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A Quillen stability criterion for bounded cohomology

CARLOS DE LA CRUZ MENGUAL

TOBIAS HARTNICK

We provide a version of Quillen’s homological stability criterion for continuous bounded cohomology. In
the companion paper we exploit this criterion to derive new bounded cohomological stability results for
various families of classical groups.

20J06; 55T25, 57T10

1 Introduction

An infinite chain .Gr /r�0 D .G0 < G1 < G2 < � � � / of groups is called homologically stable if there
exists a function r WN!N such that the respective inclusions induce isomorphisms

Hq.Gr.q//ŠHq.Gr.q/C1/ŠHq.Gr.q/C2/Š � � �

in group homology for all q 2 N.1 Any such function r is then called a stability range for the family.
Homological stability (with a linear stability range) has been established for many families of classical
linear algebraic groups, but also for various families of nonlinear groups of interest, such as mapping
class groups or automorphism groups of free groups.

A particularly successful method to establish homological stability, employed for example by Van der
Kallen [14], Harer [12], Hatcher and Vogtmann [13], Essert [9], and Sprehn and Wahl [22], is based on
Quillen’s stability criterion, which can be stated as follows. Suppose that, for every r 2N, we are given
a �-complex X.r/— also known as a semisimplicial set — endowed with a simplicial Gr -action, and
two natural numbers 
 .r/ and �.r/ with the following properties:

(Q1) X.r/ is 
 .r/-acyclic, ie the reduced homology zH�.X.r// vanishes up to degree 
 .r/.

(Q2) X.r/ is �.r/-transitive, ie there is only one Gr -orbit of l-simplices for l 2 f0; : : : ; �.r/g.

(Q3) The complexes are �.r/-compatible, ie the stabilizer of an l-simplex in X.r/ is isomorphic to
Gr�l�1 for every l < �.r/, and these isomorphisms are compatible with inclusions of stabilizers
in the sense of condition (MQ3a) below.

Then .Gr /r�0 is homologically stable provided minf
 .r/; �.r/g!1 as r !1. In addition, a stability
range can be computed explicitly from the functions 
 and � . See Quillen’s unpublished notes [21], or
the more recent treatments by Bestvina [1] and Sprehn and Wahl [22] for details.

1As usual in homological algebra, we enumerate starting from 0. Accordingly, we use the convention 0 2N, and for any k 2N,
we denote by Œk� the .kC1/-element set f0; : : : ; kg �N. We also set Œ1� WDN.
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2318 Carlos De la Cruz Mengual and Tobias Hartnick

Our purpose here is to establish a similar stability criterion in continuous bounded cohomology. The
theory of bounded cohomology for discrete groups goes back to Johnson, Trauber, and Gromov [11],
and was later extended to the realm of topological groups by Burger and Monod [4]; we refer to the
monographs by Frigerio [10] and Monod [16] for background and numerous applications.

By analogy with the classical situation, we say that an infinite family G0 < G1 < G2 < � � � of locally
compact groups is bc-stable (short for bounded-cohomologically stable) with stability range r WN!N

if, for every q � 0, the respective inclusions induce isomorphisms

H
q

b
.Gr.q//ŠH

q

b
.Gr.q/C1/ŠH

q

b
.Gr.q/C2/Š � � �

in continuous bounded cohomology. We will give conditions analogous to (Q1)–(Q3) and show that these
imply bc-stability. For technical reasons we will assume that G is either second-countable or discrete. This
setting is broad enough to deal with both almost-connected Lie groups (as considered in our article [8])
and with uncountable discrete groups (as considered by Monod and Nariman [19]).

Compared to classical (co)homology, (continuous) bounded cohomology has a more functional analytic
flavor — in fact, it can be defined as a derived functor in some suitable exact category of Banach modules;
see work of Bühler [3]. While it is sometimes possible to extend classical cohomological results to this
setting, this usually requires additional effort in order to take certain functional analytic peculiarities into
account. These peculiarities are why we need to assume second-countability in the nondiscrete case.

1.1 General setting

Throughout this article let G denote a locally compact group. We will assume throughout that G is either
second-countable or discrete. To formulate analogues of Quillen’s conditions in the setting of bounded
cohomology, we need to consider G-actions on complexes of a suitable type.

� In case G is discrete, the associated complexes will be, as in standard (co)homology, �-complexes with
a simplicial G-action (semisimplicial G-sets); their sets of simplices will be endowed with the counting
measure.

� In case G is second-countable and nondiscrete, we will need to replace �-complexes by a class that
is better adapted to a measurable setting, namely, semisimplicial objects in the category of Lebesgue
G-spaces. Here by a Lebesgue G-space we mean a standard Borel space with a Borel G-action and a
G-invariant probability measure class.

In order to unify the treatment of the two cases we will refer to the corresponding complexes as Lebesgue
G-complexes in either case. To a Lebesgue G-complex X D .Xq/q�0, we can associate a complex

0!R!L1.X0/!L1.X1/!L1.X2/! � � �

of Banach spaces, where the codifferentials are given by alternating sums of dual face maps. Note that in
the discrete case, this complex reduces to

0!R! `1.X0/! `1.X1/! `1.X2/! � � � :

Algebraic & Geometric Topology, Volume 25 (2025)
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We then say that X is boundedly 
0-acyclic if the cohomology of this complex vanishes up to degree 
0.
We also say that X is essentially �0-transitive if G acts essentially transitively (ie with a conull orbit)
on q-simplices for q 2 f0; 1; : : : ; �0g. In this case, we can choose simplices o0 2X0; : : : ; o�0

2X�0
such

that oi is a face of oiC1 for all i 2 f0; : : : ; �0�1g, and such that the orbits of o0; : : : ; o�0
are conull in the

respective spaces of simplices (see Construction 3.3). We then refer to .o0; : : : ; o�0
/ as a generic flag in X .

1.2 A spectral sequence in bounded cohomology

Our main tool will be the following spectral sequence, which connects the continuous bounded cohomology
ring of a locally compact group G (always assumed to be second-countable or discrete) to those of the
stabilizers of simplices of a generic flag in a highly boundedly acyclic and highly essentially transitive
Lebesgue-G-complex.

Theorem A Let X be a Lebesgue G-complex which is boundedly 
0-acyclic and essentially �0-transitive
for some 
0; �0 2 N [ f1g. Moreover , let .o0; : : : ; o�0

/ be a generic flag in X with stabilizers Hi WD

StabG.oi/ for i 2 f0; : : : ; �0g, and set H�1 WDG.

(1) For every p 2 f0; : : : ; �0 � 1g and i 2 f0; : : : ;pC 1g, there exists an element wp;i 2 G such that
ıi.opC1/D w

�1
p;i op, that induces an injective homomorphism

Int.wp;i/ WHpC1!Hp; h 7! wp;ihw
�1
p;i :

(2) There exists a first-quadrant spectral sequence E�;�
�

such that :

(i) Et
1 D 0 for every t 2 f0; : : : ; 
0C 1g.

(ii) E
p;q
1
DH

q

b
.Hp�1/ for all p 2 f0; : : : ; �0C 1g and q � 0.

(iii) E
p;0
2
D 0 for all p 2 f0; : : : ; �0C 1g.

(iv) The first page differentials d
0;q
1
WH

q

b
.G/!H

q

b
.H0/ are induced by the inclusion H0 ,! G

for all q � 0.

(v) The first page differentials d
p;q
1
WH

q

b
.Hp�1/!H

q

b
.Hp/ are the alternating sums

d
p;q
1
D

pX
iD0

.�1/iH
q

b
.Int.wp�1;i//

for all p 2 f1; : : : ; �0g, q � 0, and any choice of elements wp;i 2G as in (1).

Remark 1.1 A version of this spectral sequence for product complexes (complexes where Xr DX rC1
0

with the usual differential) of locally compact second-countable (lcsc) groups was first studied by
Monod in [17]. The version for uncountable discrete groups played a key role in work by Monod and
Nariman [19] — specifically their Theorem 3 — on the computation of the bounded cohomology of various
homeomorphism and diffeomorphism groups of manifolds.

