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Abstract
Recent constructions have shown that interesting
behaviours can be observed in the finiteness properties
of Kähler groups and their subgroups. In this work,
we push this further and exhibit, for each integer 𝑘,
new hyperbolic groups admitting surjective homomor-
phisms to ℤ and to ℤ2, whose kernel is of type ℱ𝑘 but
not of type ℱ𝑘+1. By a fibre product construction, we
also find examples of non-normal subgroups of Kähler
groups with exotic finiteness properties.
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1 INTRODUCTION

Two of the most basic properties of groups are being finitely generated and being finitely pre-
sented. These properties admit a geometric interpretation in terms of classifying spaces, which
leads to a higher dimensional generalisation introduced by Wall [64]: for a natural number 𝑛, a
group 𝐺 is called of finiteness type ℱ𝑛 if it admits a 𝐾(𝐺, 1) which is a CW-complex with finite
𝑛-skeleton. Finite generation is then equivalent toℱ1, while finite presentability is equivalent to
ℱ2. We say that a group has exotic finiteness properties, if it isℱ𝑛, but notℱ𝑛+1 for some integer
𝑛 ⩾ 0. The existence of such groups is classical for 𝑛 = 0, 1 and was proved by Stallings [59] for
𝑛 = 2 and by Bieri for all 𝑛 ⩾ 3 [9]. Since then, many examples have been constructed, showcas-
ing that exotic finiteness properties can appear under a wide range of additional assumptions on
the group.
Classical methods used to construct groups with exotic finiteness properties include Bestvina–

BradyMorse theory [8] andBrown’s criterion [18]. For recent use of the latter criterion, see [58] and
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the references there. Starting with the works of Kapovich [33] and Dimca, Papadima and Suciu
[24], it has become increasingly apparent that complexMorse theory provides a powerful method
for constructing groups with exotic finiteness properties. The purpose of these works was to prove
that fundamental groups of compact Kähler manifolds (Kähler groups) can be non-coherent,
respectively, can have arbitrary exotic finiteness properties.
These methods have since been extended to produce a range of examples of Kähler groups

with exotic finiteness properties [16, 41, 42, 52]. These works generalised the construction in [24],
leading toKähler groupswith exotic finiteness propertieswhich all arise as fundamental groups of
generic fibres of holomorphicmaps from certain compact Kählermanifolds onto a complex torus.
However, the work of Nicolás and Py [52] provides tools for constructing such examples from
holomorphic maps with isolated singularities onto arbitrary closed Riemann surfaces (possibly of
genus greater than 1), showing that the potential of these methods stretches beyond the realm of
the already known examples.
Finally, using again complexMorse theory, we recently produced, for every integer𝑛 ⩾ 0, exam-

ples of subgroups of hyperbolic groups of type ℱ𝑛, but not ℱ𝑛+1 [46]. These were the first such
examples when 𝑛 ⩾ 4. This solved an old problem raised by Brady [13], where classical methods
using Bestvina–BradyMorse theory had so far only been able to provide an answer up to 𝑛 = 3 [13,
37, 44, 47]. This showed that indeed, themethods from complexMorse theory are sufficiently pow-
erful to construct examples of groups with exotic finiteness properties that are of interest beyond
the realm of complex geometry. Let us also mention in this context that recently the combina-
tion of Bestvina–Brady Morse theory and real hyperbolic geometry led to the first example of a
non-hyperbolic subgroup of a hyperbolic group with a finite classifying space [30, 31].
In this work, we provide further examples of groups with exotic finiteness properties built from

complex geometry. We emphasise that we produce both Kähler and non-Kähler groups. The first
result takes as input a new class of hyperbolic Kähler groups constructed by Stover and Toledo
[61]. Their groups arise as fundamental groups of certain compact Kähler manifolds that admit
a Kähler metric of negative sectional curvature, but are not homotopy equivalent to any locally
symmetric manifold. Combining ideas from [46] and [61], we shall prove:

Theorem 1.1. For every 𝑛 ⩾ 2, there is an 𝑛-dimensional compact Kähler manifold𝑌 which admits
a Kähler metric of negative sectional curvature, is not homotopy equivalent to any locally symmetric
manifold and which has the following property. There exists a dense open set 𝑂 ⊂ 𝐻1(𝑌;ℝ) − {0}

which is invariant by multiplication by non-zero scalars, such that for any homomorphism
𝜙 ∶ 𝜋1(𝑌) → ℤ contained in 𝑂, the kernel ker(𝜙) is of typeℱ𝑛−1 but not of type FP𝑛(ℚ).

The definition of the finiteness property FP𝑛(ℚ) will be recalled in Section 2. This produces
many new subgroups of hyperbolic groups of finiteness typeℱ𝑛−1 and notℱ𝑛, thus extending the
main result from [46]. Using the Cartwright–Steger surface, we can also produce further examples
of Kähler groups of typeℱ2𝑛−1 and notℱ2𝑛 for all 𝑛 ⩾ 2. See Section 4.3 for a discussion.
Besides producing homomorphisms from certain negatively curved Kähler groups onto ℤ,

whose kernels have exotic finiteness properties, we can also produce similar homomorphisms
onto ℤ2, using results from the theory of Bieri–Neumann–Strebel–Renz invariants (in short
BNSR-invariants; see Section 2 for some background). This is the content of our next main result.

Theorem 1.2. Let 𝑋 be a closed aspherical Kähler manifold with positive first Betti number and
non-zero Euler characteristic. Assume that the Albanese map of 𝑋 is finite. Let 𝑛 = dimℂ 𝑋. Then,
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 3 of 29

there exist surjective morphisms 𝜋1(𝑋) → ℤ2 whose kernel is of type ℱ𝑛−1 but not of type FP𝑛(ℚ).
The set of such homomorphisms is open.

Let us recall that a map 𝑓 is said to be finite if the preimage by 𝑓 of each point of the target
space is a finite set. For the definition of the Albanese torus and Albanese map of a closed Kähler
manifold, we refer the reader to [46, §3.1] and [63, §12.1.3]. As for the topology alluded to in the
statement of Theorem 1.2, it will be defined in Section 2. As we shall explain in Section 5, this
theorem applies to certain arithmetic ball quotients as well as to some of the manifolds built by
Stover and Toledo in [61]. This allows us to deduce the following result.

Corollary 1.3. For every 𝑘 ⩾ 1, there is a hyperbolic group 𝐺 and a surjective homomorphism 𝜙 ∶

𝐺 → ℤ2 such that ker(𝜙) is of typeℱ𝑘 , but not FP𝑘+1(ℚ).

We now proceed to explain a new way of using complex Morse theory to produce groups with
exotic finiteness properties as fibre products. An important novelty is that these groups are not
constructed as kernels of homomorphisms, making them rather different frommost other groups
constructed using Morse theory. One main consequence of this approach is the following result.

Theorem 1.4. Let 𝑋1 = Γ∖𝔹𝑛
ℂ
be a compact complex ball quotient with 𝑛 ⩾ 2, and let 𝑝1 ∶ 𝑋1 → Σ

be a surjective holomorphic map with connected fibres onto a closed hyperbolic Riemann surface.
Assume that 𝑝1 has a finite non-empty set of critical points. Let 𝑝2 ∶ 𝑋2 → Σ be a ramified covering
with non-trivial set of singular values that is disjoint from the set of singular values of 𝑝1. Assume
that 𝑝2∗ ∶ 𝜋1(𝑋2) → Σ is surjective.
Then, the group-theoretic fibre product 𝑃 ⩽ 𝜋1(𝑋1) × 𝜋1(𝑋2) of the induced surjective homomor-

phisms 𝑝𝑖,∗ ∶ 𝜋1(𝑋𝑖) → 𝜋1(Σ), 𝑖 = 1, 2, is a non-normal Kähler subgroup of finiteness typeℱ𝑛 and
not FP𝑛+1(ℚ).

We recall that the fibre product 𝑃 is the subgroup of 𝜋1(𝑋1) × 𝜋1(𝑋2) defined as follows:

𝑃 ∶= {(𝑎, 𝑏) ∈ 𝜋1(𝑋1) × 𝜋1(𝑋2) ∶ 𝑝1,∗(𝑎) = 𝑝2,∗(𝑏)}.

Concrete examples to which the 𝑛 = 2 version of Theorem 1.4 can be applied are the so-called
Livné surfaces [40].We refer to Section 6.1 for their definition. For 𝑛 ⩾ 3, we do not know examples
of ball quotients admitting a map 𝑝1 as in the theorem. We also observe that our assumption that
the critical set of 𝑝1 is non-empty is always satisfied, thanks to a theorem due to Koziarz and
Mok [36]. We prefer, however, to state Theorem 1.4 as above to emphasise the fact that we do need
some critical points!
Finally, let us mention that our methods from [46] can also be applied to obtain a new proof of

the following result of Kochloukova and Vidussi from [34].

Theorem 1.5 (Kochloukova–Vidussi [34, Corollary 1.11]). Let 𝑛 ⩾ 2. There is an aspherical smooth
complex projective variety 𝑋𝑛 of dimension 𝑛 whose fundamental group 𝜋1(𝑋𝑛) is an irreducible
polysurface group which contains for every 𝑗 ∈ {1, … , 𝑛} a subgroup of type ℱ𝑗−1, but not of type
FP𝑗(ℚ).

The definition of polysurface groups will be recalled in Section 7, where we will also explain
our new proof of Theorem 1.5.
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4 of 29 ISENRICH and PY

Structure

In Section 2, we give some background on finiteness properties in group theory. In Section 3,
we introduce the main construction methods of groups with exotic finiteness properties (Kähler
or not) from maps onto complex tori. It can serve as an introductory reference for gaining an
overview of the techniques from the works [16, 24, 33, 41, 42, 46, 52]. In Section 4, we illustrate
thesemethods by provingTheorem 1.1. In Section 5,we proveTheorem 1.2. In Section 6,we explain
how complex Morse theory can be used to produce non-normal subgroups with exotic finiteness
properties, proving Theorem 1.4. In Section 7, we describe a new proof of Theorem 1.5, which
was first proved by Kochloukova and Vidussi. Finally, Section 8 contains a few remarks about
the existence of perfect circle-valued Morse functions and about alternative proofs of some of our
results, relying purely on (real) Morse theory rather than on the theory of BNSR-invariants.

2 FINITENESS PROPERTIES OF GROUPS

We already introduced the homotopical finiteness propertyℱ𝑛, which requires that a group has
a classifying space with finite 𝑛-skeleton. A second important set of finiteness properties are
the homological finiteness properties. For an abelian unital ring 𝑅, we say that a group 𝐺 is of
finiteness type FP𝑛(𝑅) if there is a projective resolution

⋯ → 𝑃𝑛 → 𝑃𝑛−1 → ⋯ → 𝑃0 → 𝑅 → 0

of the trivial 𝑅𝐺-module 𝑅 which is finitely generated up to dimension 𝑛. Taking the free reso-
lution induced by the cellular complex associated with a classifying space, it is easy to see that
ℱ𝑛 implies property FP𝑛(𝑅) for every 𝑅. In degree 1, this is an equivalence: a group 𝐺 is of type
FP1(𝑅) for some ring 𝑅 if and only if it is of typeℱ1. However, in higher dimensions, Bestvina and
Brady [8] have shown that FP𝑛(𝑅) does not implyℱ𝑛, and moreover, for different rings 𝑅1 and 𝑅2,
the properties FP𝑛(𝑅1) and FP𝑛(𝑅2) are in general not equivalent. Finally, let us also mention that
properties FP𝑛(ℤ) andℱ2 together implyℱ𝑛. For a detailed introduction to finiteness properties,
we refer the reader to [17].
An important source of examples of groups with exotic finiteness properties are kernels of

homomorphisms onto free abelian groups. A key reason for this is that the homotopical finite-
ness properties of such kernels can be studied via Morse theoretical means. These properties are
completely encoded by the so-called BNSR-invariants which we now introduce [10, 11, 55]. There
are also homological analogues of these invariants, but we shall not deal with them here.
The character sphere of a finitely generated group 𝐺 is the sphere

𝑆(𝐺) ∶= (Hom(𝐺,ℝ) − {0})∕ ∼,

where the equivalence relation ∼ is defined as follows. Two non-zero characters 𝜒1, 𝜒2 ∶ 𝐺 → ℝ

are equivalent if there is a real number 𝜆 > 0 with 𝜒1 = 𝜆 ⋅ 𝜒2. For a group 𝐺 of type ℱ𝑛, one
can define 𝑛 BNSR-invariants, which are subsets of the sphere 𝑆(𝐺). They are denoted by Σ𝑖(𝐺)
(1 ⩽ 𝑖 ⩽ 𝑛) and form a decreasing sequence:

Σ𝑛(𝐺) ⊆ Σ𝑛−1(𝐺) ⊆ ⋯ ⊆ Σ1(𝐺) ⊆ 𝑆(𝐺).
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 5 of 29

When 𝐺 admits a finite classifying space, the invariant Σ𝑛(𝐺) is defined for any natural integer
𝑛. The definition of these sets is related to the relative connectivity properties of certain ‘half-
spaces’ associated to the characters, in the universal cover of a 𝐾(𝐺, 1). Their precise definition is
slightly technical. Since we will not work with it here, we omit it and refer to [10–12]. We simply
make two remarks:

∙ The invariant Σ1(𝐺), for 𝐺 a finitely generated group, can be defined quite simply as follows.
One considers a Cayley graph Γ associated to a finite symmetric generating subset of 𝐺, and a
non-zero character𝜒 ∶ 𝐺 → ℝ. One declares that [𝜒] ∈ Σ1(𝐺) if the subgraph of Γ generated by
the vertices where 𝜒 ⩾ 0 is connected. See [12] or [54, Ch. 11] for more details on this definition.

