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Enhancing Solid Oxide Fuel Cells Development through
Bayesian Active Learning

R. K. Jeela,* G. Tosato, M. Ahmad, M. Wieler, A. Koeppe, B. Nestler, and D. Schneider*

Ensuring the sustainable operation of solid-oxide fuel cells (SOFCs) requires
an understanding of the components’ lifespan. Multiphase-field simulation
studies play a major role in understanding the underlying microstructural
changes and the resulting property alterations in SOFCs over time. The
primary challenge in such simulations lies in identifying a suitable model and
defining its parametrization. This study presents an Active Learning
framework combined with Bayesian Optimization to identify optimal model
parameters to simulate the aging of nickel-gadolinium doped ceria (Ni-GDC)
anodes. The study overcomes incompleteness and inconsistency of literature
data, and navigates the complex, high-dimensional parameter space, by
leveraging experimental microstructure data and the power of the AL
framework. The successful parameter search enables simulation studies of
Ni-GDC anode aging and performance during long-term SOFC operation. This
approach improves the accuracy of phase-field simulations and offers a
versatile tool for broader applications in SOFC development, predicting
material behavior under various operational conditions.
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1. Introduction

Solid oxide fuel cells (SOFCs) are prime
candidates to replace fossil fuels with a
renewable energy source.[1] Their high ef-
ficiency in converting fuel into electricity
in a clean and sustainable way results in
reduced greenhouse gas emissions. Op-
erating at temperatures between 600◦C −
900◦C, SOFCs are particularly suitable
for supplying power to large systems
such as data centers or industrial plants,
with the added benefit of utilizing waste
heat for secondary electricity generation
or heat supply. For a sustainable opera-
tion of the SOFC, it is of utmost impor-
tance to understand the lifespan of its
individual components. The basic struc-
ture of a fuel cell consists of an an-
ode, a cathode, and an electrolyte. The
specific selection of the electrolyte char-
acterizes the fuel cell type, and typi-
cally the choice of a solid ceramic in-
organic oxide results in a SOFC.[2] A
significant challenge in the long-term

application of SOFCs is the progressive degradation of their
functional materials, primarily attributed to microstructural
changes. One key factor contributing to performance degrada-
tion is the anode functional layer (AFL), where fuel gas reactions
occur.
Nickel-gadolinium doped ceria (Ni-GDC) anodes represent a

promising alternative to traditional nickel-yttria stabilized zir-
conia (Ni-YSZ) anodes, distinguished by the mixed ionic and
electronic conductivity of gadolinium-doped ceria (GDC). Re-
search onNi-ceria SOFC anodes reveals that themajor aging phe-
nomenon results from the coarsening, agglomeration, and deple-
tion of nickel,[3,4] as in the case of Ni-zirconia cermets. While the
zirconia matrix typically remains stable, notable microstructural
changes were identified inGDCwithin Ni-GDC composites.[3,5–7]

A distinct aging phenomenon in Ni-GDC systems is the for-
mation of GDC coatings on nickel (Ni) particles, observed after
approximately 15000 hours of operation in dry conditions and
between 1000 and 2300 hours under humid conditions.[3,5] As
particles grow, Ni-Ni and Ni-GDC contacts diminish, reducing
triple-phase boundary (TPB) density and increasing electronic
resistance. Thus, understanding solid oxide cell (SOC) degra-
dation due to microstructural changes is crucial for predicting
and improving SOFC lifespan. Alongside experimental investi-
gations, microstructural simulations play a vital role in under-
standing SOC degradation, reducing time and cost expenditures.
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However, a big challenge for such simulation studies lies in find-
ing a suitable model for coarsening in Ni-GDC anode and defin-
ing its parameters.
The phase-field method is used in conjunction with SOFC an-

odes by several authors.[8–14] In this regard, the model of refs.
[15,16] presents a few advantages, as detailed in ref. [16] and
briefly summarized in the following. The model enables control-
ling the interfacial energies independently for each binary inter-
face, concurrently preserving equal and finite interfacial thick-
nesses, and quantitatively reproducing the interfacial diffusion.
In this way,measured surface diffusivities andwetting angles can
be accurately incorporated in a straightforward manner. Predict-
ing the long-term degradation of anodes in a quantitative man-
ner requires reliable material parameters under realistic operat-
ing conditions, including interface energies and diffusion coef-
ficients. These parameters have a critical role in simulating the
coarsening of the Ni-GDC anode. In Section 2.3, a comprehen-
sive review of the literature data for Ni and GDC interface en-
ergies and diffusion coefficients is given, highlighting both the
scarcity of data and the lack of reliability and accuracy in the re-
ported values, which are required for phase-field simulations. In
the work of Hoffrogge et al.,[17] the model is parameterized to
describe the coarsening of nickel in Ni-YSZ SOFC anodes at a
temperature of T = 750◦C. The physical parameters were derived
from thermal grooving experiments and density functional the-
ory (DFT) calculations.[18,19] Determining experimentally these
physical parameters for Ni-GDC anodes at given operating con-
ditions is challenging due to the time-intensive nature of the pro-
cesses, the significant resources required, the complexity of the
measurements, and the associated costs.
As described, Ni-based SOFC anodes exhibit complex changes

in their microstructural compositions, which affects the proper-
ties of the anodes in a highly non-linear fashion that is difficult
to quantify. Interdependencies and correlations between these
properties and influencing parameters further complicate the un-
derstanding of their behaviors. To investigate this inherent com-
plexity and variability ofmaterial properties in SOFCs, automated
workflows standardize experimental and numerical studies.[20]

Moreover, the integration of machine learning methodologies in
those workflows can overcome the resource-intensive nature of
those investigations and accelerate fuel-cell research.
The aim of this paper is to enhance SOFCs numerical in-

vestigations with Bayesian Active Learning (BAL). Active Learn-
ing (AL)[21] is a systematic machine-learning approach to explore
vast parameter spaces while minimizing resource expenditures,
which, coupled with Bayesian Optimization (BO),[22] emerged as
a valuable tool for materials design.[23,24]

Previous works have employed BAL to improve efficiency and
reduce experimental time in complex scientific settings. In parti-
cle accelerator research and beam optimization, studies by Rous-
sel et al.,[25] and Ji et al.[26] have shown significant improvements
in experimental efficiency. Rahmanian et al.[27] performed a one-
shot ALwith Bayesian hyperparameter tuning to optimize battery
electrolyte conductivity. Similarly, Günay and Tapan[28] leveraged
a Bayesian optimization loop to reach optimum performance of
polymer electrolyte membrane electrolyzer withminimum effort
or the minimum number of experiments or observations. In di-
agnostics, Tapan[29] applied BO with Gaussian process regres-
sion to quantify SARS-CoV-2 electrochemical sensor response

characteristics. Zhao et al.[30] combined BAL with Variational Au-
toencoder (VAE) to solve the inverse design problem of process–
structure linkage for porous materials. BAL suitability for itera-
tive adaptive design workflows has been further demonstrated
in diverse fields, from lattice structures[31] to solid-state elec-
trolytes for lithium-ion batteries.[32] Furthermore, previous work
has shown that the method’s high adaptability extends to the
choice of surrogate models: Lei et al.[33] presented a BO workflow
that replaces GP-based surrogate methods with Bayesian multi-
variate adaptive regression splines (BMARS) and Bayesian addi-
tive regression trees (BART). The rapidly evolving field of Large
LanguageModels (LLMs) is also engagingwith BAL. Recent work
ofMelo et al.[34] has extended themethod to preferencemodeling
in LLMs, addressing the challenge of efficient data selection for
acquiring human feedback.
In this work, we extend and adapt our Computational Intelli-

gence and Data Science (CIDS) framework[35] to incorporate an
AL Oracle, which serves as the decision-making component in
phase-field simulation workflows. The Oracle guides the learn-
ing process by selecting the most informative data points to
evaluate, effectively balancing the exploration of the parameter
space with the exploitation of known information. This existing
knowledge and uncertainty within the problem domain is quanti-
fied through Bayesian Optimization employing a probabilistic re-
gression model. Incorporating BO in our design-of-experiments
methodology enables effective data-driven material design, sig-
nificantly reducing the need for resource-intensive simulations
while maximizing the value of each evaluation.
To streamline the process, we employed automated workflows

within the Kadi4Mat[36] infrastructure, ensuring standardized
and sustainable research datamanagement (RDM). This automa-
tion facilitates seamless execution and documentation of sim-
ulations, enhancing the reproducibility of the results and long-
term data sustainability across iterative design processes. We will
demonstrate the application of the AL framework to the param-
eterization of Ni-GDC under the given operating conditions of
an SOFC anode. By using pristine and aged Focused Ion Beam
Scanning Electron Microscope (FIB-SEM) 3D-reconstructed mi-
crostructures coupled with phase-field simulations, we showcase
the framework’s efficiency in parameter discovery. This applica-
tion illustrates the potential for broader use of our framework for
SOFC development and optimization, as well as for similar nu-
merical and experimental studies.

2. Method

In this section, we present the comprehensive methodology
employed to model and simulate the coarsening behavior of
Ni-GDC anodes in SOFCs. We begin by detailing the acquisi-
tion of 3D microstructure data from Ni-GDC anode samples,
followed by an explanation of the phase-field model formulation
used for computing coarsening phenomena. Subsequently, we
discuss the challenges in determining physical parameters for
Ni-GDC anodes model parameterization and review the available
literature data. The digital representation of microstructures,
together with simulation data of aging processes, sets the stage
for our novel AL framework, which efficiently leverages BO to
parameterize SOFC simulations and is developed in the form
of automated workflows within the Kadi4Mat infrastructure,
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Figure 1. AL framework embedded in SOFCs studies. The whole data process operates within the Kadi4Mat ecosystem, leveraging and expanding its
functionalities. The dataset of available SOFC simulations is stored in Kadi4Mat, where it is accessed by the BO Oracle. Using the collected information,
the oracle iteratively selects the parameter configurations expected to yield the most informative results for the chosen optimization objective. A sim-
ulation is run with each selected configuration, analyzed, scored, and uploaded again into Kadi4Mat, to enrich the data pool guiding the search more
effectively.

allowing for seamless data management and iterative optimiza-
tion. Figure 1 illustrates the concept and data workflow of the
presented AL framework applied to SOFC studies. The require-
ments for the parameter search, as well as all available SOFC
simulations, are stored in Kadi4Mat. Based on these data, the
BO Oracle iteratively selects parameter configurations predicted
to yield the most informative insights for the optimization ob-
jective. Each selected configuration is then simulated, analyzed,
scored, and uploaded to Kadi4Mat, incrementally enriching the
dataset to enhance the search process.

2.1. Acquisition of 3D Microstructure Data

The 3D microstructure data for this study were reconstructed
from small samples of Ni-GDC anodes that were manufactured
at Forschungszentrum Jülich (FZJ) and artificially aged at KIT by
Y. Liu et al.[6] The samples were analyzed with a Plasma-FIB de-
vice, comprising the following steps: (i) infiltration of the pores
with an electrically conductive epoxy resin and metallographic
sectioning, (ii) micro-preparation with a focused ion beam (FIB),
(iii) alternating SEM imaging and slicing with a Plasma-FIB de-
vice. The resulting 3D grayscale image was denoised using split-
Bregman optimization and then segmented with the watershed
algorithm. To find good markers (seeds) for the watershed, a
custom procedure was developed that automatically determines
suitable thresholds from the gray value histogram and removes
all markers near interfaces (large gray value gradient) and near
ridge-like features (Meijering filter).

