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Abstract

This thesis investigates light—-matter interactions in two-dimensional nanostructures and
chiral optical cavities.

To this end, we first introduce GRANAD (Graphene NANoflakes with ADatoms), a dif-
ferentiable tight-binding framework for simulating the optoelectronic response of finite
nanostructures under classical electromagnetic illumination. Built within the JAX ecosys-
tem, GRANAD enables automatic differentiation, GPU acceleration, and gradient-based
inference of physical parameters. The framework unifies time- and frequency-domain
treatments of optical response, incorporates non-Hermitian extensions for relaxation
and dephasing, and supports common tight-binding models for materials such as graphene,
hexagonal boron nitride, and topological model systems.

Applications illustrate GRANAD’s versatility in modeling nanostructure optoelectronics,
fitting material parameters, and exploring exotic phenomena in topological systems. In
particular, we show that spin angular momentum (SAM) selectivity naturally emerges
in finite topological nanoflakes described by the Haldane model. Analysis of their linear
optical response reveals a pronounced SAM sensitivity arising from the interplay between
broken time-reversal symmetry and chiral edge states, which benefits from topological
protection and may thus serve as a robust experimental platform.

As anext step in our investigation, we extend our theoretical framework beyond the semi-
classical description of light to include intrinsically chiral nanostructures of molecular
dimensions embedded in optical cavities that selectively interact with light of a given
handedness. Such systems offer promising prospects for pharmaceutical applications,
particularly in the design and control of chiral drugs. Whereas most previous studies
have focused on idealized cavities containing a single enantiomeric species, we instead
address the effects of cavity imperfections and the coexistence of molecules with opposite
handedness.

Using a chiral Hopfield model that remains valid in the strong light-matter coupling
regime, we develop a fully quantum mechanical description of the photonic degrees of
freedom to capture the emergence of hybrid light—-matter excitations, or polaritons. We
analyze chirality-selective energy transfer processes and demonstrate that, energy trans-
fer is suppressed in the deep strong coupling regime due to diamagnetic effects.






Zusammmenfassung

Diese Arbeit untersucht Licht-Materie-Wechselwirkungen in zweidimensionalen Nanos-
trukturen und chiralen optischen Resonatoren.

Zunichst wird GRANAD (Graphene NANoflakes with ADatoms) vorgestellt, ein differen-
zierbares Tight-Binding-Framework zur Simulation der optischen und elektronischen Antwort
endlicher Nanostrukturen unter klassischer elektromagnetischer Beleuchtung. Entwick-
eltinnerhalb des JAX-Okosystems ermoglicht GRANAD automatische Differenzierung, Beschle-
unigung auf GPU und gradientenbasierte Inferenz physikalischer Parameter. Das Frame-
work vereinheitlicht zeit- und frequenzbereichsbasierte Beschreibungen der optischen
Antwort, integriert nicht-Hermitesche Erweiterungen zur Beriicksichtigung von Relax-
ation und Dekohidrenz und unterstiitzt giangige Tight-Binding-Modelle fiir Materialien

wie Graphen, hexagonales Bornitrid und topologische Modellsysteme.

Anwendungsbeispiele illustrieren die Vielseitigkeit von GRANAD bei der Modellierung
optoelektronischer Eigenschaften von Nanostrukturen, der Anpassung von Materialpa-
rametern und der Erforschung exotischer Phdnomene in topologischen Systemen. Ins-
besondere zeigen wir, dass eine Selektivitidt des Spin-Drehimpulses (SAM) auf natiirliche
Weise in endlichen topologischen Nanoflocken auftritt, die durch das Haldane-Modell
beschrieben werden. Die Analyse ihrer linearen optischen Antwort offenbart eine aus-
geprigte SAM-Empfindlichkeit, die aus dem Zusammenspiel zwischen gebrochener Zei-
tumkehrsymmetrie und chiralen Randzustianden resultiert. Diese profitiert von topolo-
gischem Schutz und konnte somit als robuste experimentelle Plattform dienen.

Im néachsten Schritt erweitern wir unsere theoretische Betrachtung iiber die semiklassis-
che Beschreibung des Lichts hinaus, um intrinsisch chirale Nanostrukturen molekularer
Dimension zu beriicksichtigen, die in optische Resonatoren eingebettet sind und selektiv
mit Licht einer bestimmten Handigkeit wechselwirken. Solche Systeme bieten vielver-
sprechende Perspektiven fiir pharmazeutische Anwendungen, insbesondere bei der En-
twicklung und Kontrolle chiraler Wirkstoffe. Wiahrend sich die meisten bisherigen Stu-
dien auf idealisierte Resonatoren mit einer einzigen enantiomeren Spezies konzentriert
haben, untersuchen wir stattdessen die Auswirkungen von Unvollkommenheiten in der
Resonator und das gleichzeitige Vorhandensein von Molekiilen mit entgegengesetzter
Hiandigkeit.

Unter Verwendung eines chiralen Hopfield-Modells, das auch im Regime starker Kop-
plung zwischen Licht und Materie giiltig bleibt, entwickeln wir eine vollstandig quan-
tenmechanische Beschreibung der photonischen Freiheitsgrade, um die Entstehung hy-
brider Anregungen aus Licht und Materie zu erfassen, sogenannter Polaritonen. Wir
analysieren chiralidtsselektive Energietransferprozesse und zeigen, dass im Regime starker
Kopplung der Energietransfer aufgrund diamagnetischer Effekte unterdriickt ist.
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1. Introduction

By nanostructures, we refer to engineered systems whose relevant degrees of freedom are
confined on the nanometer scale. They have become central platforms for studying and
exploiting light-matter interactions [1]. Two-dimensional (2D) crystals and their het-
erostructures, in particular graphene [2], hexagonal boron nitride (hBN) [3], and transition-
metal dichalcogenides (TMDCs) [4], offer atomically sharp control over optoelectronic
properties [5] and have enabled a broad range of photonic and optoelectronic phenomena
[6H9]. Tailoring light-matter coupling in such systems permits, for example, the manip-
ulation of absorption and emission, the control of excitonic and plasmonic resonances
9], and the design of nanoscale waveguides and resonators [6].

A closely related frontier is provided by topological materials. Chern insulators, first
introduced at the model level by Haldane on the honeycomb lattice [10], exhibit quan-
tized Hall conductance without net magnetic flux and host robust chiral edge states with
striking transport and optical signatures 12]. Experimental realizations span engi-
neered ultracold fermionic [13], ferromagnetic [14], Moiré [15], localized spin systems
[16], or buckled Xene monolayers such as silicene, germanene, stanene, and plumbene
[17]. These realizations provide an avenue to capitalize on topological phenomena, such
as edge currents, in the realm of materials design. The interplay between topology, finite-
size effects, and optical driving provides a rich setting for theory and simulation [19].

At nanoscopic length scales, electronic structure and optical response are governed by
quantum mechanics. Classical continuum models miss essential ingredients such as quan-
tum confinement, lattice termination, and orbital-scale selection rules. Reliable predic-
tions therefore require microscopic approaches able to resolve atomic lattices, localized

orbitals, and their couplings [19].

A wide spectrum of simulation tools exists, trading off accuracy, interpretability, and
computational cost. On one end, ab initio electronic-structure packages (e.g., VASP [21],
SIESTA [22], Quantum ESPRESSO [23], Turbomole [24]) provide first-principles accu-
racy at the expense of substantial computational resources and limited transparency for
analytical exploration [19]. Their scaling with system size and the complexity of repeated
parameter sweeps can be prohibitive for large nanostructures or when extensive model
variation is required.

Between first-principles and minimal models lies density-functional tight binding, as im-
plemented e.g. by DF TB+ [25], a well-established “bridging” methodology that downfolds
DFT information into a reduced basis while retaining self-consistency and access to a
range of observables [26]. At the other end of the spectrum, parametric tight-binding (TB)
models emphasize physical intuition, compactness, and speed [19]. They are particularly
well suited for exploring finite-size and edge effects, disorder, transport, and topological
quantities while permitting rapid hypothesis testing.

A mature ecosystem of TB codes now supports diverse use cases and numerical strategies.
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Packages such as Kwant and KITE cover electronic transport, large sparse sys-
tems, and spectral methods including the kernel polynomial method (KPM). The pythtb
package provides a concise interface for Bloch-band and Berry-phase calculations,
while tools like pybinding focus on the rapid construction and manipulation of
large finite or periodic TB models. Many codes are implemented in Python atop the
NumPy and Scipy stack, reflecting Python’s central role in scientific computing.

In parallel with advances in machine learning, differentiable programming has emerged
as a unifying paradigm. For physics, this enables gradient-based fitting of model param-
eters to data, sensitivity analysis, and the integration of neural networks with physics-
informed components. In condensed-matter simulations, automatic differentiation (AD)
unlocks derivative-based observables (e.g., polarizabilities as Hessians of the ground-
state energy) and efficient parameter inference and optimization under physical con-
straints.

To capitalize on these opportunities, we developed GRANAD (GRAphene NANoflakes with
ADatoms) [P4], a simulation framework for nanostructure optoelectronics combining an
ergonomic high-level interface with an efficient numerical backend. Developed in col-
laboration among the Institute of Theoretical Solid State Physics at KIT, the Institute of
Physics at Nicolaus Copernicus University in Torun, the Donostia International Physics
Center, and the Nanoscale Device Characterization Division at NIST, GRANAD has evolved
into a general tight-binding platform for finite and periodic structures with a particular
focus on hexagonal lattices. Built on JAX, it provides automatic differentiation, just-in-
time compilation, and GPU acceleration.

Three design principles guide GRANAD: differentiable core routines enabling gradient
evaluation of physical quantities and parameter fitting; a dual approach to optical re-
sponse in time- and frequency-domain; and customizability and ergonomics for defining
geometries, interactions, and extensions. While the default is tight binding, interfaces
permit importing matrix elements from ab initio workflows. Relative to transport-focused
(Kwant) or topology-oriented (pythtb) tools, GRANAD targets nanostructure optoelec-
tronics with a strong emphasis on time-domain driven dynamics under classical illumi-
nation and frequency-domain correlation functions based on microscopic formulations.

Within this work, GRANAD’s frequency-domain engine is used to investigate the interplay
between topology and optics by studying spin—angular—-momentum (SAM)-selective cou-
pling of light to finite topological structures. We uncover SAM selectivity in finite Haldane
nanoflakes by evaluating dipole—dipole and current—current correlators and projecting
the induced response onto the channels responsible for chiral charge transport. This mi-
croscopic formulation connects intuitive edge-current physics to measurable differential
spectra under circularly polarized illumination. The resulting SAM-selective resonances
are traced to transitions among mid-gap edge states, exhibit systematic size scaling, and
remain resilient under geometric symmetry breaking and random onsite perturbations.

The theoretical and numerical tools presented so far are tailored to cases where the ex-
ternal electromagnetic illumination can be treated as a classical field. For many nanopho-



tonic and material-design problems, this approximation provides an accurate and tractable
description. However, there exists a growing class of systems where the electromagnetic
field must be treated quantum mechanically. Such situations arise when field quantization
plays an essential role in determining material properties or when light—-matter interac-
tions enter regimes beyond perturbative coupling, most notably in the domain of chiral
cavities.

Chirality refers to the fundamental geometrical property of an object that cannot be su-
perimposed onto its mirror image through any sequence of rotations and translations
[34]. Many molecules exhibit chirality, making it central to biology [35], chemistry [36],
and pharmacology [37]. Inrecent years, chirality has also become a key concept in nanopho-
tonics and quantum optics, where structured light fields and nanophotonic environments
enable selective interactions between optical modes of distinct helicities and chiral mat-
ter.

Substantial progress has been achieved both theoretically and experimentally
in the design of chiral optical cavities that selectively support photonic modes
of specific handedness. Combined with emitters or molecular ensembles exhibiting in-
trinsic or externally controllable chirality 51], these systems form the foundation of
the emerging field of chiral polaritonics. In this field, strong or ultrastrong light-matter
coupling in a chiral environment gives rise to hybrid quasiparticles, referred to as chi-
ral polaritons, whose optical and chemical properties depend on the handedness of the
underlying constituents.

The interplay between quantum electrodynamics and chirality opens prospects for ap-
plications such as enantioselective detection 52, asymmetric energy transfer
54], and reaction-rate enhancement [55H57]. Theoretical analyses also suggest possibili-
ties for collective phenomena such as superradiance and chirality-dependent photon
transport [59]. This underscores the need for a fully quantum description.

A key hallmark of chiral polaritonics is the emergence of discriminatory ground-state en-
ergy splittings between enantiomeric species, predicted to persist even in the ultrastrong
coupling regime [38]. However, limitations due to diamagnetic contributions and reduced
effective coupling in the deep-strong regime remain underexplored, and practi-
cal imperfections such as cavity asymmetry or mixed enantiomeric content are rarely
included.

To address these challenges, we extend the semiclassical framework underlying GRANAD
to a fully quantum description of light—-matter interactions in chiral environments. We
detail the quantization of light in cavities and its coupling to matter, sketching the con-
ceptual connection to the tight-binding formalism introduced earlier. This leads to a
generalized Hopfield-type model forming the basis for a theoretical investigation of en-
ergy transfer and spectral properties in imperfect chiral cavities [P1]. The model captures
both photonic and matter degrees of freedom, their mutual coupling, and the influence
of chirality and asymmetries, enabling the analysis of polaritonic eigenmodes and their
evolution from the weak to deep-strong coupling regimes.
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This thesis is divided into seven chapters.

After introducing the general setting in the first chapter, we develops the semiclassical
theoretical framework used throughout the work. It presents the tight-binding formal-
ism as a versatile microscopic model for finite and periodic systems, supplemented by
approximate treatment of electronic interactions beyond the independent-particle for-
malism.

In the third chapter, we introduce the GRANAD simulation framework and discuss its de-
sign principles, implementation, and capabilities.

The fourth chapter illustrates the use of GRANAD through applications to nanostructure
optoelectronics. After validating standard linear-response benchmarks, the main section
investigates SAM-selective optical coupling in finite topological nanoflakes.

In the fifth chapter, we extend the theoretical framework beyond the semiclassical regime
to include quantum aspects of light—-matter interaction, which we apply in the sixth chap-
ter to the resulting chiral Hopfield model in the study of enantiomer selectivity and en-
ergy transfer in imperfect chiral cavities.

Finally, the seventh chapter provides the conclusion and outlook.



2. Theoretical Framework

In this chapter, we develop the theoretical framework to describe nanostrctures underly-
ing GRANAD.

In the time-domain, electrons are described as independent particles (IP) moving under
the influence of an effective mean-field potential generated by all other electrons, as well
as external potentials. These external couplings may represent classical fields such as
experimental electric probes, lattice vibrations, or magnetic fields. The corresponding
evolution equation is formulated for the one-particle reduced density matrix (1IRDM) of the
nanostructure. This representation enables access to all single-particle observables, in-
cluding experimentally relevant quantities such as the current and the polarization. Elec-
tron dynamics are desribed by a master equation, a standard tool in quantum optics and
the theory of open systems. Using this tool grants access not only to nonlinear response,
but also, in principle, to non-equilibrium dynamics, thereby lifting the requirement that
the system return to its initial state after the perturbation.

In the frequency domain, however, we rely on the standard (equilibrium) linear-response
formalism, where the Green’s function encodes the system’s response to external pertur-
bations. This description can be systematically improved by using the random phase ap-
proximation (RPA), which allows the inclusion of electron-electron interactions beyond
mean-field treatments.

Both approaches require operations on the matrix kernels of the involved operators, whose
computational cost scales steeply with the size of the underlying basis set used to ex-
pand the electronic wave functions. To address this, we typically employ a minimal tight-
binding basis set. A graphical summary of this dual approach is given in Figure

The present chapter aims to clarify the technical terms highlighted above, presenting a
selection of topics from condensed matter and open-systems theory. Emphasis is placed
on pedagogical transparency to lay the groundwork for the computational implementa-
tion of the GRANAD simulation framework. Original derivations are usually relegated to
the appendix, while standard results are stated with reference to the appropriate litera-
ture.

We begin with the independent-particle approximation, where electrons are described as
occupying single-particle orbitals governed by an effective Hamiltonian. This perspec-
tive naturally leads to the second-quantized operator formalism and the construction of
ground and excited states as Slater determinants. Building on this, the tight-binding ap-
proximation is introduced as a particularly useful representation for localized electronic
systems such as graphene nanostructures, where it provides both physical transparency
and computational efficiency [62].

The second part of the chapter turns to the reduced density matrix (RDM) formalism.
The 1RDM emerges as a key quantity for evaluating single-particle observables and for
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Tight-binding basis

Density matrix

¥ = —i[h[y],7] + D]
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master equation

Linear Response

Non-linearities

" J

Figure 2.1.: Theoretical framework employed in this thesis: A complementary approach
in both time- and frequency-domain is used. The real-time propagation of
the one-particle reduced density matrix enables the study of out-of-equilibrium
phenomena via an open-system master equation. On the other hand, the
equilibrium Green’s function unlocks genuine many-body effects via the Ran-
dom Phase Approximation. Both of these pillars are unified in a tight-binding
framework as the default basis adopted for theoretical transparency and com-
putational efficiency.

describing time-dependent dynamics under external perturbations [P2]. Its equation of
motion parallels the von Neumann equation and forms the basis for the time-domain
simulation engine of GRANAD. To account for environmental effects and finite lifetimes,
dissipative extensions in the form of phenomenological and Lindblad-type master equa-
tions are introduced.

We then connect this formalism to response theory, which provides a systematic frame-
work to calculate the linear and non-linear response of quantum systems to weak external
fields [63]. Central results such as the Lehmann representation, frequency-domain cor-
relators, and sum rules are discussed, highlighting the fundamental role of causality and

gauge invariance [64].

Finally, we extend the discussion to include electron—electron interactions. Starting from
the Coulomb two-body operator, we motivate the mean-field approximation as a compu-
tationally accessible approach that replaces the full interacting problem with an effec-
tive single-particle Hamiltonian. Its time-dependent extension closes the BBGKY hierar-
chy and enables tractable dynamical simulations [65]. Beyond mean-field, we outline the
RPA, which incorporates collective Coulomb effects in the frequency domain and provides
access to optical response functions of interacting systems [63].



2.1. Independent Particles

The methodological framework to be described in this chapter constitutes the basis for
all the work discussed in the upcoming chapters.

2.1. Independent Particles

The starting point of most quantum mechanical calculations is the solution of the time-
independent Schrédinger equation to find the eigenvalues E and eigenstates 1) of the
Hamiltonian operator H according to

Hy = By 2.1

We will neglect electronic interactions for now and consider an IP system of NV particles
as the foundation of our theoretical analysis. In this case, the Hamiltonian can be written
as a sum of kinetic and potential energy operators acting separately on each electron

1N N
_ 2 .
H = 5 ;pz + ; Vix;), (2.2)

where m denotes the electronic mass and V' (x;) captures the influence of static external
potentials, such as those generated by immobile atomic nuclei. The eigenvalue problem
Equation is typically approached by expanding the Hamiltonian in a convenient set
of basis functions. Such basis functions are chosen to resemble physically meaningful
single-particle states hosting one electron only. Depending on the system under study,
the most apt choice is typically given by atomic orbitals [66], molecular orbitals, or plane
waves [67]. Projecting the Hamiltonian onto the chosen basis set yields matrix elements
of the form

hay = (a|H|b) , (2.3)

where |a) and |b) denote basis functions associated with single-particle states. The matrix
h is often referred to as the Hamiltonian kernel. Using the formalism of second quantiza-
tion, we can then find the spectrum of H purely algebraically by rewriting the Hamiltonian

as
H = Z hij C;er s (24)
ij
where ¢ and ¢; are fermionic ladder operators creating and annihilating electrons in

single-particle states ¢ and j and the sum runs over all basis elements. These operators
obey the canonical anti-commutation relations

{ciyej} ={c],cl} =0, (2.5)
{ci,cl} = (diley) . (2.6)
el 0y = | | @.7)
¢i|0) =0, (2.8)
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where |0) denotes the vacuum state. In this thesis, we usually consider orthogonal single-
particle states such that (¢;|¢;) = d¢;;. From Equation (2.5), it follows immediately that
2 = (¢I)? = 0, reflecting the Pauli exclusion principle. The matrix kernel / can now be

(2

diagonalized by a unitary transformation U, which defines a new set of operators
a; = Z Uijcj. (2.9
J
In this basis the Hamiltonian acquires the diagonal form

H=>Y eala, (2.10)
k

where ¢, denotes IP energies, which we assume to be non-degenerate. We consider the
associated single-particle states to be spinful, such that each state can carry either one
or no electron in the zero-temperature ground state. The ground state energy FE for the
N -electron system is then given by adding the N lowest of these eigenvalues

E=) «. (2.11)
=1
The highest single-particle energy ey is often called the Fermi level and denoted by E;.
Heuristically, extended systems that allow for states arbitrarily close to the Fermi level are
classified as metals, while systems with a gap separating the Fermi level from the man-
ifold of unoccupied states exhibit insulating behavior. Consequently, the corresponding
ground-state |¢) fulfilling

E = (H[y) , (2.12)
is easily verified to be given by
N
[v) =[] all0). (2.13)

In position space, |¢) is a single Slater determinant, i.e. an antisymmetric NV -electron
wavefunction [68]. Every independent-particle Hamiltonian is characterized by a ground
state of this kind. Excited states can be constructed analogously by populating higher-
energy single-particle levels.

From a computational perspective, one of the principal challenges in electronic-structure
theory is the size and structure of the matrix kernel h. The accuracy of numerical results
depends crucially on the choice of basis set: a basis that is well adapted to the physical
problem requires fewer elements to achieve convergence of observables [64]. In the next
subsection, we will cover our approach to constructing a problem-adapted basis for the
efficient and accurate description of nanostructures: the tight-binding approximation.
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2.2. The Tight-Binding Approximation

In this section, we introduce the tight-binding approximation as a compact and physi-
cally transparent way to describe electronic structure in systems where electrons remain
localized around atomic sites. It captures essential band features using only a few pa-
rameters, typically hopping amplitudes between neighboring orbitals. We then employ
automatic differentiation to efficiently optimize the parameters of an exemplary tight-
binding model for graphene against ab initio or experimental data, enabling systematic
and reproducible model construction.

2.2.1. Theoretical Motivation

In many condensed-matter systems, electrons remain strongly localized in the vicinity
of atomic cores. This observation motivates the tight-binding (TB) approximation [19],
which employs a basis of localized orbitals with minimal spatial spread.

