KIT | KIT-Bibliothek | Impressum | Datenschutz

Structured sampling strategies in Bayesian optimization: evaluation in mathematical and real-world scenarios

Greif, Lucas ORCID iD icon 1; Hübschle, Niklas 1; Kimmig, Andreas 1; Kreuzwieser, Simon 1; Martenne, Anatole 1; Ovtcharova, Jivka 1
1 Institut für Informationsmanagement im Ingenieurwesen (IMI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This study presents a comprehensive evaluation of initial sampling techniques within the context of Bayesian Optimization (BO), a machine learning technique intended for the optimization of intricate and expensive functions. We assessed its efficacy in optimizing both theoretical benchmark functions and real-world applications. The findings reveal that, while BO is inherently robust and effective in a wide range of optimization problems, the integration of structured initial sampling methods, such as Latin Hypercube Sampling (LHS) and fractional factorial design (FFD) in the context of Design of Experiments (DoE), can significantly alter its performance. In addition, by systematically exploring different optimization strategies, the study highlights how LHS and FFD, followed by BO, can, for example, lead to substantial reductions in energy consumption—up to approximately 67.45% compared to average consumption. In conclusion, this study contributes to the growing body of knowledge on BO by demonstrating the value of early sampling techniques in enhancing BO effectiveness. This study offers a roadmap for future studies to build on in the pursuit of more efficient and effective optimization strategies in complex real-world scenarios.


Verlagsausgabe §
DOI: 10.5445/IR/1000188868
Veröffentlicht am 17.12.2025
Originalveröffentlichung
DOI: 10.1007/s10845-025-02597-2
Scopus
Zitationen: 5
Web of Science
Zitationen: 6
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationsmanagement im Ingenieurwesen (IMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0956-5515, 1572-8145
KITopen-ID: 1000188868
Erschienen in Journal of Intelligent Manufacturing
Verlag Springer
Vorab online veröffentlicht am 28.03.2025
Schlagwörter Continuous Optimization, Design of Experiments, Discrete Optimization, Lead Optimization, Optimization, Survey Methodology
Nachgewiesen in Scopus
Web of Science
Dimensions
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page