∙ When 𝐺 is the fundamental group of a closed aspherical manifold 𝑋, any (non-zero) character
𝜒 is obtained by integration of a closed 1-form 𝛼 on 𝑋. On the universal cover 𝑋 of 𝑋, the pull-
back of 𝛼 is exact, and we can fix a primitive 𝑓 ∶ 𝑋 → ℝ for it. The condition [𝜒] ∈ Σ𝑘(𝐺) is
then a condition on the behaviour of the inclusion maps

{𝑓 ⩾ 𝐶} → {𝑓 ⩾ 𝐷}

(for real numbers 𝐶 ⩾ 𝐷) on homotopy groups in dimension ⩽ 𝑘 − 1. See Appendix B in [12] or
Definition 12 in [46].
The main properties that we will require here are summarised by the following

results [10–12].

Proposition 2.1. Let 𝐺 be a group of typeℱ𝑛. Then the following hold:

(1) for 0 ⩽ 𝓁 ⩽ 𝑛, the BNSR-invariant Σ𝓁(𝐺) is an open subset of 𝑆(𝐺);
(2) for 𝜒 ∶ 𝐺 → ℤ an integer-valued character, [𝜒] ∈ Σ𝓁(𝐺) ∩ −Σ𝓁(𝐺) if and only if ker(𝜒) is of

typeℱ𝓁 .

Theorem 2.2. Let 𝑘 ⩾ 1. Let 𝐺 be a group of type ℱ𝑛 and let 𝜒 ∶ 𝐺 → ℤ𝑘 be a surjective homo-
morphism. Then, the kernel of 𝜒 is of type ℱ𝑛 if and only if for every non-zero homomorphism
𝑢 ∶ ℤ𝑘 → ℝ, [𝑢 ◦𝜒] ∈ Σ𝑛(𝐺).

Let us now elaborate on Theorem 2.2 and introduce the topology on the space of surjective
morphisms 𝐺 → ℤ𝑘 that was alluded to in the introduction. Let 𝜒 and 𝐺 be as in Theorem 2.2.
The classes

[𝑢 ◦𝜒],

with𝑢 ∈ Hom(ℤ𝑘, ℝ) − {0}, forma (𝑘 − 1)-dimensional subsphere𝑆(𝜒) of 𝑆(𝐺). Theorem2.2 then
says that the kernel of 𝜒 is of typeℱ𝑛 if and only if the sphere 𝑆(𝜒) is contained in Σ𝑛(𝐺). Note
that 𝑆(𝜒) depends only on the kernel of 𝜒 and it determines that kernel. Hence, if 𝑁 is a normal
subgroup of 𝐺 such that the quotient 𝐺∕𝑁 is isomorphic to ℤ𝑘, we will write 𝑆(𝑁) for the sphere
𝑆(𝜒) where 𝜒 ∶ 𝐺 → ℤ𝑘 is any surjection obtained by composing the projection 𝐺 → 𝐺∕𝑁 with
an isomorphism between 𝐺∕𝑁 and ℤ𝑘. When 𝑘 is fixed, we then define a topology on the space
of subgroups 𝑁 < 𝐺 such that 𝐺∕𝑁 is isomorphic to ℤ𝑘. For two such subgroups 𝑁1 and 𝑁2, we
say that 𝑁1 is close to 𝑁2 if the sphere 𝑆(𝑁1) is contained in a small enough neighbourhood of
𝑆(𝑁2). The space of surjectivemorphisms𝜒 ∶ 𝐺 → ℤ𝑘 is then endowedwith the smallest topology
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6 of 29 ISENRICH and PY

making the map 𝜒 ↦ ker(𝜒) continuous. Since the BNSR-invariants are open sets, the following
proposition is immediate.

Proposition 2.3. Let 𝐺 be a group of typeℱ𝑛. Let 𝑘 ⩾ 1 be a natural number. The set of surjective
morphisms 𝜒 ∶ 𝐺 → ℤ𝑘 whose kernel is of typeℱ𝑛 is open.

3 CONSTRUCTIONMETHODS FROMMAPS TO COMPLEX TORI

A common denominator of most of the existing constructions from complex geometry for groups
with exotic finiteness properties is that they start from a holomorphic map to a complex torus. We
will now describe the two main methods of this kind. The first starts from a holomorphic map
with isolated singularities to a one-dimensional torus, while the second requires a finite map to a
torus of arbitrary dimension.

3.1 Kähler groups frommaps with isolated singularities

The first construction of Kähler groups with arbitrary exotic finiteness properties is due to Dimca,
Papadima and Suciu [24]. Their construction starts from an elliptic curve 𝐸 and 𝑛 ⩾ 3 ramified
double covers 𝑓𝑖 ∶ 𝑆g𝑖 → 𝐸 where 𝑆g𝑖 is a Riemann surface of genus g𝑖 ⩾ 2. They show that for
the map 𝑓 =

∑𝑛
𝑖=1 𝑓𝑖 ∶ 𝑆g1 ×⋯ × 𝑆g𝑛 → 𝐸 obtained by summation in 𝐸, the fundamental group

𝐻 = 𝜋1(𝑓
−1(𝑝)) of a generic fibre of 𝑓 is of type ℱ𝑛−1 and not FP𝑛(ℚ) and is canonically iso-

morphic to ker
(
𝑓∗ ∶ 𝜋1(𝑆g1 ) ×⋯ × 𝜋1(𝑆g𝑛 ) → 𝜋1(𝐸) ≅ ℤ2

)
. This construction has since been

extended by Llosa Isenrich [41, 42], Bridson and Llosa Isenrich [16] and Nicolás and Py [52],
showing its flexibility.
The main results from [24, 52] can be summarised as follows.

Theorem 3.1 (Dimca–Papadima–Suciu [24, Theorem C], Nicolás–Py [52, Theorem B]). Let 𝑀
be an 𝑛-dimensional aspherical compact complex manifold with 𝑛 ⩾ 3, let 𝑆 be a closed Riemann
surface of positive genus and let 𝑓 ∶ 𝑀 → 𝑆 be a holomorphic map with isolated critical points
and connected fibres. Assume that 𝑓 has at least one critical point. Let 𝐹 be a smooth generic
fibre of 𝑓. Then, 𝜋1(𝐹) is of finiteness typeℱ𝑛−1, but not FP𝑛(ℚ), and is canonically isomorphic to
ker(𝑓∗ ∶ 𝜋1(𝑀) → 𝜋1(𝑆)).

Remark 3.2. Nicolás and Py prove that ker(𝑓∗) is not of type FP𝑛(ℚ) using properties of isolated
singularities. If𝑀 has a non-zero 𝑛th 𝓁2-Betti number and 𝑆 has genus 1, then this also follows
from [44, Proposition 14]. The non-vanishing of the middle-dimensional 𝓁2-Betti number occurs
for instance if 𝑀 is Kähler hyperbolic with non-zero Euler characteristic [29, 53]. However, we
emphasise that Theorem 3.1 applies in a more general context.

We observe that in the context of Theorem 3.1, the kernel of 𝑓∗ is a Kähler group, being isomor-
phic to the fundamental group of a generic fibre of 𝑓. This will not be the case in general for the
groups constructed in the next section. We will return to this question in Section 5.2.
Note that there are generalisations of Theorem 3.1 which relax the conditions that𝑓 has isolated

singularities and that the image of 𝑓 is one-dimensional, see [16, Theorem 2.2] and [42, Section 2].
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 7 of 29

3.2 Subgroups of Kähler groups from finite maps

In [46], the authors of this work presented a second construction method of subgroups of Kähler
groups with exotic finiteness properties and employed it to show that for every 𝑛 ⩾ 2, there is a
subgroup of a hyperbolic group of type ℱ𝑛−1 but not FP𝑛(ℚ). This approach is based on ideas
of Simpson who studied connectivity properties of sublevel sets of certain harmonic functions
𝑓 ∶ 𝑋 → ℝ obtained by lifting a harmonic 1-form to the universal covering of a compact Kähler
manifold and taking a primitive. See [57], as well as [39] for related results. The following theorem
summarises the results from [46] that we will require here.

Theorem 3.3. Let 𝑋 be a closed aspherical Kähler manifold of complex dimension 𝑛 ⩾ 2. Assume
that there exists a finite holomorphicmap from𝑋 to a complex torus. Then there is a non-zero charac-
ter 𝜒 ∶ 𝜋1(𝑋) → ℤ with kernel of typeℱ𝑛−1. If, moreover, the Euler characteristic of𝑋 is non-trivial,
then ker(𝜒) is not of type FP𝑛(ℚ).

Proof. This is an immediate consequence of combining [46, Theorem 6], [46, Proposition 18] and
the openness of the BNSR-invariant. □

Under the assumptions of Theorem 3.3, there are, in fact, many characters with kernels having
exotic finiteness properties.

Addendum3.4. Under the assumptions of Theorem3.3,Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)) ⊆ 𝑆(𝜋1(𝑋))

is a dense open subset. In particular, the set of characters𝜒 ∶ 𝜋1(𝑋) → ℤwith ker(𝜒) of typeℱ𝑛−1

is dense in 𝑆(𝜋1(𝑋)). If, moreover, the Euler characteristic of 𝑋 is non-zero, then ker(𝜒) is not of
type FP𝑛(ℚ) for any character 𝜒.

The first two sentences of the addendum are consequences of [46, Theorem 6] and [46, Proposi-
tion 18], together with the properties of the BNSR-invariants recalled in Section 2. We now justify
the last sentence of the addendum.Under the running assumptions, themanifold𝑋 carries a holo-
morphic 1-form with finitely many zeros. This follows again from [46, Theorem 6]. Theorem 10
from [46] implies that 𝑋 satisfies the conclusion of Singer’s conjecture, that is, the 𝓁2-Betti num-
bers 𝑏(2)

𝑖
(𝑋) vanish except for 𝑖 = 𝑛. We thus have 𝜒(𝑋) = (−1)𝑛𝑏(2)𝑛 (𝑋). Proposition 14 from [44]

then yields that the kernel of an arbitrary character of𝜋1(𝑋) is not of typeFP𝑛(ℚ) if𝑋 has non-zero
Euler characteristic.

Remark 3.5. Let 𝑋 be a closed Kähler manifold of complex dimension 𝑛, with finite Albanese
map 𝑎𝑋 ∶ 𝑋 → 𝐴(𝑋). If 𝑋 is aspherical, Theorem 10 from [46] implies that 𝑋 satisfies Singer’s
conjecture. This can actually be proved without assuming 𝑋 to be aspherical. Indeed, if [𝜔] is a
Kähler class on 𝐴(𝑋), then 𝑎∗

𝑋
[𝜔] is a Kähler class on 𝑋 by [28, Prop. 3.6]. Any differential form

in the class [𝜔] admits, after pull-back to the universal cover of𝐴(𝑋), a primitive of at most linear
growth. Hence, the same is true for forms in the class 𝑎∗

𝑋
[𝜔], lifted to the universal cover of 𝑋.

