in 60 ◦C acetone, revealing selectively etched Al structures.

6.3. Wet etching with MF319

We use wet etching to selectively remove the Al shunts that are required during fabrication of the GFQs

with capacitive extenders (see Fig. 6.3). Compared to mechanical removal at a probe station using

needles, wet etching provides cleaner results, but requires significantly more effort. The initial steps

follow the same procedure as in section 6.2: the wafer is spin-coated with S1805 resist, baked at 115 ◦C

for 60 s, and exposed to UV light (13 mW/cm2 for 4 s) through a Cr mask that defines the etch pattern.

After development in MF319 for 30 s, the sample is immersed in MF319 for an additional 10 min to etch

away the exposed Al. Finally, the resist is stripped in 60 ◦C acetone for 5 min. A schematic of the full

process is shown in Fig. 6.8.

6.4. Measurement setup

The room-temperature and cryogenic setup is shown in Fig. 6.9. Qubit control and readout are performed

using the commercial OPX+ and Octave platform by Quantum Machines [176]. The system provides

synchronized RF signal generation and digitization via IQ mixing. The OPX+ generates low frequency

I/Q waveforms, which are upconverted to RF in the Octave using IQ mixers driven by local oscillators.

Q1, Q3, and R1 use the internal LO. To enable simultaneous readout of R1 and R3, we use a second,

external LO [182], since the readout frequencies ( 𝑓R1 = 6.508 GHz and 𝑓R3 = 5.226 GHz) cannot be

accommodated within the Octave’s ±350 MHz IF bandwidth using a single LO. The separate Octave

channels of R1 and Q1, as well as R3 and Q3, are combined using power combiners before entering the

fridge.

For single-tone and two-tone spectroscopy measurements, we do not use the time-domain setup but

instead operate in continuous-wave mode using a vector network analyzer (VNA) [177] and RF signal

generator [182], as shown for the middle coupler qubit. This approach is as of now sufficient for our

three-qubit experiment, as we are only interested in extracting the coupling strength and isolation as a
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6.4. Measurement setup
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Figure 6.9.: Cryogenic and room-temperature measurement setup. RF setup used to control and read

out our three-qubit architecture in a dilution refrigerator with a base temperature of 10 mK. The diagram

shows the equipment used for measurement, temperature stages, DC lines and the attenuation/gain of

individual components. The RF generator is required to pump the DJJAAs [137].
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6. Methods

function of coupler detuning. Determining the coupler’s quantum state is not required at this stage. This

may change when implementing two-qubit gates involving the coupler.

We use coaxial cables with 𝑍0 = 50Ω for all RF lines in the cryostat to prevent reflections of the high-

frequency signal. The input lines are constructed with identical components up to the qubits. Attenuators

and low-pass filters are installed at different temperature stages to reduce the influence of thermal noise

sources on the readout signal. Attenuators thermalize the center conductor, suppress noise from warmer

stages and damp reflections from impedance mismatches [35]. Low-pass filters are used to suppress

high-frequency and infrared radiation that can generate quasiparticles [35].

The signal reflected from the sample is directed by a circulator into the output line. The configuration

differs between the outer qubit lines and the middle line used for the coupler qubit. For the outer qubits,

the next element after the circulator is an isolator, which prevents the DJJAA pump from leaking into

the qubit and suppresses reflected signals. This is followed by a DJJAA [121], operated as a quantum-

limited parametric amplifier. When pumped, the DJJAA amplifies the signal, and when unpumped, it

acts as a near-perfect reflector. On the middle line of the coupler qubit, there are no further elements

on the 10 mK stage. At the 100 mK stage, all lines have isolators to suppress reflections, thermal noise,

and back-propagating power from the HEMT amplifier at 3 K. Outside of the cryostat, additional iso-

lators eliminate reflections from the room-temperature amplifiers and the band-pass filters. The filters,

tuned to 𝑓R1 and 𝑓R3, suppress the DJJAA pump tones and prevent saturation of the Mini-Circuits ampli-

fiers. Since the noise of the first amplifier stage dominates the total system noise [133], quantum-limited

amplification by the DJJAAs is essential for high-fidelity readout.

The signal requires approximately 240 ns to travel from the OPX+ to the sample and back. After down-

conversion in the Octave, the I and Q components are digitized and integrated by the OPX+ to extract

the qubit state.

For fast flux control, the coupler is equipped with a flux line driven by the OPX+. Since we only apply

signals in the 100 MHz range, no LO is required. We install a -30 dB attenuator at the 3 K stage and

several low-pass filters with cutoffs down to 300 MHz at the 10 mK stage. No attenuator is added to the

10 mK stage to prevent heating the fridge when applying voltages (in our case ±1 V) to the FBL. The

filters reflect high-frequency noise/signals, while the attenuators absorb and thermalize it. This prevents

qubit decay and suppresses noise from higher-temperature stages.

DC biases are applied using Yokogawa [164] current sources, which allow stable and remote tuning. For

the qubits, stable biasing is essential. Low-tech lab sources can be used for the DJJAAs, but they drift

over time and require manual adjustment every 12 hours, which is impractical. To pump the DJJAAs we

use RF generators from Windfreak Technologies [181], which are much cheaper than the RF generator

required for the LO.
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6.5. Resonator circle-fit
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Figure 6.10.: Measured reflection data with circle-fit for qubit q6. The magnitude, phase, and complex plane

(left to right) of the measured (blue) 𝑆11 ( 𝑓 ) are shown. Eq. 6.4 is fitted (orange) to the measured data. The

resonance dip and circle shape are clearly visible despite noise in the raw data.

To determine 𝑓r, 𝑄i, and 𝑄c from single-tone spectroscopy, we perform circle fits to the complex reflec-

tion coefficient 𝑆11( 𝑓 ). Following the circle fitting approach of Ref. [183] we rewrite Eq. 2.59 as

𝑆11(𝜔) =
𝑏̂out(𝜔)
𝑏̂in(𝜔)

= 1− 𝜅c

−𝑖(𝜔R−𝜔)+(𝜅c+𝜅i)/2
=
(𝜔−𝜔R)2+ 1

4 (𝜅
2
i −𝜅

2
c)+𝑖𝜅c(𝜔−𝜔R)

(𝜔−𝜔R)2+ 1
4 (𝜅i+𝜅c)2

, (6.4)

where 𝜅i accounts for internal dissipation, and 𝜅c describes coupling to the feedline. By fitting the

measured complex 𝑆11( 𝑓 ) values to Eq. 6.4 as shown for q7 in Fig. 6.10 we can extract 𝑓R = 𝜔R/2𝜋 =

5.7750 GHz, 𝑄i = 𝜔R/𝜅i = 5169 and 𝑄c = 𝜔R/𝜅c = 6291.

A value of𝑄c ≈ 6·103 is expected, as the resonator is strongly coupled to the measurement port. However,

a 𝑄i ≈ 5·103 ≪ 105 indicates additional loss channels of the readout mode on top of the inductive loss in

the grAl (see section 3.4 and App. A.3) that contribute to internal dissipation. These include coupling to

the opposite port and capacitive leakage through the extenders to neighboring devices (see App. A.10).

Since these losses do not occur via the measurement port, they are included in 𝑄i.
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A. Appendix

A.1. Electrostatic finite-element simulations

Tab. A.1 lists the capacitances of all simulated qubits using the ANSYS Maxwell electrostatic finite-

element solver.