Algebraic & Geometric Topology, Volume 25 (2025)



2320 Carlos De la Cruz Mengual and Tobias Hartnick

1.3 Measurable Quillen families

Assume that we are given an infinite family .Gr /r�0D .G0 <G1 <G2 < � � � / of locally compact groups
which are either all second-countable or all discrete, and a Lebesgue Gr -complex X.r/ for every r � 0.
We can then define counterparts to the Quillen conditions (Q1) and (Q2) as follows. We assume that we
are given functions 
; � WN!N [f˙1g such that

(MQ1) X.r/ is boundedly 
 .r/-acyclic,

(MQ2) X.r/ is essentially �.r/-transitive.

These assumptions imply by Theorem A that, for each r � 0, we obtain elements wr;p;i 2 Gr for all
p 2 f0; : : : ; �.r/g and i 2 f0; : : : ;pC 1g as in Theorem A(1), and a spectral sequence as in (2), relating
the continuous bounded cohomology of Gr to the continuous bounded cohomology of the stabilizers
Gr DW Hr;�1 > Hr;0 > � � � > Hr;�.r/ of a generic flag .or;0; : : : ; or;�.r// in X.r/. To obtain a stability
result in the vein of Quillen’s, we need to relate the bounded cohomology of these stabilizers to the one
of the previous groups in the sequence. We offer three different compatibility conditions which are useful
in different situations and are all sufficient to obtain bc-stability:

(MQ3a) For all r � 0 and p 2 f�1; 0; : : : ; �.r/g, we have Hr;p DGr�p�1 (we use the convention that
Gk is the trivial group for k < 0), and the conjugation Int.wr;p;i/ WHr;pC1!Hr;p equals the inclusion
�r�p�2 WGr�p�2 ,!Gr�p�1 for all r , all p � �.r/� 1, and all i .

(MQ3b) For all r � 0 and p 2 f�1; 0; : : : ; �.r/g, there is an epimorphism �r;p WHr;p � Gr�p�1 with
amenable kernel such that

Hr;pC1
� � Int.wr;p;i /

//

�r;pC1

����

Hr;p

�r;p

����

Gr�p�2
� � �r�p�2

// Gr�p�1

is a commutative diagram for all r , all p � �.r/� 1, and all i .

(MQ3c) For all r � 0 and p 2 f�1; 0; : : : ; �.r/g, there is an epimorphism �r;p WHr;p � Gr�p�1 with
amenable kernel and a continuous homomorphic section �r;p of �r;p such that

Hr;pC1
� � Int.wr;p;i /

// Hr;p

�r;p

����

Gr�p�2

�r;pC1

OO

� � �r�p�2
// Gr�p�1

is a commutative diagram for all r , all p � �.r/� 1, and all i .

Here, (MQ3a) is Quillen’s original condition; indeed, the equality Int.wr;p;i/D �r�p�2 means that the
element wr;p;i 2 Gr centralizes Gr�p�2 < Gr . The conditions (MQ3b) and (MQ3c) are two different
relaxations, which take advantage of the fact that continuous surjections with amenable kernel induce
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isomorphisms in continuous bounded cohomology. The latter is the most technical, but also most useful
condition, as witnessed by Example 1.4 below.

Definition 1.2 We say that .Gr ;X.r//r�0 is a measurable .
; �/-Quillen family if conditions (MQ1),
(MQ2), and one of (MQ3a), (MQ3b), or (MQ3c) hold.

The following is our main qualitative result:

Theorem B (Quillen stability for continuous bounded cohomology) Assume that .Gr ;X.r//r�0 is a
measurable .
; �/-Quillen family. If both 
 and � are proper , then .Gr /r�0 is bc-stable.

Theorem B will be established by comparing the various spectral sequences associated to the Lebesgue
complexes X.r/ by means of Theorem A. This will actually provide a quantitative version of Theorem B:
we will obtain an explicit stability range which depends only on the functions 
 and � . This quantitative
version actually also makes sense for finite Quillen families. We will state the most general version of
our main theorem as Theorem 4.6 below.

For product complexes, ie complexes of the form X.r/q D X.r/
qC1
0

with the forgetful face maps,
Theorem B and its quantitative version were essentially established by Monod in [17], and our proof is an
extension of Monod’s original proof. As we will explain after Example 1.4, our more general version
is crucial if one wants to generalize Monod’s results concerning bc-stability of general linear groups to
other classes of classical groups.

Remark 1.3 The isomorphisms produced by Theorem B are generally not isometric with respect to
the Gromov norms. This fact is evidenced, for instance, by the norms of the bounded Borel classes in
complex simple Lie groups of classical type, which were computed in works by Bucher, Burger, and
Iozzi [2] and the first author [6; 7].

1.4 The discrete case

Recall that Theorem B applies to the case in which .Gr /r�0 are discrete groups. In this case, the statement
simplifies considerably, and we record this special case for ease of reference. The sequence .X.r//r�0

is just a family of �-complexes, and the sets of simplices of X.r/ are all endowed with the respective
counting measures. To prove rational homological stability of .Gr /r�0 using Quillen’s criterion, it suffices
to show that Gr acts �.r/-transitively on X.r/ with stabilizers Hr;pDGr�p�1 and that X.r/ is rationally

 .r/-acyclic for two proper functions �; 
 WN!N[f˙1g. One way to do this is by exhibiting a partial
contracting chain homotopy h� for each of the complexes

� � � !QX.r/1
d0�!QX.r/0

d�1��!Q! 0

so that dk ıhk Chk�1 ı dk�1 D 1. These chain homotopies will then induce a partial dual contracting
chain homotopy of the dual cocomplexes

0!R d�1

���! `1.X.r/0/
d0

��! `1.X.r/1/! � � � ;

Algebraic & Geometric Topology, Volume 25 (2025)
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provided that for every k 2N there is a constant Ck > 0 such that for every simplex � 2Xk the `1-norm
khk.�/k1 is bounded by Ck , ie

hk.�/D

n�X
iD1

˛i�i D)

n�X
iD1

j˛i j � Ck :

In this case we refer to h� as a rational `1-homotopy.

Corollary C Let .Gr /r�0 be a family of discrete groups. For every r � 0, let X.r/ be a 
 .r/-acyclic
�-complex with a �.r/-transitive Gr -action and stabilizers Hr;q DGr�q�1 which are compatible in the
sense of (MQ3a).

(i) If 
; � WN!N [f˙1g are proper , then .Gr /r�0 is homologically stable.

(ii) If , moreover , rational 
 .r/-acyclicity of X.r/ is witnessed by a rational `1-homotopy , then
.Gr /r�0 is also bc-stable.

Again, the stability range can be computed explicitly in terms of 
 and � ; see Theorem 4.6. Corollary C
provides a clear strategy to establish bc-stability for all families of countable groups for which homological
stability has been established using Quillen’s method: One just has to check whether the underlying
homotopy is rationally `1. Unfortunately, the homotopies in question are usually only given implicitly.
We thus leave it to future work to determine for which countable groups an explicit rational `1-homotopy
can be constructed.