The desired conclusion then follows from [19].

4 THE STOVER–TOLEDO GROUPS AND THEIR SUBGROUPS

Stover andToledo recently constructed, in all dimensions⩾ 2, smooth complex projective varieties
admitting a Kähler metric of negative sectional curvature, which are not homotopy equivalent to
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8 of 29 ISENRICH and PY

a locally symmetric manifold, see [61]. These are the first such examples in dimension⩾ 4. Earlier
examples had been constructed in dimensions 2 and 3 by Mostow–Siu, Deraux and Zheng [22, 23,
50, 65, 66]. Stover and Toledo’s examples are obtained by ramified cover of suitable congruence
covers of arithmetic ball quotients of the simplest type. We summarise here their work and then
apply the construction described in Section 3.2 to the fundamental groups of the corresponding
negatively curved Kähler manifolds, yielding a proof of Theorem 1.1.

4.1 Complex ball quotients and the Stover–Toledo construction

For 𝑚 ⩾ 1, we denote by PU(𝑚, 1) the group of holomorphic isometries of the unit ball 𝔹𝑚
ℂ
of

ℂ𝑚 equipped with the Bergman metric. We will consider cocompact lattices Γ < PU(𝑚, 1) which
are arithmetic. We refer the reader to [48, 67] for the definition of this notion. More specifically,
we will be interested in uniform arithmetic lattices of the simplest type, whose definition we now
recall.
Let 𝐹 ⊂ ℝ be a totally real number field, let 𝐸 ⊂ ℂ be a purely imaginary quadratic extension

of 𝐹 and let 𝑉 = 𝐸𝑛+1. Assume that we are given a Hermitian form 𝐻 ∶ 𝑉 × 𝑉 → 𝐸 such that its
extension to 𝑉 ⊗ ℂ has signature (𝑚, 1).
Given an embedding 𝜎 ∶ 𝐸 → ℂ, we denote by 𝐻𝜎 the Hermitian form on ℂ𝑛+1 obtained by

applying𝜎 to the coefficients of thematrix representing𝐻 in the canonical basis of𝑉. Assume that
for every embedding 𝜎 ∶ 𝐸 → ℂ with 𝜎|𝐹 ≠ id|𝐹 , the twisted Hermitian form 𝐻𝜎 has signature
(𝑚 + 1, 0). Let 𝐸 be the ring of integers of 𝐸 and let 𝑈(𝐻,𝐸) be the group of (𝑚 + 1) × (𝑚 +

1)-matrices with coefficients in 𝐸 which preserve 𝐻. Then, 𝑈(𝐻,𝐸) is a lattice in the group
𝑈(𝑉 ⊗ ℂ,𝐻) of automorphisms of (𝑉 ⊗ ℂ,𝐻). It is uniform if and only if 𝐹 ≠ ℚ. We call a lattice
Γ < PU(𝑛, 1) of the simplest type if it is commensurable to a lattice of the form 𝑈(𝐻,𝐸).
For𝑚 ⩾ 2, let 𝑋 = Γ∖𝔹𝑚

ℂ
be a smooth compact complex hyperbolic𝑚-manifold. We call a pair

(𝑋, 𝐷) a good pair if 𝐷 = 𝐷1 ∪ 𝐷2 ∪⋯ ∪ 𝐷𝑘 ⊂ 𝑋 is a non-trivial divisor such that the 𝐷𝑖 are pair-
wise non-intersecting smooth codimension one subvarieties of 𝑋. We call 𝐷 totally geodesic if the
embeddings of the 𝐷𝑖 in 𝑋 are totally geodesic.
If Γ is of the simplest type, then 𝑋 admits totally geodesically immersed divisors. Up to passing

to a finite cover of𝑋, we can find such divisors which are embedded.Wewill require the following
more precise version of this result (see [61, Section 5]).

Lemma 4.1. Let Γ < PU(𝑚, 1) be a torsion-free congruence arithmetic lattice of the simplest type
and let 𝑋 = Γ∖𝔹𝑚

ℂ
. Then, there exists a finite congruence cover 𝑝 ∶ 𝑋′ → 𝑋 and a divisor 𝐷′ ⊂ 𝑋′

such that (𝑋′, 𝐷′) is a totally geodesic good pair.

Note that conversely, if𝑚 ⩾ 2 and (𝑋, 𝐷) is a totally geodesic good pair, with𝑋 arithmetic, then
Γ is of the simplest type by [61, Proposition 3.2].

Theorem 4.2 [61, Theorem 1.5 and Proposition 5.1]. Assume that Γ < PU(𝑚, 1) is a cocompact
torsion-free congruence arithmetic lattice of the simplest type and let 𝑋 = Γ∖𝔹𝑚

ℂ
. Let 𝐷 ⊂ 𝑋 be a

divisor such that (𝑋, 𝐷) is a totally geodesic good pair. Let 𝑑 ⩾ 2. Then, there is a finite cover𝑝 ∶ 𝑋′ →

𝑋 which admits a cyclic 𝑑-fold ramified cover 𝑌 → 𝑋′ with ramification locus the totally geodesic
divisor 𝐷′ ∶= 𝑝−1(𝐷). The cover 𝑌 is a smooth projective variety which admits a Kähler metric of
negative sectional curvature and is not homotopy equivalent to any locally symmetric manifold.
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 9 of 29

Let us make a few comments on Theorem 4.2. The fact that ramified covers of ball quotients
along totally geodesic divisors admit negatively curved Kähler metrics was known prior to [61]
and is due to Zheng [65], who generalised earlier work by Mostow–Siu [50]. The key contribution
made in [61] is to show that one can find many arithmetic ball quotients 𝑋 containing totally
geodesic divisors𝐷, forming a good pair and such that the integral homology class of𝐷 is divisible
by some non-trivial integer, thus allowing to build cyclic ramified covers. The new contribution
(the divisibility of the homology class [𝐷]) relies on deep results on the cohomology of arithmetic
groups due to Bergeron, Millson and Moeglin [7].

Remark 4.3. Arithmeticity of the lattices under consideration appears in two ways in this work.
Firstly, through the results on the cohomology of arithmetic groups used in [61], and secondly
through properties of the Albanese map of arithmetic ball quotients [26, 46]. In this second
appearance, arithmeticity is used in a much more elementary way.

4.2 New subgroups of hyperbolic groups of type𝓕𝒎−𝟏 and not𝓕𝒎

We will check that we can apply Theorem 3.3 and Addendum 3.4 to the Stover–Toledo examples.
To do so, we first need the following.

Lemma4.4. Every compact Kählermanifold𝑌 as in Theorem4.2 has non-zero Euler characteristic.

Proof. Recall that the Euler chracteristic is multiplicative under finite etale covers. For ramified
covers, there is a similar formula, taking into account the ramification. It reads as follows, the
notation being as in Theorem 4.2:

𝜒(𝑌) − 𝜒(𝐷′) = 𝑑(𝜒(𝑋′) − 𝜒(𝐷)).

Since 𝐷 and 𝐷′ are diffeomorphic, we obtain

𝜒(𝑌) = 𝑑𝜒(𝑋′) + (1 − 𝑑)𝜒(𝐷). (4.1)

We now use the fact that compact ball quotients of dimension 𝑘 have non-zero Euler characteris-
tic, of the same sign as (−1)𝑘. Hence, 𝜒(𝑋′) and 𝜒(𝐷) are both non-zero, of opposite signs. Thus,
the two terms on the right-hand side of (4.1) are non-zero of the same sign and 𝜒(𝑌) ≠ 0. Alter-
natively, we could have appealed to Gromov’s work [29] to justify the non-vanishing of 𝜒(𝑌), but
the above argument is simpler. □

We are now ready to state and prove the main result of this section. Theorem 1.1 is a direct
consequence.

Theorem 4.5. Let𝑚 ⩾ 2, let Γ < PU(𝑚, 1) be a uniform torsion-free congruence arithmetic lattice
of the simplest type and let𝑋 = Γ∖𝔹𝑚

ℂ
. Let 𝑑 ⩾ 2. Then, there is a finite cover𝑋′ → 𝑋 such that there

exists a finite ramified cover 𝑌′
𝑑
→ 𝑋′ with the following properties.

(1) 𝑌′
𝑑
is a smooth projective variety which admits a Kähler metric of negative sectional curvature

and is not homotopy equivalent to any locally symmetric manifold,
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10 of 29 ISENRICH and PY

(2) the (𝑚 − 1)th BNSR-invariant Σ𝑚−1(𝜋1(𝑌
′
𝑑
)) is dense in the character sphere 𝑆(𝜋1(𝑌

′
𝑑
)) and

every rational character 𝜉 ∈ Hom(𝜋1(𝑌
′
𝑑
), ℚ) − {0} such that [𝜉] is in the dense open set

Σ𝑚−1(𝜋1(𝑌
′
𝑑
)) ∩ −Σ𝑚−1(𝜋1(𝑌

′
𝑑
)) satisfies that ker(𝜉) is of typeℱ𝑚−1 but not of type FP𝑚(ℚ).

Proof. By Lemma 4.1, there exists a finite congruence cover 𝑋1 → 𝑋 and a divisor 𝐷1 ⊂ 𝑋1 such
that (𝑋1, 𝐷1) is a totally geodesic good pair. Theorem 4.2 implies that there is a finite congruence
cover 𝑝2 ∶ 𝑋2 → 𝑋1 which admits a 𝑑-fold cyclic ramified cover 𝑞 ∶ 𝑌𝑑 → 𝑋2 with ramification
locus the totally geodesic divisor 𝐷2 = 𝑝−1

2
(𝐷1). The manifold 𝑌𝑑 admits a Kähler metric of neg-

ative sectional curvature and does not have the homotopy type of a locally symmetric space. By a
theoremof Eyssidieux [26] (see also [46, Theorem 24]), there is a further finite cover𝑝3 ∶ 𝑋3 → 𝑋2

such that the Albanese map 𝑎𝑋3
∶ 𝑋3 → 𝐴(𝑋3) is an immersion and thus defines a finite map to

a complex torus. The pair (𝑋3, 𝐷3 = 𝑝−1
3
(𝐷2)) is again a totally geodesic good pair. Moreover, 𝑝3

induces a regular cover 𝑌′
𝑑
→ 𝑌𝑑 such that there is a 𝑑-fold ramified cover 𝑌′

𝑑
→ 𝑋3 with rami-

fication locus 𝐷3. In particular, 𝑌′
𝑑
is a smooth projective variety admitting a metric of negative

sectional curvature. Since finite (possibly ramified) covers are finite maps and compositions of
finite maps are finite, the induced holomorphic map 𝑌′

𝑑
→ 𝐴(𝑋3) is finite. By Lemma 4.4, 𝑌′

𝑑
has

non-trivial Euler characteristic. Addendum 3.4 thus completes the proof. □

4.3 New Kähler groups of type𝓕𝟐𝒏−𝟏 and not𝓕𝟐𝒏

We sketch here without details a possible construction of groups as in the title of this section. Let
𝑋CS be theCartwright–Steger surface. It is a quotient of the unit ball ofℂ2 by a uniform congruence
arithmetic lattice Γ ⩽ PU(2, 1) of the simplest type [60, p. 89–90] (see also [61, Remark 3.7]) with
𝑏1(𝑋) = 2. Consequently its Albanese map 𝑓 ∶ 𝑋CS → 𝐸 is onto an elliptic curve 𝐸. It was shown
in [21] that this map has isolated singularities. Moreover, 𝑓 has connected fibres. Let 𝑛 ⩾ 2 be an
integer. Consider the map

𝐹 ∶ 𝑋CS ×⋯ × 𝑋CS → 𝐸

from the direct product of 𝑛 copies of 𝑋CS to 𝐸 obtained by summing the map 𝑓 applied to each
factor. It was proved in [52] that the fundamental group of the generic fibre of themap𝐹 is aKähler
group of typeℱ2𝑛−1 but not of type FP2𝑛(ℚ). Applying Stover and Toledo’s work, we can consider
a congruence cover𝑝 ∶ 𝑋′ → 𝑋CS admitting a ramified cover𝑝′ ∶ 𝑌 → 𝑋′ along a totally geodesic
divisor. Note that since 𝑋CS has arithmetic fundamental group, it contains infinitely many totally
geodesic divisors; moreover, the directions tangent to these divisors form a dense subset of the
projectivised tangent bundle of𝑋CS, as can be shown by using the commensurator of Γ ≃ 𝜋1(𝑋CS).
If the ramification locus in𝑋′ is chosen in general position, it will project onto𝐸 via themap 𝑓 ◦𝑝.
This implies that the map

ℎ ∶= 𝑓 ◦𝑝 ◦𝑝′ ∶ 𝑌 → 𝐸

has isolated critical points. One can thus repeat† the construction from [52] by considering the
map

ℎ +⋯ + ℎ ∶ 𝑌 ×⋯ × 𝑌 → 𝐸

†One must possibly replace 𝐸 by a finite cover to ensure that ℎ has connected fibres.
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 11 of 29

from the direct product of 𝑛 ⩾ 2 copies of 𝑌. This yields new Kähler groups with exotic finiteness
properties, sitting inside a direct product of hyperbolic groups.