Qubit 𝐶11 [fF] 𝐶22 [fF] 𝐶33 [fF] 𝐶44 [fF] 𝐶12,21 [fF] 𝐶13,31 [fF] 𝐶23,32 [fF] 𝐶14,41 [fF] 𝐶24,42 [fF] 𝐶34,43 [fF]

q1 33.42 33.28 99.36 2.92 11.77 8.67 8.63 0.29 0.29 0.84
q2 32.45 32.39 76.93 3.03 3.22 6.34 6.30 0.32 0.36 0.72
q3 16.47 16.51 68.69 4.78 3.38 5.59 5.60 0.60 0.61 1.89
q4 16.44 16.48 68.89 4.75 3.40 5.61 5.62 0.48 0.49 2.12
q5 33.84 33.76 74.27 4.94 4.20 6.76 6.73 0.57 0.58 2.01
q6 33.59 33.58 76.00 5.41 4.29 6.79 6.77 0.48 0.48 2.56
q7 16.07 16.19 71.19 4.19 3.27 5.61 5.65 0.34 0.35 2.07
q8 53.37 53.39 126.97 14.17 5.67 28.44 28.42 2.13 2.15 4.86
q9 17.30 17.23 73.67 5.39 3.72 6.04 6.03 0.57 0.56 2.34
q10 19.51 19.52 116.36 8.95 7.35 5.34 5.35 0.57 0.56 4.03
q11 33.06 33.22 99.98 2.90 11.64 8.65 8.71 0.28 0.27 0.83
q12 33.06 33.10 92.67 2.75 11.51 7.88 7.90 0.30 0.29 0.77
q13 33.59 33.60 73.62 4.33 4.01 6.74 6.75 0.60 0.61 1.61
q14 17.30 17.23 73.67 5.39 3.72 6.04 6.03 0.57 0.56 2.34
qex 16.13 16.13 71.19 4.19 3.27 5.63 5.63 0.35 0.35 2.07

Table A.1.: Simulated capacitance values, taken from [136]. Capacitances depicted in Fig. 3.2a simulated with

the 3D electrostatic finite element solver Ansys Maxwell for different qubits with a convergence accuracy of 10 aF.

Differences in the qubit capacitances are due to different sizes of the circuit islands for different designs. Compared

to Fig. 3.1a, the following applies: 𝐶12,21 = 𝐶s, 𝐶13,31 ≈ 𝐶r and 𝐶23,32 ≈ 𝐶r.
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A.2. Measured and fitted spectra

In Tab. A.2 we list the fit parameters 𝐿r, 𝐿q, Δk, 𝐸J and 𝐶J that are obtained by fitting the extended cir-

cuit model described in section 3.1 to the measured spectra shown in Fig. A.1. The next column contains

the calculated 𝐿□, obtained from the fitted 𝐿q. Additionally, we use the extracted parameters from the

fits to calculate the dispersive shift 𝜒fit/2𝜋 via Eq. 2.50 and compare it to the measured value 𝜒meas in

the last two columns of Tab. A.2.

In Fig. A.2 we fit the flux qubit Hamiltonian (see Eq. 2.32) to the measured spectrum of q15, which

uses a JJ array as inductance. We extract the following parameters: 𝐿q = 31.1nH, 𝐶q = 33.9fF (⇒ 𝐸c ≈
0.6GHz), and 𝐸J,𝛼 = 7.6GHz.

In Fig. A.3 the full qubit spectra of Q1, Q2 and Q3 from Chapter 4 are shown. The qubit parameters

were extracted using the flux qubit Hamiltonian (see Eq. 2.32) and are listed in Tab. 4.2.

device 𝐿r [nH] 𝐿q [nH] Δk [nH] 𝐸J [GHz] 𝐶J [fF] 𝐿□ [pH/□] 𝜒fit
2𝜋 [MHz] 𝜒meas

2𝜋 [MHz]

q1 15.03 13.61 −0.07 13.44 4.82 77.4 0.28 0.06

q2 6.53 16.34 −0.24 13.74 6.01 59.3 1.55 1.19

q3 29.36 40.35 0.69 13.72 3.78 100.9 −1.75 −1.80

q4 30.14 47.07 0.64 13.89 5.01 86.0 −0.56 −0.52

q5 11.90 33.38 0.39 9.88 4.02 70.6 2.05 2.00

q6 7.40 46.96 0.36 6.77 3.34 68.9 0.47 0.53

q7 11.73 39.06 0.28 4.83 1.85 67.1 0.98 0.91

q8 0.55 16.25 0.20 3.09 2.58 56.4 0.58 0.45

q9 18.89 26.91 0.17 1.28 1.86 54.8 0.11 0.07

q10 11.10 18.55 0.22 11.84 2.13 56.9 - -

q11 9.82 12.91 −0.31 11.75 4.97 71.4 - -

q12 6.54 24.68 −0.30 13.44 4.97 62.0 - -

q13 7.60 28.28 0.86 5.14 4.37 81.2 - -

q14 19.62 25.21 0.17 3.33 3.58 51.4 - -

Table A.2.: Device fit parameters Lr, Lq, 𝚫k,EJ and CJ, calculated L□ and dispersive shift 𝜒/2𝜋, taken

from [136]. The extended circuit model introduced in section 3.1 is used to calculate the fit parameters

𝐿r, 𝐿q, Δk, 𝐸J and 𝐶J, and 𝜒fit/2𝜋.
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Figure A.1.: Qubit spectra and dispersive shifts 𝜒/2𝜋 at Φext = 0.5Φ0, figure and caption taken from [136]. In

the first column plots the data points are extracted from single-tone and two-tone spectroscopy of the resonator

and qubit, shown in column 2 and 3, respectively. The black lines (red dotted lines in column 2 and 3) show fits

to the circuit model. The measured dispersive shifts plotted in the 4th column for devices q1 to q9 are extracted

from pulsed single shot readout. The response of the resonator for the qubit in the ground (excited) state is shown

in dark (light) grey markers. The 𝜒/2𝜋 value calculated from the circuit model is shown as a horizontal black line.

The measured and calculated 𝜒/2𝜋 values are tabulated in Tab. A.2.
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Figure A.2.: Spectrum of q15 which uses a JJ array as inductance. In the first column plot the data points (grey

circles) are extracted from single-tone and two-tone spectroscopy of the resonator and qubit, shown in column 2

and 3, respectively. The black lines (red dotted lines in column 2 and 3) show fits to the flux qubit Hamiltonian

(see Eq. 2.32). No dispersive shift was measured for this device.
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Figure A.3.: Full qubit spectra for Q1, Q2 and Q3 from Chapter 4, calculated using the flux qubit Hamiltonian

(see Eq. 2.32) and the values listed in Tab. 4.2.
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A.3. Coherence times

A summary of the measured free energy relaxation times 𝑇1, Ramsey decoherence times 𝑇∗
2 , and echo

decoherence times 𝑇echo
2 at the half flux point (Φext = 0.5Φ0) for the GFQ devices in Chapter 3 is given

in Tab. A.3. A summary of 𝑇1 and 𝑇∗
2 of most GFQ devices measured during this PhD is shown in

Fig. A.4. As can be seen, the GFQ generation and the improved fabrication process (see section 6.1)

have no significant effect on the relaxation times.

As described in section 3.4, the inductive loss of grAl can be estimated using Eq. 3.43. The quality

factors 𝑄ind derived from the measured 𝑇1 values are listed in the fifth column of Tab. A.3, yielding

105 < 𝑄ind ⪅ 106, consistent with the estimated inductive losses in grAl [120].

device T1 (µs) T∗
2 (µs) Techo

2 (µs) 𝑄ind(×106)

q1 7.6±1.7 / 9.8 / 3.2±0.3 5.7±1.0 / 2.1 10.8 / 12.6 0.9 / 1.1 / 0.4

q2 10.3 2.0 − 1.6

q3 2.6 − − 2.1

q4 1.3 2.1 − 2.0

q5 4.3 2.4 − 1.0

q6 − − − −
q7 11.2 / 8.0 / 5.0 6.0/ 3.3 7.7 0.7 / 0.7 / 0.4

q8 1.4 2.3 − 0.1

q9 3.7 − − 0.2

q10 4.1 − − 0.5

q11 10.5±1.0 / 9.9 / 6.2±0.4 5.7±0.2 / 2.6 − / 4.8 1.0 / 0.9 / 0.6

q12 − − − −
q13 4.4 1.4 − 0.4

q14 4.6 − − 0.3

Table A.3.: Measured coherence times at the half-flux sweet spot for different samples, figure and caption

taken from [136]. For measurements with a statistically relevant amount of repetitions we show the mean value

and standard deviation. Values separated by forward slashes are taken from different cooldowns, several months

apart and measured in different sample holders. Between cooldowns the samples have been stored in ambient

conditions.
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Figure A.4.: Overview of the GFQs T1 and T∗
2 for most devices measured during this PhD thesis. Marker

shapes define the type of GFQ (grAl or JJ arrays, with or without capacitive extenders and with or without coupler

chip in e2). Black markers are used for GFQs which are not shown in Fig. 3.8, all other colors are consistent with

the colors used in Fig. 3.8. All qubits after 1 January 2025 were fabricated with the improved process as described

in section 6.1.
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A.4. Matrix elements for the GFQs

We use Eq. 3.43 to estimate the GFQs inductive losses through their environment [154]. The different

terms of Eq. 3.43 capture different physical mechanisms:

1
𝑇1

=
8𝜋3𝐸L

ℎ𝑄ind︸  ︷︷  ︸
environment

��⟨0|𝜑̂ |1⟩��2︸     ︷︷     ︸
transition matrix element

(
1+coth

(
ℎ 𝑓q

2𝑘B𝑇

))
︸              ︷︷              ︸

thermal factor

.