1.5 The case of reductive Lie groups

Our main interest in establishing Theorem B in its present generality was to provide a framework for
establishing bc-stability of the classical families of reductive Lie groups. For all of these families, bc-
stability is predicted by the (notoriously open) isomorphism conjecture in continuous bounded cohomology.
However, prior to this work, this predicted stability had only been established for general and special
linear groups over R and C by Monod [17] using a special case of Theorem B. Let us briefly explain
how the results for general linear groups2 fit into our present context:

Example 1.4 (general linear groups) Let Gr WD GLr .K/ with K 2 fR;C;Hg. These groups constitute
an infinite family .G0 <G1 <G2 < � � � / of lcsc groups with the block inclusions

(1-1) �r WGr ,!GrC1; A 7! 1�A WD

�
1 0

0 A

�
:

Let X.r/q WD P .Kr /qC1, where P .Kr / denotes the projective space of Kr and the face maps are the
usual forgetful maps. If we equip each of these spaces with its canonical Lebesgue measure class,
then each X.r/ becomes a boundedly acyclic Lebesgue G.r/-complex. Moreover, the action of Gr on

2As explained by Monod in [18, Note before Lemma 10], the stability range given in [17] is not correct due to an inaccuracy
in the induction step. We use this opportunity to state the correct range; see [6, Sections 6.3 and 6.4] for details. Also, the
quaternionic case is absent from [17], but it does not require any new ideas.
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A Quillen stability criterion for bounded cohomology 2323

X.r/ is essentially r -transitive. If e1; : : : ; er denotes the standard basis of Kr and erC1 D
Pr

iD1 ei ,
then a generic flag in X.r/ is given by .o0; : : : ; or /, where oq WD .Œe1�; : : : ; ŒeqC1�/. The corresponding
stabilizers Hr;q D StabGr

.oq/ are

Hr;q D

��
D V

0 A

� ˇ̌̌
D 2GqC1 diagonal; A 2Gr�q�1; V 2M.qC1/�.r�q�1/.K/

�
for q2 Œr�1�, and Hr;rD .K�/�Ir ; we also set Hr;�1DGr . For q2f0; : : : ; r�2g and i 2f0; : : : ; qC1g, we
let wr;q;i 2Gr be the matrix that permutes the standard basis vectors via the cycle .qC2; qC1; : : : ; iC1/,
and for q D r � 1 we fix an arbitrary choice of wr;r�1;i 2 Gr according to Theorem A(1). With this
notation, condition (MQ3a) is violated, and while the obvious projections �r;q W Hr;q ! Gr�q�1 do
have amenable kernel, they do not satisfy condition (MQ3b) since the corresponding diagram does not
commute. In turn, condition (MQ3c) is satisfied with the homomorphic sections

�r;q WGr�q�1!Hr;q; A 7! IqC1 �A;

of �r;q . This is the reason why we insist on this slightly technical compatibility condition.

We may now deduce that .Gr ;X.r//r�0 is a measurable .1; r/-Quillen family, and hence .Gr / is
bc-stable. An explicit stability range can be read off from Theorem 4.6 below. In the notation of that
theorem, we have q0 D 2, 
 .r/D1, and �.r/D r (since H 2

b
.Gr /D 0 for all r � 0; this follows from

work of Burger and Monod [5] and Monod [16, Corollary 8.8.6 and Example 9.9.3]), and hence

minf Q
 .q; r/; Q�.q; r/� 1g D
q

min
jDq0

f�.r C 1� 2.q� j //� j g� 1D r � 2qC q0 D r � .2q� 2/:

We deduce that for every q � q0C 1D 3, the inclusions �r induce isomorphisms and injections

� � � ŠH
q

b
.GL2q�1.K//ŠH

q

b
.GL2q�2.K// ,!H

q

b
.GL2q�3.K// ,!H

q

b
.GL2q�4.K//:

For the general linear groups, we thus obtain bc-stability with slope two.

In Example 1.4, the complexes X.r/ can be chosen to be product complexes, since GLr acts essentially
r -transitively on projective space. It is known that reductive Lie groups whose semisimple part is of
type other than An do not admit highly transitive actions on generalized flag manifolds; see work by
Popov [20]. Thus the product version of Theorem B is insufficient to establish bc-stability for other
classical groups. This was our main motivation in stating Theorem B in its present form.

Example 1.5 (symplectic, orthogonal, and unitary groups) For K 2 fR;Cg and d 2N, let .Gr /r�0

denote one of the following classical families of Lie groups:

f1g< Sp2.K/ < Sp4.K/ < � � �< Sp2r .K/ < � � � ;

Od;0.K/ <OdC1;1.K/ <OdC2;2.K/ < � � �<OdCr;r .K/ < � � � ;

Ud;0.C/ < UdC1;1.C/ < UdC2;2.C/ < � � �< UdCr;r .C/ < � � � :

In our article [8], we apply Theorem B to establish bc-stability for all of these families .Gr /. Our proof
is based on the fact that all of the groups above arise as automorphism groups of sesquilinear forms.
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With each of the groups Gr above, one can thus associate a corresponding Stiefel complex in the sense
of Vogtmann [23], and as in the case of the general linear groups, it is easy to see that the actions are
.r�1/-transitive and compatible (in the sense of (MQ3c)). In order to establish bc-stability, one thus
only has to show that the Stiefel complex Xr is measurably 
 .r/-acyclic for some proper function 
 .
This is established in our article [8] using probabilistic methods, leading to an acyclicity range of the
form 
 .r/� log2.r/.

1.6 The need for finite measurable Quillen families

Theorem B does not apply directly to the families of special linear (or special orthogonal or special unitary)
groups. The problem is that while Gr D SLr .K/ acts highly transitively on the product complex X.r/

defined as in Example 1.4, the quotient of the stabilizer Hr;q by its radical is isomorphic to GLr�q�1.K/

instead of SLr�q�1.K/.

To deal with this problem, we introduce in Section 4 below the notion of a finite measurable Quillen
family. It then turns out that (for K 2 fR;C;Hg), the family

f1g< GL1.K/ < GL2.K/ < � � �< GLR�1.K/ < SLR.K/

is a finite measurable Quillen family in this sense, and our main Theorem 4.6 also applies. Assuming the
theorem and its notation, we recover Monod’s results for SLn.

Example 1.6 (special linear groups) Let K 2 fR;C;Hg and R � 2. We set Gr WD GLr .K/ for any
r 2 ŒR� 1� and GR WD SLR.K/. The inclusions �r W Gr ,! GrC1 are defined as in (1-1) for r <R� 1,
and as

A 7! .det A/�1
�A

for r DR� 1. We consider the same acyclic product complexes X.r/ as in Example 1.4; then the action
of Gr on X.r/ is �.r/-transitive, where �.r/ D r if r < R and �.R/ D R � 1. The group elements
wr;q;i 2Gr can be chosen as in Example 1.4 for r <R, but for r DR one requires a sign adjustment to
guarantee that the matrices lie in GR . In the notation of Theorem 4.6 the initial condition is again given
by q0 D 2 if R� 3 and q0 D 1 if RD 2. Assume first that R� 3. Then

minf Q
 .q;R� 1/; Q�.q;R� 1/� 1g D
q

min
jDq0

f�.R� 2.q� j //� j g� 1

Dmin
�

q�1

min
jDq0

fR� 2qC j g;R� 1� q

�
� 1

DminfR� 2qC 2;R� q� 1g� 1DR� .2q� 2/;

and, hence the map �R induces

(i) an isomorphism H
q

b
.SLR.K//ŠH

q

b
.GLR�1.K// if R� 2q� 2,

(ii) an injection H
q

b
.SLR.K// ,!H

q

b
.GLR�1.K// if R� 2q� 4.

Algebraic & Geometric Topology, Volume 25 (2025)
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Combining this information with Example 1.4, we see that for q � 3 the natural inclusions induce
isomorphisms/injections3

� � � ŠH
q

b
.SL2q.K//ŠH

q

b
.SL2q�1.K//ŠH

q

b
.SL2q�2.K// ,!H

q

b
.GL2q�3.K//:

The case q D 2, not covered by the discussion above, is well known (see [5; 16, Example 9.9.3]):

� � � ŠH 2
b .SL4.K//ŠH 2

b .SL3.K//Š f0g ,!H 2
b .SL2.K//:

Here the inclusion is an isomorphism for KDC or H, but not for KDR.
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2 Spectral sequences associated to Lebesgue complexes

Throughout this section, G denotes a locally compact group. We will assume that G is either second-
countable or discrete. The goal of this section is to associate a first-quadrant spectral sequence in
continuous bounded cohomology with every partially boundedly acyclic Lebesgue G-complex. We explain
the terminology used in this statement and recall the necessary background on bounded cohomology, and
refer the reader to Monod’s book [16] for further details.

2.1 Coefficient G -modules and Lebesgue G -spaces

Following [16], we discuss the class of modules which can be used as coefficients in continuous bounded
cohomology. In order to be able to deal with uncountable discrete groups, we have to modify the
definitions slightly.