In practice, tight-binding Hamiltonians are often constructed semi-empirically based on
either experimental data or more elaborate ab initio calculations [19], which typically
employ large basis sets. A tight-binding Hamiltonian is constructed to reproduce the ex-
perimental or ab initio target data with a reduced number of parameters, called “hopping
amplitudes”, often restricted to a frequency or energy range of interest. Since the fit-
ting target already incorporates electronic interactions, the hopping parameters usually
already contain electronic interactions to a degree. The resulting model describes an ef-
fective independent-particle ensemble and can not be clearly separated into, e.g. kinetic
and interaction terms. The actual underlying Hamiltonian can thus not be recovered. As
such, tight-binding is commonly not considered an ab initio method, but both conceptu-
ally transparent and computationally efficient.

For illustration, consider an infinite periodic solid described by an independent-particle
Hamiltonian of the form

H=Y"3" hal(Ay)ald;, (2.14)

ab Ri,R;

where R; denotes the lattice vectors, A;; = R; — R; the distance, or displacement, vector
between sites, and ! creates one of K localized single-particle states on site i. The matrix
kernel h,; is assumed to be a function of inter-orbital displacement only. We will take this
expression to be the ground truth, an assumption that is not too far fetched in practice
since many ab initio methods such as density functional theory (DFT) or Hartree-Fock
(HF) generate “effective” independent-particle Hamiltonians of this kind [69]. As such,
the number K of orbitals per atom might be very large, yielding a rather unwieldy kernel
hap in orbital space with long-range spatial interaction. We want to capture the essential
electronic information contained in /4 with a minimal tight-binding model requiring a
smaller number of parameters. Tho this end, we introduce the Fourier transforms of the
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operators and matrix kernel,
a;c = Z aje_ik'Ri , (2.15)
hap(k) =D hap(Ri)e B (2.16)

with k restricted to the first Brillouin zone. Now, the Hamiltonian can be written com-
pactly in reciprocal space as

H=>Y""albgha(k), (2.17)
ab k

where we keep and explicit summation over each wave vector k. The Hamiltonian ker-
nel ¢,,(k) can be diagonalized to yield the functions ¢;(k),7 < K characterizing the band
structure of the solid. A tight-binding kernel approximating A can then be constructed
in various ways. A common approach is to truncate the number of orbitals entering
the ground-truth Hamiltonian in Equation (2.14). This is the conceptual underpinning
of Wannierization, where a DFT Hamiltonian is expressed in a (maximally) localized ba-
sis and its sparsified version yields effective tight-binding Hamiltonians [19]. A promi-
nent example is the description of graphene [70], where a simple nearest-neighbor p.
tight-binding model already captures the essential features of the low-energy band struc-
ture. Alternatively, one may diagonalize and fit a symmetry-constrained version of the
Hamiltonian directly to the band structure, employing, e.g. the widely used Slater—Koster
parametrization [71].

The resulting tight-binding models are not only applicable to bulk systems, but can also
be transferred to finite or nanostructured geometries in real space. Importantly, the re-
duced dimensionality and sparsity of tight-binding Hamiltonians render them attractive
for both conceptual analysis and large-scale numerical simulations. For these reasons,
we adopt the tight-binding approximation as the working basis throughout this thesis.

In the next section, we provide a concrete demonstration of the tight-binding fitting pro-
cedure and its ability to accurately capture optoelectronic features of interest. To this
end, we consider the case of graphene, one of the most widely studied two-dimensional
materials.

2.2.2. Constructing Tight-Binding Models for Graphene

Graphene consists of a single layer of carbon atoms arranged in a two-dimensional hon-
eycomb lattice. Each carbon atom has four valence orbitals. The in-plane sp? hybridized
orbitals form strong ¢ bonds (from s, p,, p,), while the remaining p. orbital contributes
to the delocalized 7 -electron system. The p, orbital is responsible for the low-energy
electronic properties [72]. The = and 7* bands formed from p, orbitals meet at the Fermi
level, giving rise to the well-known Dirac cones at the K and K’ points of the Brillouin
zone [73]. Since these states dominate transport and optical phenomena near the Fermi

10
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level, a minimal tight-binding model for graphene typically retains only the p, orbitals,
as in [74] [62].

The honeycomb lattice can be understood as a triangular Bravais lattice with a two-atom
basis. Choosing a lattice constant a ~ 2.46 A (corresponding to a carbon-carbon distance
acc =~ 1.42 A [75]), the primitive lattice vectors can be written as

1 V3
a; =a <2, 2) y (2.18)
1 V3
as = a <27 2) . (2.19)
The reciprocal lattice is again hexagonal, spanned by the primitive vectors
27 1
bj=—1(1,— 2.2
1 a < ; \/§> 3 ( O)
27 1
bo=—1|-1,— | . 2.21
=2 (1) @2.21)

The first Brillouin zone is hexagonal with high-symmetry points conventionally denoted
I', K,and M.

Restricting ourselves to p, orbitals, the tight-binding Hamiltonian depends only on the
relative displacement between carbon sites. Assuming direction-independent hopping
amplitudes ¢; depending only on the distance R; = | R;|, the Hamiltonian kernel in recip-
rocal space can be expressed as

n

h(k) =) tie* R (2.22)

i=1
where R; runs over the neighbor shells included in the model.

We compute the reference band structure using density-functional theory (DFT) within
Quantum ESPRESSO and fit a third-nearest-neighbor p, tight-binding model to the
7 bands. To reduce the number of free parameters, we fix the on-site energy to zero, ¢ty =
0, leaving three independent hopping amplitudes ¢1, to, t3. For a set of N k -points along
a high-symmetry path, let ¢, denote the DFT eigenenergies and ¢ (p) the eigenvalues of
Equation parameterized by p = (¢4, t2, t3). The quality of the fit is quantified by the
mean squared error

o) = ¢ 2 lex — (). (2.23
k

We implement & (p) in the automatic-differentiation framework JAX [76], enabling effi-
cient evaluation of the gradients de/0t; and minimization of e(p) via gradient descent.
This optimization procedure is discussed in greater detail in subsection [3.5.1, where we
cover the technical foundations of GRANAD.

The optimized hopping and overlap parameters obtained from the fit are summarized in

11
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Figure 2.2.: (a) Tight-binding fit to the ab initio band structure of graphene obtained with
Quantum ESPRESSO, constrained to p, orbitals. The model retains hopping
terms up to third-nearest neighbors in both the Hamiltonian and overlap
matrix. Parameters are optimized by gradient descent using the procedure
of automatic differentiation, detailed in the dedicated section of this thesis
subsection[3.5.1l The Fermi level is located at E; = 0eV. (b) Charge den-
sity |4 (r)|? corresponding to the ground state Slater determinant ¢ (r) of an
equilateral carbon nanotriangle with armchair edges and a side length of 15
A. The calculation employs the tight-binding parameterization from (a).

Table
Neighbor Index Hopping (eV) Overlap
0 0 1
1 —2.78 0.10
2 —0.36 0.003
3 —0.068 0.001

Table 2.1.: Tight-Binding Fit Parameters.

The fitted band structure is shown in Figure The model successfully reproduces the
Dirac cone at the K point and captures the essential features of the = bands, although
discrepancies further away from the Fermi level remain, as expected from the truncated
orbital basis. The fitted hopping parameters can then be used to investigate finite nanos-
tructures. As an illustration, panel (b) of Figure displays the ground-state charge
density |+(r)|? of a triangular graphene flake with armchair edges and side length 15 A,
computed using the fitted tight-binding model.

For the majority of calculations in this thesis, we adopt an even more economical pa-
rameterization according to Tomanek and Louie [70], in which only the nearest-neighbor
hopping ¢; ~ —2.66 eV is retained. This value is close to the one extracted from our fit
and suffices to reproduce the low-energy physics of graphene around the Fermi level with
high fidelity.

12
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In our model of nanostructures, we are interested in describing physical observables re-
lated to optoelectronic response in nanostructures like the graphene nanotriangle de-
picted in Figure 2.2 For instance, we might be interested in describing the dipole moment
induced in such a nanostructure upon illumination with light. The dipole moment and
many more of these physically relevant observables can be represented as single-particle
operators, which we discuss in the next section.

2.3. Single-Particle Operators

In this section, we present single-particle operators as the foundation for describing mea-
surable quantities in electronic systems. They share the same algebraic structure as the IP
Hamiltonian considered so far, acting as matrix kernels on fermionic creation and annihi-
lation operators. Within the tight-binding framework, these operators encode quantities
such as charge polarization, current, and light-matter coupling in a compact, localized
representation. After their theoretical introduction, we exemplify their use in mapping
out localized edge currents in spatially finite system described by the well-known Hal-
dane model for a Chern insulator.

2.4. Theoretical Setting

The form of the Hamiltonian Equation (2.4) is characteristic of any single-particle operator
O, which can be written as a square matrix kernel multiplying fermionic ladder operators
as follows

0=>"oijala;. (2.24)
]

Besides the Hamiltonian itself, other single-particle operators play a key role for the def-
inition of phyiscally relevant observables. Of particular importance is the polarization
operator

P=ex, (2.25)
where e is the electronic charge. In a localized (tight-binding) basis, it takes the form
Pij = e(¢ilz|p;) = edi; R; , (2.26)

where R; is the position of orbital 7, taken to coincide with that of an atomic core. This
expression is standard in many solid-state theory treatments. However, an additional
contribution arises, when inter-orbital dipole matrix elements are non-negligible, such
as in dipole-allowed transitions between orbitals i and j on the same atom. In this case,
one must include a transition dipole moment p,; , giving

13
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Closely related is the paramagnetic current operator, defined via the commutator

{ J = —i[H, P]. } (2.28)

Its Cartesian components satisfy the canonical commutation relation
%6 = [Pi, Jj] . (2.29)

These operators provide the foundation for describing physical observables such as in-
duced currents and dipole moments. Coupling to external fields is naturally expressed
in this operator language. An external classical electric field E(x,t) couples to the po-
larization operator leading to a time-dependent single-particle interaction of the form

[64]
045(t) = (i|E(x,t)P|j) = E(R;, 1) Pyj (2.30)

where we have again made use of maximum localization. The special case of a uniform
electric field leads to the usual expression

0;j(t) = E(t)Pij , (2.31)

A vector potential A couples to the current operator in the same way [72]. Additionally,
vibrational interactions can be incorporated by allowing the Hamiltonian kernel to de-
pend explicitly on the equilibrium nuclear positions R, and on their deviations d(¢). A
Taylor expansion around the equilibrium configuration then yields

On(R)

h(Ro + d(t)) ~ h(Rp) + 3R

d(t) +0(d(t)?) . (2.32)
Ry

To lowest order in the displacements, the vibrational interaction is therefore represented
by a single-particle operator with a matrix kernel given by

Ohi;(R)

Oy(t) = R ‘R
0

d(t) . (2.33)

Couplings of the form given above provide the starting point for describing the dynamics
of electrons in time-dependent or driven systems, a topic to which we turn when dis-
cussing linear response, where these operators enter as external perturbations. Building
on the construction of the IP ground state in Equation (2.13), it is often convenient to ex-
press the operator kernels in the eigenbasis of the Hamiltonian. This is achieved through
the transformation

6=U'oU. (2.34)

14
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Figure 2.3.: (a) Example of a nanoflake described by the Haldane model with A = 0.3¢.
This parameter choice yields a topological edge state, whose site-resolved
probability density |¥|? is plotted on top of the atomic cores (black dots). Due
to the maximum localization of the underlying basis set, we have omitted to
indicate the explicit spatial dependence. (b) Transition matrix elements of
the current operator J, in the energy eigenbasis, depicted in a symmetric
window around the highest occupied state at n. Large values near the Fermi
level highlight transitions associated with edge states, which are analyzed in
detail later.

In this representation, the matrix element 6,,,,, directly characterizes how the operator O
acts on the IP transition between states n and m.

In the next subsection, we illustrate the analysis of single-particle operators in finite
flakes described by the Haldane model, a topological variant of graphene.

2.4.1. Localized Currents in Haldane Graphene

Although topology is not the central focus of this thesis, we briefly sketch the relevant
concepts in appendix[B| In the following, we focus on the Haldane model as a minimal
and transparent realization of the most important characteristics. It modifies graphene
by introducing time-reversal symmetry breaking through complex next-nearest-neighbor

hoppings

H= 52 Xiazai + tz a;-raj +iA Z Vijajaj , (2.35)
i (i.5) {(i.9))

Defining the indicator function x; = 1(—1) when indices a site belonging to the A(B) sub-
lattice, the first term represents a staggered sublattice potential §, which opens a trivial
gap by breaking inversion symmetry [79]. The second term describes nearest-neighbor
hopping of strength ¢. The third term encodes next-nearest-neighbor hopping with am-
plitude A, where the phase factor v;; = +1 depends on the hopping direction (clockwise
or counterclockwise around a hexagon). This generates an effective local flux within each
unit cell, though the total flux vanishes.
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By setting § = t and varying )\, the system undergoes a topological phase transition at
Ae = 8/(3V/3). For A < )\, the insulator is topologically trivial. For A > )., the model en-
ters a Chern insulating phase with Chern number C' = 1. In this phase, the bulk-edge cor-
respondence ensures the emergence of a topologically protected chiral edge mode. These
states, which are eigenfunctions of the single-particle Hamiltonian (2.35), are spatially
localized near the system’s boundary and give rise to quantized anomalous Hall currents
even in the absence of an external magnetic field [10].

In finite flakes, the detailed properties of the edge states depend sensitively on bound-
ary termination. Zigzag edges typically support robust and well-localized modes, while
armchair edges may hybridize or suppress them depending on the system size and sym-
metry 12]. To capture the essential physics without additional complications, we
focus on rhombic nanoflakes with zigzag edges, which emulate realistic graphene-based
realizations of the Haldane model, for instance in substrate-induced spin—orbit systems
|@| The lattice constant is set to 1.42 A, consistent with the carbon—carbon distance in
graphene.

Figure shows both a representative edge state in real space and the corresponding
matrix elements of the paramagnetic current operator in the eigenbasis. The pronounced
features near the Fermi level reflect transitions associated with edge states, which we will
analyze in detail in

In the next section, we turn to the central quantity for our time-domain modelling ap-
proach: the reduced density matrix.

2.5. Reduced Density Matrix Dynamics

Having established the operator framework for describing observables such as polariza-
tion and current, we now turn to the central quantity underpinning our time-domain
modeling approach: the reduced density matrix. It provides a unified description of both
equilibrium and nonequilibrium electronic behavior, capturing the statistical and dynam-
ical properties of single-particle observables within a compact formalism. Through its
evolution, we can efficiently model how electronic populations and coherences respond
to external perturbations in real time.

2.5.1. Static Properties

A central object in the characterization of quantum systems is the density matrix. For
a system in thermal and particle exchange with a reservoir characterized by chemical
potential 1, this statistical operator is given by

e~ B(H—pN)

p="—F—, (2.36)

where N = ). n; denotes the total particle number operator, obtained by summing over
all IP particle number operators. The inverse temperature is given by 5 = 1/(kgT), and
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Z = Trle~PUH=1N)] is the grand canonical partition function ensuring normalization. Ex-
plicitly, the latter can be expressedas Z = ) _ | e BEn—1N) with E, denoting the eigenen-
ergies of the Hamiltonian. Notably, the eigenenergies F,, ore not identical to the single-
particle ones ¢;, even in the absence of interactions. Instead, for independent particles,
they are given by the eigenvalues resulting from the application of the Hamiltonian H to
single Slater-Determinants (cf. Equation and Equation (2.13)).

In the zero-temperature limit (5 — oo), the density matrix reduces to a projector onto
the ground state,

p=1v) Wl , (2.37)

and the system is said to be in a pure state.

For any observable operator O, its expectation value follows from the trace over the den-
sity matrix,

(0) = Tr[pO] . (2.38)

Comparison with the independent-particle (IP) ground-state expression (cf.~Equation (2.13))
reveals that, even in the absence of interactions, p remains a many-body operator and
cannot, in general, be reduced to a single-particle operator of the type discussed in Equa-
tion (2.24). Nonetheless, it is possible to introduce the one-particle reduced density ma-
trix (LIRDM),

i = (@lalal) (2.39)

which contains all the information required to evaluate expectation values of single-body
operators. For instance, for a generic single-particle operator O, one obtain

(WO[Y) = " ijoji = Trlyo] (2.40)

i

thus establishing ~ as the relevant effective single-particle descriptor. From the defini-
tion Equation (2.39), it becomes immediately clear that the diagonal elements of ~ are
the expected IP occupation numbers.

(ni) = i - (2.41)

In real space, ~;; can thus be seen as the charge localized at the ¢ -th site of the nanos-
tructure. However, in the eigenbasis of the Hamiltonian, v becomes diagonal. Inserting
the expression for the Slater determinant ground state given by Equation (2.13) yields

vii = O(Ef — ), (2.42)
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where ¢; denote the single-particle eigenenergies and E; is the Fermi level. This ex-
pression can be extended to finite temperatures by replacing the step function with the
Fermi-Dirac distribution

1

= (2.43)

Yii(B) =

The construction above implicitly considered a spin-dependent IP basis, with each ele-
ment factorizing into a product of a single-particle orbital |¢;) and a spin function |y;)

[Pi) = |x3) Vi) - (2.44)

However, it is often not necessary to separately keep track of the spin degree of free-
dom. This may be the case if the underlying Hamiltonian does not include spin-resolved
interactions and contains an even number of electrons, leading to the case where each
orbital |¢;) can be considered doubly occupied. This is referred to as a closed-shell sys-
tem and is aptly described by the spin-traced verison of the 1RDM, where the entries in
Equation are simply multiplied by a factor of two.

Next, we will investigate the dynamic behavior of the 1IRDM.

2.5.2. Time-Dependent Dynamics

Many observables of interest in transport and condensed matter physics, such as elec-
tronic currents or polarizations, are fundamentally single-particle in nature. Their dy-
namics can, therefore, be captured by studying the time evolution of the IRDM. Consider
an independent-particle Hamiltonian subject to a possibly time-dependent perturbation,

H(t) =" hij(t)cle;, (2.45)
ij

where the system is driven by the external field, e.g. an electromagnetic perturbation.

If the system is initially prepared in the ground state |4), its time evolution is governed
by the unitary operator

[9(8) =U () |4) (2.46)

t

U(t) = T exp [—i /

—0o0

dt' H (t’)] , (2.47)

with 7 denoting the time-ordering operator. The evolution operator satisfies the equa-
tion,

iQU(t) = HOU(t) . (2.48)
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By exploiting Equation (2.48), one obtains

—i0i5(t) = =10y (D (0)|alaz|(6) = (W)Y hum(t)afam, alas)|ib(t)) - (2.49)
Im

Using
> lhn(tyafams alas] =3~ hin(t) laf s alaslam + alams alos]) (2.50)
lm Im
=S 0 (el o+ alfanale) @D
Ilm
= > hu(t)alaj =Y hjm(t)alam, (2.52)
l m

finally yields the equation of motion for the 1IRDM

—i0y(t) = [h(t),7(1)] (2.53)

which is of the same form as the von-Neumann equation governing the dynamics of the
full density matrix. Thus, dynamical expectation values can be evaluated via

[ (0) (t) = Tr[(t) o] - ] (2.54)

Equation (2.53) formally describes unitary, lossless evolution. While such an assumption
is appropriate in idealized isolated systems, it is insufficient for realistic scenarios. Two
main limitations arise:

1. Environmental coupling: physical systems interact with their surroundings, e.g.
through electronic leads or internal relaxation channels.

2. Spectral resolution: purely coherent evolution results in 6-function-like features
in the frequency domain, which are inconvenient both conceptually and numeri-
cally.

To address these issues, one typically introduces phenomenological broadening or dissi-
pative terms, discussed in the next section.

2.5.3. Phenomenological and Microscopic Dissipation

A simple yet effective strategy is to include a damping factor directly in the observable

[64]
O)(t) = (0)(t) e, (2.55)
where § > 0 represents a broadening parameter mimicking finite lifetimes.

A more systematic approach involves modifying the dynamical equation of the 1RDM
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itself by adding a dissipator D,

—i9/(t) = [h(),¥(t)] - DIy) (2.56)

This formulation naturally connects to the theory of open quantum systems, where such
equations are known as master equations. Several forms of dissipators exist. A simple
phenomenological variant reads

Dly(t)] = (v(t) — ) , (2.57)

where r is a real parameter capturing the dissipation rate in the system, and ~, denotes
the reference 1RDM (often taken as the equilibrium state prior to the perturbation). This
construction ensures relaxation towards initial configuration, described by ~y. As dis-
cussed in section this is a hallmark of an equilibrium process.

Alternatively, a more general and physically motivated choice is provided by the Lindblad
form, widely employed in quantum optics and open-system theory

K2-1

Dl = > i (Lev(®L] - HL{Lev®)}) | (2.58)
k=1

where {L;} are Lindblad operators representing different excitation or relaxation chan-
nels, r; denotes the associated rate, and we have assumed a truncated single-particle ba-
sis of size K. This framework permits the incorporation of physically motivated dissipa-
tion pathways, including dephasing and relaxation, while preserving complete positivity
and trace conservation of the density matrix. Its application and required modifications
to fit within a single-particle framework are presented in detail in [P2]. As shown in ap-
pendix D} the phenomenological dissipator Equation can be understood as a special
case of the general Lindblad structure.

Armed with this understanding of density matrix dynamics, ranging from unitary evo-
lution to dissipative open-system behavior, we are now prepared to develop the frame-
work of linear response theory, which lies at the intersection of our time- and frequency-
domain based analysis.

2.6. Response Theory

In this section, we turn to the framework of response theory to describe a quantum system
under the influence of an external perturbations. Response theory connects microscopic
Hamiltonian dynamics with measurable macroscopic quantities such as optical absorp-
tion, conductivity, and polarization. Within the independent-particle picture developed
earlier, it enables us to quantify how external driving fields modify expectation values
of single-particle observables in both the linear and nonlinear regimes. After discussing
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these theoretical fundamentals, we give an example of nonlinear response from the lit-
erature and discuss sum rules, which express fundamental restrictions placed on the
response functions of a structure imposed by gauge invariance.

2.6.1. Theoretical Fundamentals

We now turn to the framework of response theory, which provides a systematic descrip-
tion of how a quantum system reacts to external perturbations. Consider an independent-
particle Hamiltonian H =}, ;i hij Cj‘ c; subjected to a weak external field. The perturbation
is taken to be of the form

Hine = F(D)A, (2.59)

where F'(t) represents a classical time-dependent driving field, and A is a single-particle
operator that couples the field to the system.

