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1 Introduction

One of the main goals of the present and future runs of the Large Hadron Collider (LHC) at
CERN is to strengthen the constraints on the trilinear Higgs boson self-coupling: starting
from the present constraints on k factors on the self-coupling Aggg of —1.2 < k) < 7.2
from Atlas [1] and —1.4 < k) < 6.4 from CMS [2], the High Luminosity phase of the LHC is
expected to deliver the more stringent constraints of 0.1 < k) < 2.3, potentially excluding
kx = 0 at the electroweak (EW) scale [3].

An important process entering the study of the trilinear Higgs self-coupling is double
Higgs boson production from gluon fusion, where the trilinear coupling enters already at
Leading Order (LO). This process has been extensively studied: LO results are available [4, 5],
and NLO QCD corrections with full top-quark mass dependence have also been calculated [6—
11] and matched to parton showers [12-14], including anomalous couplings as well [15-19].



Higher-order contributions have been addressed in the heavy-top limit [20, 21] or using
expansions [22, 23], and partial three-loop results have become recently available [24-26].
The NLO QCD results have been used as a base to include top-quark mass dependence at
NNLO [27], and at N3LO [28, 29] and N3LO + N3LL [30], both in the heavy-top limit.

Thanks to the inclusion of N3LO results, the residual scale uncertainty is estimated to
be of about 3%, making the assessment of sub-leading contributions, such as EW corrections,
a necessary theory ingredient. EW effects, despite being less impactful than top-mass
renormalisation uncertainties (recently estimated to be around 4% [14, 30, 31]), can produce
relevant modifications in the shape of kinematic distributions and introduce interplays between
QCD and EW renormalisation, making the point for their thorough investigation.

Partial results for EW corrections to double Higgs production in gluon fusion have
been calculated [32-35], together with expressions in the large top-mass expansions [36] and
high-energy limit [37, 38|, while only recently a complete numerical evaluation of NLO EW
corrections has been performed in [39], followed by an independent computation of the class
of diagrams featuring Higgs self-coupling and top-Yukawa interactions [40].

In this work, we address the novel calculation of planar and non-planar four-point
Feynman integrals with two on-shell and two off-shell external legs, and one internal mass.
We perform the analytic calculation of these integrals by following the method of differential
equations in canonical form [41], choosing a basis of integrals with uniform transcendental
degree. This class of Feynman integrals is particularly interesting to investigate, both
because of its expected mathematical structure and for its phenomenological implications.
On the mathematical side, these integrals are expected to be expressible in terms of iterated
integrals over algebraic logarithmic kernels, in analogy to what it was observed for light-quark
contributions to Higgs plus jet production [42, 43]. On the phenomenological side, light-quark
contributions are a self-contained, gauge-invariant, and finite subset of the full NLO EW
corrections to double Higgs production. In analogy with single Higgs results [44-46], we
expect these contributions to be dominant when the Higgs couples to EW bosons only,
thanks to the multiplicity of the light quarks and the lack of enhancement for top quark
contributions coming from the Yukawa coupling. We expect this to be true both for the
triangle-type diagrams (being the same as for single Higgs production) and for box-type
diagrams, which are peculiar to double-Higgs production. Furthermore, QCD corrections to
these contributions (i.e. mized QCD-EW corrections) can possibly increase the total cross
section by a factor of O(+60%), as observed in the NLO QCD-Yukawa case [6-10]. In
preparation for investigating mixed QCD-EW corrections, we produce expressions for the
light-quark contributions up to order €.

Building on [47, 48], where a systematic method to construct a minimal basis of functions
tailored to scattering amplitudes was developed, we organise the solution of master integrals
according to their symbol alphabet to efficiently isolate functions with spurious features,
ensuring they appear in the minimal number of basis elements. Once the mapping between
the canonical integrals and the independent functions is found, we express the form factors
in terms of these functions and construct differential equations without dependence on the
dimensional regulator ¢, in a fully analytical fashion [49, 50]. This organisation of integrals is
beneficial for fast numerical evaluation and allows for analytically checking the cancellation



of spurious singularities in the amplitudes. In particular, we find remarkable simplifications
in the calculation of finite contributions to the form factors presented in this paper, while
higher orders in € exhibit the expected complexity inherent to multi-loop computations. The
systematic treatment of independent canonical integrals and functions has been previously
explored in the literature (see refs. [47, 48, 50-56]).

Despite the complexity of the integration kernels, we integrate our differential equations
up-to transcendental weight six in terms of Chen iterated integrals [57]. All boundary
constants are calculated in the large-mass expansion limit of the internal mass appearing in
the integrals. For fast numerical evaluation of Feynman integrals and analytic expressions for
the form factors, we make use of the method of generalised power series expansion, relying
on the MATHEMATICA package DIFFEXP [58, 59]. With these numerical evaluation at hand,
our analytic expressions are ready for phenomenological studies.

This paper is organised as follows. In section 2, we determine a basis of canonical functions
for the Feynman integrals, such that their differential equations are in canonical dlog form.
We then explain how to express such canonical basis in terms of Chen iterated integrals up
to transcendental weight six and construct a minimal basis of functions according to their
symbol alphabet. We determine boundary constants by matching the canonical functions
to their large-mass expansion. We devote section 3 to describe the analytic structure of the
amplitude and features of the form factors therein; furthermore, we construct differential
equations for only the canonical integrals that are present in the analytic expressions of
the form factors. In section 4, we present numerical results for the different parts of the
amplitude. We draw our conclusions and future directions in section 5. We accompany our
paper with four appendices: in appendix A, we list the logarithm kernels of the canonical
differential equation; in appendix B, we present details on the analytic evaluation of boundary
constants, obtained from the large-mass expansion limit; in appendix C, we provide details
on the evaluation of the independent functions that appear in the form factor that contain
the Feynman diagrams with VV HH and VV H vertices; in appendix D, we discuss the
numerical evaluation of Chen iterated integrals.

2 Canonical integrals for four-point functions with two off-shell legs and
one internal mass

In this paper we are interested in the analytic evaluation of four-point two-loop Feynman
integrals with two on-shell (p} = p3 = 0) and two off-shell (p3 = p3 = m%) external legs
with an internal mass, my . These integral families, depicted in figure 1, are described by
the kinematic variables

s=(p1 +p2)?, t=(p1+p3)?, u = (pa +p3)?, (2.1a)

that obey the momentum conservation relations

p1+p2+p3+ps=0 and s+t 4u=2m3. (2.1b)
For the evaluation of these two-loop integrals, we adopt the normalisation
D 2c [ dPky dPhy & 1
Z>(< )(a17a2,---,a9) = e (m%) /WT/QMD/Q lﬁa (2:2)
= 7
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Figure 1. Two-loop planar (PL) and non-planar (NP) integral families for four-point functions with
two off-shell legs and one internal mass. Straight lines represent massless propagators or massless
external legs, wavy lines propagators with mass my, and dashed lines external legs with p? = m?.

Denominator Integral family PL Integral family NP
Dy k3 k3
Dy (k1 +p1)? (k1 + p1)?
Ds (k1 — p2)? (k1 — ko + p2)?
Dy (k1 — ko)? (k1 — k2)?
D5 (kg +p1)2 — m%/ (kz + p1) — m%/
Dy (kg —p2)* —mi, (kg — p2)* —mi,
D~ (k2 + p1 +p3)” —my, (k'2 +p1+p3)? —my,
Ds k2 k3
Dy (k1 + p1 + p3)? (k1 +p1 + p3)?