5 HOMOMORPHISMS TO ℤ𝟐

In this section,we prove Theorem 1.2 (Section 5.1) and then discusswhether the groupswith exotic
finiteness properties constructed in this article and in [46] are Kähler or not (Section 5.2).

5.1 Hodge theory yields circles in the BNSR-invariants

Let 𝑋 be a closed Kähler manifold of complex dimension 𝑛. Let 𝑎 ∈ 𝐻1(𝑋; ℂ) be a cohomology
class whose real and imaginary part are independent in𝐻1(𝑋;ℝ). Equivalently, we require that 𝑎
is not a complex multiple of a real class. Associated to 𝑎, there is a circle

𝑆1(𝑎) ⊂ 𝑆(𝜋1(𝑋)) ≅ 𝐻1(𝑋;ℝ) − {0}∕ℝ∗
+.

The circle 𝑆1(𝑎) is made up of the projections in 𝑆(𝜋1(𝑋)) of the (de Rham) cohomology classes

Re(𝑒𝑖𝜃𝑎) (𝜃 ∈ ℝ).

We now assume that 𝑎 is the cohomology class of a holomorphic 1-form 𝛼 with finitely many
zeros. In particular, if 𝑋 is aspherical, Theorem 6 from [46] can be applied to the cohomology
classes [Re(𝑒𝑖𝜃𝛼)] for each real number 𝜃, since 𝑒𝑖𝜃𝛼 is a holomorphic 1-form with finitely many
zeros. That theorem gives that [Re(𝑒𝑖𝜃𝛼)] ∈ Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)). In other words, the
circle 𝑆1([𝛼]) is contained in Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)). We have proved:

Proposition 5.1. If 𝑋 is aspherical and if 𝛼 is a holomorphic 1-form with finitely many zeros on 𝑋,
we have

𝑆1([𝛼]) ⊂ Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)).

We are now ready to prove Theorem 1.2, combining Proposition 5.1 with the results recalled in
Section 2.

Proof of Theorem 1.2. Let 𝑋 be as in the statement of Theorem 1.2, that is, 𝑋 is a closed aspherical
Kähler manifold with finite Albanese map, and with non-zero Euler characteristic. We aim to
construct surjective morphisms from 𝜋1(𝑋) to ℤ2, whose kernels have good enough finiteness
properties. For this, we will appeal to Theorem 2.2.
The set 𝑈 ⊂ 𝐻0(𝑋;Ω1

𝑋
) of holomorphic 1-forms with finitely many zeros is dense (see Propo-

sitions 14 and 18 in [46]). Let 𝛼 ∈ 𝑈. By Proposition 5.1, the circle 𝑆1([𝛼]) is contained in
Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)). Let 𝑎1 and 𝑎2 be rational elements in 𝐻1(𝑋;ℝ) which are close
enough to [Re(𝛼)] and [Im(𝛼)], respectively. The set Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)) being open,
we have

[cos(𝑡)𝑎1 + sin(𝑡)𝑎2] ∈ Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)) (5.1)
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12 of 29 ISENRICH and PY

for all real numbers 𝑡, if 𝑎1 and 𝑎2 are close enough to [Re(𝛼)] and [Im(𝛼)]. Let𝑁 be a large enough
integer so that 𝑁𝑎1 and 𝑁𝑎2 define morphisms from 𝜋1(𝑋) to ℤ. The image Λ of the morphism
(𝑁𝑎1,𝑁𝑎2) ∶ 𝜋1(𝑋) → ℤ2 is isomorphic to ℤ2. Equation (5.1) implies that for any non-zero mor-
phism 𝑢 ∶ Λ → ℝ, we have [𝑢 ◦ (𝑁𝑎1,𝑁𝑎2)] ∈ Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)). Theorem 2.2 then
implies that the kernel of the morphism

(𝑁𝑎1,𝑁𝑎2) ∶ 𝜋1(𝑋) → Λ ≅ ℤ2

is of typeℱ𝑛−1. The fact that it is not of type FP𝑛(ℚ) follows from the last point of Addendum 3.4;
indeed, the latter property holds for kernels of arbitrary characters. Finally, the openness of the
set of homomorphisms 𝜋1(𝑋) → ℤ2 whose kernel is of type ℱ𝑛−1 follows from Proposition 2.3.
This concludes the proof of Theorem 1.2. □

Theorem 1.2 has the following consequence, which also proves Corollary 1.3.

Corollary 5.2. Assume that 𝑍 is an 𝑛-dimensional complex manifold which is either a complex
ball quotient by a uniform arithmetic lattice with non-trivial first Betti number, or one of the Stover–
Toledomanifolds𝑌′

𝑑
constructed in Theorem 4.5. Then, there is a finite cover𝑍′ → 𝑍 and a surjective

homomorphism 𝜙 ∶ 𝜋1(𝑍
′) → ℤ2 with kernel of typeℱ𝑛−1, but not FP𝑛(ℚ).

Proof. We argue as in the proof of Theorem 4.5, using Eyssidieux’s work [26], that in both cases,
there is a finite cover 𝑍′ → 𝑍 with finite Albanese map and non-trivial Euler characteristic. The
result is then an immediate consequence of Theorem 1.2. □

Since the virtual first Betti number of arithmetic lattices Γ ⩽ PU(𝑛, 1)with 𝑏1(Γ) > 0 is infinite
[1, 62], it is natural to ask if Corollary 5.2 generalises to abelian quotients of arbitrary rank.

Question 5.3. Let 𝑛 ⩾ 2 and 𝑘 ⩾ 3 be integers. Let 𝑍 be as in Corollary 5.2 with dimℂ(𝑍) = 𝑛.
Is there a finite cover 𝑍′ → 𝑍 whose fundamental group admits a surjective homomorphism
𝜙 ∶ 𝜋1(𝑍

′) → ℤ𝑘 with kernel of typeℱ𝑛−1 and not of type FP𝑛(ℚ)?

A positive answer to this question would also provide a positive answer to the following more
general question.

Question 5.4. Let 𝑛 ⩾ 4 and 𝑘 ⩾ 3 be integers. Is there a hyperbolic group 𝐺 together with a
surjective homomorphism 𝜙 ∶ 𝐺 → ℤ𝑘 such that ker(𝜙) is of typeℱ𝑛−1 and not of type FP𝑛(ℚ)?

For 𝑛 = 2, this last question can be answered using a classical construction due to Rips, see [15,
p. 227] and very recently Kropholler and Llosa Isenrich gave an answer for 𝑛 = 3 [38]. The case
𝑛 > 3 remains open.

5.2 Kähler and non-Kähler subgroups

We mentioned in the introduction that complex Morse theory methods allow to construct exam-
ples of groups with exotic finiteness properties as subgroups of Kähler groups. These groups are

 17538424, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70013 by K
arlsruher Institut Für T

echnologie, W
iley O

nline L
ibrary on [17/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 13 of 29

sometimes Kähler but not always. In the next theorem, we justify that some of these groups are
not Kähler.We focus on subgroups of lattices in PU(𝑛, 1) and explain in Remark 5.6 how one could
possibly obtain slightly more general results.

Theorem5.5. LetΓ < PU(𝑛, 1) be a torsion-free cocompact lattice and let𝜓 ∶ Γ → ℤ𝑘 be a surjective
homomorphism.

∙ If 𝑘 = 1, the kernel of 𝜓 is not a Kähler group.
∙ If 𝑘 = 2, and if the kernel of 𝜓 is a Kähler group, there exists a holomorphic map 𝜋 with connected
fibres from the quotient Γ∖𝔹𝑛

ℂ
onto an elliptic curve 𝐸, and an isomorphism 𝜑 ∶ 𝜋1(𝐸) → ℤ2 such

that 𝜓 = 𝜑 ◦𝜋∗.

When 𝑛 ⩽ 2, the kernel of a morphism 𝜓 as above cannot be finitely presented. This follows
from Corollary 15 in [44]; see also [27]. Hence, Theorem 5.5 is relevant only for 𝑛 ⩾ 3. As a con-
sequence of it, we obtain that in the context of Theorem 1.2 applied to ball quotients, most of the
kernels under consideration are not Kähler. Indeed, let 𝑋 be a closed ball quotient with finite
Albanese map. Let 𝜓 ∶ 𝜋1(𝑋) → ℤ2 be a surjective morphism. The space 𝐻1(𝑋;ℝ) is endowed
with its natural complex structure via the identification

𝐻1,0(𝑋) → 𝐻1(𝑋;ℝ)

mapping a holomorphic 1-form to the class of its real part. If the kernel of 𝜓 is Kähler, then the
plane 𝑃 ⊂ 𝐻1(𝑋;ℝ) defined by 𝜓 is a complex line, thanks to Theorem 5.5. This last condition can
be broken by a suitable rational perturbation of 𝜓, yielding many morphisms onto ℤ2 with non-
Kähler kernels. Note that we assumed that the Albanese map of 𝑋 was finite, hence 𝑏1(𝑋) > 2

and𝐻1(𝑋;ℚ) is large enough to perturb 𝜓.

Proof of Theorem 5.5. As observed above, we can assume that 𝑛 ⩾ 2. We fix Γ and 𝜓 as in the
statement of the theorem. We write 𝑋 = Γ∖𝔹𝑛

ℂ
. We assume that there exists a closed Kähler

manifold 𝑌 whose fundamental group is isomorphic to the kernel of 𝜓. The natural morphism
𝜚 ∶ 𝜋1(𝑌) → 𝜋1(𝑋) is induced by a smooth map ℎ ∶ 𝑌 → 𝑋. By work of Eells and Sampson,
there exists a harmonic map ℎ0 ∶ 𝑌 → 𝑋 homotopic to ℎ, see [25] and also [3, p. 68]. This map
is pluriharmonic and the (1,0) part of its differential

𝑑ℎ1,0
0

∶ 𝑇𝑌 → 𝑇𝑋 ⊗ ℂ

is holomorphic for a suitable holomorphic structure on the bundle 𝑇𝑋 ⊗ ℂ, see [3, Ch. 6] or [54,
§9.2.2]. We distinguish two cases.
If the complex rank of 𝑑ℎ1,0

0
is equal to 1, then the harmonic map ℎ0 factors through a Riemann

surface: there exists a surjective holomorphic map with connected fibres onto a Riemann surface,
denoted by 𝜋 ∶ 𝑌 → Σ, and a harmonic map𝑚0 ∶ Σ → 𝑋 such that

ℎ0 = 𝑚0 ◦𝜋.