A central task is to determine how the expectation value of another observable B deviates
from its equilibrium value due to the perturbation, expressed by Equation (2.59). To linear
order in the driving field, one obtains the standard result of linear response theory (LRT)

63],

5b(t) = (B) (t) — (B) = / dt' Gap(t — ) F(), (2.60)
where G 45 denotes the response function (or correlator, often referred to as the Green’s
function). The key assumption underlying Equation is that the system returns to
its initial (ground) state for asymptotically large times under the time evolution induced
by the external perturbation [82]. Lifting this restriction enables the treatment of non-
equilibrium processes, either by means of Master equations or within the non-equilibrium
Green’s function (NEGF) framework [63]. We briefly comment on this below. Physically,
Gap(t — t') encodes the reaction of observable B to the field coupled through A4, e.g. a
polarization response leading to induced currents. In general, causality is ensured via
the relation G4p(t — t') ~ ©(t — t'), such that the response ¢b(¢) can not precede its
external excitation F'(¢). The above expression is naturally formulated in the Heisenberg
picture with respect to the unperturbed Hamiltonian H. In the case where the operators
A and B correspond to densities, an additional spatial integration or summation has to

be performed [63].

For practical purposes, it is often advantageous to work in the frequency domain. Upon
Fourier transformation, one obtains

0b(w) = Gap(w)F(w), (2.61)

which directly expresses the frequency-resolved response of observable B to the driving
field coupled via operator A.

The correlator admits the well-known Lehmann representation, expressed in the Schrodinger

21



2. Theoretical Framework

picture as

g Yii — Y435
G =8 A;:B; 2.62
a5(w) 5i>r(r)1+ - w+ € — €+ 6 R ( )

where the 1IRDM + has been expressed in the eigenbasis of h. In practice, the infinitesimal
limit § — 0T is never strictly taken; instead, § is replaced by a small but finite broadening
parameter to ensure numerical stability and physical line shapes. In general, singularities
in G(w) indicate quasi-particle excitations if they occur at w # 0. For instance, taking
into account the direct Coulomb repulsion between electrons gives rise to singularities
in the density-density correlator G,,, signalling the existence of plasmons [63], which we
shall make use of in the following subsection. Singularities in the static Green’s function
generally signal a ground ground-state instability [82].

While the frequency-domain Green’s function is the standard approach to linear response,
it can be equivalently formulated in terms of the 1RDM. An alternative route to evaluat-
ing correlators is to solve the time-dependent 1RDM dynamics encoded in the master
Equation under the action of a weak driving field, compute the induced expecta-
tion value 6b(t), Fourier transform it, and then define

Gap(w) = ‘;?((Z; (2.63)

It is worthwile to remark on the subtle difference between the response function com-
puted above and the equilibrium correlator Equation (2.61): Dynamics modelled by master-
equations generally go beyond the equilibrium setting as they do not assume the asymp-
totic final and initial states to coincide. For many practical purposes, however, an equilib-
rium description suffices and the linear-response functions computed from Equation
and Equation coincide. A more in-depth detailed treatment of the technical differ-
ence between equilibrium and non-equilibrium response functions is given exhaustively

in [82].

The advantage of Equation (2.63) is its straightforward generalization to the non-linear
regime without the need for a systematic expansion in orders of the driving field. For
instance, the generation of higher harmonics in the frequency domain is described by

ob(n-w) = G™(w,...,w)F(w)...F(w), (2.64)

where G is a non-linear response function, given by a complicated expression involving
multiple occurences of the linear-response Green’s function G, which is both computa-
tionally expensive and physically intransparent. In time domain, however, the same in-
formation is captured by identifying equidistant spectral peaks in the Fourier-transform

of p(t).
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Figure 2.4.: (a) Geometry of a graphene nanotriangle with zigzag edges, used as the pro-
totypical structure that sustains a nonlinear optical response. The flake is
illuminated by a short x -polarized laser pulse centered at its dominant plas-
mon frequency of w, = 0.68eV. (b) Corresponding higher-harmonic spec-
trum obtained from the Fourier transform of the induced dipole moment p(¢).
Pronounced peaks at integer multiples nw, of the driving frequency wy = w,
clearly demonstrate higher-harmonic generation mediated by plasmonic ex-
citations.

In the following subsection, we turn to an example of this nonlinear response by present-
ing the generation of higher-harmonics in triangular graphene nanostructures.

2.6.2. Higher-Harmonic Generation in Graphene Nanotriangles

Graphene nanotriangles have recently attracted attention as efficient platforms for higher-
harmonic generation (HHG) [83], often outperforming conventional plasmonic nanos-
tructures based on noble metals such as gold or silver. The enhancement arises from
plasmonic excitations, collective modes of the electron gas induced by electron—electron
interactions. These triangular nanostructures host well-defined plasmons that strongly
mediate nonlinear light-matter interactions and are, therefore, also referred to as plasmon-

polaritons [85].

To illustrate this phenomenon, we follow the setup of [83]. A graphene nanotriangle is
illuminated by a short laser pulse with its central frequency w, chosen equal to the plas-
mon frequency w,. The time-dependent dipole moment p(t) of the graphene nanotrian-
gle is computed under propagation. A Fourier transform yields the frequency-resolved
spectrum p(w). By comparison with the nonlinear response formalism of Equation (2.64),
peaks in p(w) at integer multiples nwy of the driving frequency identify the generation
of higher harmonics. Figure shows both the geometry of the nanotriangle and the
corresponding nonlinear spectral response.

There are physical restrictions, placed by fundamental requirements of gauge invariance
and, thus, charge conservation on the response behavior of a nanostructure, encoded in
the form of sum rules. In the next subsection, we cover these in more detail.
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2. Theoretical Framework

2.6.3. Sum Rules

Response functions are subject to important constraints in the form of sum rules, which
reflect fundamental conservation laws and symmetries [82]. One particularly significant
example is the Thomas-Reiche-Kuhn (TRK) sum rule, which appears in several closely

related forms [64].

Consider the general operator identity

(ml[0, [0, H]Jjm) = 22 )| 0nml 2, (2.65)
valid for any Hermitian operator O. This expression can be straightforwardly verified by
explicit evaluation.

When O is chosen as the position operator x, Equation (2.65) yields the familiar TRK sum
rule of atomic physics

<m|[a:, [CC, H]”m> =—i <me7 _l%”m> - _% =2 Z(En - Em)’wnm‘2 . (2.66)

Turning to the current response, the static paramagnetic current-current correlator can
be expressed as

Jmnjnm
Grj(w=0)= Z E _E (2.67)

where use of the canonical commutation relation Equation (2.29) gives

Combining this with Equation (2.65) and Equation (2.67), one finds

Ne?

G500 Z|an|E —Ep) =" -,

(2.69)
with N denoting the total number of electrons. This is the TRK sum rule as employed in
condensed matter response theory.

Its fundamental importance can be clarified by considering that the total static current-
current response G'°%(0) encodes the induced current in response to a spatially uniform
and static external vector potential Ay,

7(0) = G (0) A . (2.70)

However, a static and spatially uniform vector potential is physically unobservable, as it
constitutes a pure gauge leaving Maxwell’s equations invariant. Gauge invariance there-
fore requires the total response to vanish, which makes the sum rules stated above valid
not only for independent particles, but in general. In explicit calculations, this is ensured

24
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by cancellation between the diamagnetic current (proportional to A?) and the paramag-
netic response [82].

The most convenient way to enforce gauge invariance in practice is to redefine the total
correlator as

GPi(w) = Gyy(w) — G14(0), (2.71)

so that the spurious static paramagnetic contribution cancels exactly.

Finally, the most common form of the TRK sum rule is given by the following integral

identity

Ne?

/Ooowlm[GJJ(w)] do=—. (2.72)

Having established the foundations of the theory of independent particles, we are now
in a position to extend the discussion to include the effects of electron-electron interac-
tions.

2.7. Electron-Electron Interactions

In this section we incorporate electron—electron interactions into our framework and
clarify how they reshape ground states, excitations, and dynamical response. We begin
with a conceptual overview of the two-body nature of the most common form of these
interaction terms. After that, we introduce controlled approximations that render the
problem tractable. First, we develop a mean-field treatment, which replaces the two-body
interaction by self-consistent single-particle potentials. Its capabilities are illustrated on
finite Hubbard flakes, where we track the interaction-driven crossover from metallic to in-
sulating behavior and the emergence of spin order. Second, we incorporate correlations
beyond mean field via the random-phase approximation (RPA), motivated and derived
within the tight-binding linear-response formalism in close analogy to [20].

2.8. Theoretical Description

Up to this point, our discussion has been restricted to non-interacting (independent)
electrons. In realistic systems, however, electronic interactions play a decisive role in
determining ground-state properties, excitation spectra, and dynamical response. Such
interactions can be incorporated at various levels of approximation: by correcting the
ground state, by modifying the time-evolution equations, or by altering the frequency-
dependent response functions.

The most fundamental and ubiquitous interaction between electrons is the Coulomb re-
pulsion. In first quantization, the electron—electron interaction is represented by a two-
body operator acting simultaneously on two electron coordinates, in contrast to the single-
particle operators encountered in the independent-particle case. Explicitly, the Coulomb
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interaction reads
Z (2.73)
ri — T‘J‘

where K is a constant reflecting the dielectric background (e.g. static screening due to
the lattice or surrounding medium).

In the formalism of second quantization, the two-body operator V takes the generic form

Z Vz]kl C C -CLCl (274)
zgkl

where the coefficients V;;;; are two-particle matrix elements (more precisely, a rank-4
tensor) given by

Vij = (ij|V|kl) . (2.75)

Equation (2.74) is generic: any two-particle operator admits this structure, independent
of the explicit form of the interaction.

In direct analogy to the definition of the one-particle reduced density matrix (IRDM),
expectation values of two-particle operators can be expressed in terms of the two-particle
reduced density matrix (2RDM). For a state |¢), the expectation value of V' is given by

WIVI) = (Wlalalagarlv) Vijr

ijkl

=" Vigw (2.76)

ijkl

where we have introduced the 2RDM,

fyzﬂcl <w‘a akal\@ (277)

This representation is formally exact. However, the 2RDM contains a vastly larger amount
of information than the 1RDM, and its direct computation and storage scale prohibitively
with system size. Consequently, the explicit use of Equation in interacting many-
body calculations is generally impractical.

In the following subsections, we therefore turn to approximate strategies for incorporat-
ing electron—electron interactions.
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2.8.1. Mean-Field Theory

The full interacting Hamiltonian including both single-particle and two-particle contri-
butions can be written as

1
H = Ztij C;[Cj + B Z Vijkl C;[C}qu , (2.78)
ij ijkl

where ¢;; denotes single-particle hopping or kinetic terms, and V;;;; are two-particle in-
teraction matrix elements as defined in Equation (2.74).

A natural and widely used strategy for approximately treating the interaction is to in-
troduce a non-interacting reference system, thereby replacing the full Hamiltonian by
an effective single-particle operator H,,, capturing the interation between electrons in
terms of an effective potential, also called mean field,

Hpe =Y hijcle;. (2.79)
ij

As discussed, the ground state of this Hamiltonian always corresponds to a single Slater
determinant. Consequently, the difference between the ground state energy of the effec-
tive system, Fs, and the energy of the interacting system, F, can be expressed as

1
(V| Hung — HI$) = Bt = B = 335 (hji = 131) = 5750 Vigwt (2.80)
ij

For a single Slater determinant, Wick’s theorem yields the factorization of the 2RDM

7,-(2;3;1 = YiaVik — VikVjl » (2.81)

resulting in

1
En— FE = Z%‘j (hji —tji) — 5(%’1’ij — YikYjt) Vijkl - (2.82)
ij

Thus, the figure of merit in Equation (2.80) depends only on the 1RDM of the ground
state of the reference system. Minimization with respect to v determines the effective
Hamiltonian matrix elements

hij =ti; + Y Vi Yk — > Vage Ye = ti + Cis ] + Xz 7] - (2.83)
Kl Kl

Here, we have identified two distinct contributions:

* Cjjly] — the direct or Coulomb channel, also called Hartree term, representing the
electrostatic interaction between charge distributions.
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* Xi;[y] — the exchange channel, arising from fermionic antisymmetry.

The replacement of operator-valued interaction terms by contractions of the 1RDM illus-
trates why this procedure is called a mean-field approximation: interactions are replaced
by their expectation (mean) values with respect to a reference state. A note on terminol-
ogy is now in order: If the involved quantities ¢ and V' are computed by expanding the
single-electron Equation and the interaction Hamiltonian Equation (2.73), the re-
sulting mean-field theory is an ab initio approach, since it operates directly on the funda-
mental electronic interaction terms. This is referred to as the Hartree-Fock method [90].
This thesis mostly adopts a less rigorous, but computationally cheaper tight-binding ap-
proach, whereby the kernels ¢ and V' are both treated parametrically, as discussed in the
following section.

The mean-field ansatz is flexible: by choosing different reference states 1), one can extend
the framework beyond Slater determinants. For instance, using appropriate trial states
enables the treatment of superconductivity mediated by electron-phonon interactions
in BCS-theory or electron-photon cavity systems [92].

From a numerical standpoint, the mean-field equations are solved self-consistently via
the following iterative scheme:

1. Choose an initial guess for the density matrix v().

2. Construct the mean-field Hamiltonian H,,¢[(?)] using Equation 1;
3. Diagonalize H,[y(?)] to obtain a new density matrix v(1).
4

. Repeat steps 2 and 3 until convergence, i.e. until v(**1) ~ ~(" within a chosen
tolerance.

Mean-field theory is often the simplest framework for detecting instabilities: paramet-
ric points where electronic interactions drive the system from one qualitative regime
into another. A classic example is onsite Coulomb repulsion, which can induce insu-
lating behavior in systems that would otherwise be metallic. In extended systems, such
interaction-driven crossovers are referred to as Mott phase transitions [63]. An illus-
tration of the finite-size analog of this phase transition is detailed in the next section,
where we see these interactions to open a gap in the spectrum of a finite cut of a metallic
nanoflake described by the Hubbard model.

At the same time, mean-field theory is limited by its reliance on a single Slater deter-
minant and the corresponding factorization of the two-particle reduced density matrix.
This approximation can be too restrictive in materials where strong correlations domi-
nate, such as transition-metal oxides and perovskites, which are labeled strongly corre-
lated precisely because they lie beyond the reach of mean-field descriptions [93]. Despite
these shortcomings, mean-field theory remains an indispensable first step: it provides
a tractable and often qualitatively correct starting point for analyzing interacting elec-
tronic systems.

In the following subsection, we illustrate its use studying the insulating crossover in
nanoflakes described by the Hubbard model.
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Figure 2.5.: (a) Spin polarization of a square-lattice Hubbard flake at U/t = 0, showing no
local magnetization. (b) Spin polarization at U/t = 5, exhibiting alternating
ferromagnetic order. (c) Energy spectrum corresponding to panel (a), with no
spectral gap. (d) Energy spectrum corresponding to panel (b), displaying an
interaction-induced insulating gap.

2.8.2. Insulating Crossover in Hubbard Flakes

A paradigmatic model for interaction-driven phase transitions is the Hubbard Hamilto-
nian on a square lattice [94],

H=tY c coj +UD nigniy., (2.84)
7,(i.4) i

where the first term describes nearest-neighbor hopping with amplitude ¢, and the sec-
ond introduces an on-site repulsion U between electrons of opposite spin. Without loss
of generality, we set ¢ = 1eV. Despite its simplicity, this model captures the essential
physics of magnetism and interaction-driven insulating behavior.

Local magnetic order can be characterized by the spin polarization at each site,
S; = (nm> — <nm) y (285)

while the total magnetic moment follows from summing over all sites.

For U = 0, the system reduces to a non-interacting tight-binding model. The electronic
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states are delocalized across the entire flake, and no spin polarization is present, cor-
responding to metallic behavior. As U is increased, Coulomb repulsion penalizes dou-
ble occupancy, driving electrons to localize on lattice sites. Within mean-field theory,
this localization manifests as a spin-dependent potential that stabilizes alternating spin
configurations. The system then acquires a gap in its energy spectrum and becomes an
interaction-driven insulator with ferromagnetic ordering [95].

Finite flakes cut from the square lattice display the same crossover as extended systems.
Within the mean-field approximation, the Hubbard Hamiltonian can be decoupled ac-
cording to Equation (2.83), leading to an effective single-particle problem with site- and
spin-dependent mean fields,

Hug =t ch o + U D (i) mig + (i) mis = (i) (ni) ) (2.86)

Figure illustrates this crossover for a finite rectangular Hubbard flake. At U = 0,
no local magnetization is observed and the spectrum is gapless [panels (a,c)]. At U = 5¢,
local spin polarization emerges in an alternating pattern, and a gap opens in the spectrum
[panels (b,d)], signaling the transition to an insulating regime.

2.8.3. Time Evolution with Mean-Field Terms

The usefulness of mean-field theory extends beyond the description of ground states: it
also provides a tractable framework for time-dependent dynamics. In general, the equa-
tion of motion (EOM) for the 1RDM couples to the two-particle 2RDM, which in turn de-
pends on the three-particle reduced density matrix, and so on. This recursive structure
is known as the BBGKY hierarchy [65], and it renders the exact description of dynamics
in interacting systems intractable.

A key advantage of the mean-field approximation is that it effectively closes this hierar-
chy. Because the interacting Hamiltonian is replaced by a single-particle operator with
self-consistent potentials, one can derive an equation for the 1RDM in complete analogy
to the independent-particle case, given by Equation

—i9yy(t) = [h(t) +o[y(1)], v(1)] , (2.87)
where the interaction-induced potential
v[y(t)] = Cly(t)] + X[y(t)] (2.88)

collects the Coulomb (C) and exchange (X) contributions introduced in Equation (2.83).

The inclusion of dissipation proceeds exactly as in the independent-particle case, yielding
the mean-field master equation,

~i9(t) = [A(t) + oy (®)], 7(0)] + DR (O], (2.89)
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where D denotes a dissipator of the type discussed previously in subsection[2.5.3|

In practice, the interaction kernel v[v] is a large-rank tensor, and its explicit evaluation is
prohibitively expensive for realistic systems. Throughout this thesis, we therefore adopt a
simplified approximation scheme that drastically reduces its complexity. Specifically, we
neglect the exchange channel entirely and approximate the Coulomb term by retaining
only diagonal-like elements of the form V;;;;, denoted

Cij = V;jjia (290)

while setting all other components of V;;;; to zero. This approximation transforms the
Coulomb contribution into a square matrix acting directly in the single-particle basis,
making the time-evolution equations computationally manageable while still retaining
the essential physics of direct electron—electron repulsion. Often, it is not desirable to
run a mean-field calculation prior to time propagation. As discussed in section|2.2, when
working with tight-binding models fitted to ab initio data, we may wish the kinetic term
in Equation (2.78) to yield the “true” ground state 1RDM ~ of the system. Electronic
interactions should only be induced once the system is driven out of this state, which can
be ensured by performing the replacement

vly] = v[y — 0] - (2.91)

This is the standard route adopted in this thesis and corresponds to the treatment of
“induced potentials” discussed in [84]. Having laid out the time-domain response, we are
now in a position to develop the random-phase approximation (RPA), which incorporates
interaction effects directly in the frequency domain.

2.8.4. Random Phase Approximation

A standard approach that goes beyond mean-field theory is the random-phase approxi-
mation (RPA). Originally introduced in the context of the jellium model of an idealized
electron gas [63], RPA can be rigorously derived as a summation of bubble diagrams in
a many-body perturbation theory. Here, however, we follow the more intuitive linear-
response formulation given in Refs. [20]. In the linear-response framework, the in-
duced electronic density at frequency w can be expressed as in Equation

i) = [ dr' G, 610", ). (2.92)

where G,,, is the proper density—density correlator and ¢ denotes the total potential act-
ing on the electrons. Importantly, this total potential consists of both the externally ap-
plied field and the induced internal Hartree contribution. Consequently, G, is not itself
a linear response function in the strict sense and does not necessarily fulfill the require-
ment of causality [82].

Adopting the tight-binding basis introduced earlier, the spatial integral can be replaced
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by a discrete sum over lattice sites,

= [Gun(w)],; (R;,w), (2.93)

J
with R; denoting the position of site i.
The total potential is the sum of the external and the internal contributions,
G(Ri,w) = dext(Ri,w) + Y Cyj on(w), (2.94)
J
where Cj; represents the electrostatic Coulomb interaction matrix, defined in Equation (2.90).

Combining these relations yields

oni(w) = Z M,

' (W) dext (R}, w), (2.95)
M(w) = [1 = Gpp(w)C]~

G (w) (2.96)

where M (w) is the RPA density response function.

Within the RPA, the proper density—density correlator G,,, is approximated by its non-
interacting form, i.e. the independent-particle expression given earlier in Equation (2.62).
Finally, assuming the absence of intra-atomic dipole moments, the induced dipole mo-
ment can be computed as p, = n; R; on site : and we obtain for the dipole-dipole corre-
lator, also referred to as polarizability

C;P P Z Rza Mab ]b ) (297)

which encodes the linear optical response of the interacting system within the RPA frame-
work.

The discussion of the RPA completes the review of the theoretical approach taken in this
thesis. In the next chapter, we turn to its practical implementation in form of the simu-
lation program GRANAD.
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In this chapter, we detail the software implementation of the theoretical tools laid out
in the previous chapter: the simulation program GRANAD (GRAphene NANoflakes with
ADatoms).

The development of this software was carried out within a broad collaborative frame-
work involving the Institute of Theoretical Solid State Physics at the Karlsruhe Institute
of Technology, the Institute of Physics at Nicolaus Copernicus University in Torun, the
Donostia International Physics Center, and the Nanoscale Device Characterization Di-
vision at the National Institute of Standards and Technology. Originating from earlier
efforts undertaken by Marvin Miiller at KIT and Miriam Kosik at UMK, described in
97], the core of GRANAD predates the present work and has already served as the founda-
tion for several published studies 74]. Over the course of this thesis, the codebase
has undergone substantial expansion and modernization; most notably through its mi-
gration to the JAX ecosystem. These efforts have transformed GRANAD into a fully
differentiable, high-performance simulation package. Originally conceived as a special-
ized tool for modeling one- and two-dimensional carbon-based nanosystems, it has since
evolved into a versatile and broadly applicable framework for simulating optoelectronic
phenomena in nanostructures, while retaining a particular strength in handling systems
with hexagonal microscopic lattice symmetry [P4].

As discussed in the introduction, a variety of tight-binding frameworks have been devel-
oped to address complementary aspects of quantum and transport simulations. Packages
such as Kwant and KITE provide robust solvers for electronic transport and large
sparse systems, often emphasizing steady-state scattering or spectral methods like the
kernel polynomial approach. Tools such as pythtb and pybinding focus on
model construction, band-structure analysis, and topological diagnostics in periodic or
finite systems, offering efficient interfaces within the Python ecosystem. In contrast,
GRANAD extends this landscape toward fully differentiable optoelectronic simulations of
finite nanostructures. The unique combination of efficient material simulation with the
differentiable philosophy distinguishes GRANAD as a high-performance platform for ex-
ploring light-matter interactions.