The first term containing 𝐸L and 𝑄ind quantifies the losses in the inductive environment. The transition

matrix element ⟨0|𝜑̂ |1⟩ governs both control and dissipation: its magnitude |⟨0|𝜑̂ |1⟩| sets the Rabi rate

for flux driving, while its magnitude squared |⟨0|𝜑̂|1⟩|2 sets the relaxation rate via the inductive environ-

ment. Larger values imply stronger coupling and thus shorter 𝑇1 via this channel, while smaller values

suppress relaxation but also reduce the efficiency of flux-based control (smaller Rabi rates)i. The thermal

factor accounts for stimulated processes at finite temperature. Here, 𝑇 corresponds to the effective qubit

temperature, representing the temperature of the qubit’s electromagnetic environment at the transition

frequency 𝑓q, approximated from the measured population ratio (we use 𝑇 ≈ 45 mK, see section 3.3).

Following the method described in Ref. [107], we numerically diagonalize the fluxonium Hamiltonian

(see Eq. 2.32) in a truncated harmonic-oscillator basis (normal-mode basis) to obtain eigenstates and

eigenenergies, from which the transition matrix elements (flux and charge dipoles) are extracted.

The matrix elements for the GFQs in Chapter 3 and Chapter 4 are listed in Tab. A.4.

iThe diagonal matrix elements ⟨𝑛|𝜑̂ |𝑛⟩ determine 𝑍-type (pure) dephasing from low-frequency flux noise.
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device ⟨0|𝜑̂ |1⟩ (rad)

q1 0.137
q2 0.169
q3 0.343
q4 0.368
q5 0.247
q6 0.236
q7 0.184
q8 0.093
q9 0.133
q10 0.173
q11 0.121
q12 0.251
q13 0.084
q14 0.143
Q1 0.152

Table A.4.: Matrix elements. Calculated values of the flux matrix element ⟨0|𝜑̂|1⟩ for the devices discussed in

Chapter 3 obtained from numerical diagonalization of the fluxonium Hamiltonian. Additionally, we show the

matrix element of Q1 from Chapter 4.
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A.5. Photon number calibration using measurement-induced dephasing
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Figure A.5.: Linear fitting of 𝛾𝑚,3 vs. drive am-
plitude. Readout-induced dephasing rate 𝛾𝑚,3 vs.

applied drive amplitude 𝐴port3 for several drive fre-

quencies 𝑓d near the resonator frequency 𝑓R3. The

color encodes the detuning 𝑓d− 𝑓R3. Red lines are

linear fits at fixed 𝑓d. Their slopes 𝑚( 𝑓d) = 𝜕𝛾/𝜕𝑃
are used in Eq. A.2 to extract the conversion factor

in Eq. A.3

We can use the measurement induced dephasing to perform a photon number calibration of a resonator.

With known 𝑓r, 𝜅/2𝜋 and 𝜒/2𝜋 we rewrite Eq. 4.6 as

𝛾( 𝑓d, 𝑃) = 𝛼𝑃︸︷︷︸
𝜖 2 (𝑃)

4𝜋2

[
1

𝜅2/4+(2𝜋 𝑓d−2𝜋 𝑓r+𝜒/2)2+
1

𝜅2/4+(2𝜋 𝑓d−2𝜋 𝑓r−𝜒/2)2

]
︸                                                                            ︷︷                                                                            ︸

=𝑆 ( 𝑓d )

𝜅𝜒2/8𝜋
𝜅2/4+𝜒2/4+(2𝜋 𝑓d−2𝜋 𝑓r)2︸                              ︷︷                              ︸

=𝐹 ( 𝑓d )

,

(A.1)

where 𝛼 converts the applied drive power 𝑃 (in V) to the drive amplitude 𝜖2 at the resonator. At fixed 𝑓d,

𝛾 is linear in 𝑃 with slope

𝑚( 𝑓d) =
𝜕𝛾

𝜕𝑃
= 𝛼 𝑆( 𝑓d) 𝐹 ( 𝑓d), (A.2)

as shown in Fig. A.5 for an arbitrary set of 𝑓d in QR-system 3. We measure 𝛾( 𝑓d, 𝑃) for several 𝑃 values

at multiple 𝑓d, extract 𝑚( 𝑓d) from linear fits in 𝑃, and determine

𝛼 = argmin
𝛼

∑︁
𝑓d

[
𝑚( 𝑓d)−𝛼𝑆( 𝑓d) 𝐹 ( 𝑓d)

]2
. (A.3)

For 2𝜋 | 𝑓d− 𝑓r | ≫ 𝜒/2, the contributions to the sum become negligible since the Lorentzian factors 𝑆( 𝑓d)
and 𝐹 ( 𝑓d) decay as 1/| 𝑓d− 𝑓r |2. Substituting 𝜖2(𝑃) = 𝛼𝑃, we get for the state-dependent photon number:

𝑛 |0⟩ ( 𝑓d, 𝑃) =
𝜖2(𝑃) 4𝜋2

𝜅2/4+(2𝜋 𝑓d−2𝜋 𝑓r+𝜒/2)2 and 𝑛 |1⟩ ( 𝑓d, 𝑃) =
𝜖2(𝑃) 4𝜋2

𝜅2/4+(2𝜋 𝑓d−2𝜋 𝑓r−𝜒/2)2 . (A.4)

For better comparison it makes sense to use the average photon number 𝑛̄ at the midpoint 𝑓d = 𝑓r, where

𝑛̄

𝑃
=
𝑛 |0⟩+𝑛 |1⟩

2𝑃

�����
𝑓d= 𝑓r

=
𝛼

( 𝜅2𝜋 )2/4+( 𝜒2𝜋 /2)2 . (A.5)

Compared to a photon-number calibration that uses only the AC-Stark shift, this method has the advan-
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tage that it uses the full detuning dependence 𝑆( 𝑓d)𝐹 ( 𝑓d) and does not require resolving small qubit-

frequency shifts, yielding a more robust global estimate of 𝛼. The trade-off is that it requires multiple

time-domain dephasing measurements over power and detuning.
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A.6. Room-temperature resistances

Room-temperature resistance measurements of the Al JJs and the grAl inductors are summarized in

Tab. A.5. For the JJs, the Josephson energy 𝐸J is calculated using the Ambegaokar-Baratoff (AB) rela-

tion (see Eq. 2.16) and compared to the 𝐸J value extracted from cryogenic measurements.