This result is due to Carlson and Toledo [20, §7]. The kernel of the induced morphism 𝜋∗ is con-
tained in the kernel of 𝜚. Since 𝜚 is injective, so is 𝜋∗. Since 𝜋 has connected fibres, 𝜋∗ is also
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14 of 29 ISENRICH and PY

surjective, and we obtain that

𝜋∗ ∶ 𝜋1(𝑌) → 𝜋1(Σ)

is an isomorphism. However, 𝜋1(𝑌) is not of type FP𝑛(ℚ) by Addendum 3.4, while surface groups
are of typeℱ𝑟 for all 𝑟, yielding a contradiction. Alternatively, one can also observe that Γ fits into
an extension

1 → 𝜋1(Σ) → Γ → ℤ𝑘 → 1

to obtain a contradiction by a theoremdue toBregman andZhang [14] (see also thework ofNicolás
[51] for a different proof of this theorem). This first half of the proof works for arbitrary 𝑘.
We now assume that the complex rank of 𝑑ℎ1,0

0
is greater than 1. In that case another result

due to Carlson and Toledo [20, Cor. 3.7] ensures that the map ℎ0 is holomorphic (after possibly
replacing the complex structure on 𝑋 by its complex conjugate structure). To complete the proof,
we use arguments similar to those in [43, §3] and [42, p.19–20]. The kernel of the pull-back map

ℎ∗0 ∶ 𝐻1(𝑋; ℂ) → 𝐻1(𝑌; ℂ)

is an integral sub-Hodge structure of𝐻1(𝑋; ℂ). In particular, it has even dimension. By the original
definition of𝜋1(𝑌), which is isomorphic to the kernel of𝜓, we obtain a contradiction if 𝑘 = 1. This
concludes the proof that ker(𝜓) is not Kähler for 𝑘 = 1.When 𝑘 = 2, we consider theAlbanese tori
of 𝑋 and 𝑌, denoted by 𝐴(𝑋) and 𝐴(𝑌). We let 𝑎𝑋 ∶ 𝑋 → 𝐴(𝑋) and 𝑎𝑌 ∶ 𝑌 → 𝐴(𝑌) be the corre-
sponding Albanesemaps. By the universal property of Albanesemaps, there exists a holomorphic
map 𝜃 ∶ 𝐴(𝑌) → 𝐴(𝑋)making the following diagram commutative:

We can assume that 𝜃 is a group morphism, after possibly composing 𝑎𝑋 by a translation. The
codimension of the image of𝐴(𝑌) in𝐴(𝑋) is equal to the dimension of the kernel of the restriction
map 𝐻1,0(𝑋) → 𝐻1,0(𝑌), which is equal to 𝑘

2
= 1. Hence, 𝜃(𝐴(𝑌)) is a codimension 1 subtorus of

𝐴(𝑋). We let 𝐸 be the quotient 𝐴(𝑋)∕𝜃(𝐴(𝑌)) and 𝜋 be the composition of the map 𝑎𝑋 with the
quotient map 𝐴(𝑋) → 𝐸. Let 𝑎 ∈ 𝐻1(𝑋; ℤ). We write 𝑎 = 𝑎∗

𝑋
𝑏 with 𝑏 ∈ 𝐻1(𝐴(𝑋); ℤ). Then, 𝑎

vanishes on 𝜋1(𝑌) if and only if 𝑏 vanishes on the image of 𝜋1(𝐴(𝑌)) in 𝜋1(𝐴(𝑋)). This is also
equivalent to the fact that 𝑏 comes from a class in𝐻1(𝐸; ℤ). This implies that 𝜓 = 𝜑 ◦𝜋∗ for some
morphism 𝜑 ∶ 𝜋1(𝐸) → ℤ2 which is necessarily an isomorphism. We finally have to justify the
fact that 𝜋 has connected fibres. If this is not the case, we can consider the Stein factorisation𝑋 →

Σ → 𝐸 of this map. If Σ ≠ 𝐸 and Σ is hyperbolic, we obtain a contradiction since the kernel of the
morphism 𝜋1(Σ) → 𝜋1(𝐸) is not finitely generated. If Σ has genus one, it cannot be a non-trivial
covering space of 𝐸, otherwise 𝜋∗ would not be surjective. Hence, Σ = 𝐸 and 𝜋 has connected
fibres. This concludes the proof of Theorem 5.5. □

Remark 5.6. One could try to prove a statement analogous to Theorem 5.5, when the lattice
Γ < PU(𝑛, 1) is replaced by the fundamental group of one of the negatively curvedmanifolds built
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 15 of 29

by Stover and Toledo and described in Section 4.1. This can most probably be done along the fol-
lowing lines. The natural Kähler form on these manifolds (see [50, 65]) is built by pulling back
the Kähler form of the ball quotient and adding a suitable (1,1) form supported near the branch
locus. This metric is known to have non-positive Hermitian sectional curvature (see [3, Ch. 6]
or [54, §9.2.2] for this notion). This property is enough to build a harmonic map and to prove that
it is pluriharmonic, as in the proof of Theorem 5.5. Then, one should adapt the results from [20],
about harmonic maps to complex hyperbolic manifolds, to the case where the target is one of the
manifolds built by Stover–Toledo.

6 FIBRE PRODUCTS OVER RIEMANN SURFACES

In this section, we describe a new method that uses complex Morse theory to produce examples
of non-normal subgroups with exotic finiteness properties in a direct product of non-positively
curved groups. Most previous constructions of subgroups with exotic finiteness properties in non-
positively curved groups lead to normal subgroups. Ourmethodmight possibly be applied in other
situations and could lead to further interesting examples.

6.1 Fibre products with isolated singularities and Livné’s surfaces

Assume that𝑋1 and𝑋2 are closed complexmanifolds of dimensions𝑛𝑖 = dimℂ(𝑋𝑖)with𝑛1 + 𝑛2 ⩾

3 and that 𝑝𝑖 ∶ 𝑋𝑖 → Σ (𝑖 = 1, 2), is a surjective holomorphic map with isolated critical points
onto a closed hyperbolic Riemann surface Σ. Assume further that 𝑝1 and 𝑝2 induce surjections
on fundamental groups, that the fibres of 𝑝1 are connected, and that the sets of critical values of
𝑝1 and 𝑝2 are both non-empty and have empty intersection. Let

𝑍 ∶= {(𝑥1, 𝑥2) ∈ 𝑋1 × 𝑋2 ∣ 𝑝1(𝑥1) = 𝑝2(𝑥2)} ⊂ 𝑋1 × 𝑋2

be the fibre product and observe that 𝑍 = (𝑝1, 𝑝2)
−1(ΔΣ) for ΔΣ ↪ Σ × Σ the diagonal. Our

hypothesis on critical values implies that 𝑍 is a smooth connected complex submanifold of
𝑋1 × 𝑋2.
Denote by 𝑞 ∶ 𝑌 → Σ × Σ the covering space corresponding to the subgroup 𝜋1(ΔΣ) < 𝜋1(Σ) ×

𝜋1(Σ) and let 𝑞 ∶ 𝑊 → 𝑋1 × 𝑋2 be the covering space induced by (𝑝1, 𝑝2)
−1
∗ (𝜋1(ΔΣ)). We fix

a hyperbolic metric on Σ and equip 𝑌 with the metric of non-positive curvature obtained by
pulling back the corresponding product metric on Σ × Σ. Let Δ̂Σ be the unique compact connected
component of the preimage of ΔΣ in 𝑌. Let

𝑓 ∶ 𝑌 → ℝ⩾0

𝑦 ↦
(
dist

(
𝑦, Δ̂Σ

))2
be the square of the distance function to Δ̂Σ in𝑌. Since Σ is non-positively curved, for every 𝑦 ∈ 𝑌,
there is a unique shortest geodesic connecting 𝑦 to a point in Δ̂Σ (it intersects Δ̂Σ orthogonally).
This implies that the restriction of 𝑓 to 𝑓−1((0,∞)) = 𝑌 ⧵ Δ̂Σ is a submersion. One can, in fact,
show that𝑌 is diffeomorphic to the normal bundle of Δ̂Σ, see [56, Section 2].We fix once and for all
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16 of 29 ISENRICH and PY

a map 𝜋 ∶ 𝑊 → 𝑌 lifting the composition (𝑝1, 𝑝2) ◦ 𝑞, so that we have a commutative diagram:

Observe that themaps 𝑓 and 𝜋 are proper. Thus, the same applies to 𝑓 ◦𝜋. Since 𝑝1 and 𝑝2 induce
surjections on fundamental groups, the fibre product of 𝑌 and 𝑋1 × 𝑋2 is connected, hence can
be identified with𝑊. We then define:

𝑍 ∶= 𝜋−1(Δ̂Σ).

The description of𝑊 as a fibre product implies that 𝑞 induces a diffeomorphism between 𝑍 and
𝑍.
In the next two sections, we shall prove the following theorem:

Theorem 6.1. The manifold𝑊 and the group 𝜋1(𝑍) enjoy the following properties:

(1) the inclusion 𝑍 ↪ 𝑊 induces an isomorphism on homotopy groups up to degree 𝑛1 + 𝑛2 − 2, in
particular𝑊 and 𝑍 have isomorphic fundamental groups,

(2) 𝐻𝑛1+𝑛2
(𝑊;ℚ) is infinite dimensional,

(3) 𝜋1(𝑍) is the group-theoretic fibre product of the surjective homomorphisms 𝑝1∗ ∶ 𝜋1(𝑋1) →

𝜋1(Σ) and 𝑝2∗ ∶ 𝜋1(𝑋2) → 𝜋1(Σ),
(4) if𝑋1 and𝑋2 are aspherical, then 𝜋1(𝑍) is of finiteness typeℱ𝑛1+𝑛2−1

but not of type FP𝑛1+𝑛2(ℚ).

Theorem 1.4 from the introduction follows immediately from Theorem 6.1: one applies the con-
struction described above with 𝑋1 being a ball quotient and 𝑋2 a Riemann surface. The group
𝜋1(𝑍) is then of typeℱ𝑛1

but not of type FP𝑛1+1(ℚ). Let us now turn to the examples. In [40], Livné
constructed a family of smooth compact complex algebraic surfaces 𝑆𝑑(𝑁) by taking ramified
covers of the compactification 𝐸(𝑁) of the universal elliptic curve with full level 𝑁 structure for
every integer 𝑁 ⩾ 5. The holomorphic map 𝐸(𝑁) → 𝑋(𝑁) to the compactification of the moduli
space of elliptic curves with a full-level 𝑁 structure has isolated singularities. Since the rami-
fied covering is along a divisor whose irreducible components are sections of 𝐸(𝑁) → 𝑋(𝑁), the
induced holomorphic map 𝑆𝑑(𝑁) → 𝑋(𝑁) also has isolated singularities. Livné proves that for
(𝑁, 𝑑) ∈ {(7, 7), (8, 4), (9, 3), (12, 2)}, the surface 𝑆𝑑(𝑁) is a complex ball quotient. Since 𝑋(𝑁) is a
closed hyperbolic Riemann surface, this provides examples of two-dimensional complex ball quo-
tients admitting maps with isolated singularities to closed hyperbolic Riemann surfaces, to which
one can apply Theorem 1.4.
The proof of Theorem 6.1 is given in the next two subsections.

6.2 A perturbation of the distance function

In this section, by perturbing the function 𝑓 ◦𝜋, we will construct a proper function

ℎ ∶ 𝑊 → ℝ⩾0,
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 17 of 29

which is Morse outside of 𝑍 and all of whose critical points outside of 𝑍 have index equal to
𝑛1 + 𝑛2. This function will be used in Section 6.3 to prove Thereom 6.1.
We start by observing that 𝑓 ◦𝜋|𝑊⧵𝑍 has isolated critical points, coinciding with the zeros of

the differential of 𝜋. In the lemma below, we denote by 𝑑𝑤𝜑 the differential of a smooth function
𝜑 at a point 𝑤.

Lemma 6.2. Fix a point 𝑤 ∈ 𝑊 ⧵ 𝑍. The following are equivalent:

(1) d𝑤(𝑓 ◦𝜋) = 0,
(2) d𝑤𝜋 = 0,
(3) d𝑞(𝑤)(𝑝1, 𝑝2) = 0.

If a function 𝑓′ ∶ 𝑊 → ℝ⩾0 is sufficiently 𝐶1-close to 𝑓 near 𝑤, the conditions above are also
equivalent to 𝑑𝑤(𝑓′ ◦𝜋) = 0.