The core functionality of GRANAD includes intuitive specification of nanostructure ge-
ometries and their electronic interactions. It supports simulations in both the time- and
frequency domain. The time-domain engine is equivalent to a time-dependent mean-
field theory, relying on the 1IRDM of the nanostructure, solving the master equation Equa-
tion (2.89). It can be flexibly extended with custom specifications for Hermitian, non-
Hermitian, and non-linear interactions, enabling tailored investigations of open quan-
tum systems across a wide variety of external potentials (e.g., vibrational), internal elec-
tron-electron interactions at the mean-field level, and user-defined dissipation channels.
While the default models are tight-binding based, this extensibility also makes it suitable
for use in ab initio settings.
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In the time-domain, GRANAD enables computing the dynamical expectation value of ar-
bitrary one-particle operators, such as current, polarization, magnetization, or charge
and offers access to the dynamical 1RDM. In the frequency domain, GRANAD enables the
computation of optoelectronic response functions, both in the independent-particle ap-
proach given in Equation and the RPA, detailed in Equation (2.97).

On the technical side, the code is built on JAX, which provides differentiability, just-in-
time (JIT) compilation, and GPU acceleration, making it well-suited for integration with
machine learning workflows. GRANAD is accompanied by comprehensive documentation
and tutorials, available at ht tps://granadlauncher.github.io/granad/, to sup-
port new users and developers.

The GRANAD simulation software as described here has undergone peer review and has
been published in [P4].

3.1. Overview

The core architecture of GRANAD is structured around two complementary components:
a numerical engine responsible for the actual simulations, and a high-level interface de-
signed for flexibility and the interactive specification of nanostructures down to individ-
ual orbitals.

A typical simulation proceeds in two main stages. First, the user defines the nanomaterial
at the orbital level. This process prioritizes interactivity and flexibility over raw computa-
tional performance. Orbitals can be freely positioned, deleted, or displaced; interactions
between them are represented by Hamiltonian, Coulomb, or exchange terms and can be
defined as arbitrary functions or imported from external ab initio calculations. This al-
lows for the incorporation of realistic physical perturbations such as strain, doping, or
point defects. Internally, the nanostructure is represented as a plain Python list, cho-
sen deliberately for its simplicity and familiarity. Importantly, simulations can already
be run at any intermediate stage of the construction process, encouraging an exploratory
workflow.

A particularly powerful feature of the structural definition stage is the ability to generate
larger orbital clusters by “cutting” geometrical shapes from predefined bulk materials,
where we shall to infinitely extended materials as bulk, regardless of their dimensionality.
This allows rapid prototyping of complex nanoscale devices. While the computational
complexity of this operation scales quadratically with the number of orbitals involved, it
is confined to the structure-building phase and thus typically not a bottleneck during the
simulation runs themselves.

In the second stage, the defined structure is simulated. GRANAD supports various forms of
analysis, including mean-field ground-state calculations, as well as simulations in either
the time or frequency domain. Results such as energy spectra, optical absorption profiles,
or eigenstates can be visualized using a suite of built-in plotting tools, which are highly
customizable. The computational cost for these simulations scales cubically with the
system size, as is typical for matrix-based methods.
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3.1. Overview
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Figure 3.1.: Schematic of the simulation workflow implemented in GRANAD, as described
in the main text. Starting from basic building blocks, single orbitals or fi-
nite flakes cut into polygonal shapes, a nanoflake can be constructed and
represented by an OrbitalList object. Such objects may be modified ge-
ometrically or electronically, or combined into larger systems such as bilay-
ers or clusters. At any stage of this interactive structure definition, differ-
ent simulation routes can be pursued: dynamical simulations yield the time-
dependent density matrix (¢), whereas frequency-domain simulations pro-
vide the Green’s function G(w), highlighting the dual simulation strategy il-
lustrated in Figure In addition, static simulations can be performed to
access independent-particle quantities such as the energies e. The blue and
green box constitute the high-level Pythonic layer, while the low-level sim-
ulation layer, relying on JIT compilation, is represented by the violet box.
GRANAD promotes an iterative investigation process: After running simula-
tions for a given nanostructure, its specification can be altered and the sim-
ulations rerun.

To mirror this two-step workflow, GRANAD is organized into two principal layers that fol-
low distinct design philosophies: a high-level interface written entirely in Python carry-
ing out the nanostructure specification process, and a low-level numerical backend built
on top of JAX with JIT compilation.

The high-level interface is designed to be intuitive, readable, and adaptable. Users can
construct nanostructures incrementally, either by adding individual orbitals manually or
by cutting out larger blocks of orbitals from bulk material specifications. GRANAD ships
with built-in specifications of common two-dimensional materials such as graphene, hexag-
onal boron nitride (hBN), and molybdenum disulfide (MoS5). User can also supply custom
bulk models, possibly derived from ab initio calculations following Wannierization. Inter-
action terms can be specified between either individual orbitals or types of orbitals, en-
abling the integration of typical quantum optical model systems, such as two-level emit-
ters. The nanostructure, once assembled, continues to behave like a mutable Python list,
albeit enriched with physical attributes such as temperature or doping levels that can be
set externally. This design philosophy aligns closely with Python’s core principles, often
described as Pythonic, emphasizing clarity, modularity, and object-oriented organization
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consistent with the conventions of the scientific computing community.

In contrast, the low-level numerical backend adopts a functional programming paradigm
aligned with the philosophy of JAX. Here, the orbital list is converted on demand into
dense numerical arrays representing Hamiltonians, density matrices, interaction tensors,
and other operators of physical interest. These matrices are then passed to highly opti-
mized routines that are compiled just-in-time: the first invocation of any such routine
incurs a compilation cost, but subsequent calls are executed with high efficiency thanks
to JAX’s execution model, provided the shape of the arrays remains unchanged. This ar-
chitecture ensures that once a structure of fixed size is defined, it can be simulated more
efficiently when rapid iteration over external parameters like the number of doping elec-
trons is required.

After this broad overview, the following section covers the core capabilities of both lay-
ers in detail. As a guide through the following sections, a typical GRANAD workflow has
been summarized graphically in Figure Unless mentioned otherwise, code for a full
reproduction of all figures in this thesis is provided in [R1].

In addition to the high-level specification and low-level simulation layer, GRANAD of-
fers an extensive suite of visualization functions to plot, e.g., induced charges or electric
fields. To focus on the physically relevant numerics, this functionality is not discussed
here.

3.2. Nanostructure Specification

In the following subsections, we discuss the structural setup required to simulate nanos-
tructures in GRANAD. This process consists of the definition of the geometry of the nanos-
tructure and its microscopic interactions. First, we detail the approach to geometry spec-
fication. Then, we cover the definition of the interaction matrix elements, most promi-
nently the IP Hamiltonian and the Coulomb matrix.

3.2.1. Geometry Design

GRANAD enables simulations down to the level of individual orbitals. At the core of its
structural interface is a Orbital object, a lightweight data container that holds essen-
tial attributes. These attributes include its spatial position and an optional user-defined
tag represented by a string, as well as internal identifiers pertaining to its chemical char-
acteristics, e.g. to differentiate orbitals of different spins. By default, GRANAD assumes
spinless orbitals, reducing storage and runtime demands, but this setting can be changed.
Importantly, this object is behavior-free and designed for transparency and simplicity.
Nanostructures can be assembled manually by specifying orbitals individually and com-
bining them into a larger structure.

More realistically, a nanostructure is often created by extracting a finite region from a
predefined bulk material, which we term “cutting” in the following. A bulk material in
GRANAD is described by a dedicated class, which defines the lattice geometry, available
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3.2. Nanostructure Specification

Table 3.1.: Overview of common methods to specify nanomaterials in GRANAD for a hy-
pothetical OrbitallList object flake and a hypothetical material class
material. The shape used to cut a material takes extra arguments for the
lattice termination type (zigzag or armchair) in hexagonal lattices, reflecting
GRANAD’s original focus on graphene-like materials. Any polygonal shape can
be cut, with some shapes predefined. The design of Orbitallist mirrors
standard list operations.

Operation Program

Definition of an orbital at a position orbital = Orbital (position =
position)

Initialization of a model two-level tls = OrbitallList ([orbitall,

system orbital2l])

Definition of an equilateral triangular shape = Triangle (10, armchair =

polygon with base length 10 A with False)

zigzag termination

Cutting a nanoflake from a material flake = material.cut_flake (shape)

Combining nanoflakes into a stack stack = flakel + flake2

Electronic doping flake.set_electrons (electron_number)

Addition of orbitals flake.append (orbital)

Removal of an orbital at a specific list del flake[index]

position

Rotation in a coordinate system flake.rotate (point, phi, "x")

centered at a point around the z -axis

with an angle ¢

Translation by a vector flake.shift_by_vector (vector)
Lifting spin degeneracy flake.set_open_shell ()

orbital species, and their positions within the periodically arranged unit cell. In GRANAD,
materials are described using a concise domain-specific language (DSL) that is embed-
ded within Python. This DSL provides a structured syntax for defining the geometry and
interactions of the bulk system and is specified in appendix Al

The method for cutting finite flakes from bulk materials depends on the lattice dimen-
sionality. In two dimensions, the process is particularly flexible, reflecting GRANAD’s orig-
inal focus on the 2D material graphene: arbitrary polygons can be used to define the re-
gion of interest. GRANAD supplies built-in constructor functions to ease the creation of
commonly used polygons, including equilateral triangles, rectangles, and general regu-
lar polygons, allowing the approximation of circles. A hexagonal lattice like graphene
allows for two different edge types characterizing the resulting flakes, either armchair or
zigzag. The latter is chosen by default in GRANAD, but can be changed straightforwardly
by supplying an additional argument to the default shape constructors.

This cutting operation returns an OrbitalList, which behaves similarly to a Python list
but is extended with domain-specific features. These include plotting utilities, annota-
tions (e.g., orbital indices), and support for common list operations such as insertion and
deletion, enabling the modelling of defects and dopant atoms. Beyond geometry, users
can set global physical parameters for the structure, such as its electron count or temper-
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2°9%9%2%2%2%°% flake.rotate
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Graphene
A
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Figure 3.2.: [llustration of the geometry specification process of a heterostructure con-
sisting of a microscopic rectangular layer of hBN, a triangular graphene
nanoflake, and an isolated orbital, useful for modelling an optically ac-
tive dopant, which might represent a gold adatom in realistic applications.
The hBN layer is rotated, while the center atom in the graphene triangle is
deleted, illustrating some of the versatile functions in Table

ature. An overview of the most common operations is given in Table and a graphical
example showcasing their application is provided in Figure

3.2.2. Defining Interactions

GRANAD models electronic interactions in terms of tight-binding matrix elements. As
detailed in subsection the prime quantities of interest are the IP Hamiltonian in
Equation (2.4) and the Coulomb matrix, defined in Equation (2.90). These interactions
can be specified by the user for each OrbitalList by coupling either individual orbitals
or groups of orbitals in the list. To this end, orbitals can be grouped and identified based
on a variety of different internal flags: All chemically identical orbitals in a bulk cut (e.g.,
all p, orbitals in a single layer of graphene) share a common and unique group_id, while
they can be differentiated among each other by an internal 1ayer_index. Additionally,
orbitals can be identified by their optional properties of spin, orbital kind (e.g., p.), atom
type, and a user-defined tag.

There are two ways to specify couplings: The user can couple groups of orbitals by a func-
tion taking one or arguments two that depends either on the relative distance vector be-
tween two orbitals or on the absolute position of the two orbitals. Alternatively, the user
can couple individual orbitals by directly specifying the matrix element, which is useful
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3.3. Nanostructure Simulation

Table 3.2.: Examples of common interaction matrix defitions for a hypothetical
OrbitalList object flake representing a bilayer structure, detailed in the

main text.
Definition Program
IP Hamiltonian element connecting flake.set_hamiltonian_element (a,
two isolated orbitals b, value)
IP Hamiltonian elements connecting flake.set_hamiltonian_groups (a,

an isolated to all orbitals of the upper upper_layer, function)

layer

Coulomb interaction matrix elements flake.set_coulomb_groups ("pz",
connecting all elements referenced by "s", function)

tags identifying p, and s orbitals

in the modelling of hybrid quantum-optical and solid state system where individual two-
level systems are coupled to one or only a few orbitals in the bulk. The OrbitalList
datatype internally keeps track of these couplings and implements methods to update
these couplings once list operations are performed, e.g., it merges the couplings upon
addition of two orbital lists. Examples of common coupling operations are given in Ta-
ble

This table shows how to set the coupling for a hypothetical system consisting of two lay-
ers, each hosting a collection of orbitals, referenced by 1ower_layer and upper_layer,
respectively. The layers are assumed to be instances of OrbitalList, resulting from a
cutting operation out of a bulk material. Additionally, the structure is assumed to host
two additional orbitals named a, b, possibly in an optically active two-level system ad-
sorbed onto the upper layer. The variable value is assumed to be numeric, i.e. an integer,
float, or complex number. The function coupling is assumed to depend on the inter-
orbital displacement vector only and returns another value of numeric type. Internally,
GRANAD ensures that the resulting interaction matrices are Hermitian to avoid the need
for the specification of redundant combinations. By default, the matrices are filled with
double-precision complex numbers. The examples make use of GRANAD’s internal mech-
anism of tracking orbitals either by direct reference or a user-defined tag.

The built-in material classes shipping with GRANAD provide parametric specifications of
the Coulomb and Hamiltonian matrices from literature, which are applied to the resulting
OrbitalList objects after cutting and can be altered in the material DSL. An overview
of available materials and their parameterization sources is given in appendix|C|

Having covered the structural definition workflow, corresponding to the two leftmost
boxes in Figure|3.1, we now turn to GRANAD’s numerical engine, represented by the right-

most box in Figure

3.3. Nanostructure Simulation

In the following subsections, we discuss the numerical simulation capabilities of GRANAD
once a nanostructure is specified. For the sake of readability, a separate section is ded-
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icated to each of the three independent capabilities provided by GRANAD: extraction of
static IP quantities such as energy spectra, time-domain simulations to unlock the 1IRDM
as well as expectation values, and frequency-domain simulations based on the Green’s
function. We remark that this entire process is iterative. A numerical simulation run can
be followed up by an additional round of structure manipulation.

3.3.1. Independent-Particle Quantities

Once the structure is defined as detailed in the previous sections, independent-particle
quantities can be extracted. This is the simplest simulation in GRANAD. IP quantities
are provided by attributes of the OrbitalList object and are recomputed on demand if
physical aspects of the structure have been changed, such as its electron count or orbital
composition. In addition, these quantities can be corrected by running self-consistency
procedures, based on the mean field approach discussed in subsection|2.8.1/and a charge
self consistency procedure devised and detailed in [62]. These procedures result in a new
set of IP energies, eigenvectors, and a self-consistent Hamiltonian. An overview of the
most important IP quantities is given in Table

Table 3.3.: Examples of IP quantities exposed by a hypothetical OrbitalList object
flake consisting of IV orbitals.

Quantity Access

Hamiltonian flake.hamiltonian

Energies flake.energies

Eigenstates, stored as N x N array flake.eigenvectors
Coulomb matrix flake.coulomb

Ground state IRDM flake.stationary_density_matrix
Polarization Operator, stored as flake.dipole_operator

3 x N x N array

Quadrupole Operator, stored as flake.quadrupole_operator
3x3x N x N array

(Paramagnetic) Current Operator, flake.velocity_operator

stored as 3 x N x N array

Note that, as discussed in the theoretical part, the quantities exposed by GRANAD are
actually the matrix kernels of the associated operators. As such, there exist two common
bases in which to represent these matrices: the basis in which the generally non-diagonal
IP Hamiltonian is expressed is referred to as the site basis, while the eigenbasis of the
IP Hamiltonian is called the energy basis. GRANAD expresses any matrix kernel in site
basis by default and enables access to the corresponding energy-basis kernel via a call to
a dedicated transformation function or simply appending an _e to the attribute name.
For example, the dipole transition rates for a hypothetical OrbitalList object can be
accessed as flake. dipole_operator_e.

3.3.2. Time-Domain Simulations

Time-domain simulations of the master equation, given by Equation (2.89) are the core
capability of GRANAD’s numerical engine, which can be operated in different modes.
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3.3. Nanostructure Simulation

Table 3.4.: External illuminations offered by GRANAD. Note that the design of GRANAD
reflects the linearity of single-particle interaction terms, enabling the simul-
taneous illumination of the nanostructure with multiple external fields. This
makes it possble, e.g., to consider multiple dipolar sources of potentially de-
tuned frequencies at once.

Illumination Description

Plane Wave A plane wave with adjustable
frequency

Pulsed Plane Wave A Gaussian-pulse modulated
plane wave with adjustable pulse
parameters

Dipole Illumination A dipolar illumination with

adjustable position, orientation
and frequency

The most common scenario and GRANAD’s original purpose is the simulation of the re-
sponse of the nanomaterial to an external time-dependent illumination. Electronic in-
teractions are included via the nonlinear potential parameterized by the Coulomb matrix
Equation (2.90), while dissipative dynamics encoded in a phenomenological term Equa-
tion (2.57) lead to a broadening of the resulting resonances.

To this end, GRANAD offers a variety of external electromagnetic illuminations, each suit-
able for different simulation settings. For instance, an electromagnetic field parameter-
ized by a narrow Gaussian pulse is suitable for the computation of linear response spec-
tra. The computation of quantities characterizing quasiparticle excitations occurring at
well-defined frequencies, such as the Energy-Based Plasmonicity index [98], require uni-
form, undamped plane wave illumination. Finally, nanooptical quantities useful for the
characterization of systems at the intersection of quantum optics and solid states such
as the local density of optical states (LDOS) require dipolar illumination. An overview of
illuminations offered by GRANAD is given in Table

To track the time-dependent dynamics, the OrbitalList class offers a single method
master_equation that solves the dynamics given by Equation in a user-defined
time interval and allows to sample the 1IRDM on a temporal grid. As already explained,
the 1IRDM contains all information needed to compute single particle expectation vaues,
while many-particle expectation values factorize according to equations like Equation (2.81).

Beyond this default mode of operation, GRANAD offers a way to customize the internal
Hermitian dynamics by scaling the electronic interaction matrix by a scalar factor, which
is often required in investigations of plasmonicity. The non-Hermitian part of the evolu-
tion equation can be customized by changing the relaxation time or switching from the
phenomenological description to a Lindblad-based one by supplying a matrix containing
the energy transfer rates r, in Equation (2.58).

Furthermore, the evolution equation may be augmented by custom terms or even com-
pletely overridden by accessing the internal representation of the equation offered by
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Table 3.5.: Simulation modes offered by GRANAD. Each mode defines a different level of
user control over the Hermitian and non-Hermitian parts of the master equa-
tion dynamics.

Simulation Mode Description / Typical Use

Default Standard electromagnetic simulations of nanoma-
terials under external fields with phenomenological
dissipation.

Customized Controlled modification of the master equation, en-

abling rescaling of the Coulomb interaction matrix
and replacement of the default phenomenological
dissipator with a Lindblad-based description.

Free Provides full access to the internal representation of
the evolution equation, enabling both performance
optimizations and tailored simulations beyond the
standard electromagnetic ones.

the orbitalList class. This representation captures the functions required to com-
pute the right-hand side of the master equation and includes the array representations
of the physical quantities required to run the simulation (such as the Coulomb matrix or
the dipole operator). The representation can be modified in a transparent way detailed
extensively in the online documentation. This mode of operation allows the simulation
of additional potential terms representing electromagnetic couplings beyond the ones
provided by default, electron-phonon interactions, or nonlinear electron-electron inter-
actions beyond the direct channel term approximated by the Coulomb matrix.

Additionally, one may use this mode to further optimize the simulation performance, e.g.,
by discarding redundant matrices otherwise captured in the internal representation. For
instance, as detailed in Table GRANAD represents the dipole operator Equation
of an N -orbital system as a 3 x N x N array to include possible inter-orbital dipolar
transitions, as discussed in section 2.3, In the absence of inter-orbital dipole transitions,
storage demand can be reduced to scale with 3V by discarding the off-diagonal elements
of the dipole operator array representation.

An overview of the different simulation capabilities, such as electromagnetic simulations,
dissipator customization and the specification of custom interaction terms, is given in
Table

GRANAD operates on double-precision complex numbers by default. Sampling the IRDM
of a system consisting of thousand active orbitals over a thousand time steps would thus
incur a memory cost of 16 GB, which pushes the limits of most consumer-grade hardware.
Additionally, access to the full 1RDM is rarely required for practical computations. Typ-
ically, one is interested in the evolution of physically relevant quantities with reduced
storage demands.

To accomodate this requirement, GRANAD offers functionality to extract only these quan-
tities of interest from the time evolution. Additional arguments to master_equation
allow to extract the expectation values of an ensemble of single-particle operators as well
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as changes in the occupation of the IP energy landscape and the dynamics of orbital pop-
ulations, given by the diagonal elements of the 1IRDM. Further customization is possible
by supplying an arbitrary function of the density matrix.

The result of the time evolution is stored in a separate TDResult object, which also con-
tains quantities necessary to resume or reproduce the simulation and conduct a transform
to Fourier space for comparison with the frequency-dependent approach, which we detail
next.

3.4. Frequency-Domain Simulations

In the frequency-domain, GRANAD computes the IP Green’s function according to Equa-
tion for two arbitrary single-particle operators. The polarizability can be computed
in the RPA according to Equation (2.97), which allows the scaling of the Coulomb inter-
action matrix by a scalar factor, akin to the time-domain simulations, enabling a com-
parison of the two approaches. Additionally, the site-resolved density-density correlator
[G'nn)ij(w) can be computed. The numerical scheme to speed up the computation of the
latter from the naive O(N?) scaling to a more favourable cubic one is the same as detailed
in the original paper [20], adapted to JAX’s functional style, aimed at compatibility with
JIT compilation. As a result, an additional considerable improvement in performance of
these computations can be achieved by running the associated functions on a GPU.

Table 3.6.: Examples of frequency-domain simulation functions exposed by a hypotheti-
cal orbitalList object fl1ake of NV orbitals

Quantity Access

Scalar Correlator between two flake.get_ip_green_function
operators in energy space according to

Equation

Scalar RPA polarizability according to flake.get_polarizability_ rpa
Equation (2.97]
Site-resolved density-density flake.get_susceptibility_ rpa
correlator [Gy,];j(w) in Equation

asan N x N - matrix

Any frequency-domain simulation can be performed on a frequency grid represented by
a JAX array for increased efficiency.