Table 1. Definition of planar (PL) and non-planar (NP) integral families for the four-point functions
depicted in figure 1. The loop momenta are denoted by k; and ks, while my indicates the mass of
the vector boson. The Feynman prescription +ié is understood for each propagator and not written
explicitly.

with X = PL,NP, D = 4 — 2¢, vg the Euler-Mascheroni constant, and D;’s being loop (i < 7)
and auxiliary (i = 8,9) propagators (summarised in table 1) with integer powers a;.

2.1 System of canonical differential equations for all integrals

For the analytic calculation of Feynman integrals, we follow the method of differential
equations [61-63]. We opt for finding bases of pure transcendental functions that admit
the canonical form [41]!

dJ=edAlJ, (2.3)
with
0 0 0 0
d= dsaf+dt&+du8 —I—dmva (2.4)

ITo ease the notation, we drop the subscript X.



Explicitly, eq. (2.3) can be expressed in terms of partial derivatives as

—:eij, forxe{s,t,u,m%/}, (2.5)

where A, = 0A/0x.

When performing reductions from integration-by-parts identities (IBPs) [64, 65], we
observe that the integral families PL and NP have, respectively, 45 and 43 MIs. We construct
our canonical bases by looking for integrals that admit a dlog representation with the aid of
DrLoGBAsIS [66]. We rewrite the massive external momenta in terms of massless ones in order
to employ the spinor-helicity formalism, which is well-suited for this package and allows us to
fully benefit from its routines. Interestingly, we observe that DLOGBASIS performs remarkably
well in constructing dlog integrals for the integral family NP. However, for the family PL,
we need to first address each six-propagator sub-sector individually to automatically obtain
dlog master integrals containing up to six propagators. This pattern is expected since the
construction of dlog integrals strongly depends on the parametrisation of loop momenta. Only
at this point we can address the construction of top sector integrals with seven propagators,
using a loop-by-loop approach [67] in combination with additional rotations of the matrices
A; given by Magnus transformation [68].

The elements in the canonical basis contain kinematic prefactors, which are associated
to the leading singularities of the Feynman integrals appearing therein. Such singularities
contain both rational and algebraic functions, and in our case the latter are expressed in
terms of the square roots:

r =1/s (s —4m¥,), (2.6a)
Ty = \/s (st2 —4m? (m}; — tu)), (2.6b)
ry = \/s (mi (s — 4m32)) + st2 — 2mit(t — u)), (2.6¢)
ry = /s (s—4m3) , (2.6d)
s = \/m%{ (m3, —4m3,) , (2.6e)
T6 = T2|y0yy = \/s (su? — 4m} (mf, — tu)), (2.6f)
ry = \/s (m} (s —4md) + 4mim3, (¢t + u) — dmitu) (2.6g)
T8 = T3l = \/s (mi (s —4m3)) + su? + 2m3u(t — u)) . (2.6h)

In particular, while the canonical basis for family PL contains only the square roots 7, r9,
r3, 4, and 5, in the basis for family NP all square roots appear. Let us note that under the
t <> u crossing r7 remains unchanged. This is expected, since this square root comes from a
genuine non-planar diagram as opposed to the other ones. We can associate the square roots



listed in eq. (2.6) to the leading singularity of specific four-point loop integrals:

D2 2 D2 D3 b2 b3
— < — < - <
LS :@ =ry, LS m =rg, LS }< g =r7. (2.7)
— - - - > .
b1 p3 b1 D4 b1 y2

Here the leading singularity rs can be understood from a loop-by-loop analysis, where the
one-loop bubble subtopology lies in D = 2 — 2¢ and the one-loop box in D = 4 — 2¢ [67].
Square roots rg, rg are obtained by the exchange of ps <> p4, as mentioned above. The
remaining well known square roots r1, and r4 (r5) come respectively from a three-point
topologies with external momenta {p; + p2,ps,ps}, and from one-loop bubbles with external
momenta {p1 + p2,ps +pa} ({p1 +p2 +ps3,ps}) and internal mass my.

In order to obtain the canonical differential equation (2.3), we first construct the partial
differential equations (2.5) using LITERED [69] to compute derivatives and generate IBPs,
and FINITEFLOW [70] to solve their linear system of equations and analytically reconstruct
the matrices A, from numerical evaluations over finite fields [71-73].

With the analytic expressions of all A, at our disposal, we proceed to determine A. We
profit from the package EFFORTLESS [74], which uses the even letters of the alphabet (derived
from an analysis of Landau singularities) and the square roots of eq. (2.6) to construct the
algebraic letters. These algebraic letters have the parametric form

P—r Q—rmrirj
P+r;’ m ’

(2.8)

with r; square roots defined in eq. (2.6) and P, @ holomorphic functions of the kinematic

variables. By doing so, we obtain the almost complete alphabet defining these integral families.

The missing letters can easily be recovered by direct integration and have the form
P — Q T3

We write an ansatz for the structure of A utilising this alphabet, and fitting the matrix to

(2.9)

match the values of each A,. Thus, the total differential of our canonical master integrals
takes the form
77
dj:eZAidlogaij, (2.10)
i=0
where A; are Q-matrices (i.e. matrices of rational numbers), and «;’s are the letters of the
alphabet, reported in appendix A.

2.2 Explicit solution in terms of Chen iterated integrals

We now proceed to integrate the canonical differential equations up to transcendental weight
six. We construct all integrals J as Laurent expansion in the dimensional regulator e starting

at O(e%),

J (Z;€) = 26: & TH(3) + 0 (67) , (2.11)
k=0



where J (Z) are transcendental functions of weight k, depending on the kinematic variables
Z = {s,t,u,m}}, given by the k-fold iterated integral

T® (z) = J®) (7) + / dA JE=D (z7), (2.12)
il

with J*) (Zp) corresponding to boundary values at the base point ¥y = {so,to,uo,m%/;o},
and v a path connecting the base point and another point Z.
These integrals J*) can be written as

k k—k') (= -
ﬂ ) Z Z Au oo Aik/ ﬂ ) ((L‘o) {Ozil, N ,aik,}fo (ac) s (2.13)
=0 i1,....55,,=0
where A; corresponds to the i-th matrix associated to «;, according to the differential
equation (2.10), and is recursively expressed in terms of Chen iterated integrals [57]

[iys - iz /dlogalk ) [y )5 (E), (2.14)

with []; = 1. Here the integration kernels depend on the letters of the alphabet a. We refer the
reader to appendix D for further details and numerical evaluation of Chen iterated integrals.

Before fully integrating out our differential equations and committing with a particular
phase-space region, we analyse the structure of the canonical basis. We carry out this study
by looking at the symbol map of the integrals J*) (Z) [75],

77
SIW @] = Y Au by JOE) 0y ® . @, (2.15)
i1,eipg=0

which maps k-fold iterated integrals onto k—fold tensor products. This operation allows
us to understand at which weight a given letter starts appearing and then organise our
canonical bases in terms of independent functions that manifest the dependence on particular
integration kernels. Notice that for the construction of the symbol only the boundary values
of the weight zero function J) (%) are needed.? For instance, the integrals that appear
in (2.7) have the following symbol map,

1
JpLir = — (20410 ® a3 + 041 @ a2 + Az ® a61)62 +0 (63) ; (2.16a)

JINP;34 = (4048 ® ayg —ag @ ags — ag @ e — 208 ® gy — Qg @ Qg + g @ Qg5 + Qg @ (g

+ ag @ aygr — 20110 ® g + 10 ® Qs + @10 @ ayr — 20011 @ gy

T o1 ®aye + 011 & a47) e +0 (63) , (2.16Db)
1 1 1
JpL;36 = (048 ® 12 @ azq + 5048 Qa1 ® ass + 5048 & 33 @ asp — ZOC38 & ap1 @ a7
3 3 3 3 4
+1a9®0‘38®0‘58+1a8®0¢4l®0‘59+1048@70541@0660—1—---)6 +(’)(e ) ,
(2.16¢)

where the last entries of the symbols contain algebraic letters that depend on square roots;
ellipsis in eq. (2.16¢) contain similar symbols of weight three.