Proof. The equivalence of (2) and (3) is a direct consequence of the fact that 𝑞 and 𝑞 are covering
maps. By the chain rule, (2) implies (1). We continue the proof by showing that (1) implies (2).
Recall that the restriction of 𝑓 to 𝑌 ⧵ Δ̂Σ is a submersion. Let 𝑦 ∈ 𝑌 ⧵ Δ̂Σ and let

(𝑠1, 𝑠2) ∶= 𝑞(𝑦) ∈ Σ × Σ.

The orthogonal decomposition

𝑇(𝑠1,𝑠2)Σ × Σ = 𝑇𝑠1Σ ⊕ 𝑇𝑠2Σ

pulls back to a decomposition 𝑇𝑦𝑌 = 𝐸𝑦,1 ⊕ 𝐸𝑦,2, with 𝐸𝑦,𝑖 = (d𝑦𝑞)
−1(𝑇𝑠𝑖Σ). Let ℍ be the hyper-

bolic plane, thought of as the universal cover of Σ. The orthogonal projection of a point
(𝑎, 𝑏) ∈ ℍ × ℍ on the diagonalΔℍ is the point (𝑧, 𝑧)where 𝑧 is themidpoint on the geodesic going
from 𝑎 to 𝑏. The gradient flow of the distance to the diagonal Δℍ is obtained by ‘flowing’ simul-
taneously 𝑎 and 𝑏 towards 𝑧. From this, one sees easily that the differential of the function 𝑓 is
non-zero when restricted to each of the two subspaces 𝐸𝑦,𝑗 (𝑗 = 1, 2).
Let 𝑤 ∈ 𝑊 ⧵ 𝑍 with d𝑤𝜋 ≠ 0. We write 𝑞(𝑤) = (𝑥1, 𝑥2). If 𝑑𝑤𝜋 is a submersion, then

𝑑𝑤(𝑓 ◦𝜋) ≠ 0. Thus, we may assume that d𝑤𝜋 has ℂ-rank 1. This is the case if exactly one of
the 𝑥𝑖 ’s is a critical point of 𝑝𝑖 , say 𝑥1. In that case, we have that im(d𝑤𝜋) = 𝐸𝜋(𝑤),2 and therefore
d𝑤(𝑓 ◦𝜋) ≠ 0 by the previous observation applied to 𝑦 = 𝜋(𝑤). This completes the proof of the
equivalence of (1)–(3). The condition

𝑑𝜋(𝑤)𝑓(𝐸𝜋(𝑤),𝑗) ≠ 0 (𝑗 = 1, 2)

being 𝐶1-open, the assertion about perturbations of 𝑓 follows immediately. □

We now construct the function ℎ. Let

CV((𝑝1, 𝑝2)) ⊂ Σ × Σ

be the product of the set of critical values of 𝑝1 with the set of critical values of 𝑝2. In other words,
CV((𝑝1, 𝑝2)) is the image under (𝑝1, 𝑝2) of the set of zeros of the differential of (𝑝1, 𝑝2). This set
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18 of 29 ISENRICH and PY

is finite and does not intersect the diagonal

ΔΣ ⊂ Σ × Σ,

by assumption. Hence, the set CV(𝜋) = 𝑞−1(CV((𝑝1, 𝑝2))) is discrete and does not intersect Δ̂Σ.
By compactness, it also avoids a closed neighbourhood𝑈 of Δ̂Σ. We will perturb 𝑓 near each point
of CV(𝜋) to obtain a function 𝑓′ ∶ 𝑌 → ℝ⩾0 and will later perturb 𝑓′ ◦𝜋 near the zero set of the
differential of 𝜋 to obtain the function ℎ.
We pick a family of disjoint closed balls

(𝐵(𝑣))𝑣∈CV(𝜋),

which are also disjoint from 𝑈. We identify 𝐵(𝑣) with the closed unit ball 𝐵1 of ℂ2, via some
holomorphic coordinates. We denote by 𝐵𝑟 the closed ball of radius 𝑟 and use the symbol || ⋅ ||
simultaneously for the Euclidean norm on ℂ2 and for the dual norm on (ℂ2)∗ defined by

||𝜑|| = sup||𝑣||⩽1|𝜑(𝑣)|,
for 𝜑 ∈ (ℂ2)∗. We fix once and for all a smooth function

𝜒 ∶ ℂ2 → [0, 1]

such that 𝜒 is equal to 0 on a neighbourhood of the origin, and is equal to 1 on a neighbourhood
of the set {||𝑧|| ⩾ 1}. We now pick a constant 𝐷 ⩾ 1 such that the inequalities:

||𝑑𝑧𝜒|| ⩽ 𝐷,

|𝑓(𝑧) − (𝑓(0) + 𝑑0𝑓(𝑧))| ⩽ 𝐷||𝑧||2,
||𝑑𝑧𝑓 − 𝑑0𝑓|| ⩽ 𝐷||𝑧||

hold for each point 𝑧 ∈ 𝐵1. For 𝑟 ∈ (0, 1), we let

ℎ𝑟(𝑧) = 𝜒
(
𝑧

𝑟

)
𝑓(𝑧) +

(
1 − 𝜒

(
𝑧

𝑟

))
(𝑓(0) + 𝑑0𝑓(𝑧)).

The function ℎ𝑟 is equal to 𝑓 near the boundary of 𝐵𝑟 and we have on 𝐵𝑟:

|𝑓(𝑧) − ℎ𝑟(𝑧)| ⩽ 𝐷𝑟2 (6.1)

and

𝑑𝑧ℎ𝑟 = 𝑑0𝑓 + 𝐸(𝑧, 𝑟), (6.2)

where the norm of the linear form 𝐸(𝑧, 𝑟) is bounded by (𝐷 + 𝐷2)𝑟. In particular, there exists
𝑟0 > 0 such that for 𝑟 ⩽ 𝑟0, the differential 𝑑𝑧ℎ𝑟 cannot vanish for 𝑧 ∈ 𝐵𝑟. We also assume that 𝑟0
is chosen small enough so that ℎ𝑟 > 0 and so that the critical points of ℎ𝑟 ◦𝜋 on 𝜋−1(𝐵𝑟) are the
zeros of the differential of 𝜋 (for 𝑟 ⩽ 𝑟0); this is possible thanks to Lemma 6.2. Since ℎ𝑟0 coincides

 17538424, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70013 by K
arlsruher Institut Für T

echnologie, W
iley O

nline L
ibrary on [17/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 19 of 29

with 𝑓 near the boundary of 𝐵𝑟0
, we canmodify 𝑓 by replacing it by ℎ𝑟0 in the ball 𝐵𝑟0

. We perform
this modification in all the balls (𝐵(𝑣))𝑣∈CV(𝜋) and obtain a new function 𝑓′ ∶ 𝑌 → ℝ⩾0. Hence,
the critical points of the function

𝑓′ ◦𝜋 ∶ 𝑊 → ℝ⩾0

are the zeros of 𝑑𝜋, away from 𝑍. Let 𝑤 ∈ 𝑊 ⧵ 𝑍 be such a critical point. We pick coordinates as
before on the ball 𝐵(𝜋(𝑤)). In these coordinates, the map 𝑓′ − 𝑓′(𝜋(𝑤)) is equal to a linear form
𝓁 near 𝜋(𝑤). We write 𝓁 = Re(𝐴) where 𝐴 ∶ ℂ2 → ℂ is a complex linear form. The holomorphic
function 𝐴 ◦𝜋 has an isolated critical point at 𝑤. Let 𝜇 be its Milnor number (see Section 7 and
Appendix B in [49]).
We now choose coordinates on a small closed ball 𝐵 around 𝑤. Let 𝐵′ ⋐ 𝐵 be a smaller closed

ball.We assume that𝐴 ◦𝜋 has only one critical point in𝐵 (i.e.𝑤, identifiedwith the origin). There
exist complex linear forms 𝑢 ∶ ℂ𝑛1+𝑛2 → ℂ arbitrarily close to 0 so that 𝐴 ◦𝜋 + 𝑢 has no critical
point near the boundary of𝐵 and𝜇 non-degenerate critical points in the interior of𝐵, all contained
in 𝐵′. Wemodify 𝑓′ ◦𝜋 inside 𝐵 so that it equalsRe(𝐴 ◦𝜋 + 𝑢) inside 𝐵′, 𝑓′ ◦𝜋 near the boundary
of 𝐵, and so that its only critical points are inside 𝐵′. We can assume that the perturbation still
takes positive values and is at distance at most 1 from 𝑓′ ◦𝜋.
Finally, we denote by ℎ the function obtained bymodifying 𝑓′ ◦𝜋 as above in a neighbourhood

of each zero of 𝑑𝜋. Since ℎ is the real part of a holomorphic Morse function in a neighbourhood
of each of its critical points, they are all non-degenerate of index 𝑛1 + 𝑛2. To summarise, we have
proved:

Proposition 6.3. There exists a smooth function

ℎ ∶ 𝑊 → ℝ⩾0

such that:

(1) ℎ coincides with 𝑓 ◦𝜋 on a neighbourhood of 𝑍,
(2) ℎ is proper,
(3) the set of critical points of ℎ in𝑊 ⧵ 𝑍 is discrete and each critical point is non-degenerate of index

𝑛1 + 𝑛2.

6.3 Conclusion of the proof

We start this section by two propositions which will easily imply Theorem 6.1.

Proposition 6.4. The inclusion 𝑍 ↪ 𝑊 induces an isomorphism on homotopy groups up to degree
𝑛1 + 𝑛2 − 2.

Proof. Since ℎ = 𝑓 ◦𝜋 close enough to 𝑍 and since 𝑓 ◦𝜋 has no critical points near 𝑍, besides the
points of 𝑍 themselves, we can pick 𝜀 > 0 such that the inclusion 𝑍 ↪ ℎ−1([0, 𝜀]) is a homotopy
equivalence. This follows from the fact that any tubular neighbourhood of 𝑍 contains ℎ−1([0, 𝛿])
for some 𝛿 > 0 and conversely that for any 𝛿 > 0, ℎ−1([0, 𝛿]) contains a tubular neighbourhood
of 𝑍.
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20 of 29 ISENRICH and PY

Since the set of critical points of ℎ is discrete away from 𝑍, and since all these critical points
have index 𝑛1 + 𝑛2, for every pair of regular values 𝑏 ⩾ 𝑎, the space ℎ−1([0, 𝑏]) is obtained from
ℎ−1([0, 𝑎]), up to homotopy, by attaching finitely many cells of dimension 𝑛1 + 𝑛2. In particu-
lar, the inclusion ℎ−1([0, 𝜀]) ↪ 𝑊 induces an isomorphism on homotopy groups up to degree
𝑛1 + 𝑛2 − 2. Combined with the observation from the previous paragraph, this fact implies the
conclusion of the proposition. □

Proposition 6.5. The (𝑛1 + 𝑛2)th homology group𝐻𝑛1+𝑛2
(𝑊;ℚ) is infinite dimensional.

Proof. This is identical to an argument from [52]. We choose an increasing sequence of regular
values (𝑎𝑘)𝑘⩾0 of ℎ converging to infinity in such a way that ℎ−1((𝑎𝑘, 𝑎𝑘+1)) always contains at
least one critical point of ℎ. The group

𝐻𝑛1+𝑛2
(𝑊;ℚ)

is the direct limit of the groups𝐻𝑛1+𝑛2
(ℎ−1([0, 𝑎𝑘]); ℚ).Wewrite𝑊𝑘 ∶= ℎ−1([0, 𝑎𝑘]). The function

ℎ being proper,𝑊𝑘 is compact, hence all its Betti numbers are finite. Since𝑊𝑘+1 is obtained from
𝑊𝑘 by gluing (𝑛1 + 𝑛2)-dimensional cells, up to homotopy, the Betti numbers

(𝑏𝑛1+𝑛2−1(𝑊𝑘))𝑘⩾0

form a nonincreasing sequence. We pick an integer 𝑘0 such that this sequence is constant for
𝑘 ⩾ 𝑘0. An application of the Mayer–Vietoris sequence then proves that the maps

𝐻𝑛1+𝑛2
(𝑊𝑘;ℚ) → 𝐻𝑛1+𝑛2

(𝑊𝑘+1; ℚ) (𝑘 ⩾ 𝑘0)

are injective and that the sequence (𝑏𝑛1+𝑛2(𝑊𝑘))𝑘⩾𝑘0 is strictly increasing. This implies that
𝐻𝑛1+𝑛2

(𝑊;ℚ) is infinite dimensional and concludes the proof. We refer the reader to [52, p. 61–62]
for more details. □

We can now conclude the proof of Theorem 6.1.