The corresponding methods are members of the OrbitalList class, which facilitates
all simulations and is the only interface to the numerical simulation routines. They are
listed in Table

3.5. Technical Aspects

In the following, we detail the most important technical considerations entering the
design of GRANAD. We first cover the aspect that most dominantly sets it apart from
other highly capable and optimized tight-binding simulation software such as Kwant [27],
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KITE [28], pythtb and pybinding [30]: its reliance of the JAX library providing not
only highly optimized JIT compilation, but also automatic differentiation. We dedicate
a separate subsection to illustrate the basic concept of automatic differentiation and its
application to a real physical problem, demonstrating the utility of this as of now rel-
atively underexploited technique in the simulation of condensed matter systems. After
that, we cover some of the tests that GRANAD underwent to ensure the soundness of the
implementation, its technical maintenance, and sketch some future developments that
have already found their way into the developmental version on GitHub.

3.5.1. Differentiable Programming and Automatic Differentiation

A key feature underlying GRANAD’s more advanced capabilities is its integration with dif-
ferentiable programming, a paradigm central to the JAX library upon which the back-
end of GRANAD is built. In broad terms, differentiable programming refers to the idea
of constructing computational routines as compositions of functions whose derivatives
are known. By applying the chain rule, the derivative of a complex program can then be
automatically computed. This process is known as automatic differentiation (AD).

To illustrate its utility in a physical context, consider the static polarizability tensor Gp, p, (w =
0). We can of course compute it using frequency-domain linear response theory at w = 0
given by Equation (2.62). Alternatively, the static polarizability can be expressed as the
Hessian of the ground-state energy F with respect to an external electric field E

_ OE
- OE,0E;

Gp,p,(w=0) (3.1)

For an independent-particle system, the ground-state energy as a function of electric
field can be expressed via a chain of computational steps:

H(E)=Hy—E- P, (3.2)
€(H) = diagonalize(H), (3.3)
E(e)= > «, (3.4)

i<Ey

where Hj is the field-free Hamiltonian, P is the dipole operator, and € is the vector of
single-particle energy levels, sorted in ascending order. The complete energy function
can thus be seen as a composition:

E = E(e(H(E))). (3.5)
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Figure 3.3.: Comparison of the xx -component of static polarizability (real part) com-
puted using automatic differentiation (AD) and Lehmann expansion for tri-
angular graphene flakes of varying size.

Each function in this composition (e.g. matrix subtraction, diagonalization and summa-
tion) consists of elementary operations such as matrix multiplication, eigenvalue decom-
position (assuming non-defective matrices and the absence of degeneracies), or scalar
addition. As long as these operations are at least twice differentiable, their derivatives
can be composed using the chain rule to yield higher-order derivatives of the entire com-
putational graph.

This is where JAX becomes essential. It provides derivative rules for a wide range of nu-
merical operations and allows these to be composed arbitrarily, enabling physicists to
compute gradients, Hessians, and even higher-order derivatives of physical observables
without having to implement these manually.

Figure shows a concrete example of this approach. The zz -component of the static
polarizability for triangular graphene flakes of varying size is computed using two inde-
pendent methods: first via automatic differentiation as described above, and second via
the Lehmann representation of the linear response function. The results show excellent
agreement.

The computational cost of automatic differentiation depends on both the mathematical
structure of the problem and the specific AD mode used. To illustrate, consider computing
the partial derivative Og, ' of the ground-state energy with respect to a single electric
field component. Applying the chain rule yields:

OE OE e OH

0E, ~ 0 0H OE; (3.6)

This expression can be evaluated in two distinct ways, known as forward-mode and reverse-
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mode differentiation.

In forward-mode, the chain rule is evaluated by computing the terms in the expression
given by Equation from right to left. One starts by substituting a numerical value
for E; to obtain the perturbed Hamiltonian H, then computes its derivative, followed by
the derivative of the eigenvalue function, and so on. This approach is efficient when the
number of input parameters (i.e., components of F) is small but must be repeated for each
component, leading to increased computational cost in higher-dimensional parameter
spaces.

In contrast, reverse-mode differentiation evaluates the terms in the expression given by
Equation from left to right. It computes and stores intermediate quantities such as
H, €, and their derivatives during a forward pass, and then reuses this information during
the backward pass to compute all required gradients. With that, all partial derivatives
can be obtained in a single pass with increased memory usage due to the need to retain
intermediate states.

Although GRANAD is primarily designed for finite systems, preliminary work has been
done over the course of this thesis to extend its functionality towards the construction
of bulk Hamiltonians and the corresponding band structures. A concrete example has
already been provided in subsection where the AD feature provided by GRANAD is
used to construct a tight-binding Hamiltonian for graphene from ab initio data obtained
with the Quantum ESPRESSO program [67]. This example highlights how differentiable
programming not only facilitates the calculation of physical response functions but also
enables efficient parameter inference. The underlying feature of GRANAD as a simulation
utility for infinite systems is still considered experimental and will be briefly covered in
the following subsection.

One of the more forward-looking and exciting capabilities unlocked by automatic differ-
entiation is the seamless integration between solid-state physics and modern machine
learning, particularly deep learning. In this context, differentiable programming pro-
vides a unified interface: parameters for physical models and neural networks can be
combined and jointly optimized within the same computational graph. While prelimi-
nary applications of GRANAD in this context have already been explored, this avenue is
considered experimental and beyond the scope of this thesis.

3.5.2. Testing, Performance and Maintenance

In this subsection, we briefly outline the testing procedures and performance character-
istics of GRANAD, focusing on internal consistency checks, comparisons to experimental
data, and large-scale simulation benchmarks. We also briefly comment on features to be
integrated into the productively released code, which are partially already available via
GRANAD’s development version.

As a first validation step, we verify the agreement between simulations carried out in
the frequency- and time-domain. In particular, the absorption spectrum of a small tri-
angular hBN nanoflake containing 46 atoms is computed using both the random phase
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Figure 3.4.: (a) Absorption spectrum of a triangular armchair hBN nanoflake contain-
ing 46 atoms computed via time-domain propagation (blue dashed line)
with a duration of 404/eV and frequency-domain RPA (red dots). Excel-
lent agreement confirms internal consistency. (b) Absorption spectrum of a
graphene nanoribbon (blue dashed line) compared to experimental data (red
dots), taken from [100]. The nanoribbon under consideration was 9 atoms
wide, armchair-edged with a length of 180 nm, yielding 1090 atoms in the
GRANAD time-domain simulation with a duration of 100/4/eV. The single
graphene nearest-neighbor hopping parameter was —2.2 eV. Non-Hermitian
time propagation was conducted with a phenomenological dissipation rate
of r = 0.1eV. No further adjustments to the default parameters were per-
formed.

approximation (RPA) and real-time propagation via the master equation formalism us-
ing default parameters in each case. The results, shown in Figure (a), demonstrate
excellent agreement between the two methods, providing strong evidence for the inter-
nal consistency of GRANAD’s simulation backend.

We also validate the physical realism of GRANAD’s results by comparing them to experi-
mental data. Figure|3.4|(b) displays the optical absorption spectra of a graphene nanorib-
bon (geometrical details specified in the figure caption), simulated using a tight-binding
model with a hopping parameter —2.2 eV. Despite the absence of automatic parameter
fitting or gradient-based optimization in this case, the simulated response reproduces
the two high-frequency peaks featured in the experimental spectra, taken from [100], in-
dicating the model’s descriptive power even in its simplest form.

Lastly, we examine the performance of GRANAD on large-scale systems. Figure (a)

shows the wall-clock time for time-domain simulations as a function of system size for

graphene nanoflakes composed of 270 up to 13266 atoms, considering a single p, orbital

per atom. These benchmarks were performed on the Hyperion and Atlas high-performance
computing clusters using the unoptimized default mode of GRANAD. Despite this, sizable

systems remain tractable due to JAX-based JIT compilation and the use of efficient linear

algebra backends. In Figure|3.5/(b), we display the runtime advantage gained by executing

the simulation for the same setup for system sizes of up to 1000 atoms.

Performance is strongly dependent on the number and type of orbitals. For systems with
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Figure 3.5.: (@) Scaling of simulation runtime with system size for triangular armchair-
edged graphene flakes, where a single p, orbital is considered per atom. Sim-
ulations were run on the HPC clusters Hyperion and Atlas using an unop-
timized build of GRANAD with a simulation time of 40 #/eV. The fit shows
the expected approximate cubic runtime scaling for both computing clusters.
Both z- and y- axes are logarithmic. (b) The same setup is simulated for up
to 1000 atoms on a single GPU vs CPU to illustrate the performance gained
on GPU. Both z- and y- axes are logarithmic. Reproduced from: D. Dams,
M. Kosik, M. M. Miiller, A. Ghosh, A. Babaze, ]J. Szczuczko, G. W. Bryant, A.
Ayuela, C. Rockstuhl, M. Pelc K. Stowik, GRANAD — Simulating GRAphene
nanoflakes with ADatoms, Computer Physics Communications 317 (2025)
109818. DOI: 10.1016/j.cpc.2025.109818. Licensed under CC BY.

multiple orbital species, performance degrades more rapidly due to the increase in the
number of cubically scaling operations. Examples of these systems include transition
metal dichalcogenides (TMDCs) such as MoS,, which is included as a built-in material in
GRANAD. However, as already mentioned, GRANAD offers a dedicated simulation mode to
mitigate this by tailoring the simulation setup to aggressively optimize for performance

by potentially discarding redundant matrix elements as detailed in the previous section
and displayed in Table

GRANAD is hosted on GitHub with a documentation built from runnable code examples
in a development version (hosted on the dev branch) and stable version (hosted on the
main branch). This thesis focusses mostly on the published stable version. New features
in the experimental stage to be integrated into the stable version include the use of non-
orthonormalized basis orbitals and the construction of tight-binding Hamiltonians from
Slater-Koster parameterizations of the DFTB+ project [25]. Various other features are ina
preliminary stage, hosted on the more experimental granad-scripts repository, which
also hosts the reproduction code for this thesis [R1], which include (semi-)infinite struc-
tures and integration with machine learning and sparse-matrix workflows, in particular
the prediction of Chebyshev moments from a machine learning setup.

Overall, GRANAD combines physical accuracy with a flexible programming interface, of-
fering a platform that is both user-accessible and computationally efficient, while still
leaving room for performance tuning and model-specific optimization.

48



4. Selected Applications

This chapter demonstrates the application of GRANAD to a selection of physical problems
to illustrate the core capabilities outlined conceptually in the previous chapter.

The first section serves a pedagogical purpose and demonstrates some standard calcula-
tions covering ground state and linear response.

The second section presents original results, published in [P3], in higher detail: the appli-
cation of GRANAD to explore the advantageous optical selectivity properties of Haldane
graphene, enabled by its topological properties.

4.1. Ground State and Linear Response of Microscopic Systems

In this section, we exemplify GRANAD’s application to typical problems encountered in
the atomistic study of nanoflakes: First, we investigate the magnetic ground state prop-
erties of correlated graphene nanoflakes, emphasizing the impact of geometrical details
on the resulting net magnetic moment. We then utilize GRANAD’s time domain simulation
backend to verify charge conservation in the linear response of a small hBN nanoflake.
Finally, we leave the purely electromagnetic sector by simulating the vibronic dipolar re-
sponse of a graphene nanoflake.

4.1.1. Magnetic Properties of Graphene Nanoflakes

We begin by demonstrating the capabilities of GRANAD by studying the magnetic prop-
erties of the self-consistently calculated electronic ground state of graphene nanoflakes,
obtained from mean field calculations. Graphene nanoflakes with spinful electrons can
exhibit intriguing magnetic behavior that directly reflects their geometric and sublattice
structure [89]. As discussed in the theoretical section, the Hubbard model serves as a
minimal framework to faithfully represent such effects. In this subsection, we will focus
on the local and net magnetic moments exhibited by graphene nanoflakes, described by
a nearest-neighbor tight-binding model, augmented by the onsite Hubbard term, as dis-
cussed in subsection|2.8.1} Our model and the results closely align with those reported in
the seminal work on the subject with a nearest-neighbor hopping rate of t = 2.55eV
and an onsite Hubbard term with a strength of U = 4eV.

According to Lieb’s theorem [102], the total spin S of the ground state in a bipartite lattice
is given by

1
S:§‘NA—NB‘a 4.1)

where N, and Np are the number of sites assigned to the respective sublattice. Since
the total spin is related to the net magnetization by a constant, any sublattice imbalance
in a charge-neutral system leads to spontaneous magnetization, and we refer to S and
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Figure 4.1.: Site-resolved spin polarization for graphene nanoflakes described by a
Hubbard-like model. (a) Local magnetic moment distribution in a triangu-
lar graphene nanoflake hosting 194 atoms. This geometry is characterized by
a sublattice imbalance, hosting an excess of 7 sites of the "A" type over the "B"
type. According to Lieb’s theorem, the resulting net spin amounts to S = 3.5,
which we confirmed numerically. (b) Local magnetic moment distribution
in a rhomboid graphene nanoflake hosting 594 atoms. Consistent with Lieb’s
theorem, we observe the absence of a net magnetic moment because of a bal-
ance of sublattices.

its local counterpart as global and local magnetic moments, respectively. To explore this
phenomenon in the context of finite graphene systems, we consider two representative
nanoflake geometries: a triangular flake with zigzag edges (sublattice-imbalanced), and a
rhomboid flake (sublattice-balanced). Both systems are treated within the self-consistent
mean-field approximation of the Hubbard model and the results are displayed in Fig-
ure We compute the site-resolved spin polarization (magnetic moment), given by
the expected difference between up and down electrons in the ground state, also referred
to as local magnetic moment distribution in zigzag-terminated graphene nanoislands.
The ground state is determined by a mean-field calculation according to the discussion
in subsection|(2.8.1

Consistent with Lieb’s theorem, we find that the rhomboid flake exhibits no net magneti-
zation, while the triangular flake develops a finite magnetic moment due to its sublattice
asymmetry. The magnetization is localized at the flake’s edges and exhibits ferromag-
netic alignment within sublattices and antiferromagnetic coupling between them. These
results are consistent with previous findings [89]. The spatial magnetization profiles for
both systems are displayed in Figure
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Figure 4.2.: Induced current (details of the pulsed illumination in the main text) in a rect-
angular hexagonal hBN flake hosting 62 atoms, depicted artistically in the
inset with light blue representing Boron, dark blue representing Nitrogen
atoms. The current is computed in two ways to explore the validity of the
continuity equation. The total dipole moment multiplied by —iw and total
current are shown to coincide after Fourier transform of a time-domain sim-
ulation. Non-Hermitian time propagation was conducted with a phenomeno-
logical dissipation rate of » = 0.1 eV. No further adjustments to the default
parameters were performed.

4.1.2. Charge Conservation in hBN Nanoflakes

We now explore the validity of the continuity equation in a finite hBN flake. This equation
implies charge conservation and thus relates intricately to the TRK sum rule discussed
in subsection [2.6.3| Starting from the classical continuity equation for the local time-
dependent charge density pjoc(7, t), current density j,,.(r, t), and dipole moment density
Dioc(7, ), we have

8ploc("’v t)
ot

. 8p10c(’l"7 t) 8ploc(r’ t)

= _V'Jloc("'at) =V ot ot

= J1oc(T, 1) . 4.2)
Taking the Fourier transform with respect to time yields the frequency-domain relation

—1WPloc (T, W) = Jioc(T, W) - 4.3)

This relation extends to the total dipole moment p(w) and current j(w) by integration.
As discussed in section|2.2 employing a discretized spatial basis, the integral reduces to
a sum over all localized orbital positions r;

—iw Zploc(’riv t) = _in(w) = Zjloc(rhw) = J(w) . (4.4)

51



4. Selected Applications

0.010

0.005

0.000

’5 —0.005

Z
= —0.010
)

—0.015

—0.020

—0.025

0 20 40
t(h/eV)

Figure 4.3.: Vibronic polarization (y -component) of a 110-atom rhomboid graphene
nanoflake for the damped TA vibration mode described in the main text.

Within GRANAD, both p(w) and j(w) can be extracted from the output of a time-domain
simulation after Fourier transform, as detailed in the previous section.

To verify Equation (4.4) numerically, we simulate the dynamical response of an hBN
nanoflake under external illumination for a total duration of 40 #/eV. The nanoflake is
chosen to be of rectangular shape and contains 62 atoms in total, while the electric drive
takes the form of a pulse peaking at 5 i/eV with a full width at half maximum of 2 7/eV at
a carrier frequency of 2.3 i/eV. These characterics of the illumination have proven prac-
tical to obtain broad-band response spectra of the structures under consideration and
thus a satisfactory differentiable approximation of a delta-pulsed excitation.

The expectation values of dipole and current operators are tracked during the evolution,
and the Fourier transform is performed numerically after convergence and the resulting
spectra are compared. The result, shown in Figure4.2/for the x -component of the induced
current j, (w) and the corresponding dipolar quantity —iwp, (w), confirms visually that the
continuity equation is satisfied within numerical precision.

Aside from a basic demonstration of correctness, we point out that the numerical ver-
ification of Equation (4.4) provides a convenient means to check the convergence of a
GRANAD time-domain simulation, provided that the form of the non-Hermitian dissipa-
tors is charge conserving. In practice, we recommend checking the correctness of equi-
librium dynamics in time domain via the continuity equation, while the TRK sum rule is
the preferred option for frequency-domain calculations.

4.1.3. Vibronic Polarization in Graphene Nanoflakes

As a last pedagogical example, we demonstrate GRANAD’s capabilities beyond the simu-
lation of external electromagnetic perturbations. We consider a zigzag-edged rhomboid
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graphene nanoflake to be described by GRANAD’s standard graphene tight-binding model
in the absence of perturbations, hosting 110 atoms in total. The atomic cores at equilib-
rium positions R; are considered to be perturbed by a transverse acoustic (TA) vibration,
modelled as a time-dependent displacement out of these equilibrium positions of the
generic form

d(R;,t) = do - sin(kR;) - cos(wpnt) , (4.5)

where we chose the displacement vector dy to be purely along the y -axis, inducing a
maximum strain of 5% of the equilibrium positions. The perturbation is considered to
propagate in x -direction only with a spatial frequency of [k = 7%, where L, is the length
of the structure in x -direction. With the sound velocity of graphene’s TA modes of vy =
13.6km/s , the temporal oscillation frequency is thus fixed to wpp = vra - |k|. We
introduce 2 dopant electrons to the structure.

The perturbation is introduced by modulating the hopping rates ¢;; between orbitals lo-
calized at atomic positions R; and R; as a function of the out-of equilibrium displace-
ment d according to [104]

tij(d) = tij - exp [—B (W — 1)] , (4.6)

where dy = 1.42 is the typical equilibrium interatomic distance in graphene and we fix
the dimensionless decay constant to 5 = 3 in accordance with typical values found in
literature [104]. Linearization of this equation in d leads to an independent particle (IP)
perturbation term of the form given by Equation and thus enables time-domain
simulations in GRANAD’s framework by implementing a custom interaction term as de-
scribed in table The resulting time-dependent polarization of the nanoflake is dis-
played in Figure 4.3/for a simulation duration of 52 1/eV. To accelerate convergence and
ensure numerical stability, the vibration is modelled to decay exponentially at a rate of
10eV/h and we remark that a broad-band linear response calculation would require the
modulation of the vibration by a sufficiently narrow pulse. All other parameters corre-
spond to GRANAD’s default.

This discussion concludes the demonstration of GRANAD’s general purpose capabilities
from self-consistent ground state calculations to dynamical simulations under electro-
magnetic and custom time-dependent perturbation terms. In the next section, we present
the application of GRANAD’s frequency-domain response engine to conduct research on
an exotic material model: Haldane nanoflakes, published in [P3].
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4.2. Spin-Selective Response in Topological Nanoflakes

In this section, we discuss nanoflakes described by the Haldane model as a platform for
enhanced optical selectivity, supported by electronically topological features [P3]. After
a general introductory motivation leading to the topic, we characterize optical selectiv-
ity as a differential electromagnetic response to light of different circular polarization
and draw the conceptual connection to topologically induced chiral edge states in finite
Haldane nanoflakes, which we reason to be of prime importance in amplifying optical se-
lectivity based on an intuitive physical argument. This argument is solidified by concrete
linear response calculations conducted via GRANAD’s frequency-domain engine, and the
topologically enhanced stability of the resulting features against perturbations realized
by electronic interactions and random defects is demonstrated. Reproduction code for all
figures in this section is freely available [R2].

4.2.1. Motivation

The ability to control and enhance light-matter interactions in ways that depend sen-
sitively on intrinsic properties of the electromagnetic radiation, such as its helicity, or
angular momentum, remains a central driver of technological innovation. Applications
range from high-efficiency energy harvesting and pharmaceutical processing
to the precise transfer of angular momentum from light to matter [107]. Among the var-
ious light properties exploited for these purposes, the optical spin angular momentum
(SAM) has proven particularly promising for enabling selective copling between electro-
magnetic fields and tailored material systems 109).

Recent advances in material science have broadened the available platforms for SAM-
selective light—-matter interactions. In addition to artificial photonic structures and
hybrid quantum optical-condensed matter systems 112], topological phases of mat-
ter have emerged as an especially intriguing area [113]. Topological condensed matter
systems exhibit unconventional scattering, plasmonic and transport behavior
that can, in principle, be harnessed for novel photonic functionalities. However, much
of the existing work has focused on extended systems, leaving the optical response of
finite topological structures, particularly in the context of SAM sensitivity, relatively un-
explored. This knowledge gap not only limits our fundamental understanding but also
constrains the design space for future photonic devices based on topological principles.

In this section, GRANAD is applied to address this gap. Specifically, we investigate nanoflakes
described by the prototypical Haldane model, a two-dimensional Chern insulator on a
hexagonal lattice featuring broken time-reversal symmetry (TRS) and sublattice symme-
try, discussed in subsection The Haldane model remains a focal point of research
across condensed matter and photonics 117], with realizations spanning
ultracold fermionic lattices [13], ferromagnetic monolayers [14], Moiré heterostructures
[15], and localized spin arrays [16]. Its defining feature,TRS breaking parametrized by an
effective pseudo-magnetic field, induces a topological phase transition beyond a critical
threshold, marked by the emergence of robust chiral edge states 119).
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Figure 4.4.: (a)-(c) Absolute value squared of the transition matrix elements correspond-
ing to J,, evaluated between different energy eigenstates n and m. The un-
derlying system is a rhomboid zigzag-edged nanoflake containing 110 atoms
for varying values of \. (a) Topologically trivial system at A = 0. Edge states
are absent, TRS is left intact, resulting in a symmetric transition matrix. (b)
Topologically trivial system at A to 0.1¢, but with broken TRS, leading to an
asymmetric transition matrix element distribution. (c) Topological system at
A = 0.2t. The absolute value of the transition matrix elements is increased
considerably.