2For more background material on this topic, see the recent review [76].



Weight PL PLx12 NP Total
1 2, 8,9, 10, 38, 41 2,8,9, 11, 38, 41 8,9, 10, 11, 38, 41 7
1,3, 5,6, 12, 1,4, 5,6, 13, 1,2,3,4,5,6, 12, 13,
9 14, 18, 21, 23, 32, 14, 18, 22, 24, 32, 14, 21, 22, 23, 24, 25, 33, 37, 33
33, 37, 39, 52, 53, 33, 40, 49, 52, 53, 39, 40, 44, 45, 46, 47, 49, 52,
54, 61, 62, 74, 75 54, 66, 70, 74, 75 53, 54, 61, 62, 66, 70, 74, 75
7,17, 19, 28, 7,17, 19, 27, 7,17, 19, 20, 26, 27, 28, 29, 30,
3 29, 31, 34, 35, 30, 31, 42, 43, 31, 34, 35, 36, 42, 43, 48, 50, 51, 35
36, 50, 51, 57, 48, 55, 56, 64, 55, 56, 57, 58, 59, 60, 63, 64, 65,
58, 59, 60, 73 67, 68, 71, 72 67, 68, 69, 71, 72, 73, 76, 77
4 13, 16, 63 12, 15, 63 15, 16 2

Table 2. List of the letters appearing in the integral families PL, PLx12 (¢ <+ u crossing of PL), and
NP. These letters are categorised according to the transcendental weight at which they first appear in
the symbol. All of the letters that appear at the symbol of transcendental weight k — 1 also appear at
weight k. Notice that starting at weight 5 no new letters appear.

From egs. (2.16), we immediately appreciate at which transcendental weight a particular
letter starts appearing. In details, letters asy, auq, aus, aug, auaz, g1, and age start appearing
at weight two, while letters asq, ass, asg, as7, ass, asg, and agy appear at weight three. We
present in table 2 the transcendental weight at which the letters of the alphabet first appear
in each integral family. This classification provides insight into the structure of the integrals
and into the complexity of the functions involved in their evaluation. This organisation
allows us for constructing differential equations in terms of independent functions, as we
will describe in the following.

Several studies on the construction of independent functions have been already performed
in literature. In the following, we adopt the strategy of [48, 50].

2.3 Independent functions

Owing to the symbol map of the canonical integrals, we look for linear relations that these
integrals satisfy at each transcendental weight. Order by order in transcendental weight,
we construct a rotation such that the new elements of the canonical bases remain linearly
independent. We have efficiently automated this procedure within the FINITEFLOW framework.
Explicitly, we construct the set of canonical integrals W,

(2.17)

with R a Q-matrix. In this way cancellations, expected to happen once the e expansion
of master integrals is considered, are already accounted by W. We construct the set of 74
independent canonical integrals by giving preference to planar over non—planar integrals. In
other words, and abusing the notation, we construct J = Jp|_ U JPLX12 U JNp, accounting
from all symmetry relations between families. We find with the rotation of eq. (2.17) the
decomposition of canonical integrals of families PL , PLx12 , NP in terms of integrals I/T/k with k



Wo 1(1) 1(0) 1(0) 1
Wy 6(6) 6(1) 6(0) 7
Wy 17(17) 20 (6) 19 (2) 25
W5 15 (15) 19 (9) 16 (6) 30
Wy 6(6) 6(4) 1(1) 11

Table 3. Relation of integral families PL,PLx12, and NP and canonical integrals Wy. Numbers in
parenthesis correspond to integrals that appear for the first time in this integral family. Notice that
starting at weight 5 no new integrals appear.

the transcendental weight at which this integral appears. In table 3, we provide a classification
of the families PL, PLx12, and NP in terms of the rotated integrals Wk

Because integrals W, are constructed to be independent order-by-order in transcendental
weight, we further decompose them in terms of independent functions,

6
Wi, (Fe) =S & ) (@) . (2.18)
k'=k

In this equation, the subscript i accounts for the i-th canonical integral that arises at

transcendental weight k. As mentioned above, wZ(fI) = 0 for k¥’ < k. The dimension of the
complete set of functions wg:/) present in the integrals W is obtained as

dim (@, ..., ")) :minz(kjl’@ dim (W) (14K — k) . (2.19)
k=0

In particular, up to transcendental weight four, five and six, we get 179, 253 and 327
independent functions, respectively. This decomposition motivates us to construct and solve

differential equations for the transcendental functions wz(ll:,) [56],

6
dw) =3 a0 wl Y, (2.20)
=0

2

which are independent of €, and whose kernels of integration, contained in the matrix €2, are
the logarithmic forms encompassed by the alphabet &. This approach allows for lessening
the number of operations when numerically evaluating Feynman integrals and results in a
simpler expression for the scattering amplitude, thanks to intermediate cancellations. In
particular, some letters may appear in the explicit calculation of integrals but not in the final
expression of the amplitude. Organising Feynman integrals in terms of these functions allows
us to perform only the strictly necessary evaluations, having already removed the vanishing
contributions. Similarly, having direct access to the functional space of the amplitude level
provides insights into the structure of its perturbative expansion.



We observe from table 2 that at weight one our canonical basis depends only on the
following transcendental functions:

2 —
w!) = 21og <mH my r5> : (2.21)
mH — va + 75
2

(1) _ 2 (1) s —2my —ry
wy,” = 4log (mv—t) , wy,* = 2log (S—QWL%/-FM) )

1
wél) = 4log (m%/ - 5) , wél) = 2log(—s),

1 1
wé(ll) = 4log (m%/ — m%) ) wgl) =4log (m%/ - u) .

Both the analytic expressions and the definition of our canonical basis in terms of independent

functions wg:) are provided in the supplemental material.

2.4 Boundary values

Let us now turn our attention to the analytic calculation of boundary values. We observe that
the integrals appearing in PL and NP can systematically be calculated in the limit s, ¢, u < m%/,
often referred to as the large-mass expansion. This limit serves to fix boundary constants for
the canonical integrals J¥) (%), or alternatively for the independent transcendental functions
wg:/) (Z). This boundary point can be understood as Zp = {so,to,uo,m%/;o} = {s,0,0,1},
with |s| < 1.

Let us concentrate on the integrals depicted in figure 1. We observe that the only
non-vanishing regions in the large-mass expansion limit are k¥ < mf, ~ k3 and ki ~

k2 ~ (k1 — ,14:2)2 ~ m3,. These regions, for the planar integral, can be diagrammatically

TTT- DO em

whereas, for the non-planar integral, one only has to account for the non-vanishing region
ki o~ kg~ (k= ke)? ~ mi

X:E - (2.290)

We provide further details in appendix B. Here, we content ourselves with showing that, in

understood as

the large-mass expansion, the only relevant integrals that require direct calculation are:

(D-2)
m2 77 (1,0,0,1,0,1,0,0,0) = m? (%) (2.23)

= —1— 3(e 2, 85 03C1a (CC3+<5> <32C§+869C6>66+0<67),

3 4 9 16

,10,



and

D-2)

(
s78P2(0,1,1,0,0,0,1,0,0) = s >Q< x X:} (2.24)
2\ ¢ 1 4 4¢2
- <WZZ> Lo+ 1% gt 4 67@65 + (20@6 - 6C3> Sl +0 (67> .