2.2. Pace3D - Parallel Algorithms for Crystal Evolution in 3D

A Multiphase-field Model, based on the grand-potential func-
tional developed by Choudhury and Nestler,[15] is employed with
a recent enhancement that accounts for surface self-diffusion[16]

to model the coarsening phenomena of both nickel and GDC.
The formulation of the model involves the grand-potential func-
tional Ω (in J) of the system of volume V , which is dependent

on the order parameters 𝝓 =
{
𝜙𝛼 ,𝜙𝛽 ,… ,𝜙N

}
(dimensionless)

of N phases, as well as the volumetric chemical potentials 𝝁 =
{𝜇1,𝜇2,… ,𝜇K−1} (in Jm

−3) of K components, and is stated as:

Ω(𝝓,𝛁𝝓,𝝁) = ∫V

1
𝜖
w(𝝓) + 𝜖a(𝛁𝝓) + 𝜓(𝝓,𝝁) dV (1)

In this framework,w(𝝓) (in Jm−2), a(𝛁𝝓) (in Jm−4) and𝜓(𝝓,𝝁)
denote the potential, gradient, and bulk terms respectively. The
scalar parameter 𝜖 (in m) controls the length scale and deter-
mines the width of the diffuse interface 𝛿 = 𝜖𝜋2∕4. The com-
bined potential and gradient terms following the notation of ref.
[37] incorporate interfacial energy into the model and stabilize
the interface profile with finite thickness. The gradient term is
given following[38] as:

a(𝛁𝝓) = −
N,N∑
𝛼,𝛽=1
𝛼<𝛽

𝛾𝛼𝛽𝛁𝜙𝛼 ⋅ 𝛁𝜙𝛽 (2)

where 𝛾𝛼𝛽 (in Jm−2) denotes the interfacial energy of 𝛼 and 𝛽
phases. For the present work, we chose an obstacle potential of
the form,

w(𝝓) =
⎧⎪⎨⎪⎩

16
𝜋2

∑N,N
𝛼,𝛽=1
𝛼<𝛽

𝛾𝛼𝛽𝜙𝛼𝜙𝛽 , 𝜙 ∈ 
∞, 𝜙 ∉  (3)

withGibbs simplex={∑N
𝛼=1 𝜙𝛼=1:{𝜙𝛼 ≥ 0,∀𝛼 ∈ {1,… , N}}

}
.

The bulk grand-potential density is defined as an in-
terpolation of the grand-potential densities of the bulk
phases, given by 𝜓(𝝓,𝝁) =

∑N
𝛼=1 𝜓

𝛼(𝝁)h𝛼(𝝓), where 𝜓𝛼(𝝁) =
f 𝛼

(
c𝛼(𝝁)

)
−
∑K−1

i=1 𝜇ic
𝛼

i (𝝁), ∀𝛼 ∈ {1,… , N} represents the grand-
potential density for phase 𝛼. This incorporates into the func-
tional the bulk free-energy f 𝛼 , dependent on the phase-inherent
compositions c𝛼 =

{
c𝛼1 , c

𝛼

2 ,… , c𝛼K−1
}
. In the present work, the

interpolation function is chosen as h𝛼(𝝓) = 𝜙𝛼 and satisfies
the constraint

∑N
𝛼=1 h𝛼(𝝓) = 1. A local quasi-equilibrium is
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assumed, ensuring that at every spatial position, the condition
𝜇i = 𝜕f 𝛼 (c𝛼 )∕𝜕c𝛼

i
= 𝜕f 𝛽(c𝛽)∕𝜕c𝛽

i
= ⋯ = 𝜕f N(cN)∕𝜕cN

i
is satisfied for all

i ∈ {1,… , K − 1}.
The evolution equation of each phase-field 𝜙𝛼 , in accordance

with,[38] is expressed as:

𝜖
𝜕𝜙𝛼(x, t)
𝜕t

= 1
Ñ

N∑
𝛽=1
𝛽≠𝛼

m𝛼𝛽

(
𝛿Ω
𝛿𝜙𝛽

− 𝛿Ω
𝛿𝜙𝛼

)
(4)

Here, Ñ represents the local number of phases, while m𝛼𝛽 (with
units of m4∕J∕s) denotes the mobility of the interface between
phases 𝛼 and 𝛽. The term 𝛿∕

(
𝛿𝜙𝛼

)
is the variational deriva-

tive with respect to 𝜙𝛼 . Nickel and GDC are modeled as pure
solids with nearly fixed compositions by introducing free ener-
gies of the form f 𝛼

(
c𝛼(𝝁)

)
=
∑K−1

i=1 f 𝛼i
(
c𝛼i
)
. The individual contri-

butions are assumed to be simple parabolas, specifically f 𝛼i
(
c𝛼i
)
=

Ai

(
c𝛼i
(
𝜇i
)
− c𝛼i,eq

)2
, i ∈ {Ni,GDC}. Here, the prefactor Ai indi-

cates the strength of immiscibility and is set high enough to en-
sure volume conservation for each phase.
The porous Ni-GDC system is modeled using three distinct

order parameters 𝝓 = {𝜙Ni,𝜙GDC,𝜙Pore}, representing the metal-
lic nickel phase, the GDC structure and the voids. To enable
species transport of each substance, a set of two dimensionless
composition variables c = {cNi, cGDC} (mole fractions), i.e. K = 3,
and the porous phase composition as cPore = 1 −

∑K−1
i=1 ci = 1 −

cNi − cGDC are employed. The dimensionless composition fields
ci =

∑N
𝛼=1 h𝛼c

𝛼

i (mole fractions) are conserved quantities. They
evolve according to the conservation laws governing the system,
as:

𝜕ci(x, t)
𝜕t

= −𝛁 ⋅ ji (5)

where ji denotes the flux of species i (in ms−1). The evolution of
the chemical potential is represented in Einstein’s notation as:

𝜕𝜇i(x, t)
𝜕t

=

[
N∑
𝛼=1

h𝛼 (𝝓)
𝜕c𝛼j (𝝁)

𝜕𝜇i

]−1[
𝜕cj(x, t)

𝜕t
−

N∑
𝛼=1

c𝛼j (𝝁)
𝜕h𝛼 (𝝓(x, t))

𝜕t

]
(6)

For SOFC anodes, Surface diffusion is assumed to be the pri-
mary mechanism for mass transfer in the typical operating tem-
perature range of the SOFC. Compared to the Ni-YSZ anodes,
the Ni-GDC anodes exhibit both nickel and GDC evolution over
time.[39] In addition to the diffusion of nickel and GDC species
along the surfaces, the diffusion along the Nickel/GDC interface
is also considered in thismodel. By accounting for diffusion path-
ways beyond the surface, the model provides a more comprehen-
sive understanding of mass transfer in these anodes. As a result,
the flux density of nickel is expressed as:

jNi = − 32
𝜋2𝜖

∇𝜇Ni(MNiPore
Ni 𝜙Ni𝜙Pore +MNiGDC

Ni 𝜙Ni𝜙GDC) (7)

The diffusion of nickel along the tangential direction of the
free nickel surface and Ni-GDC interface is controlled by the mo-
bilities MNiPore

Ni and MNiGDC
Ni (units of m6∕J∕s) respectively. These

mobilities are linked to the surface self-diffusivity DNiPore
Ni and in-

terface self-diffusivity DNiGDC
Ni through an Einstein-like relation

(cf. [[16], Eq. (99)]), given by,

MNiPore
Ni =

DNiPore
Ni 𝛿sVm

(
ΔcNi−PoreNi,eq

)2
RT

(8)

MNiGDC
Ni =

DNiGDC
Ni 𝛿IVm

(
ΔcNi−GDCNi,eq

)2
RT

(9)

Here, 𝛿s and 𝛿I denote the atomistic thickness of the surface
and interface respectively (in order of 0.1 nm), Vm is the molar
volume of nickel, R and T are the ideal gas constant and tem-
perature, respectively. As DNiPore

Ni 𝛿s and DNiGDC
Ni 𝛿I enter the above

equations, the excess surface diffusivityDNiPore
Ni,ex ≡ DNiPore

Ni 𝛿s, as well
as the excess interface diffusivity DNiGDC

Ni,ex ≡ DNiGDC
Ni 𝛿I (in m

3 s−1)
are defined. These definitions remove the need to assume the sur-
face and interface thicknesses arbitrarily. The composition differ-
ence specific to the model ΔcNi−PoreNi,eq and ΔcNi−GDCNi,eq are defined as

ΔcNi−PoreNi,eq ≡ cNiNi,eq− cPoreNi,eq = 0.8 and ΔcNi−GDCNi,eq ≡ cNiNi,eq− cGDCNi,eq = 0.8,
respectively. Similarly, the flux density of GDC and the associated
mobilities are represented as:

jGDC = − 32
𝜋2𝜖

∇𝜇GDC(MGDCPore
GDC 𝜙GDC𝜙Pore +MNiGDC

GDC 𝜙GDC𝜙Ni) (10)

MGDCPore
GDC =

DGDCPore
GDC 𝛿sVm

(
ΔcGDC−PoreGDC,eq

)2
RT

(11)

MNiGDC
GDC =

DNiGDC
GDC 𝛿IVm

(
ΔcNi−GDCGDC,eq

)2
RT

(12)

Zero flux boundary conditions are enforced at the domain
boundaries, treating the boundaries as isolating (i.e., ji ⋅ n =
0∀i, x ∈ dV), where n denotes the normal to the domain bound-
ary, indicating no net flux across the boundary. Additionally, a per-
pendicular contact condition is assumed for the order parameters
(𝛁𝜙𝛼 ⋅ n = 0), ensuring that the gradient of the order parameter
is normal to the boundary. This manuscript employs a SIMD-
vectorized solver, with the implementation detailed in ref. [40],
Sec. 4.2]. For model validation, the interested reader is directed
to refs. [16] and [17].

2.3. Physical Parameters and Model Parameterization

This section explains the method for determining the physical
parameters for coarsening in the Ni-GDC anode. For the present
work, the temperature T = 900◦C is chosen, corresponding
to the experimental conditions for Ni-GDC anode annealing.
Determining the parameters in physical modeling simulations
corresponding to experimental conditions is pivotal to quanti-
tatively reproducing the microstructural aging of the Ni-GDC
anode as observed in experiments. Figure 2 demonstrates the
importance of identifying these parameters for predicting the
long-term performance of the anode under specific operating
conditions. For the sake of simplicity, the phase-field model
parameters are expressed in a model-specific unit system, with

Adv. Energy Mater. 2025, 15, 2501216 2501216 (4 of 21) © 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 2. Microstructural evolution in Ni-GDC anodes. Experimental conditions (temperature, environment) drivemicrostructure changes, while precise
parameter settings in physical modeling simulations aim to reproduce these outcomes accurately. This precision is crucial for quantitatively simulating
microstructural aging. Note: Size variations between pristine and aged samples reflect different FIB-SEM volume segments, not aging effects.

ul, uE and ut representing the model’s units for length, energy,
and time, respectively. The length unit ul is defined based on the
resolution of the initial microstructure (Δx) in the numerical
grid of discretization Δx = Δy = Δz. The energy and time units
are related through the Nickel surface energy 𝛾NiPore, Nickel sur-
face diffusivity DNiPore

Ni , and temperature T (refer to Equation (8)).
Table 1 presents the model’s parameterization.