A Banach G-module is a Banach space over the field of real numbers equipped with a G-action by
linear isometries, and a G-morphism is a G-equivariant bounded (but not necessarily isometric) operator
between Banach G-modules. A Banach G-module is said to be separable if the underlying Banach space
is separable, and continuous if the G-action is jointly continuous. Given a Banach G-module E, we denote
by E] the topological dual of E, considered as a Banach G-module endowed with the contragredient
G-action. Note that E] need not be separable nor continuous, even if E has either of those properties.
The following notion is due to Monod [16] in the second-countable case:

Definition 2.1 (i) If G is nondiscrete and second-countable, then a coefficient G-module is a pair
.E;E#/, where E is a separable, continuous Banach G-module.

3Note that the stability range given by Monod [17] is not correct, since it uses the inaccurate stability range for GLr .K/.
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(ii) If G is discrete, then a coefficient G-module is a pair .E;E#/, where E is a continuous Banach
G-module (not necessarily separable).

In either case, a morphism .E;E#/! .F;F #/ of coefficient G-modules is a pair .ˆ;ˆ#/, whereˆ WE!F

is a bounded operator with a G-equivariant dual ˆ# W F # ! E#. We write CoefG for the category of
coefficient G-modules.

Remark 2.2 If we consider a coefficient G-module .E[;E/, then the only role of the specified predual E[

is to define a weak-� topology on E. We will thus usually drop the predual E[ from notation and simply
refer to E as a coefficient G-module. With this abuse of notation, a morphism between coefficient
G-modules E and F is simply a G-equivariant map E! F , which is continuous with respect to the
weak-� topologies defined by the omitted preduals.

The next notion allows us to produce examples of coefficient G-modules:

Definition 2.3 (i) If G is nondiscrete and second-countable, we say that X is a Lebesgue G-space if it
is a standard Borel space endowed with a Borel G-action and a G-invariant Borel measure class. For
economy, we will say that the pair .X; �/ is a Lebesgue G-space whenever X is a Lebesgue G-space
and � is a fixed G-quasi-invariant probability measure within the measure class.

(ii) If G is discrete, we will say that X is a Lebesgue G-space if it is a G-set, endowed with the measure
class of its counting measure.

We denote by LebG the category whose objects are Lebesgue G-spaces and G-equivariant measure-class-
preserving Borel maps.

Example 2.4 The space Gn is a Lebesgue G-space (with respect to the diagonal G-action) for every
n 2N. For this to be the case it is crucial that we do not assume a Lebesgue-G-space to be countably
separated if G is an uncountable discrete group.

Example 2.5 Let X be a Lebesgue G-space. If G is nondiscrete, then we denote by � a fixed probability
measure in the given measure class on X , and if G is discrete, then we denote by � the counting measure
on X . The group G acts on L1.X; �/ via

g ��.x/ WD ��.g
�1;x/ ��.g�1x/;

where ��.g;x/ WD d.g��/=d�.x/ denotes the Radon–Nikodym cocycle of �. In the nondiscrete case
this action is continuous, as proven by Bühler [3, Appendix D]. Moreover, L1.X; �/ is separable in this
case (but not necessarily in the discrete case). Either way, the contragredient module is then given by
L1.X; �/] DL1.X / with action given by g �f .x/ WD f .g�1x/, and our definitions have been set up in
such a way that the pair .L1.X; �/;L1.X // is a coefficient G-module which up to isomorphism does
not depend on the choice of �.
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Remark 2.6 The assignment L1.�/ WLebop
G
!CoefG is functorial. In fact, if T WY !X is a morphism

of Lebesgue G-spaces, then the induced operator

L1.T / WL1.X /!L1.Y /; L1.T /.�/ WD � ıT;

is a morphism of coefficient G-modules. Choosing a G-quasi-invariant measure � on Y as above and
letting � WD T��, the predual operator to L1.T / is

L1.T / WL1.Y; �/!L1.X; �/; .L1.T /. //.x/ WD d.T�. � �//=d�:

We will need the following generalization:

Construction 2.7 Let X be a Lebesgue G-space and let E be a coefficient G-module. We equip E with
the Borel � -algebra associated with the weak-� topology on E. Given n 2N we then define

L1.X IE/ WD f� WX !E j � is measurable and essentially boundedg=�;

where � denotes almost-everywhere equality. This defines a Banach G-module when equipped with the
essential supremum norm and the G-action given by the formula g:f .x/D g:f .g�1x/. In particular, for
all n 2N we obtain a Banach G-module

L1.Gn
IE/ WD f� WGn

!E j � is measurable and essentially boundedg=�:

Remark 2.8 Our definition of coefficient G-module is made in such a way that if X is a Lebesgue
G-space and E is a coefficient G-module, then L1.X IE/ is again a coefficient G-module. Indeed, it is
the dual of the Bochner space L1.X IE[/, where E[ denotes the underlying predual of E. Note that in
the discrete case the module L1.X IE[/ need not be separable.

The use of the weak-� Borel structure of E in the definition of L1.X IE/ is necessary since L1.X IE/ is
not well defined if measurability is taken with respect to its norm-structure. If G is discrete, measurability
is a void assumption and L1.X IE/ can in fact be defined for any Banach G-module E.

As in the case of the trivial coefficient module R, one shows that the assignment X 7! L1.X IE/ is
functorial for any fixed coefficient module E.

2.2 Background on continuous bounded cohomology

We collect the definition and a series of useful facts on continuous bounded cohomology.

Definition 2.9 If E is Banach G-module and n 2N, then we denote by Cb.G
nC1IE/ the Banach space

of continuous bounded functions f WGnC1!E with the supremum norm. The group G acts diagonally
on GnC1 and hence by isometries on Cb.G

nC1IE/ via the left-regular representation, and we denote by
Cb.G

nC1IE/G the subspace of G-invariant functions. Then the continuous bounded cohomology of G

with coefficients in E is defined as

H �b.GIE/ WDH �.Cb.G
�C1
IE/G/:

If E DR with trivial G-action, we will drop E from the notation and write H �
b
.G/ WDH �

b
.GIR/.
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Proposition 2.10 If E is a coefficient G-module , then

H �b.GIE/DH �.0!L1.GIE/G!L1.G2
IE/G!L1.G3

IE/G! � � �/:

Proof In the discrete case, this is just the definition, since L1.GnC1IE/G D `1.GnC1IE/G D

Cb.G
nC1IE/G . In the second-countable case this is nontrivial, and appears as [16, Proposition 7.5.1] in

Monod’s book.

To provide a more general class of resolutions, we need to recall the notion of an amenable Lebesgue
G-space. In the discrete case, its definition is given in [10, Section 4.9] in Frigerio’s book. In the
nondiscrete case, the definition is more technical; see [16, Section 5.3].

Proposition 2.11 [10, Theorem 4.23; 16, Theorem 7.5.3] If E is a coefficient G-module and S is an
amenable Lebesgue G-space , then

H �b.GIE/DH �.0!L1.S IE/G!L1.S2
IE/G!L1.S3

IE/G! � � �/:

Example 2.12 The group G acts amenably on S WDG via left-multiplication; see [16, Example 2.1.2.(i)].
If H <G is a closed subgroup and S is an amenable G-space, then it is also an amenable H -space; see
[16, Example 2.1.2.(iv)]. In particular, G is an amenable H -space, and we deduce from Proposition 2.11
that for any coefficient H -module E we have

(2-1) H �b.H IE/DH �.0!L1.GIE/H !L1.G2
IE/H !L1.G3

IE/H ! � � � /:

The following lemma is an essential technical tool for us. Let Vect denote the category of real vector
spaces. We say that a sequence 0!E0!E1!E2! � � � of Banach G-modules is a cochain complex
(resp. exact) if the underlying sequence of vector spaces has the corresponding property.

Lemma 2.13 For any n 2N, the functor CoefG! Vect given by E 7!L1.Gn;E/G is exact.