3 9
Additionally, thanks to the rotation performed in (2.17), all other integrals vanish in

this kinematic limit. This provides strong evidence that such rotations significantly make
the calculation of integrals much more efficient, eliminating the need of providing boundary
constants for each canonical integral when integrating order-by-order in € (see eqgs. (2.11)
and (2.12)).

In the boundary values, we observe a dependence on the kinematic variable s. The
presence of this variable does not introduce any ambiguity in the calculation of boundary
constants, as we can directly match our expressions—formulated in terms of Chen iterated
integrals—to the boundary values once we account for the kinematic limit s, ¢, u < m%/. The
only subtlety to consider is the sign of s, since s = 0 represents a physical threshold, where
one passes from the unphysical (s < 0) to physical (s > 0) region.

In the supplemental material of this paper, we provide analytic results for the canonical
bases in the physical regions s > 0, expressed in terms of Chen iterated integrals. It is
important to note that transitioning across other physical regions requires appropriate analytic
continuation. In section 4, in addition to the physical region s > 0, we draw our attention to
the production region s > 4m12q, which is the relevant region for the scattering amplitude
discussed in following section.

3 Two-loop scattering amplitudes for gg - HH

In this section, we construct the analytic expressions for the two-loop scattering amplitudes
describing the light-quark EW corrections to double Higgs production in gluon fusion, using
the set of Feynman integrals calculated in section 2.

3.1 Scattering amplitudes and form factors

We consider the scattering process

g(p1) + g(p2) — H(—p3) + H(—pa), (3.1)

with the same kinematic constraints as in eq. (2.1).  All the quarks considered in this
process are massless, therefore the Higgs boson can only couple to the EW bosons or to
itself.> We always need a quark loop to connect the gluons to the EW part of the diagrams,
which leads to the presence of a v (gy 4+ ga7s) term from Zqg vertices. We can divide
the diagrams contributing to the amplitude into two classes: factorisable diagrams, which
consist of two one-loop sub-diagrams connected via an EW boson line (e.g. figure 2) and

3For text compactness, we refer to Goldstone bosons (if the gauge choice allows them) and to the W and
Z bosons comprehensively as “EW bosons”.

— 11 —
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Figure 3. Representatives for the three different subsets of non-factorisable diagrams.

non-factorisable diagrams, which feature genuine two-loop configurations (e.g. figure 3). Since
we are considering multi-loop integrals in dimensional regularisation, 75 is not properly
defined and requires the application of a scheme to be consistently handled. We adopt here
the so-called Kreimer scheme [77, 78], see also discussion in [79, section 2.1].

The contribution of the factorisable diagrams is zero. At this level in perturbation
theory, we can only have photon and Z boson as connecting particles.* Vector contributions
vanish because of Furry theorem, while axial contributions vanish once we sum over complete
generations of massless quarks [80, 81], as well as for charge-parity invariance of the sub-
diagram connecting the vector boson and the two external Higgs particles.

The contribution of non-factorisable diagrams can be split into three different contribu-
tions, depending on how the Higgs boson pair is produced: diagrams containing a four-point
vertex connecting two EW bosons and two Higgs bosons (dubbed VVHH, cf. figure 3(a)),
diagrams where two EW bosons produce a single Higgs, which subsequently splits into two
particles (VV H, cf. figure 3(b)), and diagrams where each Higgs boson is generated from a
separate three-point vertex; as a consequence, these diagrams contain three massive lines with
the same mass my (VVV, cf. figure 3(c)), when working either in unitary or in Feynman
gauge. Furthermore, it is important to notice that in a single diagram either only W bosons
or Z bosons (and the corresponding Goldstone particles) can be present. When considering a
general R¢ gauge for the EW sector, the VV HH and V'V H contributions contain 21 diagrams
each, while the VVV one contains 84 diagrams.

We stress that the light-quark contributions to gg — H H appear for the first time at two
loops and represent a gauge-invariant, UV- and IR-finite set of diagrams. As a consequence,
no renormalisation procedure is required.

In non-factorisable contributions, the vertices containing quarks and EW bosons are
located on the same fermion loop. Thank to this, the amplitude consists of a part proportional

*We cannot have Goldstone or Higgs bosons connecting the two sub-diagrams, since they couple to quarks
proportionally to the quark masses.
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to (9\2, + g%), not containing any s, and of another part proportional to gy ga, containing
a single ~s.

The part containing a single 5 vanishes due to charge-parity conservation once we sum
over complete generations of massless quarks, as explained in [80, 81]. Since only the vector
contribution remains, we can model the V¢q interaction with a vector coupling proportional
to 4/ 9‘2/ + g124. The amplitude can be now decomposed into a linear combination of tensor
structures identical to the one obtained for the Yukawa-QCD case.’

Thanks to Lorentz invariance, only two independent tensor structures are necessary to

describe the amplitude [7, 8, 82, 83],
Mic)?z = 561026)\17,&6)\271/ [}—1 Tllw + F2 T‘z”’] ) (3.2)

where ¢; and co are the colour indices of the gluons and

. 1
TV = ¢" — —php{, (3.3)
Pb12
. 1
Th = g + iop? (qupép’f — 2pasps P — 2p13p5Ds + 2p12p§p;’§) : (3.4)
T

are tensor structures with,

2p13p23
prh= 00 m? (3.5)
P12
and p;; = p; - pj. Notice also that Ty, TY" = Ts ,, Th” = D — 2, and Ty, TH” = D — 4.
It is worth stressing that the above decomposition is independent of the gauge choice
of the external gluons and allows for a direct identification of the form factors F; with the

helicity amplitudes of the process:

MTT=M" = —F1,

M =M"T=-F. (3.6)

Since W and Z bosons never appear in the same diagram, the form factors can be de-
composed as

Fir=Fiwww +Fiwwan +Fiwwna + Fizzz + Fizzan + FiL,zz0 (3.7)

Fo = Fowww +Fo 727 -

Each one of the F; x terms represents a gauge-invariant part of the amplitude. This property
has been checked by explicitly computing the amplitude using either Feynman gauge or unitary
gauge for the EW sector, and finding that the results are the same once the expressions
have been written in terms of master integrals.

It is interesting to notice that the VV H and VV HH terms contribute only to JFi, i.e.
only to the M*+ and M~ helicities; this is due to the fact that they present the same tensor
structure as for single Higgs production, for which only M™" and M~ helicities are allowed.

5No new tensor structures w.r.t. the QCD-Yukawa case are expected to appear when including internal
axial couplings since we are considering the same set of external legs.