2.3.1. Nickel Diffusion Coefficients

The mechanisms of volume self-diffusion are well-established,
and the corresponding Arrhenius parameters are known with
high precision. In contrast, surface diffusion is less extensively

studied and exhibits a considerable degree of measurement
uncertainty, often varying by one to two orders of magnitude.
This variability is evident in the literature, where reported
values for surface and grain boundary self-diffusion are highly
inconsistent.[41–44] Anisotropy, annealing atmosphere, and ma-
terial purity significantly influence measured diffusivities. The
annealing atmosphere has a particularly pronounced effect on
surface diffusion, as themobility of surface atoms is highly sensi-
tive to the adsorption of gasmolecules and impurities. For nickel,
the partial pressure of oxygen in the annealing environment
notably impacts surface diffusion rates. The current literature on
nickel surface and grain boundary diffusion lacks the necessary
precision for reliable phase-field simulations. Haremski et al.[19]

recently performed thermal grooving experiments on nickel

Table 1. Phase-field parameters used in simulations of Ni-GDC anode. The model units are stated as ul = 50 nm, uE = 6.25 × 10−15 J, ut = 1.45 × 10−2 s.

Parameter [symbol] Value [model units] Value [physical units]

Ni-surf. chem. mobility (MNiPore
Ni ) (10−1 … 10−3) u6

l
∕ (uEut) (1.73 × 10−29 … 1.73 × 10−31) m6∕J∕s

Ni-nickel/GDC interf. chem. mobility (MNiGDC
Ni ) (10−3 … 10−8) u6

l
∕ (uEut) (1.73 × 10−31 … 1.73 × 10−36) m6∕J∕s

GDC-surf. chem. mobility (MGDCPore
GDC ) (2.11 × 10−6 … 2.11 × 10−9) u6

l
∕ (uEut) (3.65 × 10−34 … 3.65 × 10−37) m6∕J∕s

GDC-nickel/GDC interf. chem. mobility (MNiGDC
GDC ) (2.11 × 10−8 … 2.11 × 10−14) u6

l
∕ (uEut) (3.65 × 10−36 … 3.65 × 10−42) m6∕J∕s

Interfacial energy Ni-Pore (𝛾NiPore) 1.0… 0.6 uE∕u2l 2.5… 1.5 J m−2

Interfacial energy Ni-GDC (𝛾NiGDC) 1.2… 0.4 uE∕u2l 3.0… 1.0 J m−2

Interfacial energy Pore-GDC (𝛾GDCPore) 0.8… 0.28 uE∕u2l 2.0… 0.7 J m−2

Interface mobility Ni-Pore (mNiPore) (10−1 … 10−3) u4
l
∕ (uEut) (6.92 × 10−15 … 6.92 × 10−17) m4∕J∕s

Interface mobility Ni-GDC (mNiGDC) (10−1 … 10−3) u4
l
∕ (uEut) (6.92 × 10−15 … 6.92 × 10−17) m4∕J∕s

Interface mobility Pore-GDC (mGDCPore) (10−1 … 10−3) u4
l
∕ (uEut) (6.92 × 10−15 … 6.92 × 10−17) m4∕J∕s

Interface width parameter (𝜖) 2.0 ul 100 nm

Voxel-size (Δx = Δy = Δz) 1.0 ul 50 nm

Thermodynamic prefactor Nickel (ANi) 5 uE∕u3l 2.5 × 108 J∕m3

Thermodynamic prefactor GDC (AGDC) 50 uE∕u3l 2.5 × 109 J∕m3

Equil.-comp. Ni-Ni (cNiNi,eq) 0.9 90 mol%

Equil.-comp. Ni-GDC (cGDCNi,eq) 0.1 10 mol%

Equil.-comp. Ni-Pore (cPoreNi,eq) 0.1 10 mol%

Equil.-comp. GDC-Ni (cNiGDC,eq) 0.1 10 mol%

Equil.-comp. GDC-GDC (cGDCGDC,eq) 0.9 90 mol%

Equil.-comp. GDC-Pore (cPoreGDC,eq) 0.1 10 mol%
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bicrystals to determine the surface diffusion coefficient with
high accuracy. These studies, conducted at a temperature of
T = 750◦C, report values that align with those found by Blakely
et al.[41] when extrapolating the Arrhenius lines for the {100} and
{111} surfaces to lower temperatures. Based on this correlation,
the excess surface diffusion coefficient (DNiPore

Ni,ex ) for pure and
impure nickel at T = 900◦C was evaluated using the Arrhenius
equation fitted to Blakely et al.’s experimental data,[41] result-
ing in a range of 1.74 × 10−21 to 2.1 × 10−20 m3 s−1. Hoffrogge
et al.[17] assumed, following the results of Haremski et al.,[19] that
diffusion along the slow {100} surface orientation is rate-limiting
and estimated an excess surface diffusion coefficient from an
average of four data points near {100} as 3.75 × 10−22 m3 s−1 at
T = 750◦C. Given the considerable variation in reported surface
diffusion values in the literature, excess surface diffusion coef-
ficient with a range of 4.0 × 10−22 m3 s−1 to 4.0 × 10−20 m3 s−1

is considered. The diffusion values range considered in this
manuscript’s study accounts for inherent uncertainties and en-
compasses both faster and slower diffusion rates along different
surface orientations. This approach ensures a comprehensive
evaluation of diffusion behavior across various conditions. Due
to the scarcity of literature data, the excess diffusion coefficient
of nickel along the nickel-GDC interface (DNiGDC

Ni,ex ) is assumed to
range from 4.0 × 10−22 m3 s−1 to 4.0 × 10−27 m3 s−1. This range
is consistent with the general theory that surface diffusion is the
fastest, followed by interface diffusion, and bulk diffusion is the
slowest.

2.3.2. Nickel Surface Energy

The literature reports experimentally determined mean surface
energies of nickel ranging from 1.6 to 2.5 J∕m2, varying with
method, temperature, and atmospheric conditions, providing an
initial indication of their magnitude.[42,45–49] Complementary to
these experimental findings, atomistic simulations can deter-
mine the anisotropy of surface energy, typically calculated at T =
0 K. It is observed that surface energy decreases with increasing
temperature, with a difference of approximately 10%between val-
ues at T = 0 K and the melting temperature. These simulations
have provided weighted mean surface energy values for nickel of
2.04 J∕m2[50] and 2.54 J∕m2,[51] respectively. However, the experi-
mental conditions differ significantly from those within an SOFC
anode. Furthermore, the influence of humidity on these param-
eters has not been extensively studied. It is known that oxygen
adsorption can reduce surface energy, and impurities adsorbed
on the surface can similarly affect surface energy.
Haremski et al.[18] conducted thermal grooving experiments

on Ni polycrystals and Ni-YSZ anode microstructures under
SOFC anode operating conditions at T = 750◦C in both dry and
humid forming gas using atomic force microscopy. The carrier
gas used was forming gas (95%N2∕5%H2), and a maximum hu-
mid atmosphere (29 vol.% H2O and 71 vol.% forming gas) was
chosen, without annealing in an oxidizing environment. The
measured oxygen partial pressure was PO2 = 10−25atm in dry
forming gas and PO2 = 10−19atm in humid forming gas. They
concluded that these values are still low and not forming an ox-
idizing atmosphere, thus avoiding the adsorption of oxygen on
the surface, which could reduce the surface energy.

In the current study, the SOFC operating conditions are
at a temperature of T = 900◦C with a gas composition of
H2-50% ∕ H2O-50%, and the material system is Ni-GDC. Under
these conditions, the oxygen partial pressure could potentially
impact the surface energy values. It was shown in the study by
Fujimatsu et al.[52] that the oxygen partial pressure in SOFCs can
vary significantly depending on current density, flow rate, and op-
erating temperature and can range up to PO2 = 10−15atm. Also,
investigations on the effects of oxygen partial pressure on surface
energies indicate that the surface energy decreases with increas-
ing oxygen partial pressure.[53,54] As a result, rather than employ-
ing a fixed surface energy value, this study considers the surface
energy of nickel as a variable, spanning a range from 1.5 to 2.5
J∕m2, to account for possible variations.

2.3.3. GDC Diffusion Coefficients and Surface Energy

Experimental studies of grain-boundary grooving on polished
surfaces of Ceria (CeO2) annealed in an argon atmosphere were
conducted over a temperature range of 1473 − 1773 K. From Ar-
rhenius plots of the surface diffusion coefficient, the value at T =
900◦C was estimated to be 7.2 × 10−18m2/s and the correspond-
ing excess surface diffusion coefficient as 2.4 × 10−27m3/s.[55] An-
other study examined polycrystalline CeO2 by developing ther-
mal grain boundary grooves at different temperatures 1473 −
1663 K in air, using atomic force microscopy (AFM). The sur-
face diffusion coefficient of CeO2 was calculated from Arrhe-
nius plots at T = 900◦C, yielding values ranging from 10−18 to
10−20m2/s.[56] As a result, GDC excess surface diffusion coeffi-
cient (DGDCPore

GDC,ex ) for the AL Bayesian framework is given in the
range of 2.4 × 10−25 m3 s−1 to 2.4 × 10−28 m3 s−1. Given the lack
of experimental data, the excess diffusion coefficient of GDC at
the nickel/GDC interface (DNiGDC

GDC,ex) is assumed to fall within the
range of 2.4 × 10−27m3s−1 to 2.4 × 10−33m3s−1.
From the literature, it was found that the surface energies of

CeO2 from simulation studies are reported for the {100}, {110},
and {111} surfaces with values of (1.44, 1.06 and 0.71 J∕m2),
(1.4, 1.0 and 0.7 J∕m2), and (1.41, 1.04 and 0.69 J∕m2),
respectively.[57–59] The GDC surface energy for the {100},
{110}, and {111} surfaces was given as 1.46, 0.90 and 0.74 J∕m2

respectively,[57] Whereas, experimental studies using the multi-
phase equilibration technique estimated the surface energy of
CeO2 in an argon atmosphere at T = 900◦C by extrapolation to
be 1.80 J∕m2.[55] Considering all the above findings, the GDC
surface energy for the AL Bayesian framework is assigned in the
range of 0.7 to 2.0 J∕m2.