Using GRANAD, we demonstrate that finite Haldane nanoflakes exhibit strongly differen-
tial coupling to the SAM of normally incident plane waves. This differential response po-
sitions them as candidate platforms for SAM-sensitive optical functionalities, including
selective absorption, polarization filtering, and phase control. The simulations enable
a systematic exploration of how TRS breaking, topological properties, and finite-size ef-
fects collectively determine the strength and robustness of SAM selectivity. These results
illustrate not only a concrete photonic application of topological nanostructures but also
the power of GRANAD to probe regimes inaccessible to purely analytical approaches.

4.2.2. Optical Selectivity

In this subsection, we provide a generic argument to the emergence of SAM-selectivity in
finite Haldane nanoflakes based on an intuitive analysis of the transition matrix elements
associated with SAM-projected components of the current operator.

As discussed in subsection|2.4.1} finite two-dimensional Chern insulators, such as nanoflakes
described by the Haldane model, possess edge states whose transport properties are in-
herently chiral. In these systems, edge currents follow a fixed circulation path around
the sample: clockwise or counterclockwise depending on the sign of the time-reversal-
symmetry (TRS) breaking parameter \ entering the Hamiltonian in Equation (2.35). Within
the convention adopted here, A > 0 corresponds to clockwise edge current flow. These
edge state are discussed in more detail along with a visualization of an example edge
state in subsection|2.4.1| The inherent directionality of the edge states renders topologi-
cal nanoflakes natural candidates for differential coupling to the two SAM-components of
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light, which in a normally incident plane wave correspond to opposite in-plane rotational

field patterns [120].

To quantify this coupling, we expand the incident field into its SAM components E,, via
the projection

E,=(e,,E), o==1, 4.7)
where the circular polarization basis vectors e, are

1
e, = —(e; +ioey). 4.8
In the paraxial regime of a normally incident plane wave, SAM coincides with the total
angular momentum of light [121], simplifying the separation between spin and orbital
contributions. The incident vector potential couples to the paramagnetic current opera-
tor J, determined according to Equation (2.28).

Utilizing the projection in Equation (4.7), we extract the SAM-sensitive components of
the current operator J, as follows

Jy = leg,J), o=+1. (4.9)

This definition implies that the operators J, (J_) encode coupling to the purely posi-
tive (negative) SAM component of the incident light. In the material itself, we generally
expect cross-coupling to occur in form of, e.g., non-zero components of the associated
response function, such as G ;, ;_(w). The non-Hermitian nature of Equation makes
clear that transitions favored for one SAM component are necessarily suppressed for the
other. The bias of one SAM-component over the other is encoded in the TRS breaking pa-
rameter \, and we anticipate ) to be the primary driver of SAM-selective optical response
in Haldane nanoflakes.

An illustration of this argument is provided in Figure where we display |.J, |2 for vary-
ing values of )\ in different topological regimes. In the topologically trivial regime dis-
played in Figure (a), the system characterized by A = 0. The transition matrix el-
ements are symmetrical. As a result, we expect no differential optical SAM-selectivity.
In Figure (b), TRS is broken at A = 0.1t, which results in an asymmetric distribu-
tion, and, consequently, a SAM-selective response. We expect, however, that this SAM-
selective response is sensitive to external perturbations, as it lacks topological protection.
In Figure (c), the system is in its topological phase with A\ = 0.2¢ and exhibits strong
asymmetry in its transition matrix elements, indicating a strongly selective response. In
contrast to the topologically trivial, TRS-broken phase, we expect this response to be a
robust effect, largely independent of geometric and electronic interaction details, making
it independent of the concrete experimental realization of the Haldane model.

As the physical consequence of TRS breaking in finite nanoflakes, we expect the chiral
edge states to be crucial in determining the SAM-selective optical response. In the next

56



4.2. Spin-Selective Response in Topological Nanoflakes

L L
(a) 0.0 0.2 0.4 0.6 0.8 1.0 (b) 0.0 0.2 0.4 0.6 0.8 1.0
| |
3
2<
1<
{ [
B .
71<
,QA
0 15 30 45 60 75 90 105 0 15 30 45 60 75 90 105
State Index State Index

Figure 4.5.: (a) Energy spectrum of a topologically trivial nanoflake at A = 0.05¢. The
rhomboidal structure has a width and height of 53 A and 30.5 A, respectively,
containing 478 atoms in total. The color coding indicates the localization
metric defined in Equation (4.10). The absence of states near the Fermi level
prevents low-frequency optical transitions. (b) Same as (a), but for the topo-
logically non-trivial case A = 0.3 ¢. Strongly localized edge states appear
around the Fermi level, enabling low-frequency transitions and making the
optical response predominantly topological.

subsection, we turn to a characterization of these edge states before we provide concrete
numerical evidence for the SAM-selective response in Haldane nanoflakes.

4.2.3. Edge State Characteristics

In this subsection, we investigate the role of topological edge states in determining the
SAM-selective optical response of finite Haldane nanoflakes.

In finite nanoflakes, the continuum of bulk bands collapses into discrete molecular-like
energy spectra, as illustrated in Figure In the trivial regime, displayed in Figure
(a), the HOMO-LUMO energy spacing reflects the bulk band gap in infinite systems [17].
For topological flakes as shown in Figure (b), however, a family of highly localized
states emerges within the bulk gap. These states can be interpreted as a discrete “spec-
tral subsample” of the metallic one-dimensional topological bands found in semi-infinite
systems [122]. The presence of such mid-gap edge states enables optical transitions at
energies significantly lower than the bulk gap.

Because these transitions occur between edge states, their optical coupling inherits the
SAM-sensitivity observed in the bulk case [17], but now manifests at much lower pho-
ton energies. In the normally incident plane-wave geometry considered here, the SAM
components correspond to left- and right-circular polarizations [123]. The low-energy
nature of edge-to-edge transitions thus differentiates them sharply from the predomi-
nantly interband-driven transitions in the bulk.

The SAM-preference of a specific transition between eigenstates n and m can be inferred
from the SAM-sensitive current matrix elements: As discussed in the previous section,
a preference for positive SAM implies |J,},,,| > |J,,,,|- This link connects the qualitative
edge-state picture to the asymmetric transition matrices shown in Figure
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Figure 4.6.: Dipolar response of a rhomboid nanoflake with a width and height of 53 A
and 30.5 A, respectively, in the topological regime (A = 0.4t) under unpo-
larized illumination. The induced dipole moment is decomposed into its
SAM-positive and SAM-negative components, revealing strong differential
coupling. The dominant SAM sign changes with frequency: positive SAM
dominates at the lower-frequency (HOMO-LUMO) resonance, while nega-
tive SAM dominates at the higher-frequency resonance corresponding to the
next-lowest excitation.

To quantify the edge localization in our numerical analysis, we introduce the metric
12
Zj € edge index ‘(bj ‘

> ol ’

where ¢; is the amplitude of the eigenstate on site 7, and the numerator sums only over

L= (4.10)

atoms identified as belonging to the flake’s outermost edge. Figure compares the
trivial and topological regimes for a rhomboid flake with 478 atoms. In the trivial case,
the HOMO-LUMO gap of ~ 0.7t agrees with the expected bulk gap of ~ 0.5¢ in the
large-size limit. In the topological case, mid-gap edge states collapse the HOMO-LUMO
gap, producing a low-frequency optical response dominated by SAM-selective transi-
tions. The combination of TRS-broken current operators and mid-gap edge states ex-
plains the strong SAM discrimination observed in the following linear-response calcula-
tions.

4.2.4. Dipolar Response Spectra

In this subsection, we investigate the implications of SAM-selectivity in topological nanoflakes
described by the Haldane model by performing a linear-response analysis of the induced
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Figure 4.7.: Differential SAM selection, |p,| — |p—|, for varying \ in the same geometry
as Figure The vertical dashed line marks the bulk phase transition. For
small )\, selectivity is weak and shifted to higher frequencies. Near the bulk
transition, selectivity is strongly enhanced, with two main resonances dom-
inated by positive and negative SAM, respectively. A symmetric log scale is
used: values in the range [—1, 1] are mapped linearly, larger magnitudes log-
arithmically.

dipole moment. This approach reveals SAM-selective resonances that are stabilized and
amplified by transitions involving edge currents in a parameter range of \ closely match-
ing the bulk topological phase.

The nanoflakes studied here are of molecular-scale dimensions, while the wavelength of
the incident light is much larger than the system size. Consequently, the electromag-
netic response to an external field E(w) of frequency w is well described by an induced
electric dipole moment p(w) computed according to the IP dipole-dipole correlator in
the Lehmann representation Equation (2.62). We specialize to the case of zero tempera-
ture and chose the numerical broadening parameter  as 0.001 eV, similar to

Following Equation (4.7), we decompose the dipolar response p(w) for an unpolarized
external field into SAM-positive (p;) and SAM-negative (p_) components to probe the
polarizing behavior of the nanoflakes. Deep in the topological regime (A = 0.4t), Fig-
ure shows the induced dipole moment in the low-frequency range (0 < w/t < 0.5).
A clear asymmetry emerges: at lower frequencies, the induced dipole moment is domi-
nated by the SAM-positive component, whereas at the upper end of the frequency range,
aresonance dominated by the SAM-negative component appears. As discussed in subsec-
tion[4.2.2/and subsection|4.2.3| this behavior reflects the dominance of one microscopic
current operator over the other at a given frequency. The low-frequency SAM-positive
resonance corresponds to the HOMO-LUMO transition, where J, dominates over .J_.
Conversely, the SAM-negative resonance corresponds to the next higher-energy transi-
tion, where J_ dominates. The peaks observable in the figure are spectrally degenerate
in the sense that both the SAM-positive and the SAM-negative response attain their local
maxima at the same frequency values. We later trace back this effect to the presence of
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Figure 4.8.: SAM-selectivity s, as defined in Equation (4.11). Distinct behavior across dif-
ferent parameter regimes can be observed. Below the region approximately
corresponding to the bulk phase transition, similar to the regime shown in
Figure a selectivity is present but exhibits distorted patterns, consistent
with the lower intensity response observed in that figure. In contrast, the
patterns become more stable beyond this regime, and resonances are more
clearly defined, aligning with the increased yield seen in other figures. The
geometry remains unchanged, and the dashed line marks the bulk phase tran-
sition.

inversion symmetry in the rhomboid structure under investigation.

The emergence of SAM-selective resonances in the topological regime can thus be un-
derstood as a competition between clockwise and counterclockwise microscopic current
channels. The HOMO-LUMO resonance appears at the lowest frequency as a strong
SAM-positive feature. While the background response generally favors positive SAM, the
higher-frequency resonance reverses the dominant current directionality.

Further insight is gained by examining the dependence of the SAM selection difference
lp+| — |p—| on A, displayed in Figure For small )\, selectivity is weak and located at
higher frequencies. As \ approaches the value necessary for the bulk topological transi-
tion, selectivity strengthens significantly. After having laid out the fundamental physical
effects of SAM-selectivity depending on the TRS-breaking parameter, we now turn to a
quantitative analysis of the optical selectivity.

4.2.5. Assessing Optical Selectivity

To quantify the SAM selectivity, which we denote by s in the following, we employ the
following definition, analogous to commonly used measures for quantifying differential
bulk responses to polarized light [126]

Iy —1I_
S =
I, +1°7

(4.11)
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where I, denotes the absorbed intensity for incident light with SAM polarization o, com-
puted from the dipolar response p(w). This dimensionless ratio directly quantifies the
relative strength of the nanoflake’s interaction with each SAM component.

The results in Figure show a clear evolution of s across different A values. Below
the approximate bulk topological transition threshold,corresponding to the parameter
range in Figure[4.7|selectivity remains but appears irregular and distorted. So, while still
present, the observed features trace back more likely to microscopic system details and
are thus less likely to persist in actual experimental realizations. Beyond this thresh-
old, patterns become more stable, resonances sharpen, and the selectivity magnitude
increases, in agreement with the enhanced optical yield observed for unpolarized inci-
dence. This demonstrates that the phase transition plays a central role in shaping SAM-
dependent absorption.

With TRS-breaking now conclusively identified as key driver of SAM-selectivity as well
as preliminary evidence pointing towards topological feature stabilization, we next in-
vestigate the stability of the presented results against finite-size and geometrical effects,
electronic interactions and local perturbations. This analysis confirms our introductory
argument of SAM-selectivity being a protected and, thus, robust feature in the topologi-
cal regime.
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Figure 4.9.: Differential response |p,| — |p—| for Haldane nanoflakes of varying sizes, with
A = 0.5t fixed deep in the topological regime. Increasing system size results
in a redshift and enhanced resonance amplitudes, explained in the main text
as a consequence of an increased density of states near the Fermi level. A
symmetric log scale is applied as in Figure

4.2.6. Finite-size Dipolar Scaling

Up to this point, our analysis focused on a prototypical flake containing ~ 500 atoms. To
test the robustness of SAM-selectivity and assess finite-size effects, we evaluate struc-
tures from a few hundred atoms up to ~ 3,200 atoms, with results shown in Figure

A systematic trend emerges: larger flakes exhibit a pronounced redshift and an overall
enhancement of the resonance amplitudes in |p;| — [p—|. This is attributable to the in-
creasing density of states near the Fermi level: as the discrete spectrum becomes denser,
the optical transitions near the relevant energies approach a quasi-continuum, leading
to stronger absorption and enhanced selectivity at slightly lower frequencies. These find-
ings indicate that the observed SAM-selectivity is not only preserved but amplified with
increasing size, suggesting similar effects in mesoscopic-scale realizations.

4.2.7. Effects of Spatial Symmetry Breaking

The spectra shown in Figure exhibit spectral degeneracy between SAM-positive and
SAM-negative resonances. This is due to inversion symmetry in the prototypical rhom-
boid nanoflake.

To explore the effects of symmetry breaking, we study equilateral triangular nanoflakes
with zigzag edges, which lack inversion symmetry. This geometric change removes the
symmetry constraint, allowing the spectral positions of SAM-positive and SAM-negative
resonances to separate. Figure shows the dipolar response for a triangular flake at
A = 0.4t, where the lifting of the degeneracy is evident. These results highlight that,
despite the concrete spectral location of enhanced SAM-selectivity to be determined by
symmetry properties of the underlying flake, the feature of SAM-preference is left intact
regardless of the geometrical symmetry properties of the underlying Haldane nanoflake.

62



4.2. Spin-Selective Response in Topological Nanoflakes

] Ip+|

104-§ lp—|
107
o

<

\—/’102€
Y
101€
100€

0.0 0.2 0.4 0.6 0.8

w/t
Figure 4.10.: Dipolar response of an equilateral triangular nanoflake with zigzag edges
containing 46 atoms, for A = 0.4¢ under unpolarized illumination. In con-
trast to the inversion-symmetric rhomboid case, the degeneracy between
SAM-positive and SAM-negative resonances is lifted, resulting in a clear
spectral separation.

4.2.8. RPA Analysis

Up to this point, our investigation has been carried out within an effective single-particle
framework, neglecting explicit electron—electron correlations. Prior studies have shown
that such an approach provides adequate qualitative insight for semi-infinite geometries
[127]. To further test the robustness of our findings, we extend the analysis by including
Coulomb interactions within the random phase approximation (RPA).

Optical features rooted in microscopic topology are expected to be robust against per-
turbations, including electron—electron interactions. To assess this, we conduct an RPA
analysis as discussed in subsection [2.8.4, We introduce a dimensionless scaling factor
¢ € [0,1] to the Coulomb matrix controlling the interaction strength, and compute the
RPA-corrected dipole-dipole correlator from which |p.| — |p_| is obtained. Figure [4.11]
shows that interactions mainly cause a blueshift of resonances, leaving the qualitative
|p+| — |p—| structure intact. This confirms that SAM-selectivity is resilient to moderate
many-body effects, reinforcing its potential experimental relevance.

4.2.9. Disordered Potential Analysis

Having confirmed our initial argument of the stability of SAM-selectivity in the topologi-
cal regime, we now test the resilience of optical selectivity to structural disorder. Disorder
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Figure 4.11.: Impact of electron—electron interactions on the dipolar response of a rhom-
bic nanoflake, analyzed within the RPA framework. The system corresponds
to Figure now including direct-channel Coulomb interactions parame-
terized by a dimensionless interaction strength c. The primary effect is a
blueshift of resonance features, while the qualitative structure of the elec-
tromagnetic dipolar selection |p, | — |p—| remains intact, indicating robust-
ness of SAM-selectivity against interactions. A symmetric log scale is ap-

plied as in Figure

is introduced as a random local potential perturbing the onsite hopping term 4 in Equa-

tion (2.35), following [128]:

5 = 47, (4.12)

where r is drawn from a Gaussian distribution N (0, t).

Figure presents results for the same system as in Figure now including this
stochastic modification. In the trivial phase, disorder strongly disrupts the optical re-
sponse, erasing well-defined resonances. This reflects the high sensitivity of non-topological
states to geometric and symmetry perturbations, consistent with previous findings for
plasmonic responses in graphene nanostructures [129).

In contrast, in the topological phase, selective resonances remain clearly visible and espe-
cially the fundamental HOMO-LUMO feature discussed in subsection[4.2.4]is conserved.
This persistence is characteristic of topological protection: chiral edge states driving
SAM-selectivity are insensitive to moderate local perturbations, depending instead on
global invariants rather than fine-tuned microscopic details.

4.2.10. Current-Current Correlator Analysis

As a last validation of the robustness of the numerical results presented so far, we now
compare the response theory studied so far, which was based on the dipole—dipole cor-
relator, to its equivalent formulation in terms of the current—current correlator. For a
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Figure 4.12.: Impact of disorder on the optical selectivity of the Haldane model. In the
topological regime, selective resonances remain intact, demonstrating ro-
bustness against perturbations.

point-like response at molecular scales, the two are related by
1
Gpp = = Gy, (4.13)

where Gpp denotes the dipole—dipole correlator and G ;; the current—current correla-
tor, where we enforce the TRK sum rule according to the procedure outlined in subsec-
tion[2.6.3| Using Equation (4.13), we compute the dipolar selection |p. | — |p_| from both
Gpp and G ;. As shown in Figure the results coincide, confirming the validity of
GRANAD and demonstrating that SAM-selective properties are independent of the chosen
formulation.

4.2.11. Summary

We have investigated the optical properties of Haldane-model nanoflakes and demon-
strated their potential for selective light—-matter interactions. Our dipolar-response anal-
ysis revealed pronounced SAM-selectivity directly linked to chiral edge states, with the
effect strongly enhanced in the topological regime near and beyond the bulk phase tran-
sition.

Key mechanisms were identified: transitions involving topological edge currents produce
strong polarization-dependent absorption, shaped by the interplay of time-reversal sym-
metry breaking and spatial confinement. The resulting resonance features are robust
against moderate parameter variations and disorder, making such nanoflakes promising
candidates for tunable optical filters, polarization control devices, and light-based infor-
mation processing elements.

Finite-size scaling analysis showed that larger flakes yield redshifted and stronger reso-
nances due to an increased density of states near the Fermi level. This suggests the per-
sistence and possible enhancement of SAM-selectivity in larger, experimentally relevant
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Figure 4.13.: Comparison of dipolar selection computed from the dipole-dipole (Gpp,
solid lines) and current—current (G;;, dashed lines) correlators for a rhom-
boid nanoflake containing 478 atoms, for different values of the topological

control parameter \. The excellent agreement confirms the consistency of
both approaches.

structures, bridging the gap from molecular-scale to mesoscopic devices.

While our study centered on the prototypical Haldane model, analogous effects are ex-
pected in experimentally realizable platforms. Buckled Xene monolayers (silicene, ger-
manene, stanene, plumbene) offer tunable staggered potentials via external electric fields
[17], potentially enabling control over spin-split resonance structures in nanoflakes. Mono-
layer TMDs such as MoS; or WS, exhibit larger in-plane photonic spin Hall shifts [17],
which may enhance resonance strengths at the cost of reduced tunability.

In summary, our results position topological nanoflakes as versatile building blocks for

SAM-sensitive photonic and optoelectronic applications. Future extensions may explore

dynamical and nonlinear regimes, alternative edge terminations, and coupled-flake ar-

chitectures to engineer complex optical responses tailored for next-generation light-based
technologies.
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5. Quantum Description of Light-Matter
Interactions

In this chapter, we review the key theoretical aspects necessary for a fully quantum de-
scription of interacting light-matter systems in a cavity. First, we discuss the quantization
of cavity light and its interaction with electronic matter. We then detail the construction
of an effective Hamiltonian describing the interaction of light with collective matter exci-
tations. This effective Hamiltonian forms the basis of the theoretical analysis we present
in the next chapter on our study of chiral cavities.

5.1. Hamiltonians for Quantum Light and Matter

Focussing on the matter sector of the Hamiltonian first, we restate the general quantum
Hamiltonian for a system of V electrons, already given in Equation (2.2)

1 N N
Hy = 2mzp3 +Y V(R (5.1)
=1 =1

In accordance with the approximations already discussed in the motivation of GRANAD’S
theoretical framework, we implicitly operate within an independent particle picture where
electronic interactions give rise to a nonlinear contribution to V(R;). We consider the
electronic system embedded in a cavity. Interaction with light is modelled by the mini-
mal coupling substitution

p; = p; — A(R;), (5.2)

where A(R;) is the vector potential and we adopt a system of units such that the elec-
tronic charge is set to unity. The purely electromagnetic sector of the model is described
by the classical Hamiltonian

1 1 1
Hiight = 3 /dr L(}EHQ(r) + %(V x A(r))? (5.3)

where II(r) denotes the conjugate variable corresponding to A(r), and we consider the
case of a time-harmonic vector potential.