,13,



The different parts of the form factors can be expressed in terms of just three scalar
functions A; (s/mi ,t/m? ,u/m}) with i = 1,2,3, of the kinematics:

Fivvv =w Gv Ay (s/m%/ ,t/m%/ ) u/m%/) , (3.9a)

Foyvv =wGy As (S/W%/ t/mi U/m%/) ; (3.9b)

Frvvan =wGy As (S/mv) ; (3.9¢)
3m

Fiyvva =w GV As (S/Tnv) ; (3.9d)

for V.= W, Z, where the functions A; admit the QCD perturbative expansion

A=Y a2 Al (3.10)

L=2
with

—2e¢ a? «
—2vpe 2 S
w = (477) B (m ) 7SID4 o ( ) ,
a = i(4m)e 1E" ( )

G — Z ]V ’ (3.11)
i€{u,c}
je{d,s,b}
= 1 9 9 . 1 9 7 22 4
Gz = M/qu{u%w} <9L,q +9R,q) = m ( 3 sin® Oy + — 9 sin 9W> )

with p being the regularisation parameter coming from higher order loop integrals, 6y being
the Weinberg angle and V;; being the Cabibbo-Kobayashi-Maskawa mixing matrix [84, 85).6

In general, to describe the unstable nature of the W and Z bosons, one needs to account
for complex values for their masses. This can be done by adopting the complex mass
scheme [87]. We nevertheless restrict ourselves to real values, since no resonant contributions
appear in our process and we always consider phase-space points in the production region
(which lies above any physical threshold). Moreover, our results are valid for arbitrary
complex values of the variables, and can be evaluated by means of computer codes that allow
for complex-valued inputs, such as SEASYDE [88] and LINE [89].

The form factors F; and Fy can be extracted by applying projectors:

‘E = Pi#ﬂ/ [fl T!IILV + fz Tgy] 9 (312)
with
1D -2 1D —4
P = —— ——— T
1,puv 4D —3 1,pv 4D —3 2,1 5 (3 13)
1D -2 1D —4 ’
RGN Vo R Vo R

6Assuming Vi; = d;; we retrieve the know result V = 2, cfr. [45, 86].
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Weight Total
e € S =

0 0 0 0 0 0 O 1 0 0 1

1 4 2 0 6 0 0 2 1 0 7

2 19 10 2 25 6 0 1 4 1 32

3 14 35 10 28 27 6 3 1 4 61

4 1 22 37 8 31 27 - 3 1 66

5 - 1 22 - 8 31 - - 3 41

6 - - 1 - - 8 - - = 9
Canonical integrals 38 32 2 67 5 O 7T 2 0 73

Table 4. List of the functions and canonical integrals appearing in .Ag2), Af), and A:(f). Functions

are categorised according to their transcendental weight at which they first appear at the given ¢
expansion of the form factors. All of the functions of transcendental weight k — 1 also appear at
weight k.

3.2 gg — HH form factors at two loops

We follow a standard procedure for the generation of the amplitude and the construction of the
form factors. We produce Feynman diagrams relevant for the process with the computer code
QGRAF [90], then extract the form factors applying the projectors P; and Pg of egs. (3.13).
We resolve the colour and Dirac algebra using the computer code FOrM [91], writing the
form factors as a linear combination of two-loop Feynman integrals (see eq. (2.2)).

We use the computer program REDUZE [92, 93] to map these integrals (up to permutations
of the external legs) onto the two integral families listed in table 1 and depicted in figure 1.
We obtain a full symbolic reduction of the amplitude onto the basis of canonical integrals
discussed in section 2 with the aid of the computer code Kira [71, 93-96].7

In section 2, we mentioned that all integrals belonging to the families PL, PLx12, and NP
can be reduced to 74 canonical master integrals (see table 3). However, we notice that we

)

We summarise the number of independent functions and canonical integrals that appear in

can express A(f) and Ag in terms of 72 canonical integrals, and A:(f) in terms of 9 integrals.
these form factors up to order O (€?) in table 4.

Similarly, in table 5, we present the letters of the alphabet & that appear in the analytic
expressions of the form factors, in terms of Chen iterated integrals. We classify them according
to the transcendental weight of the functions wg:,). This classification highlights the striking
contrast in complexity when comparing the analytic evaluation of .A;(f) against A(12) and .Ag).

In the following, we separately discuss each two-loop gauge invariant group. Since the
form factors involving internal Z or W bosons share the same analytic structure, as shown in

egs. (3.9), we concentrate on the two-loop contributions to Aj, Az, and As.

"Throughout the reduction process, we set m3 = miy, = m% = 1. We reinstate their full dependence at
the final stage by using dimensional analysis and keeping in mind that canonical integrals, as well as the
amplitude in four dimensions, are dimensionless.
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A§2) A;Q) A:(f)

Weight
€° et € €° et € €° et €&
2, 8,9, 10, B B o
1 8, 9,10, 11 2, 38 - 11, 38 9, 38
1,2, 3, 4, 1,3, 4,12,
12, 13, 14, 21, 13, 14, 18, 21,
922, 23, 24, 25, 922, 23, 24, 25,
33, 37, 38, 39, 32, 33, 37, 39, B B
2 10,41, 44, 45, 1532 P 40, 41, 44, 45, o 2 s
46, 47, 49, 52, 46, 47, 49, 52,
53, 54, 61, 62, 53, 54, 61, 62,
66, 70, 74, 75 66, 70, 74, 75
5, 17, 19, 20, 57,17, 19,
20, 27, 28, 29,
27, 28, 31, 34,
6, 7, 30, 31, 34, 35,
35,36, 42,43, o6 99 36, 42, 43, 48
3 18,50,55, 5T, 50 51, - 50, 51, 55, 56, 20 - 5 - -
58, 59, 60, 63, 69
56 57, 58, 59, 60,
64, 65, 67, 68,
69. 71. 72, 73 63, 64, 65, 67,
’ 767 77’ ’ 68, 71, 72, 73,
’ 76, 77
4 - 15, 16 - - 15,16 — - - -
Total 66 7 7 72 7 7 4 4 4

Table 5. List of the letters (integration kernels) appearing in the functions A§2) ,A?’ ,Ag) , up-to
o (62). Similar to table 2, we categorise letters according to the transcendental weight at which they
first appear in the iterated integral. All of the letters that appear at transcendental weight k — 1 also
appear at weight k. Starting at weigh five, no new letters appear. The last row contains that the
total number of letters present in the indicated function.

VVHH and VV H contributions. The analytic expressions for the function Agz) (up

to overall kinematic prefactors) has already been obtained in the literature for single Higgs

production up to €2, expressed in terms of generalised polylogarithms [97] up to transcendental

weight five, due to a weight drop in the transcendental degree [86]. With our canonical

integrals, we recompute these form factors in terms of independent transcendental functions.
We obtain the following expression in terms of nine canonical integrals w8

—1) /1
AP = {—2 (33¢2 + e + 1) Wi, — fe-1) (6 +10+ 556) Ws,

4s
—4) /1 1 2  2s-11
—(54)(+6+276>W51—(—2+5+15(S_2))W52
T4 € 5\ € €

—4) /2 —-2)1
_ (54) ( + 11) W112 + M*WBQ
T4 € S €

1/s—2 4s—10 15s—36
+ +

_|_7
S

> Wia,

€3 €2 €

S8Ref. [86] reports the same number of integrals.
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(s —4) <s—2 4(s — 2) 153—32)
4rys €3 €2 + Wagg
1 (s—4 4(s—3) 5(3s—38) 3
25 ( €3 + €2 * € ) WSO?’} +0 (6 ) ’ (3.14)

where we have included only the relevant coefficients of the canonical integrals W;, (see
eq. (2.17)) and, for the sake of simplicity, we have set m?, = 1. This structure of the amplitude
follows from how the canonical integrals W;, have been defined in terms of independent

(k')
(3

In particular, the finite part of .A:(f) reads

functions w,, ' according to eq. (2.18).