2.3.4. Nickel-GDC Interfacial Energy

There is no available literature on interface energies for the
Ni-GDC or Ni-CeO2 systems. However, a study using the mul-
tiphase equilibration technique to determine the interface en-
ergy of the CeO2-Cu system in an argon atmosphere at tem-
peratures ranging from 1473 − 1773 K reports interface en-
ergy of 2.88 J∕m2 at T = 900◦C, based on linear temperature
extrapolation.[55] Additionally, various experimental and compu-
tational methods have determined the interfacial energy values

Adv. Energy Mater. 2025, 15, 2501216 2501216 (6 of 21) © 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH
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for the Ni-YSZ (nickel/yttria-stabilized zirconia) interface. Us-
ing Transmission Electron Microscopy (TEM) and Winterbot-
tom analysis, a study measured the interfacial energy for Ni-
YSZ(111) in the range of 1.8 to 2.1 J∕m2, depending on the spe-
cific configuration of the interface, for Ni-YSZ(001) as around
2.5 J∕m2 at 1350◦C in an Ar+H2 (99%) atmosphere with a PO2
of 10−20 atm.[60,61] By considering these similar systems and to
account for different scenarios of wetting to dewetting, a range
of 1.0 to 3.0 J∕m2 as Ni-GDC interfacial energy is considered ap-
propriate for this study.

2.3.5. Interface Mobilities and Parabolic Free Energy

A comprehensive investigation of surface diffusion-driven ther-
mal grooving was conducted by Hoffrogge et al.[16] to validate
the model employed in the present study against established the-
ories. Their results showed good agreement with analytical so-
lutions of sharp interfaces, confirming model accuracy. In ad-
dition, the surface diffusion-controlled kinetics can be correctly
quantified using the growth rate constant (B) of the model ob-
tained from the asymptotic analysis. The value of B is evaluated
in the present study according to (cf. [[16], Eq. (99) ff.]). In order
to minimize the effects of attachment kinetics, the interface mo-
bilities (m𝛼𝛽 ) are chosen in this work such that attachment ki-
netics remain subdominant. It is ensured by the characteristic
length scale associated with the attachment kinetics, defined as
(lc =

√
B∕(𝛾𝛼𝛽 m𝛼𝛽 )) being much smaller than the diffuse inter-

face width, i.e., (lc ≪ 𝜋2𝜖∕4).[16]
The minima of the parabolic free energy c𝛼i, eq are specifically

chosen values of 0.1 and 0.9, with an emphasis on maintaining
adequately distinct values to enable differentiation, for instance,
between Ni-rich and Ni-poor phases. The parabolic free energy
function’s chosen prefactor Ai ensures consistent volume preser-
vation. To establish the model’s energy and time scales, we con-
sider the maximum values of nickel’s surface diffusion and sur-
face energy. Subsequently, all other model parameters and their
respective ranges are aligned with this scaling system. Param-
eters such as interface mobilities, stable time steps, and simula-
tion time are selected by our AL Bayesian Oracle for each simula-
tion trial. This optimization ensures efficient resource utilization
while maintaining a consistent physical time across all simula-
tions.

2.4. Analysis of 3D Ni-GDC Anode Porous Microstructure

The microstructural parameters of the 3D Ni-GDC porous
anode–phase volume fraction, specific surface areas, median par-
ticle diameter from the continuous particle size distribution, tor-
tuosity, and triple-phase boundary lengths (TPBs)–were precisely
calculated using established methods (see Table B1 in B). These
parameters collectively define the anode’s structural and func-
tional efficiency, significantly influencing its electrochemical ac-
tivity, as well as ion and gas transport, and ultimately impacting
the overall cell performance.
The continuous particle size distributions, according to

Münch and Holzer,[62] are employed to quantify particle sizes
during coarsening by measuring the relative volume of a phase

Table B1. Microstructural characteristic properties of pristine and 240-
hour-aged Ni-GDC anodes.

Parameter Symbol Pristine 240h aged

Ni Vol% VNi 22.44 22.43

GDC Vol% VGDC 41.38 39.84

Pore Vol% VPore 36.18 37.74

Ni/Pore Specific Area (μm−1) ANi−Pore 0.37 0.33

GDC/Pore Specific Area (μm−1) AGDC−Pore 1.50 1.38

Ni/GDC Specific Area (μm−1) ANi−GDC 0.67 0.61

GDC Tortuosity (−) 𝜏GDC 2.57 3.07

Pore Tortuosity (−) 𝜏Pore 2.57 2.40

Total TPB density (μm−2) lTPB 1.82 1.55

Nickel Avg. Particle Diameter (μm) dNickel 0.91 1.04

GDC Avg. Particle Diameter (μm) dGDC 0.59 0.62

Pore Avg. Particle Diameter (μm) dPore 0.60 0.68

Total volume (μm3) V 6666 4800

Voxel size (μm) Δx = Δy = Δz 0.05 0.05

that can be filled with overlapping spheres of varying diameters,
avoiding artificial segmentation and providing a complemen-
tary cumulative distribution that decreases from unity to zero as
sphere diameter increases. The median particle size (d50) is de-
termined at the distribution’s midpoint value of 0.5. The tortu-
osity (𝜏𝛼) of a phase, a dimensionless number, is estimated by
solving the Laplace equation for electric potential under specific
boundary conditions, calculated as the ratio of hypothetical ideal
current to actual current, providing a scale-invariant geometri-
cal measure of transport pathway complexity.[63] The mean tor-
tuosity is calculated by averaging the values in the x, y, and z
directions, i.e., 𝜏𝛼 ≡ 1

3

(
𝜏𝛼,x + 𝜏𝛼,y + 𝜏𝛼,z

)
, which reflects the over-

all transport characteristics of the phase. The TPB is calculated
using a skeletonization algorithm that marks intersection vox-
els, reduces them to single-voxel thickness, and smooths the net-
work to minimize discretization effects.[64] Specific areas of each
phase (A𝛼) are calculated by integrating the magnitude of its
order parameter, i.e., A𝛼 =

1
V
∫V ||∇𝜙𝛼|| dV , with individual inter-

face areas (A𝛼−𝛽 ) derived by solving a system of linear equations.
Given the mixed conductivity of GDC, its entire surface is active
for electrochemical reactions, making the interface area of GDC-
Pore (forming the double phase boundary, DPB) significant. All
these methods were implemented in-house within the PACE3D
Framework and validated against known test cases.[17]

2.5. Subdomains of 3D Microstructure for AL Framework

The size of representative volume elements (RVE) for Ni-GDC
anodes is crucial for performing ML-based phase-field simula-
tions. To analyze the RVE size, subdomains representing 1∕4th,
1∕9th, and 1∕16th of the real domain volume were extracted and
evaluated. Specifically, subdomain sizes of 14 × 18.5 × 6.4 μm3

(1∕4th of the real domain volume), 9.4 × 12.4 × 6.4 μm3 (1∕9th of
the real domain volume), and 7.0 × 9.2 × 6.4 μm3 (1∕16th of the
real domain volume) were extracted from the real Ni-GDC anode
microstructure (28.2 x 37 x 6.4 μm3). These subdomains were an-
alyzed and compared based on theirmicrostructural properties to
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Figure 3. Sub-regions extracted from a pristine FIB-SEM 3D reconstructed real microstructure. Sub-regions representing 1∕4th, 1∕9th, and 1∕16th of the
total volume were extracted from the Central region of the real microstructure. Given that the microstructure’s thickness in the z-direction is only 6.4
μm, it was kept consistent for all sub-regions, with only x- and y-dimensions being reduced accordingly.

determine the optimal domain size for phase-field simulations.
The intention of this paper is to conduct numerous ML-driven
phase-field simulations on the initial microstructure, exploring
a wide range of thermophysical parameters from the literature
to identify the appropriate and missing physical parameters of
the Ni-GDC anode under given operating conditions. Although
simulating significantly larger volumes could provide compre-
hensive insights, the requirement for computing resources and
simulation times increase greatly. Therefore, the study focuses on
finding a balance between computational feasibility and the ac-
curacy of microstructural representation. Figure 3 illustrates the
positions of the subdomains derived from the digital representa-
tion of the real microstructure domain and their morphology.
Table B2 in B presents the microstructural characteristic prop-

erties of the real domain and various subdomains (1∕4th, 1∕9th,
and 1∕16th of the real domain volume) for the Ni-GDC anode. The
table shows that the volume percentages of Ni, GDC, and pore
phases exhibit minimal variation across all subdomains, indicat-
ing that the chosen subdomains adequately represent the bulk
properties. Specific surface areas forNi-Pore andGDC-Pore show
relatively higher deviations in the 1∕16th subdomain compared
to the other subdomains. In contrast, the Ni-GDC interface re-
mains consistent across all subdomains. Tortuosity values vary
with smaller subdomains, with relatively high deviations sug-
gesting that tortuosity is a more localized property and transport
paths are not uniformly homogeneous across the structure. The
total TPB density also shows a significant deviation from the real

domain in the 1∕16th subdomain. However, the average particle
diameters for Ni, GDC, and pores remain consistent across all
subdomains, further validating the representativeness of these
smaller volumes.
Selecting the subdomain with 1∕9th of the real domain vol-

ume emerges as an optimal choice, balancing computational effi-
ciency and accurately representing the real domain’s microstruc-
tural properties. This subdomain size retains the essential char-
acteristics of the real domainwhile significantly reducing compu-
tational demands compared to the larger 1∕4th subdomain. Con-
sequently, the 1∕9th subdomain size is ideal for performing effi-
cient phase-field simulations without compromising the fidelity
of the microstructural representation. In contrast, the 1∕16th sub-
domain, while further reducing computational load, may not be
as suitable. The larger deviation in TPB density and the increas-
ing tortuosity deviations indicate that the smallest subdomain
may not capture the complexmicrostructural details as accurately
as the larger subdomains. Therefore, the 1∕16th subdomain could
potentially lead to less reliable simulation results, making it a less
optimal choice for accurate phase-field simulations.
In order to assess the effects of statistical fluctuations and

verify the representativeness of the selected subdomain, we per-
formed a quantitative error analysis based on variations in mi-
crostructural properties in nine non-overlapping subdomains,
each comprising 1∕9 of the total volume. For each subdomain,
the microstructural properties are calculated, and their statisti-
cal variability is assessed in relation to the values of the original

Adv. Energy Mater. 2025, 15, 2501216 2501216 (8 of 21) © 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH

 16146840, 2025, 34, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aenm

.202501216, W
iley O

nline L
ibrary on [17/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advenergymat.de


www.advancedsciencenews.com www.advenergymat.de

Table B2.Microstructural characteristic properties of pristine and subdomains of various volumes.