Proof For discrete groups, this is contained in [16, Lemma 8.2.4], and, for nondiscrete lcsc groups, in
[16, Lemma 8.2.5].

More concretely, this lemma states that if 0!A! B! C ! 0 is a short exact sequence of coefficient
G-modules, then

0!L1.Gn
IA/G!L1.Gn

IB/G!L1.Gn
IC /G! 0

is an exact sequence of vector spaces.

2.3 Lebesgue G -complexes

From Lebesgue G-spaces, we can build associated complexes using the following notion:
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Definition 2.14 (see Weibel [24, Definition 8.1.9]) A semisimplicial object X over a concrete category C
is a sequence of objects .Xk/k2N , together with morphisms ıi;k WXkC1!Xk for all k and i 2 Œk�, called
face maps, such that

(2-2) ıi;k�1 ı ıj ;k D ıj�1;k�1 ı ıi;k whenever i < j:

If X and Y are semisimplicial objects over a category C, then a semisimplicial morphism f WX ! Y is a
collection .fk W Xk ! Yk/k2N of morphisms such that fk ı ıi;k�1 D ıi;k ı fkC1 for all k 2 N and all
i 2 ŒkC 1�.

We will usually omit the index k in ıi;k , writing simply ıi for all i th face maps.

Definition 2.15 A semisimplicial object in LebG will be called a Lebesgue G-complex.

Remark 2.16 If X is a Lebesgue G-space, then we refer to points in
F

k2N Xk as simplices and to
points of Xk as k-simplices of X . Given two simplices x;y 2X , we say that x is a face of y, denoted
by x � y, if x can be obtained by applying finitely many face maps to y. A (finite or infinite) sequence
x0 � x1 � x2 � � � � of simplices is called a flag.

If x;y 2X are such that x � y, then the reversed inclusion StabG.y/ < StabG.x/ of stabilizer subgroups
holds, and hence every flag x0 � x1 � x2 � � � � gives rise to a chain of closed subgroups

G > StabG.x0/ > StabG.x1/ > StabG.x2/ > � � � :

The closedness of these inclusions in the case that G is nondiscrete follows from [25, Corollary 2.1.20]
in Zimmer’s book, since standard Borel spaces are countably separated.

Construction 2.17 Let X be a Lebesgue G-complex. We define X�1 to be a singleton, so that
L1.X�1/ŠR. There is a unique “face map” ı0 WX0!X�1 which induces the inclusion of constants
ı0 WR!L1.X0/.

Applying the L1-functor from Remark 2.6 to the face maps ıi W XlC1 ! Xl provides a family of
morphisms ıi WL1.Xl/!L1.XlC1/ of coefficient G-modules. If we define

d l
WL1.Xl/!L1.XlC1/; d l

WD

lC1X
iD0

.�1/iıi for l � �1;

then d l ı d l�1 D 0 for all l � 0, and hence we obtain a cochain complex

(2-3) 0!R d�1

���!L1.X0/
d0

��!L1.X1/
d1

��!L1.X2/
d2

��!L1.X3/ �! � � �

of coefficient G-modules.

Definition 2.18 Given a Lebesgue G-complex X , the cochain complex of coefficient G-modules (2-3)
is called the augmented L1-complex associated to X .

We will say that X is boundedly acyclic if its augmented L1-complex is exact, and boundedly 
0-acyclic
for some 
0 2N [f1g if ker d l D im d l�1 for every l 2 Œ
0�.

Algebraic & Geometric Topology, Volume 25 (2025)



2330 Carlos De la Cruz Mengual and Tobias Hartnick

If a Lebesgue G-complex X is boundedly 
0-acyclic for some 
0 2N that we do not want to specify, then
we will say that X is partially boundedly acyclic. We will also use the convention that every Lebesgue
G-complex is boundedly .�1/-acyclic.

2.4 The spectral sequence of a partially boundedly acyclic Lebesgue G -complex

With every partially boundedly acyclic Lebesgue G-complex, we can now associate a spectral sequence;
our notation concerning spectral sequences follows McCleary’s book [15].

Proposition 2.19 Let X D .Xq/q2N be a Lebesgue G-complex which is boundedly 
0-acyclic for
some 
0 2N [f1g. Then there exists a first-quadrant spectral sequence E�;�

�
with first page terms and

differentials

(2-4) E
p;q
1
DH

q

b
.GIL1.Xp�1// and d

p;q
1
DH

q

b
.GI dp�1/ for all p; q � 0

that converges to Et
1 D 0 for all t 2 Œ
0C 1�, where dq are the coboundary operators in (2-3).

Proof Consider the first-quadrant double complex .L�;�; dH ; dV /, whose terms and differentials for
p; q � 0 are given by

Lp;q
WDL1.GpC1

�Xq�1/
G
ŠL1.GpC1

IL1.Xq�1//
G ;

d
p;q
H
WLp;q

!LpC1;q; d
p;q
H
f .g0; : : : ;gp/ WD

pX
iD0

.�1/if .g0; : : : ; Ogi ; : : : ;gp/;

d
p;q
V
WLp;q

!Lp;qC1; d
p;q
V
f .g0; : : : ;gp�1/ WD dq�1.f .g0; : : : ;gp�1//:

Here dq�1 denotes the coboundary operator of the augmented L1-complex of X , as in (2-3). We let
IE�;�
�

and IIE�;�
�

be the two spectral sequences associated with the horizontal and vertical filtrations of L�;�,
respectively, both of which converge to the cohomology of the total complex of L�;� and whose first-page
terms and differentials are given by

IE
p;q
1
DH q.Lp;�; d

p;�
V
/; Id

p;q
1
DH q.d

p;�
H
/ W IE

p;q
1
!

IE
pC1;q
1

;

IIE
p;q
1
DH q.L�;p; d

�;p
H
/; IId

p;q
1
DH q.d

�;p
V
/ W IIE

p;q
1
!

IIE
pC1;q
1

:

For a proof of the existence and convergence properties of these two spectral sequences, see McCleary
[15, Theorem 2.15]. By the 
0-acyclicity of X and exactness of the functor L1.GpC1;�/G for every
p � 0 (see Lemma 2.13), the complex

0!Lp;0
!Lp;1

! � � � !Lp;
0 !Lp;
0C1
!Lp;
0C2

! � � �

is exact up to degree 
0 C 1. Thus IE
p;q
1
D 0 for all p � 0 and q 2 Œ
0 C 1�, and therefore IEt

1 ŠL
pCqDt

IE
p;q
1 D 0 for every t 2 Œ
0 C 1�. We deduce that also the spectral sequence E�;�

�
WD IIE�;�

�

converges to 0 in degrees t 2 Œ
0C 1�. Finally, it follows from Proposition 2.10 that the first page of E�;�
�

is given by (2-4).
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3 The highly essentially transitive case

In this section, G continues to denote a locally compact group, either second-countable or discrete, and
X denotes a partially boundedly acyclic Lebesgue G-complex. In the discrete case, G-sets are always
endowed with the counting measure. We are going to discuss how certain transitivity properties of the
G-action on X affect the spectral sequence constructed in the previous section. This will lead us to a
proof of Theorem A from Section 1.

Definition 3.1 Let X be a Lebesgue G-complex and �0 2 N [ f1g. We say that X is essentially
�0-transitive if Xl admits a conull G-orbit for all l 2 Œ�0�. We use the convention that any Lebesgue
G-complex is essentially .�1/-transitive.

For the remainder of this section we assume that X is a Lebesgue G-complex which is boundedly

0-acyclic and essentially �0-transitive for some 
0; �0 2N [ f1g. We denote by E�;�

�
the associated

spectral sequence constructed in Proposition 2.19.