Date grAl: 𝑅□ (Ω) grAl: 𝜌 [µΩcm] JJ: 𝑅 (kΩ) JJ(AB): 𝐸J (GHz) JJ(cryo): 𝐸J (GHz)

Feb 2022 92±4 642±31 18.8±2.3 8.2±1.0 −
Mar 2022 91±5 638±33 14.3±0.5 10.7±0.4 −
Apr 2022 85±9 577±80 10.9±2.2 14.5±2.4 −
Apr 2022 99±6 694±44 11.2±1.2 13.8±1.4 13.4 q1 ∧ 11.75 q11 ∧ 13.44 q12

Jun 2022 87±18 608±127 8.9±2.3 18.3±4.5 13.7 q2

Aug 2022 88±2 615±14 − − −
Sep 2022 94±3 657±20 14.5±0.9 10.6±0.7 −
Nov 2022 120±6 842±41 11.5±1.1 13.5±1.4 −
Nov 2022 134±6 936±41 13.8±3.4 11.5±1.9 −
Nov 2022 92±3.9 646±28 9.6±2.8 17.0±3.3 −
Dec 2022 126 879 12.2 13.5 13.7 q3 ∧ 13.9 q4

Dec 2022 143±8 1002±56 15.7±1.1 9.8±7.1 −
Feb 2023 98 685 24.6±1.5 6.2±0.4 6.8 q5 ∧ 9.9 q6

Mar 2023 76±3 534±22 26.6±2.9 5.8±0.7 −
Sep 2023 74±0 516±1 8.6 / 12.7 17.9 / 12.1 −
Oct 2023 92 771 − − −
Dec 2023 67±4 466±27 19.4 7.9 −

Table A.5.: Resistivity of different grAl films and JJs at room-temperature as a function of deposition date.
Measured 𝐸J values at cryogenic temperatures are indexed with their corresponding qubit names. All devices

were fabricated using the same evaporation procedure as outlined in Ref. [136] (referred to as the „old“ process in

section 6.1). We assume a thickness of 70 nm for the grAl films. For the pure Al films we assume 𝑇c,Al ≈ 1.3 K (see

section 2.2). Error bars represent the statistical uncertainty of the averaged values. Test structures with different

sizes are separated by / . The variability of resistivities over timescales of months may be due to changes in the

aluminum crucible, humidity, or other cleanroom conditions.
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A.7. Dephasing Measurements for Q3

In Fig. A.6a we show the dephasing measurements for Q3, in b the corresponding fits using Eq. 4.6, and

in c the calculated dephasing rate based on the average fit parameters listed in Tab. 4.4.
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Figure A.6.: Dephasing of Q3. a) Measured dephasing 𝛾m,3 from Ramsey experiments as a function of drive

frequency 𝑓d and drive amplitude 𝐴port3. b) Fits to Eq. 4.6 for selected drive amplitudes. c) Predicted dephasing

using the average fit parameters from Tab. 4.4. The red line marks 𝑓d− 𝑓R3 = 2.4 MHz, where 𝛾m,3 values in Fig. 4.9

are extracted.
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A.8. Schrieffer-Wolff transformation

In superconducting qubit systems with more than two interacting elements, it is often desirable to derive

an effective model involving only the lowest energy levels of the devices. This model should capture the

relevant dynamics while eliminating non-participating degrees of freedom. Such an approach is useful

in our system, which consists of a linear array of three coupled flux qubits (Q1,Q2,Q3), where the mid-

dle qubit (Q2) acts as a tunable coupler. In our configuration, the coupling between the computational

outer qubits is mediated by virtual excitations of the coupler. Therefore, a suitable effective model would

eliminate the coupler degree of freedom by restricting the coupler to its ground state and the outer qubits

to their computational subspaces. In our case, the corresponding uncoupled (before any perturbation is

introduced) low-energy subspace is ℋeff = span
{
|𝑖⟩Q1 |0⟩Q2 | 𝑗⟩Q3

�� 𝑖, 𝑗 ∈ {0,1}
}
⊂ℋ, where ℋ is the full

Hilbert space of the three-qubit system including all higher excited states.

A method for obtaining such effective models is the Schrieffer-Wolff transformation (SWT), first in-

troduced in 1966 [166]. Following Bravyi et al. [167], the SWT can be understood as a version of

degenerate perturbation theory. It applies to systems described by a Hamiltonian H =H0+𝜖𝑉 , where H0

is the unperturbed part with a known spectrum, and 𝑉 is a small perturbation that does not preserve the

low-energy subspace ℋeff. ℋeff is invariant under H0. The goal is to construct an effective Hamiltonian

Heff that acts only within ℋeff and reproduces the low energy eigenvalues of the full Hamiltonian H . The

SWT constructs a unitary transformation𝑈, such that the transformed Hamiltonian H̃ =𝑈H𝑈† approx-

imately preserves ℋeff. The effective Hamiltonian is then defined as the restriction of the transformed

Hamiltonian to ℋeff:

Heff = 𝑃0H̃𝑃0 = 𝑃0𝑈H𝑈†𝑃0, (A.6)

where 𝑃0 is the projector onto ℋeff. The challenge of the SWT is to find a suitable unitary transformation

𝑈 that block-diagonalizes H up to a desired order in 𝜖 , thereby decoupling ℋeff from the rest of the

Hilbert space to that order.

In some numerical applications, it is useful to express the SWT in terms of projectors onto the relevant

subspaces. As stated in [167], section 2.2, the unitary transformation can be written as

𝑈̃ =
√︁
(𝑃0−𝑄0) (𝑃−𝑄), (A.7)

where 𝑃 is the projector onto the interacting low-energy subspace of H which adiabatically evolves from

ℋeff as the perturbation𝑉 is turned on. 𝑄 = I−𝑃 projects onto its orthogonal complement. Similarly,𝑄0 =

I−𝑃0 is the projector onto ℋ
⊥

eff. In contrast to𝑈 from Eq. A.6, the projector-based unitary transformation

𝑈̃ is constructed to map the interacting low-energy subspace onto the unperturbed subspace ℋeff. The

effective Hamiltonian is then obtained by projecting the transformed Hamiltonian onto ℋeff:

Heff = 𝑃0𝑈̃𝑃H𝑃𝑈̃†𝑃0. (A.8)
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This expression encodes the low energy dynamics of the interacting system within the reference subspace

ℋeff.

Deriving g13 for a capacitively coupled three qubit array

We aim to derive the effective coupling 𝑔eff
13 between the outer qubits Q1 and Q3 in an array of three

capacitively coupled qubits. The system is described by the Hamiltonian

H =

3∑︁
𝑖=1

HFQ,𝑖︸     ︷︷     ︸
uncoupled

qubit Hamiltonians

+ 1
2

3∑︁
𝑖, 𝑗=1

𝐶−1
𝑖 𝑗 𝑄𝑖𝑄 𝑗︸              ︷︷              ︸

capacitive coupling
between all qubits

, (A.9)

with the single flux qubit (FQ) terms defined as in Eq. 2.33:

HFQ,𝑖 =
𝐶−1
𝑖𝑖

2
𝑄2
𝑖 +

1
2𝐿𝑖

Φ2
𝑖−𝐸J,𝑖 cos

(
2𝜋
Φ0

(Φ𝑖+Φext
𝑖 )

)
. (A.10)

Here, 𝑄𝑖 and Φ𝑖 are the charge and flux operators of qubit 𝑖, and 𝐿𝑖 and 𝐸J,𝑖 are its inductance and

Josephson energy. The matrix C−1
𝑖 𝑗

is the inverse of the capacitance matrix C, which describes all capac-

itive couplings in the circuit. Diagonal elements contain self-capacitances, while off-diagonal elements

account for mutual coupling.

To evaluate 𝑔13, we apply the Schrieffer-Wolff transformation to the full system using two complemen-

tary approaches: a numerically exact method that captures the full circuit nonlinearities, and a semi-

analytical perturbative treatment that provides physical insight into the coupling mechanism.

Numerical (n) approach. The first method follows the numerically exact SWT introduced in Ref. [184],

which works directly with the full circuit Hamiltonian in Eq. A.9. We define

H =H0+𝜖𝑉 with H0 =

3∑︁
𝑖=1

HFQ,𝑖 and 𝑉 =
1
2

∑︁
𝑖≠ 𝑗

𝐶−1
𝑖 𝑗 𝑄𝑖𝑄 𝑗 .