Parameter Real domain 1∕4th of real domain 1∕9th of real domain 1∕16th of real domain

Ni Vol% 22.44 22.60 21.92 22.00

GDC Vol% 41.38 40.73 41.57 42.06

Pore Vol% 36.18 36.67 36.51 35.94

Ni/Pore Specific Area (μm−1) 0.37 0.37 0.36 0.34

GDC/Pore Specific Area (μm−1) 1.50 1.49 1.51 1.52

Ni/GDC Specific Area (μm−1) 0.67 0.67 0.67 0.67

GDC Tortuosity (−) 2.57 2.56 2.51 2.46

Pore Tortuosity (−) 2.57 2.57 2.68 2.74

Total TPB density (μm−2) 1.82 1.81 1.80 1.73

Nickel Avg. Particle Diameter (μm) 0.91 0.92 0.93 0.93

GDC Avg. Particle Diameter (μm) 0.59 0.58 0.58 0.58

Pore Avg. Particle Diameter (μm) 0.60 0.62 0.62 0.61

Total volume (μm3) 6666 1664 743 417

Voxel size (μm) 0.05 0.05 0.05 0.05

domain. The results, summarized in Table B3 and illustrated in
Figure B1a in B, show that the coefficient of variation (CV) for all
nine microstructural properties is in the range of 1 to 5%, with
a mean CV of about 3%, indicating low variability. Furthermore,
based on the law of large numbers and assuming statistical in-
dependence of the subdomains, the statistical uncertainty of the
properties of the total volume is only approximately

√
1∕9 = 1∕3

of the observed scatter of the subdomains. Thus, the expected
CV for the total volume for all properties is less than 2%. In com-
parison, the aged microstructure exhibits property changes of up
to 20% compared to the pristine state, with a mean deviation
of about 11%. Although the pristine and aged microstructures
were reconstructed fromdistinct regions, both originate from rel-
atively central areas of the anode, minimizing edge effects and
spatial heterogeneity. This is supported by a statistical analysis of
four non-overlapping 1∕2 subdomains of the original microstruc-
ture, which shows CV values between 0 and 2% across all prop-
erties, indicating negligible spatial variations (see Table B4 and
Figure B1b in B). Furthermore, the volume of the original mi-
crostructure exceeds the threshold for the representative volume
element (RVE) of 103 particles, where most properties converge
to stable values, as concluded by Joos et al.[65]

2.6. Active Learning Framework

2.6.1. Virtual Research Environment

The research was conducted within Kadi4Mat,[36] our research
data infrastructure that supports FAIR modeling of scientific
processes. Kadi4Mat integrates modules such as a community
repository and an electronic lab notebook, which facilitate data
management, workflow automation, and reproducibility. A core
feature of the Kadi ecosystem is its visual workflow functional-
ity, provided through KadiStudio.[66] KadiStudio is a standalone
desktop applicationwithin Kadi4Mat that functions as aworkflow
editor, allowing users to design and execute scientific processes
visually. These workflows, composed of interconnected nodes
with distinct functionalities, enable structured storage, visualiza-
tion, and sharing through seamless communication with Kadi-
Web. Our AL framework is implemented as part of KadiAI, the
Kadi4Mat’s interface for Machine Learning and Artificial Intelli-
gence, and made available as a collection of workflow nodes. The
framework leverages the features of the overarching systemwhile
enhancing and expanding its functionalities. Additionally, by in-
tegrating pre-existing libraries such as TensorFlow-Keras[67] and

Table B3. Evaluation of statistical fluctuations in microstructural properties over 1∕9th of real domains.

Parameter Mean Standard Deviation Coefficient of Variation (%)

Total TPB density (μm−2) 1.79 0.074 4.13

Ni/Pore Specific Area (μm−1) 0.37 0.016 4.41

Ni/GDC Specific Area (μm−1) 0.67 0.023 3.47

GDC/Pore Specific Area (μm−1) 1.50 0.028 1.87

GDC Tortuosity (−) 2.60 0.138 5.29

Pore Tortuosity (−) 2.61 0.133 5.08

Nickel Avg. Particle Diameter (μm) 0.91 0.0247 2.71

GDC Avg. Particle Diameter (μm) 0.59 0.008 1.38

Pore Avg. Particle Diameter (μm) 0.60 0.014 2.33
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Figure B1. Comparison of normalized microstructural properties variations over different subdomain sizes against the real domain. a) Normalized
property values and error bars for the nine subdomains of size 1/9. b) Normalized property values and error bars for the four subdomains of size 1/2.
Each bar represents the mean value across the subdomains, with the error bars indicating the standard deviation. The values of the real domain are
used as a normalization reference.

scikit-learn,[68] we ensure compatibility with widely-used stan-
dards and robust performances.

2.6.2. Bayesian Optimization

Bayesian Optimization (BO) is a sequential, surrogate-based
method designed for optimizing expensive-to-evaluate black-box
functions, such as those encountered in modeling the complex
microstructural evolution of SOFC anodes. The methodology be-
comes especially valuable in our study, which involves navigat-
ing a 7-dimensional parameter space defined by feasible values
for seven key input parameters used in multi-phase field simu-
lations (namely, interfacial energies and excess interface diffu-
sivities), whose interrelationships are intricate and often poorly
characterized. The general optimization task can be formalized
as:

minx∈ f (x),  ⊆ ℝn (13)

where f is a derivative-free, potentially non-convex, and possibly
noisy function, whose evaluations are computationally expensive

and therefore limited. In our case, f measures the discrepancy
between simulated and experimental microstructural properties
of the Ni-GDC anode; for details, see Section 3.1. BO addresses
this by constructing a probabilistic surrogate model (typically a
Gaussian Process) over f , which can be iteratively updated and
queried to inform optimization decisions. The model, rooted in
Bayes’ theorem, combines the prior knowledge about the space
of possible objective functions, with the likelihood of the observed
data , generating a posterior distribution,

P(f |) ∝ P(|f |)P(f ) (14)

which represents our updated beliefs about the objective function
f , given observed data. A popular technique is to treat the prob-
lem as a Gaussian process regression model. A Gaussian Pro-
cess (GP) is an extension of a multivariate Gaussian distribution
to a stochastic process that constructs a joint Gaussian distribu-
tion over all finite selections of function values.[69] A GP is fully

Table B4. Evaluation of statistical fluctuations in microstructural properties over 1∕2 of real domains.

Parameter Mean Standard deviation Coefficient of Variation (%)

Total TPB density (μm−2) 1.810 0.036 1.99

Ni/Pore Specific Area (μm−1) 0.370 0.007 1.91

Ni/GDC Specific Area (μm−1) 0.673 0.004 0.64

GDC/Pore Specific Area (μm−1) 1.50 0.007 0.47

GDC Tortuosity (−) 2.583 0.019 0.74

Pore Tortuosity (−) 2.578 0.046 1.79

Nickel Avg. Particle Diameter (μm) 0.913 0.004 0.47

GDC Avg. Particle Diameter (μm) 0.590 0.000 0.00

Pore Avg. Particle Diameter (μm) 0.605 0.005 0.83
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Figure 4. Representative iteration of the BO algorithm employed for a synthetic 1D BOmaximization problem. The BOmethod quantifies the uncertainty
(light blue areas) around its prediction (blue line), allowing informed decisions for selecting the next sample. At each step, the data point to be sampled
is determined by maximizing the acquisition function (b), which in this case is the UCB. This visualization is automatically generated by the framework
for every 1D optimization problem, and uploaded in Kadi.

specified by its mean 𝜇(x) = E[f (x)] and covariance (or kernel)
function k(x, x′) = E[(f (x) − 𝜇(x))(f (x′) − 𝜇(x′))], as:

f (x) ∼ (𝜇(x), k(x, x′)) (15)

representing respectively the model’s prediction and uncertainty
in the objective function at the point x, see Figure 4a. At each iter-
ation, the method selects the next evaluation point by maximiz-
ing an acquisition function (Figure 4b) that controls the decision-
making process. This function interprets the GP model’s pre-
dicted mean and variance, balancing exploration of new areas
with exploitation of known promising regions. After each eval-
uation of the objective function, the surrogate model is updated
with the new data point. This iterative process refines the sur-
rogate model’s understanding of the objective function land-
scape, enabling increasingly accurate predictions. Compared to
grid search, which becomes computationally prohibitive in our
7-dimensional parameter space by evaluating all combinations
uniformly, BO significantly reduces the computational burden by
targeting only themost informative regions. Similarly, in contrast
to genetic algorithms, which rely on stochastic variation and lack
explicit modeling, BO leverages a probabilistic surrogate to guide
the search more efficiently and typically reaches comparable so-
lutions with fewer evaluations.

2.6.3. Scientific Workflow Implementation

The AL framework used for this study is provided entirely as a
modular collection of workflow nodes, each designated for a spe-
cific function (see Figure 5 for details). The workflow consists
of five main groups of nodes that manage the complete data pro-
cess: pre-processing Figure 5c, simulation and cluster communi-
cation Figure 5d, post-processing Figure 5e, and two AL compo-
nents: the BO Oracle Figure 5b and the Scorer Figure 5f. The BO
Oracle node encapsulates the AL-concept of an oracle, selecting
data points for evaluation to progressively refine model perfor-
mance. Upon execution, this node retrieves necessary informa-
tion for the search fromKadiWeb, specifically from an “umbrella”

Record containing the optimization objective (minimization or
maximization), tunable parameters, and their valid ranges. Based
on the information extracted from the umbrella record, the Ora-
cle employs BO to efficiently explore the high dimensional pa-
rameter space and suggest the next parameter configuration.
Specifically for this study, we used the scikit-learn implementa-
tion and fit a GP regression model with Matérn kernel[69] with
smoothness parameter 𝜈 = 2.5 and lengthscale 𝓁 = 1.0. Matérn-
5/2 (𝜈 = 2.5) is often adopted in BO literature[70,71] for moderate-
dimensional problems since it provides a good balance between
smoothness and flexibility of the learned function. As an acqui-
sition function, we used the popular upper confidence bound
(UCB), due to its strong theoretical guarantees of sublinear cu-
mulative regret, particularly when used withMatérn kernels. Fur-
thermore, this choice provided a transparent and tunable mech-
anism for balancing exploration and exploitation through the ex-
plicit formulation of UCB:

UCB(x, 𝛽) = 𝜇(x) + 𝛽𝜎(x) (16)

i.e., a weighted sum of the expected value 𝜇 and the uncertainty
given by the standard deviation 𝜎 of the Gaussian Process. The
weight is given by 𝛽, the trade-off parameter between exploration
and exploitation. When 𝛽 is small, BO prioritizes areas of the pa-
rameter space with high expected performance, when instead 𝛽
is high, BO incentivizes the exploration of unknown regions.
The next question to address is how the model assesses each

trial to determine its relevance to the optimization objective. AL
algorithms employ a scoring system to prioritize samples with
the highest potential to yield valuable information and enhance
the learning process. In this framework, the Scorer–our second
core component–implements this scoring mechanism, defining
the metric that assesses each simulation trial. This metric, or ob-
jective function, provides a quantitativemeasure of the outcome’s
alignment with the desired target. The Scorer node computes this
metric for each iteration, i.e., for each simulation trial, provid-
ing feedback that directs the Oracle’s navigation of the parameter
space. The iterative process can be terminated once either a spec-
ified maximum number of iterations is reached, or an optimum
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Figure 5. Visualization of the workflow created within KadiStudio to automate the parametrization study of Ni-GDC anodes in SOFCs. The workflow
progresses as follows: a) user-input nodes configure environment variables, working directories, and tokens for the communication with KadiWeb,
streamlining the process; b) a node enclosing the Bayesian Oracle; c) pre-processing nodes that convert the Oracle output into Pace3D simulation input
data; d) nodes that submit simulation jobs to the cluster and monitor the execution; e) post-processing nodes for result analysis; and f) a scorer node
that rates the simulation outcome based on the study’s objective. Each node automatically updates the corresponding Records in Kadi4Mat with newly
acquired information.

value is found within a user-defined threshold. In this work, we
chose as the objective of the optimization a metric of the devia-
tion between the experimental and simulated aging of the SOFC
anode. For simplification, on the main part of this work, we ex-
trapolate the nine most meaningful parameters describing the
final microstructure and measure the discrepancy between the
target and the obtained values. The score assigned to each trial
quantifies this discrepancy. Our objective is, therefore, to min-
imize this distance, which frames the study as a minimization
problem. A smaller distance results in a lower score, indicating a
closer replication of the desired microstructure, and therefore a
better performance.