Turning to quantization, we consider the vector potential to describe electromagnetic
modes in a cavity of volume V, filled with a homogeneous, lossless dielectric modelled
by e. Closely following the procedure detailed in [130], the light modes can be expanded
in a set of basis functions v;, such that A(r) and II(r) take the form

A(r) =) woi(r)4 (5.4)
z

(r) =Y vj(r)eB, (5.5)
l
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The functions v; form an orthogonal basis in the following sense

/ drevt (Yo (r) = oy . (5.6)

Additionally, they obey the Helmholtz equation for the cavity with resonance frequencies

Wi
wipoeoev;(r) = V x V x vy(r) . (5.7

To quantize the light modes, we adopt the usual prescription by replacing the canonical
variables A; and B; by operators fullfilling

[A1, By] = o, - (5.8)

These operators, akin to position and momentum, can be expressed according to the
bosonic creators alT and annihilators q; of an ensemble of harmonic oscillators as follows

_ ! i
A= <al n al) (5.9)
1
B = ZE (—al + a;) . (5.10)
Working in the Coulomb gauge given by
V-A(r)=0, (5.11)

we arrive at

N N N N
1 1 1
=52 P Y VR)+ D AR p+ Y5 - AR) + ) wiajar. (5.12)
=1 i=1 i=1 i=1 I

Proceeding with second quantization with reference to a suitable basis of electronic single
particle states |¢;) associated with the fermionic ladder operators cl-L, ¢; yields a Hamilto-
nian of the form

H = Zhabc cp + Z bc cp al + ap) —i—ZLabc cb(aj + ) —i—Zwlalal, (5.13)

a,b,l l,a,b l

where the diamagnetic (paramagnetic) coupling constants K',, L!, are given by
Ky, = mpr] vi(R;)|bv) (5.14)

%%Zvl i)l d) - (5.15)

The Hamiltonian in Equation (5.13) is of a well-known form [131]. We remark that this
procedure of obtaining effective light-matter quantum Hamiltonians is more subtle in
general. The fundamental issue is the choice of the single-particle basis |¢;). As discussed
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in section a low-energy approximation to the electronic sector, such as the single
p, -band picture of graphene fitted in Figure is desirable for a multitude of reasons
ranging from enhanced physical transparancy to more efficient numerical implementa-
tion. The reduction of the basis set to its low-energy elements, however, incurs the cost
of incompleteness. For semiclassical treatments involved in the calculation of material
response properties, the implicit projection onto this low-energy manifold of electronic
states is often sufficient to yield accurate results [92]. In this case, comparatively minor
adjustments, such as the correction of the current-current correlator to obey the TRK sum
rule, presented in subsection|2.6.3] suffice to guarantee physically consistent results [64].

However, when the quantum nature of light becomes prominent, such as in the para-
metric regime of light-matter interactions termed the ultrastrong coupling limit, this ap-
proximation may result in a violation of gauge invariance leading to inconsistent results
between different models [132]. A widely used alternative to the Coulomb gauge picture
presented above, for instance, is given by the dipolar gauge, marked by the absence of the
quadratic photon-photon interaction in Equation (5.13), at the cost of introducing addi-
tional electron-electron interactions closely related to the classical multipole expansion
[133]. The dipolar gauge is typically derived from the Coulomb gauge by a Power-Zienau-
Wooley transformation [134], originally formulated within a framework more tailored to-
wards atomic physics [133]. When not treated carefully within a low-energy projection
as used in many applications of condensed matter, these two gauges are not related by
a unitary transformation anymore, implying they can yield different results [135]. This
may lead, e.g., to the erroneous prediction of equilibrium superradiance - a phenomenon
of collective radiation marked by the presence of electronic ground state currents. This
phase has been proven to be impossible to reach at equilibrium a fair number of times

[136] [131] [86] [137].

Recent works have developed elaborate techniques to construct gauge-invariant low-

energy Hamiltonians incorporating the quantum nature of light within a consistent de-
scription across different gauges. They rely, e.g., on a set of controllable parameters such
as the number of electronic bands involved in the construction of the low-energy elec-
tronic manifold or projected PZW transformations [132].

In this thesis, our primary intent is to explore the interaction of chiral matter systems
with cavity light in coupling regimes characterized by a photonic system spectrally tuned
to closely match the resonant frequencies of electronic excitations. In this case, the fun-
damental interaction dominating the physical behavior of the matter system is best de-
scribed not in terms of electrons, but in terms of quasiparticles of matter excitations that
behave as bosons. Examples of these quasiparticles are excitons coupling to cavity light
to form exciton-polaritons [138]. In this setting, physically realistic and gauge invariant
effective Hamiltonians involving boson-boson interactions only without explicit reliance
on an underlying low-energy model of matter have already been established in the liter-
ature [60], which allows us to largely sidestep the delicate issue of constructing gauge
invariant Hamiltonians incorporating a low-energy electronic sector. For a detailed dis-
cussion of the intricacies involved in this procedure, the interested reader is therefore
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referred to the relevant literature [132] [130]. In the next section, we illustrate the con-
struction of effective bosonic models for interacting light-matter systems and motivate
the form of the Hopfield-type model employed in our theoretical investigations.

5.2. Effective Bosonic Models

In this section, we provide a heuristic derivation of the purely bosonic, Hopfield-type
Hamiltonian which will be the main subject of our theoretical investigation of chiral in-
teractions between matter excitations and cavity light. To this end, consider the Coulomb-
gauged matter system in Equation to be characterized completely by two types of
orthogonal and highly localized orbitals at lattice sites numbered by ;. We describe anni-
hilation of electrons in these orbitals using the operators c; ; and c¢3 ;. The onsite orbital
energy difference we denote by A and restrict hopping to nearest neighbors with rate
t12 = top for electron transfer between orbitals of different type only, such that trans-
fer between identical orbitals is considered forbidden or suppressed by the underlying
crystal symmetry. In addition, we consider the cavity fields well described by the long-
wavelength approximation, such that a microscopic desciption of the matter system is not
required as the photonic mode functions probe it uniformly. This chain of approxmations
is justified since our theoretical investigation is centered on systems of molecular extent.
Denoting the uniform value of the [ -th light mode function across the matter system by
the constant vector v, the light-matter couplings simplify to

Kly=vja, (5.16)
1
L, = Tnv?, (5.17)

where j,, denotes the paramagnetic current operator matrix element between orbitals
indexed by a and b and the dlamagnetlc term L!, is independent of the orbital degree of
freedom. Due to Equation (2.28) and the absence of intrasite currents, the only non-zero
elements of this matrix are the translationally invariant amplitudes between neighboring
orbitals, denoted by j, ,. The Hamiltonian can then be written as (with (i, j) denoting
nearest neighbors)

H = % Z (c;icw - chlJ) + t1o Z (C]LiCQJ + h.C.> (5.18)
@ (6,3)
+Z a; + a vl;]w(c“czj—i—hc) (5.19)
i.j
T Z az +ay) Z(Cﬁ,icu + c;,,-t:z,z') (5.20)
+ Zwlal a . l (5.21)
!

Going to Fourier space and disregarding microscopic details of the matter system by fo-
cussing on the k -space sector of uniform modes with & = 0 yields the (truncated) Hamil-
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tonian
Hiruncated = —%53 + <t12 Z(a; + al)vljm) 51 (5.22)
v? |
+ ; ﬁ(a; + a;)?%so (5.23)
+ Z wla;al (5.24)
!

where the composite operators s; are related to the usual Pauli matrices o; by
s; = Ulo, 0, (5.25)
C1 1.—
g= (= (5.26)
€2 k=0
They represent the degrees of freedom associated to the matter excitations. To map these
operators to bosonic creators and annihilators b', b, we perform a Holstein-Primakoff

transformation [132]

s1=VN(b+bh), (5.27)
so = —iVN(b—bl), (5.28)
s3 =N —2bb, (5.29)
where [s1, so] = 2iN and [s1, s3] = —2is, and we have additionally set so = N. We intro-
duce the coupling constants
L' =V Nuvj,,, (5.30)
D! = ﬁv?. (5.31)
2m

After dropping a scalar constant, we obtain the effective Hamiltonian

Hegr = AbTH + Z Ll(a; + al)(bT +b)+ Z Dl(a; + al)2 + Zwlazral . (5.32)
1 1 1

We have thus arrived at a theoretical description in terms of interacting bosons that is
largely analogous to the well-known Hopfield model [60].

The heuristic derivation given above implicitly assumes the description of the matter sys-
tem immersed in the cavity as an effective two-band system to be complete. As discussed,
this assumption is not valid in general. Instead, the coupling parameters need to be ob-
tained from a careful low-energy projection most easily performed in the dipolar gauge
or can even be constructed from ab initio calculations [40].

Following [60], however, we will forego a concrete microscopic model and consider the
relevant model parameters to be essentially free. A straightforward generalization of
Equation (5.32) to the case of multiple matter modes, which we consider spectrally de-
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generate for simplicity, is given by

H =AY blby+ Y Lom(al, + am)(b] +bn) + Y Dy (bl, + b)) (0], + bn) + > wmal,am .

m,n

(5.33)

Gauge invariance can then be ensured by relating the couplings L.,.,,, and D,,,, according
to the TRK sum rule. A generalization of the expression given in to the multimode
case yields

D= A 1 (5.34)

The Hamiltonian given by Equation (5.33) with parameters restricted by the expression
above will constitute the basis of investigation of the next chapter, where we present
results pertaining to the case of a chiral cavity loaded with enantiomeric molecules.
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6. Enantiomer Selectivity and Energy
Transfer in Imperfect Chiral Cavities

In this chapter, we turn to the specific case of chiral light-matter coupling in a bosonic
setting, following the general theoretical framework laid out previously. To this end, we
specialize the general bosonic framework to a two-mode chiral cavity and develop what
we refer to as the chiral Hopfield model. This model enables a compact yet fully quantum
description of light-matter coupling in enantiomeric mixtures immersed in a cavity sup-
porting two modes of opposite chirality, naturally incorporating diamagnetic corrections
required for gauge invariance. Its quadratic structure in both light and matter operators
allows for diagonalization via a Hopfield-Bogoliubov transformation. This yields a new
set of quasiparticles, called polaritons, that embody hybridized light-matter excitations.

The remainder of this chapter is structured as follows. In section|6.1, we introduce the
chiral Hopfield Hamiltonian and discuss the physical meaning of its parameters. We then
analyze the resulting polaritonic spectrum in section emphasizing the dependence
of mode composition on cavity imperfections and enantiomeric ratios. In section 6.3, we
examine the energy transfer characteristics of the cavity under external driving using an
S -matrix approach analogous to standard input-output theory. Finally, we summarize
the implications of our findings in ??, with a brief outlook toward dissipative and open-
cavity extensions of the model.

The simulation code to reproduce the results of this chapter is available at [R3].

6.1. Model Hamiltonian

To investigate the quantum properties of chiral light-matter coupling, we consider a
cavity supporting two chiral photonic modes of opposite handedness. The cavity con-
tains enantiomeric molecules that can interact selectively with the corresponding circu-
lar polarization states of light. The coupled light-matter system is described by a bosonic
Hopfield-type Hamiltonian of the form derived in Equation (5.33), specialized to the case
of two photonic modes. For clarity, we write this Hamiltonian as a sum of the following
contributions

H = Hy + Hlight—matter + Hlight—light ’ (6-1)
where the three terms respectively describe the uncoupled subsystems, the light-matter

interaction, and the diamagnetic photon—photon coupling.
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6.1.1. Uncoupled light and matter excitations

The free Hamiltonian of the cavity and molecular excitations corresponds to the free har-
monic oscillator terms in Equation (5.33). It reads

Hy= Y wlalai+w, Y blb;. 6.2)
ie{+,—} e{+,—}

Here, a+ denote annihilation operators for right- and left-handed cavity photons with
bare frequencies w?, and b4 represent bosonic annihilators for collective matter excita-
tions (e.g., excitons or molecular transitions) of opposite handedness, both assumed to
have the same eigenfrequency w;. As discussed previously [138], the bosonic approxima-
tion for these matter modes is valid in the low-excitation, collective limit.

6.1.2. Light-matter coupling

The interaction between the photonic and matter components corresponds to the term
mixing bosonic operator species in Equation (5.33) and is given by

Hlight—matter = Z lnn (ajn + am) <b11:1 + bn) ) (6.3)
m,ne{+,—}

where the coupling constants [,,,,, capture both the overall interaction strength and the
chiral selectivity of the coupling. Following [38},[139], we parameterize them as

lmn:’Yn(1+g’m'n)a (64)

with the identification + = +1 and — = —1, such that, e.g., I;— = 7,,(1 — g). The ampli-
tude v,, o< v/N,, represents the effective collective coupling strength for the » -th enan-
tiomeric species, scaling with the square root of the number of molecules N,, contributing
to that species. Similar to the closely related model given in [139], ~,, may be related to
cavity and molecular parameters via

Tn = \ No 266;)‘/ ’ 65

where V is the cavity volume, ¢, the vacuum permittivity, and w the mode frequency. The
independence on N,, stems from the fact

The chirality parameter g can be expressed in terms of the molecular transition dipole

moments [139]

_ Im[d - m]

o (6.6)

where d and m denote the electric and magnetic transition dipole moments, respectively.
Perfectly chiral molecules couple exclusively to one helicity, corresponding to |g| = 1,
but realistic molecular systems typically exhibit much smaller values (|g| < 1). Unless
otherwise stated, we consider a representative value g = 0.01 in the numerical analyses.
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6.1.3. Diamagnetic photon-photon interaction

The self-interaction of the cavity photon modes is accounted for by a diamagnetic term
of the form

Hijight-light = Z Dy (GI + ai) (a; + aj) ) (6.7)
i,j€{+,*}

where the coupling constants D;; ensure gauge invariance and prevent the appearance
of unphysical ground-state currents. As discussed, they are determined by the TRK sum

rule [132}[140], which in this context yields

Dij= Y 1 (6.8)

Wy
m7n€{+7_}

Neglecting Hjgnt-light is typically acceptable in the weak-coupling regime. However, in
the ultrastrong and deep-strong coupling limits, this term is essential to recover correct

physical behavior [60,(141].

6.1.4. Diagonalization and coupling regimes

Because the Hamiltonian in Equation (6.1) is quadratic in both light and matter opera-
tors, it can be diagonalized exactly using a Hopfield—Bogoliubov transformation [132].
This yields a set of polariton modes with frequencies w; and corresponding operators /3;
satisfying

H=Y wiplpi. (6.9)

Collecting the bare operators in the vector
c= , (6.10)

the polaritonic operators can be written as

)+
b p

where T is a paraunitary matrix encoding the admixture of photonic and matter compo-
nents in each polaritonic mode [132] and we apply Hermitian conjugation to each entry
in a vector separately instead of transposing the vector.

Depending on the coupling strength ~,, relative to the matter excitation frequency wy,
several regimes can be distinguished [60]. For v,, < 0.1 wy, the rotating wave approxima-
tion (RWA) holds, the system reduces to a Jaynes—Cummings-type model. Beyond this
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limit, counter-rotating terms become significant, defining the ultrastrong coupling (USC)
regime. When ~,, ~ wy, perturbative approaches fail altogether, and the system enters
the deep strong coupling (DSC) regime, where the concept of distinct light and matter
excitations loses meaning, the true eigenmodes are intrinsically hybrid polaritons.

In the following sections, we exploit this formalism to analyze the polaritonic dispersion,
mode composition, and energy transfer characteristics of imperfect chiral cavities. We
begin by investigating the spectral properties of the closed cavity and the role of chiral
asymmetry in determining the polariton content.

6.2. Polariton Dispersion

In this section, we analyze the dispersion and composition of polaritonic modes gener-
ated by the chiral Hopfield Hamiltonian introduced in section 6.1l Beyond the eigenfre-
quencies alone, we will make systematic use of the mode content to quantify how strongly
a polariton resembles each bare (uncoupled) mode.

For the i -th polariton, the contribution from the j -th bare mode is defined as

T kTl

where T}, parameterizes the paraunitary Hopfield—Bogoliubov transformation introduced

(6.12)

in Equation (6.11). By construction, C]’i — 1 if the ¢ -th polariton coincides with the j -
th bare mode, which makes C} a convenient indicator of (de)coupling and light-matter
mixing. While C7} is primarily a diagnostic of the underlying physics, it correlates qual-
itatively with observables such as spontaneous emission rates [60]. We will denote the
positive- and negative-handed matter content of mode i by C. and C*, respectively.

6.2.1. Perfectly Chiral Cavity with a Single-Handed Ensemble

We begin with the canonical case often discussed in the literature [38]: a perfectly chi-
ral cavity supporting only one helicity and containing a single enantiomeric species of
matching handedness. In our notation, this amounts to setting v = 0 and discarding
the opposite-helicity cavity mode, so that the light-matter matrix in Equation (6.4) re-
duces to a single nonzero entry [, . .

Figure|6.1/shows the resulting polariton branches for an illustrative parameter set. As the
coupling ~, increases from the RWA-applicable regime into strong coupling, the familiar
level repulsion between the lower and upper branches emerges [142]. At weak coupling,
the lower polariton is dominantly matter-like while the upper is dominantly photonic,
consistent with the bare picture. With increasing ., the two branches mix more strongly.
Importantly, this trend is non-monotonic: once ultrastrong and deep-strong coupling are
approached, the diamagnetic term in Equation reduces the effective coupling, driv-
ing the lower (upper) branch back toward matter-like (light-like) character. This mirrors
the established non-chiral scenario, already discussed in [60], but sets the stage for our
discussion of effects pertaining to chiral selectivity in more complex settings.

76



6.2. Polariton Dispersion

4
IO,S
3<
ey '06
3 +
3 21 Q
F0.4
a—
1 . IO 2
‘ ' ; 0.0
1072 107! 100
’Y+/Wb

Figure 6.1.: Polaritonic eigenfrequencies w normalized by w;,, annotated by the positive-
handed matter content C. . Background shading indicates coupling regimes:
RWA-applicable (green), USC (red), and DSC (gray). The cavity hosts a sin-
gle enantiomer (g = 0.01) and a single +-helicity mode at w} = 1.2w;,. At
small v, the lower (upper) polariton is matter- (light-) dominated; mixing
increases with «,; but becomes non-monotonic as diamagnetism reduces ef-
fective coupling in the DSC regime.

6.2.2. Perfectly Chiral Cavity with a Mixed-Handed Ensemble

We now introduce a second enantiomeric species of opposite handedness while keeping
the cavity perfectly chiral (only the + helicity is present). In this case, /., and [, _ are
both nonzero. To quantify chiral discrimination in the polaritons, we define the excess
positive-handed matter content,

AT = CL - Ct, (6.13)

so that large |A‘| indicates strong handedness selectivity.

Figure 6.2/ shows the evolution at resonance (w} = wj) for fixed v /w, = 0.1 as y_ is in-
creased. A third branch, pinned near w;, at v_ — 0, appears in addition to the familiar up-
per and lower polaritons; it is continuously connected to the uncoupled negative-handed
matter mode. As v_ grows, matter components of opposite handedness mix across all
branches and A decreases for the upper and lower polaritons, signaling reduced chiral
selectivity. In the racemic limit v~ = 4, the excess positive-handed content in those
polaritons is strongly suppressed, demonstrating that molecular composition alone can
substantially degrade selectivity even in a perfectly chiral cavity.

Given that most natural molecules are only weakly chiral [123], one may ask whether
stronger intrinsic chirality can preserve selectivity. Figure 6.3/confirms this expectation:
for larger g (typically g > 0.5), the upper and lower polaritons maintain a sizable excess
of positive-handed matter across a wide range of v_/~,. In the idealized limit g = 1,
negative-handed matter decouples from the + -helicity cavity mode, rendering variations
in v_ irrelevant for the dynamics.
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Figure 6.2.: (a) Polaritonic eigenfrequencies at resonance w = wj, for g = 0.01 and fixed
~v+/wp = 0.1. Two branches (dashed/dotted) correspond to the lower/upper
polaritons from Figure|6.1; a third branch (solid) emerges near w;. (b) Excess
positive-handed matter content A. Increasing v_ mixes opposite-handed
matter, slightly enlarges the polariton splitting, and reduces A in the polari-
tons, indicating diminished chiral selectivity.

6.2.3. Imperfect Cavity with a Mixed-Handed Ensemble

We next relax the assumption of a perfectly chiral photonic environment by introducing a
controlled admixture of the opposite-helicity cavity mode. Following [139], we scale the
couplings of the — -helicity mode by a dimensionless imperfection parameter d € [0, 1],

Iy —» d(1—g-n), (6.14)

so that d = 0 is perfectly chiral and d = 1 is fully achiral. Figure shows the case
of a racemic mixture, v, = v_, at resonance. The four bare modes (two photonic, two
matter) yield four polaritons: the highest and lowest are identifiable as the upper and
lower polaritons and undergo additional splitting; the remaining two stay localized near
wp. The excess positive-handed matter content A diminishes as d — 1, approaching zero
in the achiral limit.

Interestingly, the reduction of A is highly nonlinear in d and remains modest for mod-
erate imperfections, indicating a degree of robustness of chiral selectivity to photonic
asymmetry breaking. Only when d becomes large (approaching full achirality) does the
selectivity drop sharply.

To disentangle molecular and photonic effects, Figure maps the adiabatically con-
tinued upper and lower polariton branches versus both v_ /v, and d. Both parameters
increase the energetic splitting while reducing A, but the dominant degradation of se-
lectivity originates from the enantiomeric mixture (controlled by ~_); photonic imper-
fections (d) play a secondary role except near the fully achiral limit.
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Figure 6.3.: Polaritonic eigenfrequencies, annotated by A, versus v_ /v, and intrinsic
matter chirality g (other parameters as in Figure [6.2). Stronger g protects
the excess positive-handed matter content in the polaritons. At ¢ = 1, the
opposite-handed matter fully decouples from the + cavity mode.

6.2.4. Summary and Implications

We have shown that increasing the coupling initially enhances light-matter mixing but
becomes non-monotonic in the USC/DSC regimes due to diamagnetic renormalization,
akin to the well-established achiral scenario [60]. Adding opposite-handed enantiomers
reduces the excess handedness content A even in a perfectly chiral cavity, unless intrin-
sic chirality is strong (large g), in which case the undesired species effectively decouples.
Cavity imperfections introduce a nonlinear erosion of A that remains modest for interme-
diate d and becomes significant only near the achiral limit. Finally, enantiomeric mixture
and photonic imperfection act jointly to reduce chiral selectivity, with molecular compo-
sition typically playing the dominant role. These trends might inform practical strate-
gies for maximizing chiral discrimination in realistic devices, emphasizing control over
molecular composition as the dominant optimization choice over cavity engineering.
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Figure 6.4.: (a) Polaritonic eigenfrequencies versus cavity imperfection d for a resonant,
racemic system (w} = w?, 74 = y_; other parameters as in Figure . Four
polaritons emerge; the upper/lower branches split further while two modes
remain near wy. (b) Excess positive-handed matter content A for the same
branches. A decays nonlinearly with d and vanishes near the achiral limit
d=1.

6.3. Energy Transfer Efficiency

In the preceding section, we analyzed how enantiomeric mixtures and cavity imperfec-
tions shape polaritonic dispersion and composition, in particular the chiral selectivity
A" = C% — C" defined in Equation (6.13). We now validate and complement those in-
sights by studying the response of the system to an external excitation and by deriving
a closed, analytic expression for the energy transferred into matter modes. Our treat-
ment uses a unitary S -matrix for a driven but otherwise closed quadratic Hamiltonian,
conceptually related to input—output theory yet remaining fully Hermitian.