Remark 3.2 The bottom row of the first page of the spectral sequence E�;�
�

is given by

E
p;0
1
DH 0

b .GIL
1.Xp�1//DL1.Xp�1/

G and d
p;0
1
DH 0

b .GI d
p�1/ for all p � 0:

Since the constant functions are always contained in L1.Xp�1/
G we have an embedding of constants

cp WR ,!E
p;0
1

for every p � 0, such that all of the diagrams

E
p;0
1

ıi
// E

pC1;0
1

R
0 P

cp

``

- 

cpC1

<<

commute. Since G acts essentially �0-transitive, we have

E
p;0
1
DL1.Xp�1/

G
D cp.R/ŠR for all p 2 Œ�0C 1�:

It thus follows from the commuting diagram above that each of the dual face maps ıi WE
p;0
1
!E

pC1;0
1

equals the identity if p 2 Œ�0� and is an injection if p D �0C 1. We deduce that the face map d
p;0
1

is the
zero map if p 2 Œ�0C 1� is odd, an isomorphism if p 2 Œ�0� is even, and injective if p D �0C 1 is even.
Consequently

(3-1) E
p;0
2
D 0 for all p 2 Œ�0C 1�:

Construction 3.3 By assumption, we can find o�0
2X�0

such that the orbit G:o�0
�X�0

is conull. Since
the face maps are G-equivariant and measure-class-preserving, any codimension-1 face o�0�1 2X�0�1

has a conull orbit in X�0�1. Thus we construct a flag o�1 � o0 � � � � � o�0
inductively with oq 2Xq such

that oq has a conull orbit in Xq for all q 2 f�1g[ Œ�0�— recall our convention that X�1 is a singleton,
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and thus o�1 denotes its only element. We refer to such a flag as a generic flag in X . Given a generic
flag, we define

Hq WD StabG.oq/ for q 2 f�1g[ Œ�0�:

Note that according to our convention, G acts trivially on X�1, so H�1 DG.

By Remark 2.16, we have a chain of closed subgroups

G DH�1 >H0 >H1 > � � �>H�0
:

Now let q 2 f�1g[ Œ�0� 1� and i 2 ŒqC 1�, so that ıi.oqC1/ 2Xq . By transitivity, there exists wq;i 2G

such that
ıi.oqC1/D w

�1
q;i :oq;

and we fix a choice of such elements of G once and for all.

Lemma 3.4 For all q 2 f�1g[ Œ�0� 1� and i 2 ŒqC 1�, we have the inclusion wq;iHqC1w
�1
q;i <Hq . In

particular , there is a well-defined map

Int.wq;i/ WHqC1!Hq; h 7! wq;ihw
�1
q;i :

Proof If h 2HqC1, then

w�1
q;i :oq D ıi.oqC1/D ıi.h:oqC1/D h:ıi.oqC1/D h:w�1

q;i :oq D) wq;ihw
�1
q;i 2Hq:

Construction 3.5 For p 2 Œ�0C 1�, we define the .p�1/th induction module Indp�1
WD L1.G/Hp�1 ,

where the Hp�1-invariance is taken with respect to the restriction of the G-action by left-translation.
Equipped with the right-translation G-action �, the space Indp�1 is a Banach G-module. We now define
a family of induction maps

Ind WL1.GqC1/Hp�1 !L1.GqC1; Indp�1/G ; .Ind'/.Eg/.x/ WD '.x Eg/ for q � 0;

which produces a morphism of cochain complexes; see [16, Proposition 10.1.3]. We also define

‰0 W Indp�1
!L1.Xp�1/; .‰0'/.g � op�1/ WD '.g

�1/;

and define a morphism of cochain complexes ‰ WDL1.GqC1I‰0/
G , so that

‰ WL1.GqC1
I Indp�1/G!L1.GqC1

IL1.Xp�1//
G for q � 0:

Note that by Proposition 2.11, the cohomology of L1.GqC1/Hp�1 is H
q

b
.Hp�1/, and by Proposition 2.10,

the cohomology of L1.GqC1IL1.Xp�1//
G is H

q

b
.GIL1.Xp�1//DE

p;q
1

.

Proposition 3.6 The composition ‰ ı Ind W L1.GqC1/Hp�1 ! L1.GqC1IL1.Xp�1//
G induces an

isomorphism
Ip;q WH

q

b
.Hp�1/!E

p;q
1

for every p 2 Œ�0C 1� and every q � 0:
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Proof It suffices to show that Ind and ‰ induce isomorphisms in cohomology. The former is just the
Eckmann–Shapiro lemma for L1-modules (see Monod [16, Proposition 10.1.3] and Monod and Nariman
[19, Lemma 3.5]) and the latter is immediate from the fact ‰0 is an isomorphism for any fixed q � 0 by
essential transitivity.

Having computed the terms on the first page of E�;�
�

, we now compute the differentials. The maps
Int.wp�1;i/ WHp!Hp�1 from Lemma 3.4 induce a family of maps

H
q

b
.Int.wp�1;i// WH

q

b
.Hp�1/!H

q

b
.Hp/;

and we claim:

Lemma 3.7 For every p 2 Œ�0�, q � 0, and i 2 Œp�, we have a commuting diagram

E
p;q
1

H
q

b
.GIıi /

// E
pC1;q
1

H
q

b
.Hp�1/

Ip;q

OO

H
q

b
.Int.wp�1;i //

// H
q

b
.Hp/

IpC1;q

OO

Proof For all i , p and q as in the lemma we consider the commutative diagram

R //

Id
��

L1.G/ //

‰i;p;0

��

L1.G2/ //

‰i;p;1

��

� � � // L1.GqC1/ //

‰i;p;q

��

� � �

R // L1.G/ // L1.G2/ // � � � // L1.GqC1/ // � � �

where ‰i;p;q.'/.g0; : : : ;gq/ WD '.wp�1;ig0; : : : ; wp�1;igq/. For all h 2Hp and Eg 2GqC1

‰i;p;q.Int.wp�1;i/.h/:'/.Eg/D Int.wp�1;i/.h/:'.wp�1;i :Eg/D '.wp�1;ih
�1:Eg/

D‰i;p;q.'/.h
�1
Eg/D h:‰i;p;q.'/.Eg/;

and hence ‰i;p;q restricts to a map ‰i;p;q W L
1.GqC1/Hp�1 ! L1.GqC1/Hp , which by [16, Propo-

sition 8.4.2] induces the map H
q

b
.Int.wp�1;i// in cohomology. It thus remains to show only that the

diagram
L1.GqC1IL1.Xp�1//

G ıi
// L1.GqC1IL1.Xp//

G

L1.GqC1/Hp�1

‰ıInd

OO

‰i;p;q
// L1.GqC1/Hp

‰ıInd

OO

commutes. Now if ' 2L1.GqC1/Hp�1 , Eg 2GqC1, and x 2G, then

.ıi
ı‰ ı Ind/.'/.Eg/.x � op/D .‰ ı Ind/.'/.Eg/.xw�1

p�1;i � op�1/D '.wp�1;ix
�1
Eg/

D‰i;p;q'.x
�1
Eg/D .‰ ı Ind ı‰i;p;q/.'/.Eg/.x � op/;

and hence ıi ı‰ ı IndD‰ ı Ind ı‰i;p;q , which proves the lemma.

Combining this fact with Propositions 2.19 and 3.6, Lemma 3.4, and (3-1), we arrive at Theorem A.
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4 Measurable Quillen families

In Definition 1.2, we have introduced the notion of an infinite measurable Quillen family. Since the
quantitative version of Theorem B (see Theorem 4.6 below) also applies to certain finite families of
groups, we modify the definitions accordingly.

Setting 4.1 Let R 2N [f1g be a length parameter and let


; � W ŒR�!N [f˙1g

be two functions, called the acyclicity range and transitivity range, respectively. We assume that we are
given

� a locally compact group Gr for every r 2 ŒR�, all either second-countable or discrete,

� an embedding �r WGr ,!GrC1 for every r <R,

� a Lebesgue Gr -complex X.r/ for every r 2 ŒR�.

We set Gr WD f1g for all r < 0. Furthermore, we keep our convention from last section that X.r/�1 is a
singleton, and we denote by or;�1 its only element.

Generalizing Definition 1.2, we declare:

Definition 4.2 We say that .Gr ;X.r//r2ŒR� is a measurable .R; 
; �/-Quillen family provided:

(MQ1) X.r/ is a boundedly 
 .r/-acyclic Lebesgue Gr -complex for every r 2 ŒR�.