Using Eq. A.8, where 𝑃0 projects onto the unperturbed low energy subspace ℋeff, and 𝑃 onto the corre-

sponding interacting subspace, constructed from the numerically obtained eigenstates of H , we compute

the effective Hamiltonian

Hn
eff =

𝜔1
2
𝜎𝑧1+

𝜔3
2
𝜎𝑧3+𝐽𝑥𝑥𝜎

𝑥
1 𝜎

𝑥
3 +𝐽𝑦𝑦𝜎

𝑦

1 𝜎
𝑦

3 +𝐽𝑧𝑧𝜎
𝑧
1𝜎

𝑧
3 . (A.11)

The effective coupling 𝑔n,eff
13 is obtained from the splitting between the one-excitation eigenstates of Hn

eff,

expressed in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} of Q1 and Q3 as:

Hn
eff =

©­­­­­­«

𝜔1+𝜔3
2 +𝐽𝑧𝑧 0 0 𝐽𝑥𝑥−𝐽𝑦𝑦

0 𝜔1−𝜔3
2 −𝐽𝑧𝑧 𝐽𝑥𝑥+𝐽𝑦𝑦 0

0 𝐽𝑥𝑥+𝐽𝑦𝑦 −𝜔1+𝜔3
2 −𝐽𝑧𝑧 0

𝐽𝑥𝑥−𝐽𝑦𝑦 0 0 −𝜔1−𝜔3
2 +𝐽𝑧𝑧

ª®®®®®®¬
. (A.12)
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On resonance 𝜔1 = 𝜔3, the energy gap between the eigenstates |10⟩ and |01⟩ is 2𝑔n,eff
13 = 2|𝐽𝑥𝑥+𝐽𝑦𝑦 |,

which we compare directly to experimental data in Fig. 4.13. Numerical simulations show 𝐽𝑧𝑧 < 10−2×
|𝐽𝑥𝑥+𝐽𝑦𝑦 |, which is below our experimental resolution.

Analytical (a) approach. The second method uses an analytical SWT based on second-order pertur-

bation theory. Following Ref. [185], we start from a simplified model in which all qubits are truncated

to their lowest two levels, and the coupler Q2 is assumed to be far detuned (|𝜔2−𝜔1,3 | ≫ 𝑔12, 𝑔23).

By projecting the full Hamiltonian in Eq. A.9 onto the non-interacting subspace of the three qubits

ℋ0 = span
{
|𝑖⟩Q1 | 𝑗⟩Q2 |𝑘⟩Q3

�� 𝑖, 𝑗 , 𝑘 ∈ {0,1}
}
, we obtain the reduced Hamiltonian

H a
2lv =

𝜔̃1
2
𝜎𝑧1+

𝜔̃2
2
𝜎𝑧2+

𝜔̃3
2
𝜎𝑧3+𝑔12𝜎

𝑦

1 𝜎
𝑦

2 +𝑔23𝜎
𝑦

2 𝜎
𝑦

3 , (A.13)

with the bare qubit frequencies 𝜔̃𝑖 . The direct couplings are obtained by projecting the capacitive inter-

action onto ℋ0:

𝑔𝑖 𝑗 = 𝐶
−1
𝑖 𝑗 ⟨0𝑖 |𝑄𝑖 |1𝑖⟩ ⟨0 𝑗 |𝑄 𝑗 |1 𝑗⟩ , (A.14)

where we neglect the direct coupling 𝑔13 ≪ 𝑔12, 𝑔23 in the analytical treatment.

We now apply the SWT to the Hamiltonian in Eq. A.13 using a perturbative expansion up to second

order, following the approach of Ref. [186]. We decompose the system into

H a
2lv =H0+𝜖𝑉 with H0 =

3∑︁
𝑖=1

𝜔̃𝑖

2
𝜎𝑧
𝑖

and 𝑉 = 𝑔12𝜎
𝑦

1 𝜎
𝑦

2 +𝑔23𝜎
𝑦

2 𝜎
𝑦

3 .

The second-order effective Hamiltonian consists of the projected term H a
eff,1 = 𝑃0H a

2lv𝑃0, and corrections

due to virtual transitions through the excited states 𝑘 ∈ {|010⟩ , |110⟩ , |011⟩ , |111⟩} =ℋce:

H a
eff,2 =H a

eff,1+
1
2

∑︁
𝑖, 𝑗∈ℋ0,
𝑘∈ℋce

(
1

𝐸𝑖−𝐸𝑘
+ 1
𝐸 𝑗−𝐸𝑘

)
⟨𝑖 |𝑉 |𝑘⟩ ⟨𝑘 |𝑉 | 𝑗⟩ |𝑖⟩ ⟨ 𝑗 | . (A.15)

Here, 𝐸𝑛 denotes the energy of state |𝑛⟩ under H0. Assuming Q1 and Q3 are on resonance (𝜔̃1 = 𝜔̃3 =𝜔),

the resulting second-order effective Hamiltonian reads:

H a
eff,2 =

𝜔̃1
2
𝜎𝑧1+

𝜔̃3
2
𝜎𝑧3+𝑔

a,eff
13 𝜎

𝑦

1 𝜎
𝑦

3 , (A.16)

with renormalized qubit frequencies

𝜔̃1 = 𝜔+𝑔2
12

(
1
Δ
− 1
Σ

)
, 𝜔̃3 = 𝜔+𝑔2

23

(
1
Δ
− 1
Σ

)
, (A.17)

and effective coupling

𝑔
a,eff
13 = 𝑔12𝑔23

(
1
Δ
− 1
Σ

)
, (A.18)

where the detunings are defined as Δ = 𝜔−𝜔2 and Σ = 𝜔+𝜔2.

Since no 𝜎𝑥𝜎𝑥 or 𝜎𝑧𝜎𝑧 terms appear in Eq. A.16, the effective coupling 𝑔a,eff
13 corresponds directly to
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the energy splitting between the one-excitation states |10⟩ and |01⟩. Its dependence on 𝜔2 is shown as

a dashed line in Fig. 4.13. Note that this second-order expansion diverges near resonance (𝜔2 ≈ 𝜔), an

artifact of perturbation theory that is absent in the numerically exact SWT [167].

The analytical approach provides a simple closed-form expression and physical intuition for the coupling

mechanism, but neglects higher-order corrections and circuit nonlinearities. In contrast, the numerical

SWT captures the full three-qubit interaction, including 𝜎𝑧𝜎𝑧 terms and excitation-mediated effects, at

the cost of requiring numerical diagonalization.
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A.9. Simulations

In this section we present both single-enclosure and full-box simulations. The single-enclosure simula-

tions demonstrate the necessity of coupling capacitive extenders symmetrically to islands 1 and 2 of the

QR-systems, and are further used to extract the mutual inductance and losses of Q2 with the FBL. The

full-box simulations, performed with the simplified coupler chip, include a comparison of single-line

and double-line capacitive extenders, a simulation of the effective coupling 𝑔eff
13 between Q1 and Q3, and

an analysis of different band-pass filter designs combined with varying numbers of enclosure walls to

minimize crosstalk between the outer enclosures.

Single enclosure simulations
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Figure A.7.: Coupling capacitive extenders to the QR-system. a) Circuit diagram illustrating the coupling of

capacitive extenders to the QR-system. In the symmetric configuration (grey+black), one capacitive extender

couples to each of islands 1 and 2, while in the asymmetric configuration (black) only a single extender couples

to island 1. The capacitances 𝐶1,ex1 and 𝐶2,ex1 denote the coupling capacitances between islands 1 or 2 and the

extender ex1, respectively. b) Dependence of the qubit-readout coupling strength 𝑔QR on the difference 𝐶1,ex1−
𝐶2,ex1. Results are shown for symmetric and asymmetric configurations, and for Δ𝑘 = 0 and Δ𝑘 = 0.5 nH. In the

symmetric case, 𝑔QR remains independent of 𝐶1,ex1−𝐶2,ex1, whereas in the asymmetric case a strong dependence

is observed.