2.6.4. Data Management and Knowledge Graph Representation

Each parameter configuration suggested by the Oracle automat-
ically triggers the creation of a Record, the basic structured data
entry of Kadi. The available information for each individual eval-
uation (or trial), including the simulation results, is contained
in the Kadi Record and continuously updated through the opti-
mization process. An additional “umbrella” Record, linked to ev-
ery trial Record (see Figure 6), provides an overview of the entire
search from the starting setting of the study (parameter ranges,
objective function, type of optimization), to the best result avail-
able at every step.
Additional visualization options are available to aid in the anal-

ysis and interpretation of the optimization process. For multidi-
mensional optimization problems, parallel coordinate plots are
a good solution to have an overview of the search, visualize the
parameter space exploration, and the current best results. Our
framework automatically produces parallel plots at each itera-
tion (see Figure 7). These plots display each trial as a polyline
intersecting parallel axes, where each axis represents a parame-
ter or the objective score, enabling efficient comparison of multi-

ple trials and identification of trends across the parameter space.
An iteration-specific (Figure 7a) and an overview parallel plot
(Figure 7b) are constantly updated and automatically uploaded
respectively in the trial Records and in the umbrella Record.

3. Results and Discussion

The developed AL framework was exploited to optimize a wide
set of parameters for phase-field simulations of coarsening in Ni-
GDC anode under specific operating conditions. In this section,
we present the results of our study and discuss their implica-
tions. A proof of concept, demonstrating our method’s potential
for efficient parameter optimization in both single- and multi-
dimensional problems, is detailed in A. Following validation, the
framework was applied to 3D FIB-SEM reconstructed Ni-GDC
anode microstructures. In this section, we present the results of
both single- and multi-objective formulations of the considered
optimization problem.

3.1. Framework on 3D FIB-SEM Reconstructed Ni-GDC Anode
Microstructures

The FIB-SEM reconstructed experimental microstructures of Ni-
GDC anode, both in pristine condition and after 240 hours of
aging under given operating conditions, are now used as a refer-
ence in the AL framework. At this stage, the goal is to identify an
optimal set of input parameters that most accurately replicate the
target microstructure properties observed in the FIB-SEM exper-
imental data.

3.1.1. Single Objective Optimization

Building on the successful validation of our approach, we apply
the AL framework to address the core scientific objective of this
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Figure 6. Visualization via Kadi4Mat of the results of our AL framework applied to the 5-dimensional SOFCs optimization problem. Every circle represents
a Kadi Record, which includes all the associated information, i.e., metadata and files. The Record links in the picture clearly visualize all trial configurations
and the current optimal configuration. All the trial Records (dark blue) are linked to the umbrella Record (light blue) with the label “trial for”, while a
second link, “best trial”, denotes the optimal configuration Record.

study: identifying an optimal parameterization for a Ni-GDC an-
ode coarsening model under given operating conditions. Thanks
to the Kadi4Mat RDM environment, which integrates our entire
data workflow, a seamless transition from the validation phase to
the subsequent stages was straightforward.
As explained in Section 2.5, subdomains of real microstruc-

tures were employed, since repeatedly simulating the entire
microstructure within the framework is computationally pro-

hibitive. A subdomain with 9.4 × 12.4 × 6.4 μm3 of volume was
selected as the initial structure for the multiphase-field simula-
tions. Given the inherently destructive nature of FIB-SEM tech-
niques, the pristine and aged experimentalmicrostructures origi-
nate from different regions within the Ni-GDC anode rather than
from a consistent, singular location. This variability limits direct
comparisons of aging between simulated and experimental struc-
tural morphologies. As a result, we focus our benchmark on the

Figure 7. Example parallel coordinates plots produced by the AL framework. These plots visually represent the progression of the parameter search.
Each trial Record in Kadi contains a file showing the iteration-specific result (a). The plot displays the chosen parameter values and a score rating of the
results in the form of gray lines for the past iterations, and a red line for the current one (iteration 7 in the example figure). Furthermore, the umbrella
Record contains an overview parallel coordinates plot (b) showing all the results of the search, each line representing one trial. The coloring of each line
is based on the obtained score. This plot is automatically updated and uploaded into Kadi every time a new evaluation is made.
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Figure 8. a) Search overview of a 5D, single objective optimization, with total TPB density used as scoring value. Target value for total TPB density
found at iteration 11. b) A comparison is presented between the target values for nine considered microstructure properties and those obtained from
the Oracle-guided simulation at iteration 11. The plot demonstrates that the parameter considered for scoring closely matches the target, while others
mostly deviate from their respective target values.

total density of the TPB, an important microstructural parameter
that reflects the phenomena of the aging process. This approach
provides a more reliable benchmark for comparing the aging of
simulated and experimental microstructures, circumventing the
limitations of localized structural variations.
As design variables for our AL Bayesian study, we consid-

ered the parameters 𝛾NiGDC, 𝛾GDCPore, M
GDCPore
GDC , MNiGDC

GDC , MNiGDC
Ni ,

resulting in a 5D search space. For each of these parameters,
we defined a range of plausible values based on available liter-
ature data and physical constraints (see Table 1). Although the
values for nickel’s surface energy and surface diffusion coeffi-
cient show considerable variation across different sources, they
remain well-documented in the literature and are better estab-
lished than those for GDC. For this study, we used fixed values
of 2.26 J∕m2 for the surface energy[18] and 5.48 × 10−22 m3 s−1

for the surface diffusion coefficient, toward lower end of the
value range and approximately one-third ofminimumvalue from
Blakely et al.[41] under the given operating temperature of 900◦C.
Using these fixed values across all simulations reduces the di-
mensionality of the search space, ensures a consistent scaling
system of the model, and simplifies the calculation of other
parameters.
The framework structure established during the validation

stage (see A), along with the KadiStudio workflow automating
the whole process (Figure 5), remains fundamentally unchanged,
aside from a few adjustments. Due to the significant increase in
computational resources required by the simulations, we have
included in our data stream a component that handles the au-
tomated communication with an HPC cluster. Each simulation
was run on the idm-hpc03 high performance computing cluster,
which consists of eight computing nodes, each equipped with
64 cores. This cluster is part of the network infrastructure of
the Institute of Digital Materials Science (IDM), and all compu-
tational tasks were managed using the SLURM workload man-
ager. For the purposes of this study, five nodes of the cluster were
employed to perform the computations. At each iteration of the

framework, the Bayesian Oracle provides its prediction of the
most informative data point in the form of a complete param-
eters’ configuration. The oracle’s output is subsequently input
into a job file designed to initiate Pace3D simulations with the
specified values. The job is then submitted to a computing clus-
ter using SLURM and constantly monitored until completion, at
which point the results are retrieved for post-processing and scor-
ing. The framework was furthermore modified to incorporate
a new scoring metric based on the total triple-phase boundary
(TPB) density, a primary parameter characterizing the resulting
microstructure. This new metric quantifies the deviation of the
simulated TPB density from the experimentally measured value
of the target microstructure. In other words, the objective of the
Bayesian Oracle at this phase is to mimic the total TPB density of
the target microstructure, assessing whether this replication suf-
fices for a comprehensive comparison of the entire microstruc-
ture. Figure 8a shows an overview of the 5D optimization search,
finding the target value of 1.55 at iteration 11, and definitively
converging at iteration 14. Themodel successfullyminimized the
deviation for the single objective parameter, demonstrating its ca-
pability in a focused optimization scenario. However, analyzing
Figure 8(b), we can conclude that a perfect match of a single con-
sidered property or descriptive parameter is insufficient to fully
capture the morphology of the entire Ni-GDC anode microstruc-
ture, as significant deviations are observed when evaluating other
critical descriptive parameters. To address this limitation, it is es-
sential to adopt a more comprehensive approach, ensuring that
all key characteristics are effectively considered and represented
in the optimization process.

3.1.2. Multi-Objective Optimization: Weighted sum Scalarization
Approach

As demonstrated in the previous section, it is crucial to consider
multiple aspects of the microstructure of Ni-GDC anodes to
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achieve a comprehensive representation that can effectively
guide the optimization process. Ideally, we aim to closely
replicate the nine most critical microstructure properties of
the reference microstructure: GDC Tortuosity, Pore Tortuosity,
Ni-GDC Specific Area, Ni/Pore Specific Area, GDC/Pore Specific
Area, Total TPB density, Nickel Avg. Particle Diameter, GDC Avg.
Particle Diameter, Pore Avg. Particle Diameter (for more details,
refer to Section 2.4 and Table B1).
Multi-objective optimization techniques facilitate the simulta-

neous optimization of multiple criteria by considering different
objective functions. The goal for these problems is to find a set
of solutions that represent the best trade-offs among the objec-
tives. This set of solutions is known as the Pareto optimal set or
Pareto front when referring to the image of the Pareto Set in the
objective space (refs. [72] and [73]). Each solution in this set is
non-dominated, meaning that it’s not possible to improve one
objective without worsening at least one other. Building on this
concept, for the final improved configuration of our AL frame-
work, we define an objective function for each of the mentioned
key properties, thereby integrating all of them into the optimiza-
tion process. As we are working with subdomains of the entire
microstructure, in our view, aiming for equal precision in repli-
cating all the properties is not an effective approach. Therefore, as
a scoremetric, we employ a weighted sum scalarization approach
(see e.g., refs. [74] and [75]), a method widely used to convert a
multi-objective problem into a single-objective. This is achieved
by forming an aggregate objective function using a linear com-
bination of all objective functions, i.e., solving a problem of the
form:

minxF(x) = w1f1(x) + w2f2(x) +…wnfn(x) (17)

where fi are the different objective functions, and wi the respec-
tively assigned weights, typically normalized according to 0 ≤
wi ≤ 1,