Proof of Theorem 6.1. The first item of the theorem follows from Proposition 6.4 and from the fol-
lowing remark: since 𝑛1 + 𝑛2 ⩾ 3, the inclusion 𝑍 ↪ 𝑊 induces an isomorphism on fundamental
group and since 𝑍 and 𝑍 are diffeomorphic, 𝜋1(𝑍) and 𝜋1(𝑊) indeed have isomorphic fundamen-
tal groups. The second item of the theorem follows from Proposition 6.5. To prove the third item,
we observe that the fundamental group of𝑊 is by construction equal to the fibre product:

{(𝑎, 𝑏) ∈ 𝜋1(𝑋1) × 𝜋1(𝑋2), 𝑝1,∗(𝑎) = 𝑝2,∗(𝑏)}. (6.3)

Since the projection from 𝑍 to 𝑍 is an isomorphism, we obtain that the morphism induced by the
inclusion of 𝑍 in 𝑋1 × 𝑋2 is injective at the level of fundamental groups, with image given by the
subgroup (6.3).
Finally, if𝑋1 and𝑋2 are aspherical, so is𝑊. Thismeans that𝑊 is a𝐾(𝜋1(𝑊), 1). Proposition 6.5

then implies that

𝜋1(𝑍) ≅ 𝜋1(𝑊)
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 21 of 29

is not of type FP𝑛1+𝑛2(ℚ), while Proposition 6.4 implies that it is of typeℱ𝑛1+𝑛2−1
. This completes

the proof of Theorem 6.1. □

7 SUBGROUPS OF FUNDAMENTAL GROUPS OF 𝒏-ITERATED
KODAIRA FIBRATIONS

The goal of this section is to usemethods from complex geometry to provide a new proof of a result
of Kochloukova and Vidussi on finiteness properties of subgroups of fundamental groups of 𝑛-
iteratedKodaira fibrations. Along theway, our proof shows that certain iteratedKodaira fibrations
admit finite Albanese maps. This provides more examples of closed aspherical Kähler manifolds
to which the methods of the present article and of [46] can be applied.

7.1 Constructing 𝒏-iterated Kodaira fibrations

We start by recalling the inductive definition of 𝑛-iterated Kodaira fibrations.

Definition 7.1. Let 𝑋 be a compact complex manifold of dimension 𝑛 ⩾ 1. If 𝑛 = 2, then we
call 𝑋 a 2-iterated Kodaira fibration (or simply a Kodaira fibration) if there exists a holomorphic
submersion 𝜋 ∶ 𝑋 → 𝑌 with connected fibres onto a closed hyperbolic Riemann surface, which
is not isotrivial. If 𝑛 > 2, then we call 𝑋 an 𝑛-iterated Kodaira fibration if there is a holomorphic
submersion 𝜋 ∶ 𝑋 → 𝑌 with connected fibres onto an (𝑛 − 1)-iterated Kodaira fibration𝑌, which
is not isotrivial.

We call a group 𝐺 a polysurface group of length 𝑛 if there is a filtration

1 = 𝐺0 ⊴ 𝐺1 ⊴ 𝐺2 ⊴⋯ ⊴ 𝐺𝑛 = 𝐺

such that 𝐺𝑖∕𝐺𝑖−1 is the fundamental group of an orientable closed hyperbolic surface for
1 ⩽ 𝑖 ⩽ 𝑛. By construction, fundamental groups of 𝑛-iterated Kodaira fibrations are polysurface
groups. We call a group 𝐺 irreducible if no finite index subgroup of 𝐺 decomposes as a direct
product of two non-trivial groups.
In [45], we inductively constructed 𝑛-iterated Kodaira fibrations with injective monodromy,

starting from the Kodaira–Atiyah examples of (2-iterated) Kodaira fibrations, which are known to
have injective monodromy. The induction step is given by the following theorem, summarising
results from [45, Section 5].

Theorem 7.2. Let 𝑋 be an 𝑛-iterated Kodaira fibration with injective monodromy. Then, there are
finite covering spaces 𝑋′, 𝑋′′ → 𝑋 such that 𝑋′ is the base space of an (𝑛 + 1)-iterated Kodaira
fibration 𝑍 → 𝑋′ with injective monodromy and there is a finite map 𝑍 → 𝑋′ × 𝑋′′ which defines a
ramified covering of its image.

The proof of Theorem 7.2 consists in performing a classical construction due to Kodaira and
Atiyah ‘in family’. It also relies on the fact that a finite cover 𝑋′ → 𝑋 of an 𝑛-iterated Kodaira
fibration 𝑋 with injective mondromy is again an 𝑛-iterated Kodaira fibration with injective mon-
odromy,with base a finite cover of the base of𝑋 (see the proof of [45, Proposition 39]). In particular,
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22 of 29 ISENRICH and PY

if one starts from the Kodaira–Atiyah fibration, the following is an implicit consequence of the
construction in [45, Section 5].

Theorem 7.3. Fix an integer 𝑛 ⩾ 2. There exists a sequence of 𝑖-iterated Kodaira fibrations 𝑋𝑖 , 2 ⩽

𝑖 ⩽ 𝑛, and a closed hyperbolic Riemann surface 𝑋1, together with holomorphic submersions with
connected fibres𝜋𝑖,𝑖−1 ∶ 𝑋𝑖 → 𝑋𝑖−1, which are not isotrivial and have injective monodromy, with the
following properties:

(1) for each 𝑖 ∈ {1, … , 𝑛}, there is a finite map 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆1 ×⋯ × 𝑆2𝑖−1 to a direct product of 2𝑖−1
closed hyperbolic Riemann surfaces,

(2) the group 𝜋1(𝑋𝑖) is irreducible (1 ⩽ 𝑖 ⩽ 𝑛).

Proof. By construction [4, 35], the Kodaira–Atiyah fibration𝑋2 is a ramified cover of a direct prod-
uct 𝑅 × 𝑇 of two closed hyperbolic Riemann surfaces and the projection to either of the factors is a
holomorphic submersion with connected fibres and injective monodromy. In particular, the map
𝑋2 → 𝑅 × 𝑇 is finite and we can choose 𝑋1 = 𝑅. Inductively applying Theorem 7.2 and passing to
finite covers of the 𝑋𝑖 if necessary, we can now construct a sequence of 𝑖-iterated Kodaira fibra-
tions with the desired properties. The only thing that is not an immediate consequence is the
irreducibility statement. For this, we will prove by induction on 𝑖 the following stronger state-
ment: if 𝐺1 and 𝐺2 are two commuting subgroups of 𝜋1(𝑋𝑖) such that 𝐺1 ⋅ 𝐺2 has finite index in
𝜋1(𝑋𝑖), then either 𝐺1 or 𝐺2 is trivial. When 𝑖 = 2, the argument is essentially contained in [32];
we give a complete proof however. We first observe that the previous statement is true in a surface
group, implying the case 𝑖 = 1, as the reader can check readily. Let now 𝑖 ∈ {2, … , 𝑛} and let 𝐺1

and𝐺2 be commuting subgroups of 𝜋1(𝑋𝑖), generating a subgroup of finite index.We consider the
fibration

𝜋𝑖,𝑖−1 ∶ 𝑋𝑖 → 𝑋𝑖−1.

By induction hypothesis, one of the two groups

𝜋𝑖,𝑖−1(𝐺1), 𝜋𝑖,𝑖−1(𝐺2)

is trivial.†We assume that𝜋𝑖,𝑖−1(𝐺1) = 1. The group𝐻 ∶= Ker(𝜋𝑖,𝑖−1∗) ∩ (𝐺1 ⋅ 𝐺2) has finite index
in Ker(𝜋𝑖,𝑖−1∗), hence is a surface group. The group 𝐺1 is normal in 𝐻 and 𝐺2 normalises both
𝐻 and 𝐺1. Since 𝐺2 centralises 𝐺1, Lemma 35 from [45] implies that 𝐺2 actually centralises 𝐻.
This, in turn, implies that𝐺2 centralisesKer(𝜋𝑖,𝑖−1∗). Hence, 𝜋𝑖,𝑖−1∗|𝐺2

is injective and its image is
contained in the kernel of the monodromy representation. This contradicts the injectivity of this
representation and concludes the proof of our statement. □

7.2 A complex geometry proof of a Theorem of Kochloukova–Vidussi

We now fix an integer 𝑛 ⩾ 2 and a sequence 𝑋𝑖 as in Theorem 7.3. For 𝑖 ⩽ 𝑗, we denote by
𝜋𝑗,𝑖 ∶ 𝑋𝑗 → 𝑋𝑖 the surjective holomorphic maps with connected fibres obtained by composing
the various maps 𝑋𝑠 → 𝑋𝑠−1. For 2 ⩽ 𝑖 ⩽ 𝑛, let 𝐹𝑖 be a fibre of 𝜋𝑖,𝑖−1. The inclusion 𝐹𝑖 ↪ 𝑋𝑖 is 𝜋1-
injective. We deduce that the restrictions 𝜋𝑗,𝑗−1 ∶ 𝜋−1

𝑗,𝑖
(𝐹𝑖) → 𝜋−1

𝑗−1,𝑖
(𝐹𝑖) define (𝑗 − 𝑖 + 1)-iterated

† If 𝑖 = 2, this also follows because 𝜋1(𝑋1) is a surface group.
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GROUPS WITH EXOTIC FINITENESS PROPERTIES FROM COMPLEX MORSE THEORY 23 of 29

Kodaira fibrations with injective monodromy for 𝑛 ⩾ 𝑗 ⩾ 𝑖 + 1. We then define 𝑌𝑛 ∶= 𝑋𝑛 and

𝑌𝑖 ∶= 𝜋−1
𝑛,𝑛−𝑖+1(𝐹𝑛−𝑖+1) ⊆ 𝑋𝑛,

for 2 ⩽ 𝑖 ⩽ 𝑛 − 1, and observe that the fundamental group of 𝑌𝑖 injects into that of 𝑋𝑛. From this,
we deduce the following result.

Proposition 7.4. There exists an 𝑛-iterated Kodaira fibration 𝑋𝑛 with the following properties:

(1) 𝑋𝑛 has injective monodromy and for every integer 𝑖 with 2 ⩽ 𝑖 ⩽ 𝑛, 𝑋𝑛 contains a 𝑖-iterated
Kodaira fibration 𝑌𝑖 ⊆ 𝑋𝑛, which is 𝜋1-injected.

(2) The group 𝜋1(𝑋𝑛) is irreducible.
(3) There is a finite holomorphic map 𝑋𝑛 → 𝐴 to a complex torus.

Proof. We choose 𝑋𝑛 as in Theorem 7.3. The first and second parts then follow from the above
discussion and Theorem 7.3. Moreover, there is a finite holomorphic map𝑋𝑛 → 𝑆1 ×⋯ × 𝑆2𝑛−1 to
a direct product of 2𝑛−1 closed hyperbolic Riemann surfaces. Since the Albanese map of a closed
hyperbolic Riemann surface is an embedding, choosing 𝐴 to be the Albanese torus of 𝑆1 ×⋯ ×

𝑆2𝑛−1 completes the proof. □

As a consequence of Proposition 7.4, we obtain a new proof of a result of Kochloukova and
Vidussi [34, Corollary 1.11].