To maintain the concept of inductive coupling when adding capacitive extenders to the QR-system, the

extenders must be connected symmetrically to both GFQ islands 1 and 2. As can be seen in Fig. A.7,

if capacitive extenders are connected only to a single island, the qubit-readout coupling 𝑔QR strongly

depends on the capacitance 𝐶𝑖,ex1 between extender ex1 and island 𝑖. When extenders are added sym-

metrically to islands 1 and 2, the coupling remains independent of 𝐶𝑖,ex1.
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Figure A.8.: Simulations for FBL. a) 3D model of the coupler-chip enclosure used to simulate the coupler qubits

(Q2) bandwidth 𝜅q and the mutual inductance 𝑀FBL,q between the FBL and the qubit loop. 𝜅q is obtained from

ANSYS eigenmode simulations, while 𝑀FBL,q is calculated with ANSYS Maxwell3D magnetostatics using a sim-

plified model containing only the FBL and qubit loop. A schematic of the simulation setup is shown below the

box. b) Simulated dependence of the mutual inductance 1/𝑀FBL,q (blue) and coupler qubit bandwidth 𝜅q (red) on

the distance 𝑑FBL,q between the FBL and the qubit loop. The grey arrows indicate the values for the device used in

this thesis: for Q2 𝑑FBL,q ≈ 416µm, resulting in 𝑀FBL,q ≈ 7 mA/Φ0 and 𝜅q ≈ 34.4 kHz. The black lines are guides

to the eye.

The FBL must be placed at a distance from the qubit loop that is small enough to induce sufficient

magnetic flux to activate the coupler, yet large enough to avoid the FBL becoming the dominant decay

channel. In Fig. A.8 we show simulation results for the coupler qubit Q2 from Chapter 4. As shown in

the figure, we choose a distance of 𝑑FBL,q ≈ 416µm between the FBL and the qubit loop. At this distance

the mutual inductance is 𝑀FBL,q ≈ 7 mA/Φ0, which allows activation of the coupling via the FBL while

keeping its impact on the qubit lifetime moderate.
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Full box simulations
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Figure A.9.: Full box simulations. a) Simplified sample box to reduce meshing complexity used for full-box

simulations. All components are made partially transparent for better visibility. Qubit chips are shown in light

green, control chips in dark green, the coupler chip in orange, the walls attached to the lid between the enclosures

in gold, and the wall above the coupler chip in silver. b) Equivalent circuit model used in the simulations, including

all tunable lumped elements. The color of each circuit element corresponds to the chip coloring in panel a). The

coupler chip is simplified and contains only a tunable inductance, which allows control of the chip’s resonance

frequency.

All simulations in this subsection are performed in the sample box shown in Fig. A.9. The outer enclo-

sures with the control and qubit chips include detailed models of the band-pass filters and QR-systems

equipped with capacitive extenders. The coupler chip is simplified compared to the chips shown in

Fig. 4.1 and modeled as a 𝜆/2 resonator with two coupling pads at the ends and a tunable inductance 𝐿Q2

in the middle. Depending on the simulation goal, slight adaptations to the box are made, such as using

different band-pass filter designs, varying the type of capacitive extenders, or changing the number of

shielding walls between the enclosures.
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Figure A.10.: Simulations with single-line (sl) and double-line (dl) capacitive extenders. All simulations are

performed in the sample box shown in Fig. A.9 with the ANSYS eigenmode solver. a) Frequencies of the qubit

modes (green) and the coupler mode (orange) as a function of the coupler inductance 𝐿Q2 using a single-line

capacitive extender, as indicated in the sketch above the plot. b) Same simulation as in a), but using a double-line

capacitive extender. In this case, two coupler modes appear: an even mode (gold) where both capacitive extenders

charge symmetrically (++ to −−) and an odd mode (red) where the two extenders charge anti-symmetric (+− to

−+). Note, that the two tunable inductances 𝐿Q2 on the coupler chip can not be varied independently. c) Simulated

quality factors𝑄 of the coupler modes for single-line and double-line configurations. The odd mode of the double-

line coupler exhibits a significantly higher 𝑄 factor than the even modes. The green Q-factors of the qubits are a

lower bound.

When designing the sample box we simulated different extender types as shown in Fig. A.10, comparing

single-line and double-line capacitive extenders. The idea of the double-line extender is to use a differ-

ential mode between the two parallel strips that charge with opposite polarity, thereby concentrating the

electric field between them.

For the single-line extender, a single coupler mode is obtained which can be tuned in frequency via a

tunable inductance 𝐿Q2. In contrast, the double-line configuration supports two modes: an even mode,

where both extenders charge symmetrically (identical to the single-line mode), and an odd mode, where

the extenders charge antisymmetrically and the electric field is concentrated between them. The odd

mode has a quality factor three orders of magnitude higher than the even mode, making it an attractive

candidate for the coupler mode. However, the double-line design inevitably retains the even mode, and

suppressing it would require at least a second independently tunable inductance. Since this would add

considerable complexity to the system, we chose to use the simpler single-line capacitive extender design
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for the proof-of-principle demonstration of our architecture.
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Figure A.11.: Simulated effective coupling
geff

13/2𝜋 between Q1 and Q3 as a function

of the coupler detuning Δ 𝑓Q2, extracted from

avoided crossings in ANSYS eigenmode sim-

ulations. The simulations are performed in

the box shown in Fig. A.9 without control

chips. We simulate a maximum coupling of

𝑔
eff, max
13 /2𝜋 ≈ 19 MHz and a point of destruc-

tive interference of Δ 𝑓Q2 ≈ −2.5 GHz.

Using the single-line capacitive extenders ( 𝑓Q1,sim = 3.662 GHz and 𝑓Q3,sim = 3.731 GHz) and the sample

box shown in Fig. A.9, we simulate 𝑔eff
13 by analyzing avoided level crossings when driving Q3 through

Q1 for different coupler detunings Δ 𝑓Q2 (set by sweeping 𝐿Q2). In Fig. A.11 the simulated values of 𝑔eff
13

are plotted as a function of Δ 𝑓Q2. The simulation yields a maximum coupling of 𝑔eff,max
13 /2𝜋 ≈ 19 MHz

and a point of destructive interference at Δ 𝑓Q2 ≈ −2.5 GHz.

Encouraged by these results, we implemented the architecture experimentally as described in Chap-

ter 4. If we compare the simulated data in Fig. A.11 to the measured data in Fig. 4.13, we obtain good

qualitative agreement. The quantitative differences can be attributed to the simplifications made in the

simulation, such as modeling the coupler chip with a tunable inductance rather than a GFQ and using

larger coupling pads.
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Figure A.12.: Simulated crosstalk of band-pass filters on the control chips using 𝜆/2 or lumped element (lem)
resonators. All simulations are performed in the box shown in Fig. A.9 without qubit or coupler chips and with

different numbers of shielding walls, obtained with ANSYS driven modal simulations. a) Geometry of the two

resonator types used as band-pass filters on the control chip. b) Simulated crosstalk 𝑆31 between port 1 and port 3

for both resonator types. The band-pass filters have a resonance frequency of 𝑓b ≈ 9 GHz. Curves correspond to a

different number of shielding walls: reddish = six walls (full shielding), green = the four golden walls, and blue =

no walls.

To minimize crosstalk between the outer enclosures in our architecture, we simulated different types of

band-pass filters with resonance frequencies around 𝑓b ≈ 9 GHz in combination with varying numbers of

shielding walls between the enclosures (see Fig. A.9). The results are shown in Fig. A.12. The simula-

tions indicate that the highest isolation is achieved using a lumped-element band-pass filter together with

six shielding walls, which we use in our architecture.
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A.10. Low-pass filters for the FBLs
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Figure A.13.: Attempts to implement a low-pass filter for the FBL. a) Schematic of the FBL inductively coupled

to the QR-system. A capacitance is introduced between the FBL input and the ground connection. A sufficiently

large capacitance prevents qubit photons from leaking out of the (lossless) sample box into the coaxial cable. b)
Concept of realizing this capacitance as a parallel-plate capacitor formed by two Al films separated by an AlOx

dielectric (𝜀𝑟 ≈ 10). c) Working fabrication process: first a 20 nm bottom Al layer (dark blue) is deposited. A

second optical mask is then used to define the capacitor barrier by sequential angled evaporations of 2 nm Al at

±45◦, each followed by 2 min oxidation. This sequence is repeated until an oxide barrier thickness of ≈ 40 nm is

obtained. Finally, a third optical lithography step defines a 70 nm Al top layer to connect both sides of the FBL. d)
Problems encountered with this approach: when performing e-beam lithography for the second and third layers,

the bottom Al film often ruptures. In (i) the bottom layer before e-beam lithography is shown, while in (ii) the

same region after e-beam lithography displays black spots indicating the ruptures. e) As an alternative, atomic

layer deposition (ALD) was used to form the AlO𝑥 barrier. However, atomic force microscopy revealed sharp tips

at the film edges, which may cause peeling or rolling-off of the top Al layer.