@ _ _(sfl) B (s —4) (257“4)_1 _ (s—4) .
As 0= 2 — log(1 —s) + 51 log Sp—— ; Lip s + 5 Liz s
(5=2) @3 (s—4)(s5—2) (@3
+ s V12 T 4rys W29, 5 (3.15)

where we have plugged in the decomposition of W;, , evaluated in the physical region s > 0.
(%)

The single w; " appearing in the expression are

1
wl) = -1, wy =~ Ligs, wy, = —Ligs, (3.16)

with weight one functions reported in eq. (2.21), and

3 1 1.
wﬁ’i =3 (g, aizs, ausg] — 1 [auss, augs, o] + 5 Liss,
(3)

1 2—s—m1y
Wag, = 2 [Oég, a9, Ozgg] -3 [Oég, Qass, 045] 4+ — 10g3 A

. 3.17
12 2—s4ry ( )

We observe that only seven independent functions (or canonical integrals) appear in the
finite part. This represents an improvement compared to the initial number of master
integrals required for the calculation. Explicitly, the canonical integrals Wi, and Wis,
first appear at O (e).

Owing to the simplicity of Agf), depending on only one variable, the functions expressed
in terms of Chen iterated integrals can be readily converted into generalised polylogarithms
by parametrising s along the path s = (1 +z)? /2 (with z €]0, 1]). This change of variable
allows for the systematic numerical evaluation of the form factors up to O (62) using available
computer codes, such as GINAC [98].

In addition to evaluating Chen iterated integrals or parametrising them so that they
can be expressed in terms of generalised polylogarithms, we also take advantage of having
analytic expressions for the form factors in terms of independent functions to construct and
solve differential equations solely for these functions, as explained in section 2.3. This task is
straightforward, thanks to the MATHEMATICA package DIFFEXP [58, 59], which requires only
the differential equations satisfied by these functions and their boundary values as input.

1%

Let us consider the transcendental functions wy appearing in eq. (3.17). We can

construct the differential equation,

d @30 = d Qg0 T, (3.18)
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with the matrix of coefficients, according to eq. (2.20),

0o 0 0 0 0 0 000
—4Ly 0 0 0 0 0 000
2Lz, 0 0 0O 0 0 000
0o Z o0 0 0 0 000
Q0= 0 —2Lyz 0 0 0 0 000], (3.19)
0 0 &= 0 0 0 000
0 0 0 —Ly-f L 000
0 0 0 4Lss Ls —L3z 000
0 0 0 2L, 0 0 000

where L; = loga;, and the basis 3,0 reads,

i = {0l s w0, 0wl w) ) o)) (3.20)

Wiy > Way' Wy, Wy, Wiy, Wiz, Wiggs Wags, Wapg
with the only non-vanishing boundary value at s = 0,

w} =L (3.21)

Notice that the functions wgl, w%)Q, which are required to construct the differential equation,

do not appear in the finite contribution to .Az(f). This is expected, since weight three functions
are iterated integrals of weight two ones.

In order to compute AgQ) up to O (e2), we need to consider differential equations for
27 independent functions (see appendix C for details), with the same kernels of integration
as in (13.0. In section 4, we numerically solve these differential equations across different

physical regions.

VVV contributions. The analytic calculation of the functions Af) and .,452) represents
the main result of this work, derived from the novel computation of genuine four-point
Feynman integrals shown in figure 1. Due to the large alphabet characterising these integral
families, we do not attempt to rationalise the square roots through a parametrisation of the
kinematic variables, as performed for Ag) . Instead, we express the solution of the differential
equations in terms of Chen iterated integrals, in this way keeping full dependence on even
and algebraic letters of the alphabet.

The analytic expressions for Aﬁ” and Ag) at O (), O (e!), and O (€?) are expressed in
terms of transcendental functions of up to weight four, five and six, respectively. Differently
from A:(f), no transcendental weight drop occurs.

(k/)Let us elaborate on the structure of the form factors in terms of independent functions
ik

families PL, PLx12, and NP at each transcendental weight. Through the direct calculation

w; . Eq. (2.19) provides the number of functions appearing in the canonical integrals of

of the form factors, we observe the presence of a smaller set of functions: the form factors
can be expressed up to O (€?), O (e!), and O (e?) in terms of 70, 142, and 214 functions,
respectively. This represents a significant improvement compared to using the canonical
integrals. We will take advantage of this approach in section 4.
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Tables 4 and 5 also show remarkable simplifications in the finite contributions to .AgQ)
and A§2). A§2), related to the helicity amplitude M2 ++ consists of 66 letters and only 38
independent functions, thanks to the inherent symmetries of the all-plus helicity configuration.
A§2>, associated with M)+~ presents a more intricate structure, due to the lack of symmetry
of the external states.

When considering the expressions of A§2) and Ag) in terms of uniform weight functions
and up to O (€"), we notice that only six out of the seven logarithms listed in eq. (2.21)
appear. We can then write

(n)
(2 ) (1) 1) 1 G5 (1 1 1
Amz = c,% wél + cgg)wél + cgz)wil) + ;—4111;1) + c%)wél) + cz(»??)wgl) +... (3.22)
with i =1, 2, cl(-s-) rational functions depending on the kinematic variables and appearing at
O ("), and ellipsis accounting for higher transcendental weight functions. Note that here no
(0) (1)

wy,” or wy,~ are present, and we observe as well the absence of the canonical integrals Wy

and W, in the D-dimensional Aﬁz) and .AgQ) functions written in the W basis of canonical
integrals.? Furthermore, thanks to the t ++ u symmetry of both A§2) and Ag), we get

‘ . (3.23)
t<—>m§{
An analogous behaviour is observed for higher transcendental weight contributions.

To ensure an efficient numerical evaluation up to O (62), we follow two complementary
strategies. On the one hand, we numerically evaluate the single Chen iterated integrals,

according to the discussion presented in appendix D. On the other hand, we solve the
differential equations for the independent functions wg:/) by means of generalised series
expansion.

We present, in the supplemental material of this paper, the analytic (e]z/()pressions for

all the non-vanishing form factors in terms of the independent functions w;, ", along with

their representation as Chen iterated integrals.

4 Results and checks

Thanks to the correspondence between the form factors 72 and the helicity amplitudes out-
lined in eq. (3.6), we can directly write the partonic differential cross section for gg — HH as
06 1
— = ——— (|F1[* 4| R 4.1
ot 297 52 (‘ 1| _H 2|>7 ( )
with F; = F;+F1,0,i , where F; are defined as in eq. (3.12) and the Fi,0; are obtained applying
the projectors of eq. (3.13) to the one-loop, top-mediated gg — H H amplitude [5, 99].
The phase-space for the production of a Higgs boson pair reads

s> 4m? & m%—g(1+ﬂH)<t<qu—g(l—ﬁH), (4.2)

gwgg) (and the canonical integral Wi, ) appears in A§2>, as shown in eq. (3.14), while will) (and the canonical

integral Wll) does not appear there either.
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with ﬁ%{ =1- 4m%{ /s. We can also parametrise the process in terms of the dimensionless
variables 1 and ¢, defined as

2
51, o=t (4.3)

= 2
dmi; s

Ui

Using these variables, the physical region described in eq. (4.2) becomes

n>0 & ;<1— 11?7><¢<;<1+\/Z>' (4.4)

We now aim to numerically evaluate the functions Af), A§2), and .Ag?) from section 3.
Specifically, we are interested in analytically continuing our independent functions (as well
as our canonical integrals) from the region 0 < s < m%/ ,u,t < 0 to the production region
of eq. (4.2).