(MQ2) X.r/ is an essentially �.r/-transitive Lebesgue Gr -complex for every r 2 ŒR�.

(MQ3) For every r 2 ŒR�, there exists a generic flag or;�1 � or;0 � or;1 � � � � � or;�.r/ in X.r/ such that
the corresponding stabilizers Hr;q WD StabGr

.or;q/ <Gr are compatible with Gr��.r/; : : : ;Gr

in the sense of one of (MQ3a), (MQ3b), or (MQ3c) from Section 1 for elements wr;q;i 2 Gr

with r 2 ŒR�, q 2 Œ�.r/� 1�, and i 2 ŒqC 1�.

In particular, a measurable .1; 
; �/-Quillen family is the same as a measurable .
; �/-Quillen family in
the sense of Definition 1.2.

Applying Theorem A to each of the complexes X.r/ in a measurable Quillen family, we obtain:

Corollary 4.3 Assume that .Gr ;X.r//r2ŒR� is a measurable .R; 
; �/-Quillen family. Then for every
r 2 ŒR�, there exists a spectral sequence rE�;�

�
such that :

(i) rE�;�
�

converges and rEt
1 D 0 for every t 2 Œ
 .r/C 1�.

(ii) rE
p;q
1
DH

q

b
.Gr�p/ for all p 2 Œ�.r/C 1� and q � 0.

(iii) rE
p;0
2
D 0 for all p 2 Œ�.r/C 1� and q � 0.

(iv) For all p 2 Œ�.r/� and q � 0, the map d
p;q
1
WH

q

b
.Gr�p/!H

q

b
.Gr�p�1/ is given by

d
p;q
1
D

�
H

q

b
.�r�p�1/ if p is even;

0 if p is odd:
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:::
:::

:::
:::

:::
:::

:::
:::

:::

H
q
r

�
q
r�1
//H

q
r�1

0
//H

q
r�2

�
q
r�3
//H

q
r�3

0
// � � �

0

�
q

r��.r /C1

//H
q
r��.r/C1

�
q

r��.r /

0

//H
q
r��.r/

0

�
q

r��.r /�1

//H
q
r��.r/�1

?
// rE

�.r/C2;q
1

// � � �

:::
:::

:::
:::

:::
:::

:::
:::

:::
p//

q

q

OO

0 1 2 3 � � � �.r/� 1 �.r/ �.r/C 1 �.r/C 2 � � �

Figure 1: The first page rE
�;�
1

.

Proof Since the inflation maps in bounded cohomology whose inducing epimorphisms have amenable
kernels are isomorphisms (see Monod [16, Corollary 8.5.2]), condition (MQ3) produces the following
commutative diagram for all r 2 ŒR�, p 2 Œ�.r/�, i 2 Œp�, and q � 0:

H
q

b
.Hr;p�1/

H
q

b
.Int.wr;p�1;i //

// H
q

b
.Hr;p/

H
q

b
.Gr�p/

ŠH
q

b
.�r;p/

OO

H
q

b
.�r�p�1/

// H
q

b
.Gr�p�1/

H
q

b
.�r;p�1/Š

OO

The corollary follows now from Theorem A.

If for any s 2 ŒR� 1� and any q � 0 we abbreviate

H q
s WDH

q

b
.Gs/ and �qs WDH

q

b
.�s/;

then the first page rE
�;�
1

is given by Figure 1. The terms to the left of the dotted line are explained by
Corollary 4.3(ii), while the behavior of the terms to the right of the dotted line is a priori not understood.
According to Corollary 4.3(iii), the parity of �.r/ determines the pattern of the arrows just to the left of
the dotted line: the labels above the arrows correspond to the case in which �.r/ is odd, and the labels
underneath correspond to the even case.

Remark 4.4 Let .Gr ;X.r//r2ŒR� be a measurable .R; 
; �/-Quillen family. We say that q0 2N is an
initial parameter for this measurable Quillen family if

H
q

b
.�r / WH

q

b
.GrC1/!H

q

b
.Gr / is an isomorphism for all q � q0 and r <R:

In theory, one would always like to work with the optimal initial parameter

q0 WD supfq jH q

b
.�r / WH

q

b
.GrC1/!H

q

b
.Gr / is an isomorphism for all r <Rg;

but in practice, the optimal initial parameter is not known. If no a priori information about the bounded
cohomology of the group Gr is available, then one can always work with q0 WD 1, since H 1

b
.G/ vanishes

for lcsc groups G. In some cases of interest, better initial parameters are available. Notably, if all Gr are
connected semisimple Lie groups with finite center and either all of the groups Gr are of Hermitian type
or all are of non-Hermitian type, then q0 � 2.
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To state the quantitative version of our bc-stability criterion, we introduce the following:

Definition 4.5 Let .Gr ;X.r//r2ŒR� be a measurable .R; 
; �/-Quillen family with initial parameter
q0 2 N. We define the associated dual acyclicity range and dual transitivity function to be functions
Q
 ; Q� WN � ŒR� 1�!N [f˙1g defined by the formulae

Q
 .q; r/ WD
q

min
jDq0

f
 .r C 1� 2.q� j //� j g and Q�.q; r/ WD
q

min
jDq0

f�.r C 1� 2.q� j //� j g

for r C 1� 2.q� q0/� 0, and Q
 .q; r/D Q�.q; r/D�1 otherwise.

We state now our main result:

Theorem 4.6 Let .Gr ;X.r//r2ŒR� be a measurable .R; 
; �/-Quillen family with initial parameter
q0 � 1, associated dual acyclicity range Q
 , and dual transitivity function Q� . Then the inclusion �r induces
an isomorphism (resp. an injection)

H
q

b
.�r / WH

q

b
.GrC1/

Š
�!H

q

b
.Gr / .resp. H

qC1

b
.�r / WH

qC1

b
.GrC1/ ,!H

qC1

b
.Gr //;

provided r 2 ŒR� 1� and q � 0 satisfy the condition

(4-1) minf Q
 .q; r/; Q�.q; r/� 1g � 0:

An immediate corollary of this quantitative bc-stability result is Theorem B, as stated in Section 1.

Proof of Theorem B from Theorem 4.6 We may assume without loss of generality that q0 D 1. Since

 .r/!1 and �.r/!1, we find for every q � q0 some r.q/ 2N such that for all j 2 fq0; : : : ; qg and
all r � r.q/, we have


 .r C 1� 2.q� j //� j and �.r C 1� 2.q� j //� j C 1:

Then Theorem 4.6 implies the chain of isomorphisms

H
q

b
.Gr.q//

Š
 �H

q

b
.Gr.q/C1/

Š
 �H

q

b
.Gr.q/C2/

Š
 � � � � ;

which is the desired bc-stability.

The functions Q
 .q; r/ and Q�.q; r/ have been defined so that they satisfy the following lemma, which will
allow us to make inductive arguments:

Lemma 4.7 Let r; q 2N for q � q0, and assume that minf Q
 .q; r/; Q�.q; r/� 1g � 0. Then the following
hold :

(i) 
 .r C 1/� q and �.r C 1/� qC 1.

(ii) minf Q
 .q� 1; r/; Q�.q� 1; r/� 1g � 0.

(iii) If p 2 Œq� q0� is odd , then minf Q
 .q�p; r �p� 1/; Q�.q�p; r �p� 1/� 1g � 0.

(iv) If p 2 Œq� q0� is even , then minf Q
 .q�p� 1; r �p� 2/; Q�.q�p� 1; r �p� 2/� 1g � 0.
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Proof The assumption means that for all j 2 fq0; : : : ; qg we have

r C 1� 2.q� j /� 0;(4-2)


 .r C 1� 2.q� j //� j ; �.r C 1� 2.q� j //� j C 1:(4-3)

(i) Choose j D q in (4-3).