∑
wi = 1, which leaves the parameter space with n − 1

degrees of freedom. Adjusting the weights results in different
trade-offs between the objectives, thereby emphasizing certain
properties over others and leading to different optimal solutions.
The strength of the weighted sum scalarization method lies in
its flexibility and conceptual transparency, which allows seam-
less incorporation of user or domain preferences. We exploited
this property to reflect tortuosity’s high sensitivity to local mi-
crostructural variations (as outlined in Section 2.5). Specifically,
tortuosity parameters were assigned lower weights (half those
of the other five parameters). The primary purpose of the AL
Bayesian framework is to efficiently explore the physical param-
eters space. This approach is particularly valuable for incorporat-
ing parameters with incomplete or inconsistent literature data,
as well as those influenced by varying operating conditions (refer
to Section 2.3 for the details). Hence, we extend the set of design
variables in order to provide the Oracle with greater flexibility in
exploring a now 7D parameter space. In addition to the five key
input parameters discussed in the previous section Section 3.1.1,
this comprehensive approach involves tuning the model param-
eters related to nickel’s surface diffusion coefficient MNiPore

Ni and
surface energy 𝛾NiPore. The specifically selected ranges of valid-
ity are outlined in Table 1. These include three interfacial ener-
gies and four excess interface diffusivities. The interfacial ener-
gies ranges are as follows: 𝛾NiGDC from 3.0 to 1.0 J m−2, 𝛾GDCPore

from 2.0 to 0.7 J m−2, and 𝛾NiPore from 2.5 to 1.5 J m−2. The ex-
cess interface diffusivities are considered within the following
ranges: DGDCPore

GDC,ex from 2.4 × 10−25 to 2.4 × 10−28 m3 s−1, DNiGDC
GDC,ex

from 2.4 × 10−27 to 2.4 × 10−33 m3 s−1, DNiGDC
Ni,ex from 4.0 × 10−22

to 4.0 × 10−27 m3 s−1, and DNiPore
Ni,ex from 4.0 × 10−22 to 4.0 × 10−20

m3 s−1. The chosen upper bounds of these parameter ranges are
used to establish the model’s time and energy scales across all
simulation runs. Given that nickel’s surface diffusion coefficient
can vary by up to two orders of magnitude, it is crucial to ad-
just the relatedmodel parameters accordingly, such as stable time
step, interfacemobilities, and total simulation time. This ensures
efficient usage of computational resources while maintaining a
consistent representation of the physical aging of microstruc-
tures. To achieve this, the above-mentioned model parameters
are fine-tuned for each simulation run based on the specific sur-
face diffusion values for nickel selected by the Bayesian Oracle
(for more details, refer to Section 2.3).
The increased dimensionality of the parameter space offers the

potential for better exploration but at the price of higher compu-
tational and time demand. An explicit time integration method
is used in our phase-field model, resulting in limitations on the
permissible stable time step. As a result, when simulating the
same physical aging time with higher values of nickel’s surface
diffusion coefficients, the stable time step is further limited. This
results in a longer simulation time and a longer utilization of
computing resources. Therefore, higher values of the surface dif-
fusion coefficients of nickel substantially increase the computa-
tional resource requirements. As the Bayesian Oracle now navi-
gates amore complex and challenging landscape, it is expected to
require additional initial information and an overall greater num-
ber of iterations to reach optimal solutions. This translates into
a preset higher number of initial random points (seven), and re-
sults in an extended timeframe to achieve satisfactory accuracy.
Figure 9 provides an overview of the framework executed with
the aforementioned setting. The entire execution of 43 iterations
using the Bayesian AL framework took approximately 7 days and
18 hours on the idm-hpc03 high-performance computing cluster
employing 315 cores.
Since in multi-objective optimization the goal is typically to

find a set of solutions rather than a single optimum data point,
we consider the five best results with an overall 7–8% error, ob-
tained at iterations 19, 27, 31, 37, and 38. Table 2 details the
values suggested by the Oracle for each one of these iterations,
along with the associated errors for each microstructure param-
eter. The five iterations yield a total score between 0.07 and 0.08,
requiring a closer analysis of the physical parameters associated
with each result. The excess surface diffusivity of nickel was con-
sistently found to be 4.0 × 10−22 m3s−1 across all five iterations
with the best scores. The value estimated from the Bayesian AL
framework, 4.0 × 10−22 m3s−1, is approximately four times lower
than the 1.74 × 10−21 m3s−1 calculated for the {100} surface at
900 ◦C using the Arrhenius relation from the experimental data
of Blakely et al.[41] Nevertheless, considering experimental mea-
surement uncertainties ranging from one to two orders of mag-
nitude, the estimated value is reasonable and aligns well with
Hoffrogge et al.’s[17] assumption that diffusion along the slow
{100} surface orientation is the rate-limiting factor. Furthermore,
several factors need to be considered to account for the observed
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Figure 9. Convergence and parameter-match performance of the Bayesian AL framework with weighted sum scalarization approach applied to the 7D,
multi-objective optimization problem as described in Section 3.1.2. a) Optimization convergence over time: The blue line shows the cumulativeminimum
error at each iteration, reflecting continual improvement in solution quality and evidence of plateauing around iteration 27. The grey line displays the
RMSE for each iteration, providing insight into the overall search dynamics. Five iterations within the highlighted threshold achieved satisfactory accuracy
(≤ 8% error). b) Agreement with target microstructural properties: Comparison of nine key descriptors–highlighting the Oracle-guided simulation at
iteration 27, which delivered the best fit at 7% total error. The two tortuosity metrics (left) were assigned a lower weight during scalarization due to their
higher sensitivity to local microstructural changes, while the remaining seven parameters (right) received higher weights to guide the optimization.

discrepancy: variations in experimental conditions and material
purity, assumptions of isotropy, homogeneity, as well as coarsen-
ing as the primary degradationmechanism in themodel, and the
inherent limitations of the Bayesianmulti-objective optimization
framework using the scalarization approach. Nickel diffusion co-
efficients reported by Blakely were measured on pure nickel sur-

faces under high vacuum conditions (∼ 10−5 mm Hg), whereas
the present study involves a Ni-GDC composite anode operating
in an atmosphere of 50%H2 / 50%H2O. Blakely et al.

[41] reported
that impurities tend to adsorb preferentially on specific crystallo-
graphic planes, particularly the (100) planes, thereby obstructing
diffusion pathways and significantly reducing surface diffusion

Table 2. Overview of the 5 iterations with the best score. The top part of the table shows the values suggested by the Bayesian Oracle for each of the 7
input parameters that we asked to tune (for ranges of validity, refer to Table 1. The bottom part of the table shows the error obtained for each of the 9
considered microstructure properties in relation to the reference microstructure and the overall score.

Physical parameters iter 19 iter 27 iter 31 iter 37 iter 38

𝛾NiGDC ( J m−2) 2.98 1.70 1.78 2.68 2.43

𝛾GDCPore ( J m
−2) 1.53 0.70 0.70 1.28 1.43

𝛾NiPore ( J m
−2) 2.50 1.50 1.85 2.50 2.10

DGDCPore
GDC,ex ( m3 s−1) 2.16 × 10−26 1.72 × 10−26 2.07 × 10−26 2.16 × 10−27 4.96 × 10−27

DNiGDC
GDC,ex ( m

3 s−1) 1.14 × 10−33 1.72 × 10−31 1.14 × 10−33 1.14 × 10−33 1.14 × 10−33

DNiGDC
Ni,ex ( m3 s−1) 4.0 × 10−27 1.15 × 10−24 5.40 × 10−26 1.91 × 10−25 4.0 × 10−27

DNiPore
Ni,ex ( m3 s−1) 4.0 × 10−22 4.0 × 10−22 4.0 × 10−22 4.0 × 10−22 4.0 × 10−22

GDC Tortuosity err 3.2e-3 2.8e-3 2.9e-3 2.4e-3 2.7e-3

Pore Tortuosity err 9.8e-4 7.5e-4 8.7e-4 5.4e-4 9.6e-4

Ni-GDC Specific Area err 7.9e-5 1.4e-4 6.0e-6 2.1e-5 4.2e-5

Ni/Pore Specific Area err 7.5e-4 2.9e-4 7.4e-4 1.0e-3 9.6e-4

GDC/Pore Specific Area err 3.3e-5 2.9e-4 1.6e-4 8.1e-4 2.3e-4

Total TPB Density err 5.2e-4 7.3e-5 2.6e-4 1.2e-4 1.8e-4

Ni Avg. Particle Diameter err 6.0e-4 5.4e-4 6.8e-4 6.2e-4 8.0e-4

GDC Avg. Particle Diameter. err 1.5e-7 4.4e-5 3.8e-5 1.3e-4 7.8e-5

Pore Avg. Particle Diameter. err 2.5e-5 3.3e-4 1.6e-4 3.9e-4 1.8e-4

final score 0.078 0.073 0.076 0.078 0.078
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Figure 10. The figure shows the evolution of the 3D microstructure and its 2D cross-section at distinct iterations of the AL framework. a) Initial 3D
microstructure for simulation and a 2D cross-sectional view of it, b) 240 h evolved 3D microstructure and 2D cross-section obtained from the AL
framework at iteration 6 with a poor overall error percentage of 16.6, and c) 240 h evolved 3D microstructure and 2D cross-section obtained from the
AL framework at iteration 38 with a best overall error percentage of 7.8.

rates. As a result, surface diffusion is highly sensitive to the an-
nealing atmosphere, as adsorbed species can significantly affect
atomic mobility. The operating conditions of SOFCs can influ-
ence Ni diffusivity at the surface due to oxygen partial pressure,
impurities, adsorption of gas species, and interface interactions
with GDC. Jiao et al.[76] reported that the wettability of Ni on YSZ
improves during SOFC operation. This behavior is attributed to
the adsorption of oxygen species on the Ni surface. Considering
the above factors, it can be expected that the surface diffusion co-
efficient for Ni in the SOFC Ni-GDC system to be lower than the
value reported by Blakely et al.[41] Scalarization reduces multiple
objectives to a single scalar objective, potentially oversimplifying
the problem and failing to capture the full range of trade-offs be-
tween competing objectives. This simplification can lead to sub-
optimal solutions or an incomplete representation of variability
in the diffusivity estimates.
The excess surface diffusivity of GDC was found to be in the

range of 10−26 to 10−27 m3s−1 across all five iterations. Notably,
the values from iteration 37 and iteration 38, 2.16 × 10−27 m3s−1

and 4.96 × 10−27 m3s−1, closely match the literature value for
the surface diffusion coefficient at 900 ◦C, estimated as 2.4 ×
10−27 m3s−1.[55] The excess interface diffusivity of nickel along
the Ni-GDC interface was 3 to 5 orders of magnitude lower than
that of excess surface diffusivity. Although no direct literature is
available for validation, this aligns with the general understand-
ing that interface or grain boundary diffusion is typically lower
than surface diffusion. A similar trend is observed in the excess
interface diffusivity of GDC along the Ni-GDC interface.
While the absolute values of surface and interfacial ener-

gies appear to vary across the five best iterations, their ratios–
a key factor in driving the system toward thermodynamic
equilibrium–show a clear consistency. The values for the sur-
face energy of nickel at iterations 19 and 37, obtained as
2.50 J∕m2, appear to disagree with values commonly reported in
the literature.[18,42,45–50] Similarly, a value of 1.50 J∕m2 from itera-
tion 27 is significantly lower than most literature findings. How-
ever, the surface energies of 1.85 and 2.10 J∕m2, obtained in it-

erations 31 and 38, are more in line with the reported data. For
GDC, surface energies of 1.28, 1.43, and 1.53 J∕m2 in iterations
37, 38, and 19 respectively, are consistent with experimental stud-
ies using themultiphase equilibration technique, which estimate
the surface energy of CeO2 in an argon atmosphere at 900 ◦C to
be approximately 1.80 J∕m2.[55]

Considering all physical parameters and their comparison
with the available literature, the values derived from iteration
38 are proved to be consistent and representative values for
aging simulations of Ni-GDC anode at given operating condi-
tions. Figure 10 shows the evolution of the initial 3D microstruc-
ture and its 2D cross-sectional view through distinct iterations
of the AL framework. Iteration 6 produces a microstructure
with an overall 16.6% error in microstructural parameters com-
pared to experimental results, while iteration 38 reduces this er-
ror to 7.8%. The morphological differences between the aged
microstructures from these two iterations are also evident in
Figure 10.