Let us begin this analysis by numerically comparing our results for A:(f) against the
analytic expressions, in terms of generalised polylogarithms, reported in [86]. To perform

(k")

this analysis, we solve the differential equations for all independent functions w;,

in our analytic expressions for AgQ) up to O (e?), as explained in section 3.2.

present

Notice that, to reach the production region evolving from the large-mass limit, we have
to cross the thresholds

mi — s, 4mi — s, mi —m3 m¥ — s, 4m? — s. (4.5)

For the evaluation of .Ag2), we only need to cross the first and second thresholds, since this
form factor depends only on s and m¥. We solve the differential equations and perform
the required analytic continuations with the help of DIFFEXP, by giving a small imaginary
part to s (s — s+ i0).

In figure 4, we show the comparison between our numerical evaluation via generalised
power series expansion and the numerical evaluation of generalised polylogarithms. For the

comparison, we evolve along the straight line

with #y = {0,0,0,1} and #; = {10,0,0,1}, and y € [0,1]. Through this path, DIFFEXP
provides generalised power series expansions that allow for fast numerical evaluations.

Let us now consider A§2) and A;Q). We first transport our boundary values to a point in
the production region s > 4m%{, and then use this new point as a base point to explore the
whole physical region. This allows us to skip performing the necessary analytic continuations
every time we evolve to a new point from the large-mass limit and cross the thresholds listed
in eq. (4.5). Without loss of generality, we pick the phase-space point

3125 1875 1875 625
2 }:{ } (4.7)

2
{s0.10. 10 mirg g 256 ' 512 512 1256

It is worth mentioning that the numerical evaluation of our independent functions required
constructing a system of 220 differential equations. To make our work self-contained, we
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2) (2)
A‘a‘o A3.|

30

20+

2k

(2)
AG‘Z

Figure 4. Two-dimensional plots for real (solid line) and imaginary (dashed line) parts of .Az(f) as
a function of s/m2,, up to O (62) generated by numerical evaluation of wz(f ) via generalised power
series expansion through DIFFEXP (blue) and numerical evaluation of analytic expressions in terms of

generalised polylogarithms (red).

AgQ) AéQ) Ai(f)
7.6630892513031246689 0.32099028648379086709 —2.0639052901232038861
+1.2522181718007465702i  40.526935470025509365651  +1.3199524961270220223i

11.583682591428381615 —1.6327683705293072671 —7.4642615923306829442
+22.667681416494406992i  +1.72768270467646004591  —8.4210262675049745787i

—12.799667397909851909  —5.0540312586637065786 10.697978848021963295
© 133.636555225786201772i  —0.6727314555148337712i  —12.068177949009557105i

e

Table 6. Real and imaginary parts of the numerical evaluation of the functions A§2), Aé”, and A§,2)
in the phase-space point of eq. (4.7).

provide a MATHEMATICA notebook in the ancillary files to numerically solve these differen-
tial equations using DIFFEXP. Furthermore, to ensure that the analytic continuation has
been correctly performed, we evaluate the canonical integrals at this kinematic point using
AMFrow [100, 101], finding agreement. In table 6, we present numerical values for the form
factors ASQ), Ag), and .Az(f) at this phase-space point.

We demonstrate the efficiency and reliability of our setup for numerical evaluations by
focusing on A?) and .,4&2) from €%, through 2. We construct a grid of 4,143 points in terms
of n and ¢ variables in the production region, which we use to produce the three-dimensional
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plots presented in figures 5 and 6. The first 1,600 points are chosen to be same as in [102, 103],
whereas the remaining 2,543 are distributed on an evenly spaced grid near the threshold
s = 4m%{. We experienced a CPU time required per phase-space point of O(5') (starting
from the large mass expansion) and O(40”) (starting from a point in the physical region),
on a desktop machine with processor AMD RYZEN 9 9700X and 32 GB of DDR5 RAM.
These grids are available from the authors upon request.

Let us emphasise that, due to the organisation of our amplitude in terms of independent
functions, we avoid large cancellations and spurious poles in intermediate steps of the
computation. As a result, the accuracy of the amplitude is determined mainly by the
numerical precision achieved in the evaluation of the independent functions. For a technical
discussion on the computation, see appendix E.

5 Conclusions

In this paper, we computed analytic expressions for the electroweak (EW) two-loop, light-
quark contributions to the two form factors that describe double Higgs boson production
via gluon fusion. Since this class of contributions appear for the first time at two-loops,
we employed dimensional regularisation and standard methods for calculating multi-loop
scattering amplitudes, observing explicit cancellations of infrared and ultraviolet divergences.

To evaluate these form factors, we identified three independent gauge-invariant groups:
two of them containing three-point Feynman integrals and one containing genuine four-point
ones. While the three-point integrals are already known, the four-point integrals required
explicit calculation, revealing their dependence on four kinematic invariants. We computed
these integrals using the method of differential equations in canonical form, constructing
an independent basis with uniform transcendental weight and solving them in terms of
Chen iterated integrals.

For fast numerical evaluation of the form factors, we expressed our results in terms of
generalised power series expansions with the aid of the MATHEMATICA package DIFFExpP. We
elaborated on a procedure to evaluate the linear combinations of Feynman integrals appearing
in the amplitude in terms of independent functions by constructing a system of differential
equations that is independent of the dimensional regulator ¢, avoiding the computation of
unnecessary terms. This procedure led to remarkable simplifications in the finite contribution
to the form factors while highlighting the increasing complexity of higher orders in €, which
are essential for next-to-leading order calculations.

Our results open several future research directions:

1. The analytic expressions of the form factors provided in this paper, supplemented with
dedicated tools for their numerical evaluation, are ready for implementation into codes
for phenomenological studies, such as the GGHH library [13-15] of the POWHEG-
BOX-V2 [104-106], which will be the topic of a dedicated publication. This will allow
to investigate the impact of light-quark EW corrections on several observables, and
represents a major step towards more precise studies of double Higgs boson production
at hadron colliders.
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Figure 5. Three-dimensional plots of the real and imaginary parts of A§2> as a function of n and ¢
in the physical region of eq. (4.4).

2. The analytic expressions for the two-loop Feynman integrals calculated in this work,
as well as the computational framework and organisation of amplitudes in terms of
uniform weight functions, can be adapted to other scattering processes that manifest
similar kinematic configuration, such as higher-order vector boson pair production and
Higgs plus vector boson production. The techniques described here can be implemented
in computer codes for efficient evaluation of scattering amplitudes through the solution
of differential equations, such as SEASYDE [88] or LINE [89].
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Figure 6. Three-dimensional plots of the real and imaginary parts of Aéz) as a function of 7 and ¢
in the physical region of eq. (4.4).

3. NLO QCD corrections have been shown to increase the cross section for double Higgs
production in gluon fusion by O (+60%) w.r.t. LO [6-10]. Aiming at a percent-level
theoretical uncertainty, QCD corrections applied to light-quark EW contributions
cannot be discarded and will require dedicated work. Even though we expect an
increase in complexity when addressing such contributions, we are convinced that the
space of functions describing the Feynman integrals and the amplitude will not change,
allowing us to apply the results and methods outlined here to the computation of mixed
QCD-EW corrections to double Higgs production at three loops.
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A The alphabet

We present the complete alphabet of the canonical differential equations (2.10). We split
it into even and algebraic letters.