In the initial design of the architecture, we aimed to equip not only the coupler qubit but also the outer

qubits with FBLs. To suppress qubit decay through the FBLs, we planned to integrate low-pass filters di-

rectly into the lines. The concept is to insert a capacitor into the FBL input as shown in Fig. A.13a, which

acts as a potential barrier by providing a low impedance at qubit frequencies and thereby preventing pho-

tons from leaking into the coaxial cable. As discussed in Ref. [187], planar two-dimensional designs

do not yield sufficient capacitance, which motivated us to use a full three-dimensional plate-capacitor

geometry with a dielectric barrier, requiring three separate evaporation steps. The developed process is

illustrated in Fig. A.13b,c and consists of three optical lithography steps, each using a dedicated mask.

In the first step, a 20 nm Al base layer is evaporated. In the second step, the capacitor barrier is formed

by sequentially evaporating 2 nm thick Al layers at ±45◦, each followed by oxidation, ensuring complete

coverage of the base layer and preventing shunts through the AlOx barrier. Repeating this sequence pro-

duces an AlOx barrier of about 40 nm thickness. In the final step, a 70 nm Al top layer is evaporated,

connecting both sides of the FBL and completing the plate capacitor.

During the development of this procedure we tested several alternative approaches that were not suc-

cessful. Here we summarize the most important insights from these failures. For the second and third

evaporation steps, optical lithography proved essential: when e-beam lithography was used instead, the

bottom Al layer frequently ruptured („exploded“), as shown in Fig. A.13d. It is well established that

e-beam exposure can induce structural damage and plastic deformation in thin Al and AlOx films, which

provides a likely explanation for our observations [188, 189, 190]. As an alternative, we also explored

atomic layer deposition (ALD) for the oxide barrier. However, the third Al layer often peeled off after

lift-off, as shown in Fig. A.13e. Atomic force microscopy revealed sharp spikes at the barrier edges,

which likely caused the instability of the top Al film.
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Figure A.14.: Measured reflection response of the readout resonator with and without FBLs. The blue curve

shows the case without an FBL, where the resonance is sharp and nearly all power is reflected, indicating minimal

loss. Adding an unfiltered FBL (red curve) introduces a strong additional loss channel. When a low-pass filter is

added to the FBL (green curve), this loss is substantially reduced, and the resonator remains closer to the no-FBL

case. Measurements were performed over the span of two years on different devices. The blue and red dataset were

taken on devices without capacitive extenders, while the green dataset was measured on a device with capacitive

extenders. No coupler chip was mounted in e2.

To verify the effect of the FBL on the readout resonator, we compared three different control chips with

no FBL, an unfiltered FBL, and an FBL equipped with an on-chip low-pass filter. The corresponding

measurements are shown in Fig. A.14. Without an FBL, the resonator has a nearly lossless response in

which almost all incident power is reflected. The phase response shows a clear 2𝜋 roll, which is essential

for dispersive qubit readout, as the qubit state is inferred from shifts in the resonator frequency. Adding

an unfiltered FBL drastically modifies the response: the resonance dip deepens significantly, indicating

strong coupling of the resonator to the FBL and additional dissipation through this channel. The corre-

sponding phase roll is suppressed. The low-pass filter improves the phase response towards a 2𝜋 roll.

Note that the measurements were taken over a year apart with different band-pass filters on the chips, and

only single datasets are available for the FBL cases. The results therefore illustrate qualitative trends only.

In the final design of our architecture, we chose not to implement the FBL with low-pass filter for the

outer qubits in order to maintain simplicity (implementing the low-pass filter entails multiple additional

cleanroom steps) and ensure a clean microwave environment. Since the FBL would be located on the

control chip rather than on the qubit chip, its implementation would also demand more precise chip

alignment. Finally, because our architecture provides excellent qubit-qubit isolation, it is not necessary

to tune the qubits in and out of resonance during operation, making FBLs unnecessary for the outer

qubits.
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A.11. Aluminum sample box

18.5 mm copper coils inside the lid

Holes for coil cables 
sealed with silver paste

Figure A.15.: Aluminum sample box. The bottom part of the box is identical to the copper version, while the lid

differs. Copper coils for static flux biasing are integrated inside the lid as no magnetic field can penetrate from the

outside into the box. The coils are mounted to the lid using M1.2 titanium screws with a length of 3 mm. Holes

for the coil cables are made into the lid and sealed with silver paste.

To reduce magnetic crosstalk between neighboring enclosures, we designed an Al sample box (see

Fig. A.15). Superconducting Al screens magnetic fields in length scales of the London penetration depth

𝜆L (𝜆L ≈ 45nm for Al [103]). As shown in Tab. A.6, the crosstalk between neighboring enclosures is

not significantly reduced compared to the copper box. The bottom plate of the copper coils must be in

electrical contact with the enclosure walls to push parasitic modes above 20GHz. We make this contact

with solder containing lead, which becomes superconducting. A superconducting box also reduces losses

from currents in the box ground. In our setup, this mechanism does not limit coherence, as discussed in

section 4.1.
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1/𝑀𝑖 𝑗 j=1 (mA/Φ0) j=2 (mA/Φ0) j=3 (mA/Φ0)

i=1 3.17 (100 %) 49.8 (6.4 %) 148 (2.1 %)

29.0 (100 %) 508 (5.7 %) < 3600 (< 0.8 %)

i=2 52.7 (8.8 %) 4.68 (100 %) 58.7 (8.0 %)

− − −
i=3 106 (2.3 %) 33.4 (7.2 %) 2.4 (100 %)

< 4000 (< 0.5 %) 469 (4.6 %) 21.8 (100 %)

Table A.6.: Comparison of flux crosstalk in a copper and Al box. Mutual inductances 1/𝑀𝑖 𝑗 in mA/Φ0 between

the coils mounted on top of each enclosure and the corresponding QR systems. The index 𝑖 labels the QR systems

and 𝑗 the coils. Values in orange correspond to the copper box, while values in grey correspond to the aluminum

box. For each row, the relative crosstalk between coil 𝑗 and QR system 𝑖 is given in brackets, normalized to the

on-diagonal value 1/𝑀𝑖𝑖 (defined as 100 % crosstalk).

108



A.12. Magnetic flux hose

Thanks to a collaboration with the research group of Gerhard Kirchmair in Innsbruck, Austria, we re-

ceived a magnetic flux hose to test with our modular architecture. For completeness, we summarize

Ref. [191] and insights from discussions with Philipp Straub (Kirchmair group) in the following para-

graph.

0 21 0 1 mmmm

a)

b)

2

5 mm

Figure A.16.: Magnetic flux hose in waveguide, fig-

ure and caption taken from [191]. a) Photograph of one

half of a rectangular waveguide cavity with two transmon

qubits fabricated on sapphire pieces separated by a dis-

tance of about 3 mm. The cavity has a hole in the middle

of the back wall to attach a magnetic hose. b) Schematic

of the setup highlighting the hose, with a coil (yellow)

on the external side and a qubit (black structures on the

two pieces of sapphire (green)) on the other. Inset: Cross

section of the hose, showing the shell structure (grey =

ferromagnetic layers, light blue = superconducting lay-

ers) with a vertical cut.