6.3.1. Setup and definition of efficiency

We model an external, classical field that acts as a normalized, pulsed excitation at t = 0
o(t) =4d(t), (6.15)

and couples selectively to the two chiral cavity modes via
Hine(t) = ¢(t) (C—a— + Cyay) +hc., (6.16)

where C. € R parameterize the electromagnetic selectivity of the excitation channel,
in accordance with previous frequency-independent and real coupling models [60].
In particular, C_ = 0 corresponds to an illumination of pure (positive) helicity (as in
chiral-cavity proposals [42]). The total Hamiltonian is

H(t) = Ho + Hine(t) (6.17)
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Figure 6.5.: Upper/lower polariton branches versus enantiomeric mixing (y-/v+) and
cavity imperfection (d). Parameters as in Figure Increasing either pa-
rameter enhances splitting and reduces A, with enantiomeric mixing exert-
ing the dominant effect on selectivity.

with H, from section|6.1, We consider the incoming state to be the joint polaritonic vac-
uum, defined via

pi0) =0 (6.18)

for all i. Let b; denote the bare matter operators (i € {+,—} for the two handedness
sectors). The energy transferred into the ¢ -th matter mode at ¢t = o is

AE; = wy (Yout] (01) ! [thour) (6.19)

where the superscript I denotes the interaction picture and

|thout) = S10) (6.20)

is the out-state obtained by applying S. We define the energy transfer efficiency into mode
i as the fraction of total injected energy it receives

AE;

N = = o - (6.21)
ji:j AL;

As we will see below, n; mirrors the qualitative content measure C’;f in Equation (6.12):

when polaritons become purely photonic or purely matter-like, the pathway for light-matter
exchange narrows and 7; declines.
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6.3.2. S -matrix formulation and analytic result

For a compact derivation, we write the quadratic Hamiltonian given by Equation (6.17) in
Nambu form for bare bosons annihilated by ¢;. We collect both light and matter operators
into the vector defined in Equation (6.10) and arrive at

H(t) = (7 ") (g i) (;) + (r) F) (;) , (6.22)

where we let Hermitian conjugation act separately on vector entries, necessetating ex-
plicit transposition in the first term, and the vector-valued classical source f(t¢) encodes
the external potential ¢(t) according to

F(t) =o(t)C, (6.23)
in terms of the vector C containing the coupling coefficients defined in Equation (6.16)
as follows
Cy
C= - . (6.24)
0
0
Let

t vyt v
= ("™ %0, oo (N, o (KN} (62
0 —1n -y XxT Y X

be the paraunitary transformation that diagonalizes the kernel of the unperturbed Hamil-
tonian Hj, which we denote by D. The matrices X and Y can then be obtained from the
eigenvectors of GD [143]. In terms of polaritons p;, the Hamiltonian is

H =3 2wplp — i3 (Fop — Fultip]). (6.26)

i

with transformed drive F(t) = i (fX + fY). Going to the interaction picture via the
unitary transformation

U(t, tg) = e *Holt=to) (6.27)
yields
pl = Ul (t,to)piU (L, to) = pe” " (6.28)
ni)" = Ins) (6.29)
Hp (t) = =iy Fi(t)e it p, + iy Fi(t) e pl. (6.30)
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Denoting time ordering by 7, the S -matrix is given by
S = Texp [—i / dt Hifm(t)] : (6.31)

An equivalent representation of the S -matrix is given by its Magnus expansion [144], for
which we provide the first two terms

S = exp [Q2(c0, —00)] (6.32)
Qtt) =D Qilt,t) (6.33)
=1 .
Qu(t, ) = —i / dr Higy () (6.34)
t/
t S
Ot t) = — [ ds | dr[Hie(s), Hine(7))] - 6.35
8,1 / s / [ Hipe(5), Hine ()] (6.35)

The Magnus expansion closes after the second term, yielding a product of displacement
operators and a phase without influence on expectation values. Suppressing this phase
and using the pulsed nature of the excitation, we define

—00

oo
b = / dt Fy(t) e @it = —4 Z Co (Xoi+Ya)., (6.36)
V4

and thus arrive at S = [ [, D(¢;) with D(¢;) = exp(gbip;r — ¢,pi)- The out-state can thus be
written as a direct product of coherent states

[Yout) = HD(@)“” = ®|¢>i>. (6.37)

According to Equation (6.19), the energy transferred into a bare mode at frequency @; is
given by

AE; = &; (Vout| (CZI)T (t)ef (8) [ Wour) (6.38)

at t = oo. Inserting the out-state into this expression and employing Equation (6.11) to
express the bare modes in terms of polariton modes, we apply the usual causal prescrip-
tion w; — w; + i0T to obtain

AE;

w;

J

with

zi = ZE-]- b; + ZYU@, (6.40)
J J

Equations (6.39)—(6.40) provide the sought analytic link between the drive selectivity
C4, the polaritonic structure (X and Y), and the energy distribution across bare mat-
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Figure 6.6.: Energy-transfer efficiency 7, in a perfectly chiral cavity with a single + he-
licity mode and only + enantiomers (drive selectivity C, = 1, C_ = 0). The
efficiency rises from weak to ultrastrong coupling and then decreases in the
DSC regime due to diamagnetic reduction of effective coupling. Shading for
RWA/USC/DSC matches Figure

ter modes. Intuitively, ¢; is the drive-weighted light-matter amplitude of polariton j, z;
projects those amplitudes back onto the bare channel ;.

Equation makes explicit the qualitative link to the content measure in Equation (6.12):
polaritons that are either nearly pure light or pure matter are inefficient channels for
transferring energy from the optical drive into the matter sector. Maximal #; typically
occurs when the relevant polariton has a balanced admixture of the driven photonic com-
ponent and the target matter component, precisely the regime where Cj indicates strong
hybridization.

In appendix E, we extend the above discussion to a Gaussian drive.

Having completed the theoretical derivation, we now apply the expression given in Equa-
tion (6.21) to the setting of chiral cavities.

6.3.3. Energy Transfer in a Perfectly Chiral Cavity

We first revisit the single-handed setting of subsection and evaluate the energy-
transfer efficiency under an pulsed drive, using the S -matrix result in subsection 6.3.2.
For a perfectly chiral cavity (only the + helicity photonic mode present) and a single +
-handed enantiomeric ensemble, the energy-transfer efficiency into the + matter mode,

AFEL
T+ = = A
Zj AE;

is computed from Equation (6.39)-Equation (6.40). As shown in Figure 74 increases
through the strong- and ultrastrong-coupling regimes as light—matter hybridization grows,

but then decreases upon entering the deep-strong-coupling (DSC) regime. The decline is
a direct manifestation of diamagnetic renormalization diminishing the effective coupling,
thereby driving the relevant polariton back toward a nearly pure (photonic or matter-like)
character, which is inefficient for channeling energy into the matter sector, akin to Equa-
tion and the mode-content discussion in Equation (6.12).
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Figure 6.7.: Differential efficiency n, — n_ vs. external coupling ratio C_ /C. for various
enantiomer ratios v_/v4. For small _/~,, an intermediate C_/C; maxi-
mizes . — n— by enabling beneficial indirect pathways; near racemization,
the dependence is monotonic and decreasing.
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Figure 6.8.: Differential efficiency n; — n_ over external coupling c¢_ /c; and enantiomer
ratio v_/v4+. A non-monotonic ridge at small v_ /v, identifies an optimal,
finite C_/C that enhances selectivity in imperfect cavities; near racemiza-
tion, |n; — n—| is suppressed across the board.

It is important to distinguish efficiency from the absolute deposited energy. While 7
drops in the DSC regime, the total injected energy > ; AE; increases monotonically with
the collective coupling v, (more absorbers). Thus, raising molecular concentration boosts
total energy deposition but reduces the fraction reaching the target matter channel. Prac-
tically, this implies an intrinsic trade-off at very large coupling: maximizing overall ab-
sorption versus maintaining high enantioselective efficiency.

6.3.4. Energy Transfer in an Imperfect Cavity

We now consider a two-mode cavity driven by a pulsed field that can address both helic-
ities with tunable selectivity C_/C., in the presence of an enantiomeric mixture char-

acterized by v_ /~;. Using Equation (6.39)-Equation (6.40), we focus on the differential
efficiency

N+ — -,

as a measure of enantioselective energy delivery.
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Figure shows n, — n_ versus C_/C. for several values of v_/~,. For small v_ /v,
the dependence is non-monotonic: opening a modest channel to the opposite helicity
(C- > 0) first enhances the differential efficiency, reaching a maximum at intermediate
C_/C4, and only thereafter decreases. Physically, the added photonic pathway activates
indirect hybridization routes that funnel additional energy into the target + matter chan-
nel; beyond the optimum, the competing leakage dominates and r. —»_ falls. In contrast,
for larger v_ /v, (near racemization), the differential efficiency decreases monotonically
with C_/C. As a consistency check, a racemic mixture v_ = v, yields n, —n_ = 0 at
C_=Cy.

A broader view is provided in Figure mapping 7 — n— over the (C_/Cy, v—/v+)
plane. The non-monotonic ridge at smaller v_ /~; confirms the existence of an optimal,
finite C_ /C that improves enantioselective transfer in imperfect cavities. Meanwhile,
the dominant reduction of |, —n_| across the map is driven by the enantiomeric mixture
(increasing v_ /v4), in line with the dispersion analysis of subsection|6.2.2]

We can thus conclude that operating in the ultrastrong-coupling window identified in
subsection an imperfect cavity can be deliberately tuned (via C_/C.) to increase
differential efficiency when the admixture of opposite enantiomers is moderate (y_ /v
small). However, as v_ /v grows, these beneficial pathways turn detrimental and the
optimum disappears. Thus, system design should co-optimize intrinsic and collective
molecular chirality (keeping v_ /. low), and controlled but finite access to the opposite-
helicity drive channel to exploit the intermediate-efficiency maximum.
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In this thesis, we have developed and applied a comprehensive framework for the mi-
croscopic simulation of light—matter interactions in nanoscale and quantum-optical sys-
tems, spanning from classical optoelectronics to fully quantum descriptions of chiral cav-
ity coupling. The work combines theoretical development, software implementation, and
physical applications, establishing a coherent foundation for exploring and optimizing
optical phenomena in nanostructured and topological materials.

We began by formulating the theoretical principles underlying the electronic and optical
properties of finite nanostructures. Starting from tight-binding and mean-field quan-
tum models, we introduced the simulation environment GRANAD (GRAphene NANoflakes
with ADatoms), a differentiable and extensible framework designed to bridge the gap be-
tween atomistic modeling and optical response theory. The formalism encompassed both
time- and frequency-domain approaches to light-matter interaction, including mean-
field and random-phase approximations, providing a unified basis for describing coherent
and driven responses in reduced-dimensional systems.

The implementation of GRANAD combined a high-level Python interface for geometry and
interaction definition with a high-performance numerical backend built on JAX, support-
ing automatic differentiation, GPU acceleration, and just-in-time compilation. This ar-
chitecture enabled real-time and frequency-domain simulations of tight-binding systems
with customizable Hamiltonians and interaction terms. Its differentiable design provided
direct gradient access to observables, unlocking capabilities for parameter optimization,
sensitivity analysis, and integration with machine-learning workflows.

Applications of GRANAD demonstrated its versatility across representative problems in
nanoscale optoelectronics. We verified its accuracy in computing ground-state magneti-
zation in correlated graphene nanoflakes, tracking charge conservation in time-domain
simulations, and modeling vibronic polarization under mechanical perturbations. Fur-
ther, simulations of Haldane-model nanoflakes revealed spin—angular-momentum-selective
optical responses, showing that chiral edge currents in finite topological systems lead

to polarization-dependent absorption. These findings highlight finite-size topology as

a natural mechanism for spin-selective light-matter coupling and validate GRANAD as a
robust platform for studying protected optical and transport phenomena.

Building upon this semiclassical foundation, we extended the theoretical framework to
include the quantization of the electromagnetic field, developing a fully quantum de-
scription of chiral light-matter coupling in optical cavities. Within this setting, we in-
troduced a generalized Hopfield-type Hamiltonian—termed the chiral Hopfield model—to
capture enantiomer-specific interactions, photonic imperfections, and intrinsic molecu-
lar chirality. This model preserved gauge invariance via the inclusion of the diamagnetic
A? term and enabled a consistent treatment across coupling regimes from weak to deep
strong coupling.
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Systematic analysis of the resulting polaritonic spectra revealed how chirality, enan-
tiomeric mixtures, and cavity asymmetries shape the hybrid light-matter modes and
their energy-transfer properties. For perfectly chiral cavities, the familiar strong-coupling
level repulsion was recovered, followed by a reduction in effective coupling in the deep-
strong regime due to diamagnetic renormalization. Introducing opposite enantiomers or
cavity imperfections reduced chiral selectivity, while strongly chiral molecules (g = 0.5)
mitigated this loss by effectively decoupling unwanted channels. Enantiomeric mixture
and photonic imperfection were found to act synergistically, amplifying each other’s in-
fluence on the excess chiral content A = C;, — C_.

To describe driven and open scenarios, we developed a fully Hermitian, unitary S-matrix
formalism compatible with the Hopfield—Bogoliubov representation. This approach al-
lowed a precise quantification of energy redistribution between light and matter chan-
nels under impulsive excitation. The resulting energy-transfer efficiency n; was shown to
depend on the hybrid composition of the polaritonic modes—balanced photonic—matter
mixtures maximizing transfer, while purely photonic or material modes were inefficient.
Increasing collective coupling enhanced energy transfer up to the onset of diamagnetic
saturation, beyond which efficiency decreased. Notably, a controlled degree of counter-
chiral excitation could enhance enantioselective energy transfer by opening additional
hybridization pathways, revealing that small imperfections can sometimes improve per-
formance.

Overall, the efficiency and selectivity of chiral polaritonic energy transfer were found to
be constrained by the degree of enantiomeric mixing and cavity asymmetry. Optimal op-
eration occurs in the ultrastrong-coupling regime, where hybridization is substantial but
diamagnetic quenching remains moderate. These insights provide quantitative design
principles for future experiments aiming to engineer enantioselective photonic environ-
ments.

The present formulation intentionally retained a Hermitian structure to isolate intrin-
sic chirality and coupling effects from dissipative dynamics. Future extensions will in-
corporate non-Hermitian elements via quantum Langevin or input—output approaches,
enabling a consistent treatment of loss, decoherence, and noise. Including these effects
will be crucial for connecting theoretical predictions to measured observables such as
linewidths and absorption spectra in realistic molecular and plasmonic systems.

Beyond this, a promising avenue lies in ab initio quantum electrodynamics, where elec-
tronic structure and cavity modes are treated on equal footing. Such methods could pa-
rameterize effective Hopfield Hamiltonians directly from microscopic dipoles and mag-
netic moments, bridging quantum chemistry and polaritonic device design. Extensions to
multimode and dissipative environments would further allow the study of chiral polari-
tonic transport, cooperative emission, and enantioselective catalysis under strong cou-

pling.
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A. GRANAD material specification

This appendix documents the domain-specific language (DSL) used by GRANAD to define
tight-binding materials in a concise, readable, and composable way. The DSL follows a
builder pattern: you instantiate a Material and then chain method calls to add struc-
ture, orbitals, and interactions.

A.1. Overview

A material specification typically includes:

1. Lattice vectors (basis of the Bravais lattice).

2. Periodic boundary conditions (which lattice vectors are repeated).

3. Orbital placement (species and positions within the unit cell).

4. Single-particle interaction terms (e.g., tight-binding Hamiltonian elements).
A minimal workflow:

1. Construct the object: Material (name: str).

2. Define geometry: lattice constant and lattice basis; optionally set periodic direc-
tions.

3. Define orbitals: declare species (if required) and place orbitals at fractional coordi-
nates with tags.

4. Define interactions: add single-particle effective terms as square matrices.

A.2. Core API

Construction

Material (name: str)

Geometry

.lattice_constant (a: float)

.lattice_basis(B: list[list[float]]) # rows are Cartesian lattice vectors

Optionally indicate which lattice vectors are periodically repeated (periodic boundary
conditions).
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A. GRANAD material specification

Orbitals

.add_orbital_species (species: str, atom: str)
.add_orbital (position: tuplel[float, float] | tuplelfloat, float, float],
tag: str,

species: str)

Positions are given in lattice (fractional) coordinates unless otherwise noted.

Interactions

.add_interaction(kind: str,
participants: tuplelstr, str],
parameters: list[float],

expression: callable | None)

Currently supported kind values in the stable branch:
* "hamiltonian" (tight-binding matrix elements)

» "coulomb" (effective two-site potential entering a single-particle term)

A.3. Development Notes

In the development branch:
« Overlap matrices are supported via an additional "overlap" interaction kind.

« Declaring orbital species can be optional; orbitals may be added directly with tags
and inferred attributes.

A.4. Example: Graphene

The snippet below specifies a standard p.-only model for graphene

import jax.numpy as jnp

graphene = (
Material ("graphene")
.lattice_constant (2.46)
.lattice_basis ([
[ 1.0, 0.0, 0.07],
[-0.5, Jnp.sqgrt(3.0) / 2.0, 0.07],
[ 0.0, 0.0, 1.0], # optional out-of-plane vector
1)
.add_orbital_species ("pz", atom="C")

.add_orbital (position=( 0.0, 0.0), tag="sublattice_1", species="pz")

Ynp.sqrt refers to jax.numpy.sqrt. Replace with numpy . sqrt or a numeric constant if JAX is not
used.
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A.4. Example: Graphene

.add_orbital (position=(-1/3, -2/3), tag="sublattice_2", species="pz"
)
.add_interaction(
"hamiltonian",
participants=("pz", "pz"),
parameters=[0.0, -2.66], # onsite, nearest—-neighbor hopping (eV)
)
.add_interaction(
"coulomb",
participants=("pz", "pz"),
parameters=[16.522, 8.64, 5.333], # model-specific coefficients
expression=lambda r: 1.0 / r + 0j # radial dependence (example)

Notes on the example
» The lattice basis gives the 2D hexagonal primitive vectors in the zy-plane.
» Orbital positions are fractional coordinates relative to the provided basis.

» parameters encode model-specific numbers (e.g., onsite energies and hoppings in
eV). Their interpretation depends on the chosen kind and any provided expression.

» The callable expression (when present) defines the distance dependence used to
assemble matrix elements (here shown as 1/7).
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B. Sketch of Topological concepts

In this appendix, we briefly sketch core topological concepts underlying our example of
the Haldane model in subsection 2.4.1]and our original analysis of electromagnetic sen-
sitivity in finite topological nanoflakes in section To this end, let H()\) denote the
Hamiltonian of an insulator that depends smoothly on a control parameter A. The pro-
jector onto the occupied IP states, as defined in Equation (2.13), is given by

PO =" [oi(N) (di(M)] - (B.1)

1,0CC

As )\ is varied, the Hamiltonian evolves continuously, and so does the ground-state pro-
jector, provided no band crossings occur. In such a case, two Hamiltonians are said to
be topologically equivalent. If a band crossing does occur, the projector is ill-defined,
because it is impossible to determine which band is occupied and which is not. If no con-
tinuous interpolation between the two Hamiltonians exists, the Hamiltonians belong to
distinct topological classes. Each class is characterized by an integer invariant, and mis-
matched invariants across different phases give rise to robust edge states. This motivates
the idea of topological protection: External effects like disorder or even electronic inter-
actions will not alter the topological nature of the Hamiltonian as long as they do not
induce band crossings. As such, we expect persistence of topological features even in the
presence of these external interactions - a phenomenon which we explicitly demonstrate
in section
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C. GRANAD materials

Table C.1.: Overview of built-in nanomaterial classes available in GRANAD.

Material

Characteristics

Parameter source

Graphene

hBN

MOSQ

Spinless, single p.-orbital per
atom with nearest-neighbor
hopping

Spinless, single orbital model.
Nearest-neighbor hopping
between all involved atomic
species

Spinless model including three
p. orbitals for sulfur and parity-
even d orbitals for molybdenum

, Coulomb matrix

elements from [145]

146]

147

109






D. Lindblad and Phenomenological
Damping

In this appendix we show that the phenomenological dissipator Equation involved
in the non-Hermitian dynamics of Equation is a special case of the Lindblad dissi-
pator Equation (2.58). To this end, we restate the two equations. The phenomenological
dissipator is given by

Dphenom [T(t)] = e7 (1), (D.1)

where we have introduced the equilibrium-shifted 1IRDM

7(t) =7(t) — - (D.2)
The Lindblad dissipator is given by
K2-1
Duinaoiaa ()] = > 7 (Ler(t)L] = H{IL Lk 7(1)}) | (D.3)
k=1

where we have performed a shift analogous to Equation (D.2). We now express the Lind-
blad dissipator in the energy eigenstates of the (effective) IP Hamiltonian, assuming them
to be indexed in ascending order by energy. Since the operators L, express transfer be-
tween these eigenstates, we can find for each & a pair of states ¢, j such that

L¥ = i) (j] - (D.4)

Excitation is described by i > j, while relaxation is described by the converse case. In the
case where i = j, one talks about decoherence [148]. This induces a similar mapping for
the rates r*, which we relabel as r;;. Consequently, we have

. 1 . :
(a| Dvindblaa[T]|b) = dab Z rTii(t) = 5 Z(TajTab(t) + Tap(t)r™). (D.5)
i J
The first term is a matrix-vector multiplication and thus incompatible with the scalar
relation Dppenom (7 ()] = c7(t) of the phenomenological dissipator. We can get rid of this
term by exploiting Tr[7(¢)] = 0, if we impose

P = (D.6)

Plugging this back into Equation (D.5), we get
1

{al Drindblaa[T(t)]6) = —3 - D (1 7ap(t) + Tan(t)r) = =Nr7ap(t) (D.7)
J
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which means that the two approaches are equivalent under the substitution Equation (D.2),
provided that
c=—-rN. (D.8)
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E. Gaussian Drives For Chiral Cavities
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Figure E.1.: Percentage error in en- Figure E.2.: Percentage error in en-
ergy transfer efficiency, ergy transfer efficiency,
computed for delta and computed for delta and
Gaussian excitations. Pa- Gaussian excitations. Pa-
rameters as in Figure[6.6|of rameters as in Figure[6.8|of
the main text. the main text.

In this appendix, we generalize the expression for the energy transfer efficiency to chi-

ral enantiomers given in subsection [6.3.2|to the case of narrow Gaussian drives. For a

. . . 2 2
normalized Gaussian drive f(t) = e~/
o

—8m202w?

tion (6.36) gains an extra factor e i, l.e.,

) (with the same C; couplings), Equa-

b = ¢ e 5, (E.1)

The § -pulse approximation is thus accurate whenever ¢ < 7; = 27/w;; numerically,
we find robust qualitative agreement up to ¢ ~ 0.1min; 7} and present results in Fig-
ure E.1)and Figure[E.2/for a Gaussian pulse with a width of 1 % of the smallest polaritonic
timescale.
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