Proof of Theorem 1.5. Let𝑋𝑛 be an 𝑛-iterated Kodaira fibration satisfying the conditions in Propo-
sition 7.4. For each 𝑖 ∈ {1, … , 𝑛}, we want to exhibit a subgroup of 𝜋1(𝑋𝑛) which is of type ℱ𝑖−1

but not of type FP𝑖(ℚ).
The smooth projective variety 𝑋𝑛 is obtained by iteratively constructing locally trivial surface

bundles starting from a closed Riemann surface. In particular,𝑋𝑛 is aspherical and, bymultiplica-
tivity of the Euler characteristic, its Euler characteristic is non-trivial. The same applies for the
𝑖-iterated Kodaira fibrations 𝑌𝑖 ⊆ 𝑋𝑛. Since, moreover, the restriction of the finite holomorphic
map 𝑋𝑛 → 𝐴 to any of the 𝑌𝑖 is finite holomorphic, all of the 𝑌𝑖 satisfy the hypotheses of Theo-
rem 3.3. Thus, for every integer 𝑖 ∈ {2, … , 𝑛}, there is a character 𝜒𝑖 ∶ 𝜋1(𝑌𝑖) → ℤ with kernel of
typeℱ𝑖−1 and not of type FP𝑖(ℚ). The group

ker(𝜒𝑖) ⊂ 𝜋1(𝑌𝑖) ⊂ 𝜋1(𝑋𝑛)

is the desired subgroup when 𝑖 ⩾ 2. Finally, for 𝑖 = 1, we consider the fundamental group of
the fibre 𝐹𝑛 of 𝜋𝑛,𝑛−1; it is a hyperbolic surface group. The kernel of any non-trivial surjective
morphism 𝜋1(𝐹𝑛) → ℤ is a subgroup of 𝜋1(𝑋𝑛) which is not finitely generated. □

Remark 7.5. If Γ < PU(𝑛, 1) is a torsion-free arithmetic lattice of the simplest type such that the
Albanese map of the manifold 𝑋 = Γ∖𝔹𝑛

ℂ
is finite, it is also true (in analogy with Theorem 1.5)

that for each 𝑖 ∈ {1, … , 𝑛}, Γ contains a subgroup of type ℱ𝑖−1 which is not of type FP𝑖(ℚ). This
follows from applying the result from the present article (or from [46]) to the fundamental group
of suitable complex totally geodesic submanifolds, embedded in 𝑋 or some finite covering space
of 𝑋.
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24 of 29 ISENRICH and PY

8 FURTHER REMARKS

As mentioned in the introduction, we explain in this section how to recover some of our results
(and results from [46]) using purely real Morse theoretical arguments instead of the theory
of BNSR-invariants. This concerns mainly the study of kernels of homomorphisms to ℤ. For
homomorphisms to ℤ2, there are no purely Morse theoretical arguments known to us.
We recall that a closed 1-form on a manifold is said to be Morse if it is locally the differential of

a Morse function. We start with the following:

Proposition 8.1. Let 𝑋 be a closed oriented aspherical 2𝑛-dimensional manifold. Let 𝑂𝑛 ⊂

𝐻1(𝑋;ℝ) − {0} be the set of non-trivial classes which can be represented by a Morse 1-form all of
whose zeros have index 𝑛. Then:

(1) The set 𝑂𝑛 is open.
(2) The projection of 𝑂𝑛 in the sphere 𝑆(𝜋1(𝑋)) is contained in Σ𝑛−1(𝜋1(𝑋)) ∩ −Σ𝑛−1(𝜋1(𝑋)).
(3) If 𝜉 is a rational class in 𝑂𝑛, the kernel of 𝜉 is of typeℱ𝑛−1.

Proof. Let 𝑎 be a class in 𝑂𝑛 represented by a Morse 1-form 𝜃, all of whose zeros having index 𝑛.
Let 𝜃1, … , 𝜃𝑁 be closed 1-forms whose cohomology classes form a basis of 𝐻1(𝑋;ℝ). There exists
a neighbourhood 𝑈 of the origin in ℝ𝑁 such that if (𝑥1, … , 𝑥𝑁) ∈ 𝑈, then the form

𝜃 +

𝑁∑
𝑗=1

𝑥𝑗𝜃𝑗

is Morse and all its zeros have index 𝑛. Hence, the classes[
𝜃 +

𝑁∑
𝑗=1

𝑥𝑗𝜃𝑗

]
, (𝑥1, … , 𝑥𝑁) ∈ 𝑈 (8.1)

lie in 𝑂𝑛. Since the classes in (8.1) form a neighbourhood of 𝑎, this proves the first claim.
The second claim can be shown using arguments from Morse theory; we refer to Section 2.3

in [46] for a proof that is based on ideas from the work of Simpson [57]. The proof given there is
stated for a closed form which is the real part of a holomorphic 1-form with finitely many zeros.
It applies equally well for a closed (real) Morse 1-form all of whose zeros have index equal to half
the real dimension of the manifold.
We finally prove the third claim, using classical argumentswhich are similar to the ones used in

the proof of Proposition 6.4. We assume that 𝑛 ⩾ 2, otherwise there is nothing to prove. If 𝜉 ∈ 𝑂𝑛

is rational, there exists a closed 1-form 𝛼 which is Morse and whose critical points are all of index
𝑛, whose cohomology class is proportional to 𝜉, and such that the integration morphism

𝐼𝛼 ∶ 𝜋1(𝑋) → ℝ (8.2)

defined by 𝛼 has image equal to ℤ. Let 𝑋 → 𝑋 be the covering space associated to the kernel of
𝐼𝛼. We fix a primitive 𝑓 ∶ 𝑋 → ℝ of the lift of 𝛼 to 𝑋. The function 𝑓 is a proper Morse function,
all of whose critical points have index 𝑛. Let 𝑐 be a regular value of 𝑓 and let 𝑋𝑐 ∶= 𝑓−1(𝑐). By
real Morse theory, for all positive real numbers 𝑡 such that 𝑐 ± 𝑡 is a regular value of 𝑓, the space
𝑓−1([𝑐 − 𝑡, 𝑐 + 𝑡]) is obtained from the closed manifold 𝑓−1(𝑐) up to homotopy equivalence by
attaching finitely many 𝑛-cells. Since 𝑓−1(𝑐) can be equipped with a finite CW-complex structure,
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this implies that the space𝑋 is homotopy equivalent to aCW-complexwith finite (𝑛 − 1)-skeleton.
Since𝑋 is a classifying space for ker(𝜒), we deduce that this group is of typeℱ𝑛−1. This concludes
the proof of Proposition 8.1. □

To continue our discussion, we shall need the following classical result.

Proposition 8.2. Let 𝑋 be a closed complex manifold of complex dimension 𝑛 and let 𝛼 be a closed
holomorphic 1-formwith finitely many zeros. Then, the cohomology class [Re(𝛼)] can be represented
by a Morse 1-form all of whose zeros have index 𝑛.

The proof of this proposition is the same as the second part of the deformation argument in
Section 6.2: near each point𝑝which is a zero of𝛼, wewrite𝛼 = 𝑑ℎ for someholomorphic function
ℎ defined on a ball 𝐵𝑝 centred at 𝑝. We can perturb ℎ into a holomorphic function ℎ′ ∶ 𝐵𝑝 →

ℂ which has finitely many critical points, all non-degenerate, and which has no critical point
near the boundary. We then take one more 𝐶∞ perturbation ℎ𝑝 which coincides with ℎ near the
boundary of the ball and with ℎ′ on a smaller ball, in such a way that ℎ𝑝 = ℎ′ near each critical
point of ℎ𝑝. We consider the 𝐶∞ complex-valued form 𝛽 which equals 𝑑ℎ𝑝 in 𝐵𝑝 and 𝛼 outside
of the union of the balls 𝐵𝑝. The forms 𝛼 and 𝛽 are cohomologous, hence so are their real parts.
The only zeros of the real part of 𝛽 are contained in one of the balls 𝐵𝑝 (for 𝑝 a zero of 𝛼) and are
critical points of ℎ𝑝. Since ℎ𝑝 is a holomorphic Morse function near its critical points, the claim
follows, observing that the real part of the function

(𝑧1, … , 𝑧𝑛) ↦ 𝑧21 +⋯ + 𝑧2𝑛

is given by (𝑥2
1
+⋯ + 𝑥2𝑛) − (𝑦2

1
+⋯ + 𝑦2𝑛) if 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 with 𝑥𝑗, 𝑦𝑗 ∈ ℝ. We refer the reader

to [52, p. 59-60] for more details on the perturbation argument.
As announced above, the following proposition can serve as a substitute for the use of BNSR-

invariants, when studying kernels of homomorphism to ℤ. Instead of working with the set
Σ𝑛−1 ∩ −Σ𝑛−1, we simply consider the smaller set 𝑂𝑛, which is also open, and which is dense
under suitable hypotheses.

Proposition 8.3. Let 𝑋 be a closed Kähler manifold of complex dimension 𝑛, and let
𝑂𝑛 ⊂ 𝐻1(𝑋;ℝ) − {0} be defined as in Proposition 8.1. Assume that 𝑋 has finite Albanese map.
Then:

(1) the set 𝑂𝑛 is dense in𝐻1(𝑋;ℝ) − {0},
(2) if, moreover, 𝑋 is aspherical, any rational class in 𝑂𝑛 has kernel of typeℱ𝑛−1 (and not of type

FP𝑛(ℚ) if the Euler characteristic of 𝑋 is non-zero).

Proof. Let 𝑎𝑋 ∶ 𝑋 → 𝐴(𝑋) be the Albanesemap of𝑋. If 𝛽 is a holomorphic 1-form on𝐴(𝑋)whose
restriction to any positive dimensional subtorus does not vanish, then 𝛼 = 𝑎∗

𝑋
𝛽 has finitely many

zeros;moreover, the set of forms𝛼 obtained in thisway is dense in𝐻1,0(𝑋) (see Propositions 14 and
18 in [46]). According to Proposition 8.2, we have [Re(𝛼)] ∈ 𝑂𝑛 for such an 𝛼. This proves that 𝑂𝑛

is dense. The second point follows from Proposition 8.1 and the last claim in Addendum 3.4. □

We now turn to the existence of perfect circle-valued Morse functions on Kähler manifolds. Let
us recall the terminology first. Let 𝑀 be a smooth closed manifold. We call a map 𝑀 → 𝑆1 a

 17538424, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70013 by K
arlsruher Institut Für T

echnologie, W
iley O

nline L
ibrary on [17/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



26 of 29 ISENRICH and PY

circle-valued function and say that it isMorse if it coincides locallywith aMorse function. A circle-
valued Morse function 𝑓 ∶ 𝑀 → 𝑆1 allows to study the topology of 𝑀 by starting with a regular
fibre of 𝑓, thickening it, and attaching handles when passing a critical level set. In particular, for
such an 𝑓, we have the formula:

𝜒(𝑀) =
∑
𝑥

(−1)ind(𝑥),

where the sum runs over the finitely many critical points of 𝑓, and ind(𝑥) is the index of a critical
point 𝑥. We say that 𝑓 is perfect if it has |𝜒(𝑀)| critical points. When 𝑀 is odd-dimensional,
or simply of Euler characteristic equal to 0, this means that 𝑓 is a fibration. When 𝑀 is even-
dimensional of non-zero Euler characteristic, this happens if and only if the indices of the critical
points all have the same parity. Some existence results for perfect circle-valued Morse functions
on negatively curvedmanifolds are available: every closed hyperbolic 3-manifold has a finite cover
fibring over the circle, as follows from the work of Agol [2], see also [6]; in dimension 5, Italiano–
Martelli–Migliorini built examples of cusped real hyperbolicmanifolds fibring over the circle [30],
and in dimension 4, Battista and Martelli found finitely many examples (both closed and cusped)
of real hyperbolic 4-manifolds admitting perfect circle-valued Morse functions [5]. We observe
here that Propositions 8.2 and 8.3 have the following immediate consequence.

Theorem8.4. Let𝑋 be a closed Kählermanifold of complex dimension 𝑛, with finite Albanesemap.
Then, any rational ray contained in the dense open set 𝑂𝑛 ⊂ 𝐻1(𝑋;ℝ) − {0} can be represented by
a circle-valued Morse function all of whose critical points have index 𝑛 (in particular such a Morse
function is perfect).

Applying the result of Eyssidieux [26] already alluded to before (see also [46]), we obtain the
following.

Corollary 8.5. Let Γ < PU(𝑛, 1) be a cocompact torsion-free arithmetic lattice. Assume that 𝑏1(Γ) >
0. Then, there is a finite index subgroup Γ0 < Γ such that for any subgroup of finite index Γ1 < Γ0,
there is a dense open set 𝑂 ⊂ 𝐻1(Γ1; ℝ) such that any rational class in 𝑂 can be represented (up to
scalar) by a circle-valued Morse function on Γ∖𝔹𝑛

ℂ
all of whose critical points have index 𝑛.
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