4. Conclusion

Ensuring long-term reliability and sustainable operation of
SOFCs requires a comprehensive understanding of the degrada-
tion processes affecting their components. Ni-GDC anode is one
of these critical components undergoing significant microstruc-
tural changes over time, which impact the cell’s performance and
longevity. To accurately simulate the aging of Ni-GDC anodes and
predict their long-term behavior under operational conditions,
precise parameterization of the phase-field model is essential.
However, this task is made challenging by incomplete or incon-
sistent literature data, especially regarding key parameters like
surface diffusivities and interface energies. To address this, we
presented an AL framework combined with Bayesian optimiza-
tion, designed to efficiently explore the high-dimensional param-
eter space and identify the optimal model parameters for simu-
lating the aging of Ni-GDC anodes.
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Figure A1. AL framework validation for a 1D, single-objective optimization problem. Tuned parameter: 𝛾NiGDC. The error is measured as a voxel-by-
voxel difference between the resulting and target microstructure (framedifference). The first 3 data points are randomly sampled to produce a sufficient
baseline for the BO Oracle search.

While single-objective optimization can simplify the design
process and might be sufficiently effective in enhancing a
particular material property, in the context of SOFCs Ni-GDC
anodes, it does not adequately capture the full range of physical
characteristics of the microstructure of interest. This approach
can lead to significant deviations in other critical, descriptive
parameters that are not considered, resulting in possibly sub-
optimal material performances. Given these limitations, we
transitioned to a multi-objective optimization approach to better
address the complexity of our problem. This shift allows for the
simultaneous consideration of multiple critical microstructure
properties, ensuring overall improved solutions. By employing
a scalarization approach, precisely a weighted sum method, we
can aggregate different objective functions into a single objec-
tive, thereby balancing competing criteria and achieving a more
comprehensive representation of the desired microstructure. In
the context of SOFCs, we identified a promising set of solutions
with an overall error on the order of 10−2 (specifically, between
0.07 and 0.08), indicating a good balance between competing
objectives. Moreover, within this set, we identified results that

Table A1.Overview of the values chosen by the Bayesian Oracle at iteration
22, which gave the best result. The oracle explored the parameter space
within predefined constraints, alongside the specified ranges of validity.
For the interface energy parameters (𝛾NiGDC , 𝛾GDCPore), values were sam-
pled as floats with 0.01 increment. For the diffusion coefficients related
parameters (MNiPore

Ni ,MNiGDC
Ni ,MGDCPore

GDC ,MNiGDC
GDC ), where only changes in

the order of magnitude have significant impact on the outcome, the oracle
selected integer values for the exponent, effectively adjusting the param-
eters by powers of ten. The comprehensive error, used as score for the
oracle, was computed with framedifference according to Equation A1 and
gave a result of 0.0097.

Model parameters Given range Reference value Predicted value

𝛾NiGDC 0.45 − 1.49 1.20 1.19

𝛾GDCPore 0.29 − 0.57 0.4 0.32

MNiPore
Ni 0.1 − 1.0 0.6 0.54

MNiGDC
Ni 3.52 ⋅ 10−5 − 3.52 ⋅ 10−2 10−3 10−5

MGDCPore
GDC 3.52 ⋅ 10−9 − 3.52 ⋅ 10−4 3.52 ⋅ 10−6 3.52 ⋅ 10−7

MNiGDC
GDC 3.52 ⋅ 10−11 − 3.52 ⋅ 10−5 3.52 ⋅ 10−7 3.52 ⋅ 10−4

align with the limited literature data available, further validating
our approach. The optimized input physical parameter values
obtained from our AL Bayesian framework in iteration 38 yield
interfacial energies for 𝛾NiGDC, 𝛾GDCPore, and 𝛾NiPore as 2.43, 1.43,
and 2.10 J∕m2, respectively. These values align well with the
available literature on the surface energies of nickel and ceria,
as discussed in Section 2.3. The excess surface and interface
diffusivities of nickel and GDC are DNiPore

Ni,ex , D
NiGDC
Ni,ex , DGDCPore

GDC,ex , and
DNiGDC
GDC,ex, with values of 4.0 × 10−22, 4.0 × 10−27, 4.96 × 10−27, and

1.14 × 10−33 m3 s−1, respectively, under the operating conditions
of Ni-GDC at a temperature of 900◦C with a gas composition of
H2-50% ∕ H2O-50%. In conclusion, the AL Bayesian framework
has demonstrated strong performances, providing good practice
for intelligent data selection and model optimization. Beyond its
success in finding physical parameters for Ni-GDC anode mi-
crostructure under given operating conditions, our framework’s
generic implementation ensures its applicability across various
other applications. This approach proves particularly valuable
in scenarios where missing parameters need to be inferred,
or manual trial-and-error tuning is challenging, extending its
utility well beyond the specific context of this study. Although
this work focuses on the Ni-GDC anode system, the framework
can be readily transferable to other SOFC material systems,
such as the widely used Ni-YSZ anodes. For this, FIB-SEM-
reconstructed experimental microstructures of Ni-YSZ in both
pristine and aged states, together with appropriate adaptation of
material-specific parameter ranges, such as interface energies
and diffusion coefficients, are required for optimization.
The employed multi-objective scalarization approach main-

tains linearity, allows leveraging most of the available optimiza-
tion libraries, and is generally a powerful tool when dealing with
convex sets of solutions. However, for many optimization prob-
lems, the shape of the attainable set is unknown and might
present non-convex regions. In these situations, a scalarization
approach might fail to identify the true Pareto front, which de-
lineates the boundary of attainable solutions, for which it is
impossible to enhance any objective without adversely affect-
ing at least one other. Even when adjusting the weights, the
method can lead to unevenly distributed sets of non-dominated
points in the objective function space, potentially missing criti-
cal solutions. Furthermore, while reformulating a problem with
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Figure A2. Framework validation for a 6D, single-objective optimization problem. The figure shows the overview of the search (a) and a visualization of the
error at four different iteration steps (b). The error is measured as a voxel-by-voxel difference of the resulting and target microstructure (framedifference).
The best result is found at iteration 22, with a framedifference error of 0.0097.

non-competing objectives into a single-objective framework is
beneficial, other methods can produce better results for a prob-
lem with competing objectives, especially when aiming to opti-
mize material properties. To better address the case of interde-
pendent or inversely related material properties, further research
will focus on the integration of different multi-objective ap-
proaches (like evolutionary algorithms)[77,78] within the presented
framework.

Appendix A: Framework Validation

The initial AL framework validation study demonstrates the reliability and
effectiveness of our method. For the validation run, we conduct a single-
parameter optimization, focusing on the interfacial energy between nickel
and GDC 𝛾NiGDC , while keeping the other parameters fixed. A 2D reference
structure is generated by initially creating a Voronoi structure consisting
of nickel, GDC, and pore phases, and then by applying phase coarsen-
ing through phase-field simulations. Interface energy between nickel and
GDC (𝛾NiGDC) of 0.577 (in model scale units) is used in model parame-
ters. All parameters are expressed in model scale, as the focus of this val-
idation is on testing the framework against provided model parameters
rather than directly correlating with aged experimental microstructures or
physical properties. The AL framework is then employed to tune the pa-
rameter 𝛾NiGDC within a physically meaningful range (0.4 − 1.2). The Or-
acle initiates the Bayesian search by performing three iterations of ran-
dom search, providing initial seeds to construct the probabilistic model
of the objective function. Each parameter value selected by the Oracle for
𝛾NiGDC is automatically passed to the phase-field simulations, executed
with the in-house developed framework Pace3D (Parallel Algorithms for
Crystal Evolution in 3D).[79] Upon completion, simulation results are eval-
uated and scored, providing valuable information for strategic navigation
of the search space. Throughout our study, the score represents a quan-
titative measure of deviation from the target microstructure. In Pace3D,
the microstructure is stored in a 2D/3D grid, with each voxel assigned
to one of the phases 𝜙Ni, 𝜙GDC and 𝜙Pore. For the validation phase of
the study, we chose a voxel-wise frame-difference score, calculated as
follows:

score =
N∑
v=1

|𝜙simi (v) − 𝜙referencei (v)|, i ∈ {Ni, GDC, Pore} (A1)

where v represents each voxel of the grid, and N the total number of vox-
els. These computations are enclosed within a Pace3D post-processing
tool called framedifference, which facilitates streamlined assessment of mi-
crostructure deviations.

Minimizing the deviation is a successful validation step, which leads to
the identification of the correct model parameters. Our AL framework con-
verged at iteration 6 (see Figure A1), yielding results that closely aligned
with the target parameters and successfully validated the 1D problem. The
best value found for the parameter 𝛾NiGDC was 0.57715, with a target value
of 0.57700 and an accepted threshold of 0.02.

To address the complexity of the SOFC’smicrostructural evolutions, we
moved to a more advanced multidimensional validation phase, optimiz-
ing six parameters simultaneously. The chosen parameters (discussed in
detail in Section 2.3), together with their ranges of validity, and the best re-
sults obtained after 25 iterations of our framework, can be seen in Table A1.
For this second validation phase, the scoring mechanism remained un-
changed, i.e. as in Equation A1, for each iteration of the method, we mea-
sured the deviation of the resulting microstructures from the reference. A
shorter simulation time was considered to save computational resources
and time, as the purpose here was still pure validation, giving nomeaning-
ful scientific results. Consequently, while the results obtained by the frame-
work for some parameters may not appear optimal at first, there are a few
factors to take into consideration. The terms in the model that are related
to the interface energy and nickels surface diffusion coefficient (first three
in Table A1), have a greater influence on themicrostructure at smaller time
frames, while the other terms in the model related to diffusion coefficients
(last three in Table A1), only cause notable changes in the microstructure
over an extended simulation period, due to their low magnitude of values.
It is therefore logical for the firsts, to approximately reach the reference
value, while for the lasts, a closer alignment with the reference value is
expected in longer simulation times. It is important to note that the diffu-
sion values were restricted to variations by orders of magnitude, leading to
the reference and predicted values aligning precisely with the same coeffi-
cient values. Furthermore, as the dimensionality of the problem increases,
the volume of the search space expands exponentially, and so does the
number of evaluations needed to ensure thorough exploration. Figure A2
shows an overview of the search.
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