A magnetic hose is a metamaterial structure designed to transport magnetic flux through a supercon-

ducting enclosure without compromising coherence times. It allows fast magnetic flux control within

timescales < 100 ns for qubits embedded in 3D structures [191]. A hose as described in [191] consists of

concentric cylindrical layers alternating between ferromagnetic (𝜇𝑟 ≫ 1) and superconducting (𝜇𝑟 → 0)

materials, as shown in Fig. A.16ii. The ferromagnetic layers provide high axial magnetic permeability

(𝜇∥ →∞), while the superconducting layers suppress radial magnetic field components (𝜇⊥ → 0), effec-

tively guiding the magnetic field along the hose axis. This allows the magnetic field to be focused on a

target qubit. To prevent the formation of screening currents that would otherwise enforce flux quantiza-

tion, all layers are longitudinally cut. This enables the transport of fast time-varying fields on the order of

100 MHz (limited by the coil). In addition to flux transport, the hose also acts as an effective microwave

filter. The outer superconducting layer acts as a 𝜆/4 resonator that reflects electromagnetic waves below

a threshold frequency, while the longitudinal cut acts as a waveguide with a cutoff frequency. For the

example hose shown in Fig. A.16 the resonator reflects all frequencies ≤10 GHz, while the waveguide

has a cutoff frequency > 60 GHz. This minimizes microwave leakage and protects the qubit from deco-

herence.

iiThe devices used in this work employ a newer version of the flux hose design described in Ref. [191]. Details of the

updated design are not disclosed.
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Intuitively, a hose through a superconducting enclosure seems to contradict flux quantization. However,

since the magnetic field is guided in and out through the same opening, the net flux remains zero.

Integration of the magnetic flux hoses into the architecture

cable for coil

cable for coil

cut to avoid 
flux quantization

a) cut in parallel to box

b) cut perpendicular to box

cut to avoid 
flux quantization

18.5 mm

18.5 mm c)

cable for coil

flux hose
screws

e2 e3e1

7.495 mm

Q1: 180°, Q2 & Q3: 0°

Q1 & Q2 & Q3: 90°

Figure A.17.: Integrating flux hoses
into the architecture. a,b) Adapter

structures in the lid allow the integra-

tion of flux hoses into the box. The

panels show two possible orientations

of the cut in the hose (a: parallel, b:

perpendicular to the box). The orienta-

tion of this cut strongly affects magnetic

crosstalk, see Tab. A.7 c) Cross-section

of the box with adapter and flux hose

mounted in the middle enclosure. This

flux hose has a length of 7.495 mm.

device 1/M(0◦) [mA/Φ0] 1/M(90◦) [mA/Φ0] 1/M(180◦) [mA/Φ0]

Q2 9.2 8.6 −

Q1 − 123.4 3400

Q3 70.8 82.1 −

Table A.7.: Crosstalk measurements between the flux hose above Q2 (the coupler), equipped with a coil that

has 35 windings. The mutual inductance 1/𝑀 between the flux hoses and the qubits depends strongly on the

orientation of the cut in the hose. The number in brackets indicates the rotation angle of the cut relative to the qubit

(black for 0◦ and 180◦ measured during cooldown 1, and grey for 90◦ measured during cooldown 2). The hose is

positioned in the center above Q2.

We integrate flux hoses to reduce magnetic crosstalk between neighboring enclosures and to possibly

replace on-chip FBLs (the latter still needs to be tested). We use a flux hose with a length of 7.495 mm

that we can equip with two different coils that have 5 or 35 windings. Fig. A.17 shows the integration of

flux hoses in the lid and illustrates how the orientation of the cut in the hose affects magnetic crosstalk.

The corresponding crosstalk measurements between neighboring enclosures with the coil that has 35
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windings are summarized in Tab. A.7. Depending on the orientation of the cut, magnetic crosstalk varies

by approx. two orders of magnitude. Minimal crosstalk is achieved when the cut is rotated by 180◦ away

from the qubit, resulting in a crosstalk of 9.2/3400 ≈ 0.3%. This is a reduction of magnetic crosstalk by

more than an order of magnitude compared to the individual coils in the copper or Al box (see Tab. 4.1

and App. A.11).
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A.13. Avoided level crossings

Avoided level crossings for Fig. 4.13

In Fig. A.18, Fig. A.19, Fig. A.20 and Fig. A.21 we show the measured avoided level crossings between

Q1 and Q3 for different coupler detunings Δ 𝑓Q2, which are used in Fig. 4.13. The avoided level crossings

are obtained by sweeping 𝑓Q3 through 𝑓Q1, which is kept constant during measurements. Data points

and curves in red are obtained from two-tone spectroscopy on Q1, while those in blue are measured

using Ramsey fringes on Q1. For each subplot, the corresponding coupler detuning Δ 𝑓Q2 and extracted

coupling strength 𝑔eff
13 are indicated. Black lines show fits using the extracted 𝑔eff

13 , and the shaded regions

around the fits represent the fit uncertainties.

Avoided level crossings for population swaps

In Fig. A.22a we show the effective coupling strength 𝑔eff
13 vs. the coupler detuning Δ 𝑓Q2 during a pervious

cooldown using the same setupiv. Here we extract a maximum coupling strength of 𝑔eff,max
13 ≈ 2.5 MHz,

which is in good agreement with the time needed to swap excitations between Q1 and Q3 (𝑇swap ≈ 112ns).

In Fig. A.22b,c and Fig. A.23 we show the measured avoided level crossings between Q1 and Q3 for

different coupler detunings Δ 𝑓Q2 ≡ Δ 𝑓c, which are used in Fig. A.22a. The avoided level crossings are

obtained by sweeping 𝑓Q3 through 𝑓Q1, which is kept constant during measurements.
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Figure A.18.: Avoided level crossings measured using two-tone spectroscopy on Q1 for coupler detunings in the

range of −45MHz ≤ Δ 𝑓Q2 ≤ −6MHz. The colormap displays the magnitude of the reflection coefficient |𝑆11 |. The

horizontal axis is expressed as 𝑓ALC+ 𝑓Q3, where 𝑓ALC denotes the center frequency of the avoided level crossing.
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Figure A.19.: Avoided level crossings measured using two-tone spectroscopy on Q1 for coupler detunings in

the range of −1.4MHz ≤ Δ 𝑓Q2 ≤ 8.7MHz. The colormaps displays the magnitude of the reflection coefficient

|𝑆11 |. The horizontal axis is expressed as 𝑓ALC+ 𝑓Q3, where 𝑓ALC denotes the center frequency of the avoided level

crossing.
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Figure A.20.: Avoided level crossings measured using two-tone spectroscopy on Q1 for coupler detunings in the

range of 13MHz ≤ Δ 𝑓Q2 ≤ 92MHz. The colormap displays the magnitude of the reflection coefficient |𝑆11 |. The

horizontal axis is expressed as 𝑓ALC+ 𝑓Q3, where 𝑓ALC denotes the center frequency of the avoided level crossing.
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Figure A.21.: Avoided level crossings measured using Ramsey fringes on Q1 for different coupler detunings

Δ 𝑓Q2. The horizontal axis is expressed as 𝑓ALC+ 𝑓Q3, where 𝑓ALC denotes the center frequency of the avoided level

crossing. 𝑓Q1 = 3.465 GHz is constant during measurements.
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a) b) c)
/2
π

ΔfQ2

Figure A.22.: Effective qubit-qubit coupling strength and avoided level crossings, figure and caption taken

from [157]. a) Measured effective coupling strength 𝑔eff
13/2𝜋 between Q1 and Q3 operated on resonance ( 𝑓Q1 =

𝑓Q3 = 3.689GHz) as a function of the coupler detuning Δ 𝑓Q2. The error bars represent the spectroscopic linewidth

of the 𝑓Q1 transition used to extract the level splittings. The solid and dashed curves show numerical and analytical

results obtained from an effective two-qubit model using a Schrieffer-Wolff transformation (see App. A.8). b,c)
Avoided level crossings between Q1 and Q3 measured for Δ 𝑓Q2 = −252MHz (bp off) and Δ 𝑓c = 0MHz (bp on).

For Δ 𝑓c = −252MHz we use Ramsey fringes to determine 𝑓q1, while for Δ 𝑓c = 0MHz spectroscopy on Q1 is

performed. The colormaps show the magnitude of the reflected measurement signal |𝑆11 |, with the extracted 𝑔13

values indicated in red and the dashed red lines corresponding to fits.
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Figure A.23.: Avoided Level Crossings between Q1 and Q3 for different coupler detunings Δ 𝑓Q2 ≡ Δ 𝑓c, figure

and caption taken from [157]. Measurements are performed by using spectroscopy on Q1. The colormap shows

the amplitude of the reflected measurement signal on Q1, |𝑆11 |. The extracted 𝑔13 values from the fits (dashed red

lines) are listed in red.
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