(ii) If q D q0, then rC1�2.q�1�q0/� 0 and Q
 .q�1; r/D Q�.q�1; r/D1 for any r . Assume now
that q > q0, and let j 2 fq0; : : : ; q� 1g. Observe that

r C 1� 2.q� 1� j /D r C 1� 2.q� .j C 1//:

Since j C 1 2 fq0; : : : ; qg, from this equality combined with (4-2) and (4-3) we deduce

rC1�2.q�1�j /� 0; 
 .rC1�2.q�1�j //� jC1> j ; �.rC1�2.q�1�j //� jC2> jC1;

which establishes the claim.

(iii) Observe that for any odd p 2 Œq� q0� and any j 2 fq0; : : : ; q�pg, we have

r �p� 2.q�p� j /D r C 1� 2
�
q�

�
j C 1

2
.p� 1/

��
;

and j C 1
2
.p� 1/ 2

˚
q0C

1
2
.p� 1/; : : : ; q� 1

2
.pC 1/

	
� fq0; : : : ; qg. Just as in (ii), the claim follows

now from (4-2) and (4-3).

(iv) For any even p 2 Œq� q0� and any j 2 fq; : : : ; q�pg, we have

r �p� 1� 2.q�p� 1� j /D r C 1� 2
�
q�

�
j C 1

2
p
��
;

and j C 1
2
p 2

˚
q0C

1
2
p; : : : ; q� 1

2
p
	
� fq0; : : : ; qg, and conclude by (4-2) and (4-3).

5 Proof of the main theorem

The remainder of this article is devoted to deriving Theorem 4.6 from Corollary 4.3. We consider
a measurable .R; 
; �/-Quillen family .Gr ;X.r//r2ŒR� with initial parameter q0 � 1, dual acyclicity
range Q
 , and dual transitivity function Q� , and abbreviate

H q
s WDH

q

b
.Gs/ and �qs WDH

q

b
.�s/;

as before. We consider the following statement for q 2N and r <R:

(Sq;r ) �
q
r WH

q
rC1
!H

q
r is an isomorphism and �qC1

r WH
qC1
rC1
!H

qC1
r is an injection.

The conclusion of Theorem 4.6 then says that for all q 2N, the following statement (Sq) holds true:

(Sq) If r <R satisfies minf Q
 .q; r/; Q�.q; r/� 1g � 0, then (Sq;r ) holds.

If q < q0 then r C 1� 2.q � q0/ � 0, and hence by definition Q
 .q; r/ D Q�.q; r/ D1. Since q0 is an
initial parameter, both �qr and �qC1

r are isomorphisms for all r <R. Thus (Sq) holds for all q < q0. We
now proceed to prove (Sq) for q � q0 by induction on q. For this purpose, assume that q � q0 and that
(Sq0) holds for all q0 < q. In view of Lemma 4.7, we have:
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Lemma 5.1 For r <R with minf Q
 .q; r/; Q�.q; r/� 1g � 0, the following hold :

(A) The map �qr is injective.

(B) The map �q�p
r�p�1

is an isomorphism for all odd numbers p 2 Œq�.

(C) The map �q�p
r�p�2

is an injection for all even numbers p 2 Œq�.

Proof (A) By Lemma 4.7(ii), the inequality minf Q
 .q� 1; r/; Q�.q� 1; r/� 1g � 0 holds. Thus we may
apply (Sq�1) to deduce the claim.

(B) If p > q � q0, then q � p < q0 and hence �q�p
r�p�1

is an isomorphism by the initial condition. If
p � q� q0, then by Lemma 4.7(iii) we have minf Q
 .q�p; r �p� 1/; Q�.q�p; r �p� 1/� 1g � 0. We
may thus use (Sq�p) to show that (Sq�p;r�p�1) is true, implying the claim.

(C) The case p> q�q0 is again covered by the initial condition, and if p� q�q0, then by Lemma 4.7(iv)
we have minf Q
 .q�p�1; r �p�2/; Q�.q�p�1; r �p�2/�1g � 0. Thus, by (Sq�p�1), the statement
(Sq�p�1;r�p�2) applies.

To establish (Sq), we fix a natural number r <R such that minf Q
 .q; r/; Q�.q; r/�1g � 0 and consider the
spectral sequence E�;�

�
WD rC1E�;�

�
from Corollary 4.3. By Lemma 4.7(i), we have

(5-1) 
 .r C 1/� q and �.r C 1/� qC 1;

and thus Corollary 4.3 gives

(5-2)

E
p0;q0

1
DH

q0

rC1�p0
for p0 2 ŒqC 2� and q0 � 0;

E
p0;0
2
D 0 for p0 2 ŒqC 2�;

d
p0;q0

1
D

�
�
q0

r�p0 if p0 is even;
0 if p0 is odd;

for p0 2 ŒqC 1� and q0 � 0;

Et
1 D 0 for t 2 ŒqC 1�:

The second equality is (3-1). We are going to show now that

E
0;qC1
2

Š ker.�qC1
r / and E

1;q
2
Š coker.�qr /;(5-3)

E
p0;q0

2
D 0 for all .p0; q0/ 2 f0; : : : ; qg2 with p0C q0 D qC 2:(5-4)

These computations will be sufficient to establish (Sq): As indicated in Figure 2, the differentials
emanating from E

0;qC1
2

and E
1;q
2

as well as all those emanating from the positions .0; qC 1/ and .1; q/
on any of the following pages end up on the diagonal p0C q0 D qC 2. Since this diagonal contains only
zeros up to row q, we conclude that

E
0;qC1
1 ŠE

0;qC1
2

Š ker.�qC1
r / and E

1;q
1 ŠE

1;q
2
Š coker.�qr /:
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q0

qC1 E
0;qC1
2

**

�

q � E
1;q
2

((

0 �

q�1 � 0 �

q�2 � 0 �

:::
: : :

: : :
: : :

1 � 0 �

0 � 0 �

// p0

OO

0 1 2 3 4 5 � � � q qC1 qC2 qC3

Figure 2: The second page E
�;�
2

.

In particular, it follows that ker.�qC1
r /˚ coker.�qr / ,!E

qC1
1 D 0: This gives the injectivity of �qC1

r and
the surjectivity of �qr . Since �qr is injective by (A), the claim (Sq) is proven. We have thus reduced the
proof of Theorem 4.6 to (5-3) and (5-4).

To prove (5-3) and (5-4), we only need to consider the few arrows on the first page of the spectral sequence
depicted in Figure 3. The statement (5-3) is immediate from the fact that the leftmost maps in the qth and
.qC1/th row of E

�;�
1

are given by

H
q
rC1

�
q
r
�!H q

r and H
qC1
rC1

�
qC1
r
���!H qC1

r ;

q0

qC1 H
qC1
rC1

// H
qC1
r

q H
q
rC1

// H
q
r

// H
q
r�1

// H
q
r�2

q�1 H
q�1
r�1

//// H
q�1
r�2

// H
q�1
r�3

q�2 H
q�2
r�2

// H
q�2
r�3

// H
q�2
r�4

:::
: : :

: : :
: : :

1 H 1
r�qC1

// H 1
r�q

// H 1
r�q�1

0 H 0
r�q

// H 0
r�q�1

// E
qC3;0
1

p0//

OO

0 1 2 3 4 5 � � � q qC1 qC2 qC3

Figure 3: The first page rC1E
�;�
1 .
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respectively. As for (5-4), we first consider q0 2 f1; : : : ; qg and define p0 WD q � q0 2 Œq � 1� so that
p0C q0 D q. By (5-2), the two maps E

p0C1;q0

1
!E

p0C2;q0

1
!E

p0C3;q0

1
are given by

(
H

q�p0

r�p0
0
�!H

q�p0

r�p0�1

�
q�p0

r�p0�2
�����!H

q�p0

r�p0�2
if p0is even;

H
q�p0

r�p0
�
q�p0

r�p0�1
�����!H

q�p0

r�p0�1
0
�!H

q�p0

r�p0�2
if p0 is odd:

From Lemma 5.1(B)–(C), we deduce that

E
p0C2;q0

2
D 0 for all .p0; q0/ 2 Œq�2 with p0C q0 D q;

where the case .p0; q0/D .q; 0/ is covered in (5-2). This concludes the proof of (5-4).
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