KIT | KIT-Bibliothek | Impressum | Datenschutz

CLEVER: Stream-Based Active Learning for Robust Semantic Perception From Human Instructions

Lee, Jongseok 1; Birr, Timo 1; Triebel, Rudolph 1; Asfour, Tamim 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We propose CLEVER, an active learning system for robust semantic perception with Deep Neural Networks (DNNs). For data arriving in streams, our system seeks human support when encountering failures and adapts DNNs online based on human instructions. In this way, CLEVER can eventually accomplish the given semantic perception tasks. Our main contribution is the design of a system that meets several desiderata of realizing the aforementioned capabilities. The key enabler herein is our Bayesian formulation that encodes domain knowledge through priors. Empirically, we not only motivate CLEVER's design but further demonstrate its capabilities with a user validation study as well as experiments on humanoid and deformable objects. To our knowledge, we are the first to realize stream-based active learning on a real robot, providing evidence that the robustness of the DNN-based semantic perception can be improved in practice.


Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2025
Sprache Englisch
Identifikator ISSN: 2377-3766, 2377-3774
KITopen-ID: 1000188884
Erschienen in IEEE Robotics and Automation Letters
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 10
Heft 9
Seiten 8906–8913
Vorab online veröffentlicht am 11.07.2025
Schlagwörter Deep learning methods, probabilistic inference, probability and statistical methods
Nachgewiesen in OpenAlex
Dimensions
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page