Even letters.

Oé():m%/, (Al)
ay = m3, a16:4m%/ (m}&—tu)—sﬂ,
g =8, a17:m%—m%/(4m%{—s),

2 2\? 2
ag =1, algz(memV) + smy,,
oy =1u, algzmjlq—tu,
as = 4mi — s, o0 = mi(t — u)? + stu,
ag = 4mi —m?3;, aglzm%{(m%—t)—i—tz,
a7:4m§{—s, aggzm%{<m%/—u>+u2,
ag:m%/—m%[, 0123:771%/(771%{—’&)—825,
Oégzm‘Z/—S, a24:m%/(m%{—t)—su,
alozm%/—t, a25:m‘}{—sm%/—tu,
a1 =mi —u, a26:4m%/(sm%[+tu—m‘}{)—m‘}qs,
oqg:m%{—t, a27:sm§{(m%{—u>+m%(m%—t>2,
algszq—u, aggzsmil(qu t)—i—m%/(m%{ u)z,
a1y = m (52—|—m%/ (m%/—?)s))—i—sm}l{, Q9 = my (4m§{—s)+2tm%/(t—u)—st2,
a5 = 4mi (m%—tu)—suQ, Q30 = M (4m%—s)+2um%/(u—t)—su2.
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Algebraic letters.
e Odd parity letters of first type

t—u—1mr
31 t—u+mr ’ ( )
2md —2m3 +s—n m¥ —2mi, —rs
Q32 = 9 D) 2 P} ; Q41 = D) P} 3
my —2my + s+ my —2my, + 15
Qm%{ —5—1r Qm%m%/ — 2tm%/ —su—Tg
Qg3 =5 5 Qg2 =5 5 5 ,
my —s+11 2mymy, — 2tmy, — su + g
2m3mi — 2um?, — st —ro su—rg
azq = Q43 =
3 2m3mi — 2umi, — st + 1o’ BT sutrg’
st — 1o s (2md —m%) —ry
Q35 = ) Qg4 = D) 2 )
st + 7y s(2m3 —m¥y;) +ry
(t —u)ymd — st —r3 2mim3, — sm3, — 2um} —ry
a3 = Qg5 =
- u)ymi, — st +rs’ 4 2mim?, — sm%{ —2umi, +r7’
s(m¥ —t) —rs 2mim?, — smH 2tm3, — r7
azy = , Oy =
T (m2, —t) + 73 46 2m2.m2, — sm3, — 2tm¥, +r7’
2mi — s — 1y 2mY; — sm2; — 2tu —ry
asg =g 5 —— Q47 = 5 5 ;
mi —S+14 2mGy — smy — 2tu + 17
mi — 2t —r (t —u)ym} + su—rg
0439:m, 0648:(257 2 )
It 5 u)my, + su +rg
m% —2u — 1y s(m} —u) —rs
Qg0 = —5 (o, Qg9 = 5 .
m% — 2u + 15 s(mi —u) +rs
o Mixed parity letters
2 — 2t t) —
Q50 = s (2miy gy o+ 5t) — v (A.3)
s (2m3; — 2tm?3, + st) +rire
a5t — s(2my —2(2md +t)m¥ + s (md +1t)) —rirs
s(2my —2(2md +t)m + s (md +1t)) +rirs
- s(2m% —s) —riry
(2mH —8)+rira’
e — m3 (2m3, 4+ 8) — 1173
o3 (2m} + s) m3 +rirs’
s —2mY; + (8md + s) m3, — 2sm3, — rirs
o —2mi; + (8mi + s) m¥ — 2smZ, + rir5
sy = ° (2mY; — 2um?; + su) — rirg
s (2m}; — 2um?, + su) +rirg
g — (2mY; — 2 (2m3, 4+ u) m3 + s (m3, +u)) — ri7s
s (2mY; — 2 (2md +u) m% + s (md +u)) +ri7rs |
N 2sm2,my; + st ((t — 3u)m?, — st) — rars
2smimi; + st ((t — 3u)ym?, — st) + rorg’
—5(2(u —t)m} + st) — rory
asg =
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N 2 (m3; + s) mim3, — stm3, — 2tum?, — rors
Mg (m% + s) mEm?, — stm3, — 2tum?, + rors
- s (2my — (2md +t) m% — 2um?,) — rars
s (2my; — (2md +t) m% — 2um?,) + rars’
agt = ° ((u—3t)ym¥ + st) —rary
—s((u—3t)m} + st) +rgra’
- s ((m¥ —t) m¥ + 2tm3,) — rars
s ((m¥ —t) m% + 2tm2,) + rars
s (m% —2m3,) — ryrs
6= (m3 —2md) + rars’
o = (2(t — w)ymé, + su) — 147
s (2(t — u)m?, + su) + rarg’

ol 2md) ) e
—s2 (m% — Qm%/) + rary

s ((t = 3u)mi + su) — rars

o6 = S ((t — 3U)m%/ + Su) + 147y s
_2m3y; (myy + s)md, — u (sm3; + 2tmi,) — rsrg
a67 = 53 5 5 ; ! 7
m3; (m3, + s) mi, —u (sm3; + 2tmi,) + rsrg
tgg = > (2miy — (2m} +u) my; — 2tmi)) — rsrg
7 s (2ml, — (2m2 +u)m2, — 2tm?) + rsre
gy = _ ((2m%/ + S) m%[) + 45m%/m%{ + 2tum%/ — 5Ty
i ((27”%/ +s) m‘}{) + 4sm%/m%{ + Qtum%/ +rerr
o (2 — w) m2, + 2um?) — ryre
Q7o = 7 5 5 ’
S ((mV u) my + 2umv) + r518
o 23m%/ml}{ + su ((u - 3t)m%/ — Su) — rgrs
71 =

-~ 2smimd; + su ((u — 3t)mé, — su) + rers

e Odd parity letters of second type

- —mi; + (u—2m%)m% + 2tmd + (m3, —u) rs
my; + 2m2m2, — um?¥ — 2tmd + (m% —u)rs

(=3m32, + 2t +u) m% + (Mm% —u) s

Qs = ,
T T (Bm2, — 2t —u)m2, + (m2 —u)rs
B —mf; +3mim3 — 2smi + (m3 —mi) rs
O A T3 m2 +2sm} + (m3;, —mi)rs
H viltg Vv H v)7Ts
e — —s% 4 3m%s — 2mymi, 4+ (m3, — s)
£ —s2+3m%s —2mimi + (s —m¥)ry’
H m'"v )"l
2(u — t)ymd, — su—ury
a76 == 2 9
2(u — t)my, — su + ury
— ((2(t — w)ym? + su) m%) + 2(t — u)um? — ury
o7 =

—((2(t = w)ym3, + su) m3;) + 2(t — w)um?, + ury
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B Details on the large-mass expansion

The large-mass expansion corresponds to the limit s, ¢, u, m%{ < m‘Q/. The induced hierarchy
of scales sets all integral regions to zero except for those where the momentum flowing in the
propagators is either large (k% ~ m%) or small (k* ~ s,t,u,m%). In particular, momentum
conservation implies that large momentum must be flowing in closed loops within the Feynman
integral, since it cannot be provided by the external legs. In practical terms, we need to
identify all possible inequivalent large-momentum configurations and parametrise them in
terms of a set of independent large and small loop momenta. We then proceed to expand
around the large momenta in terms of the small ones.

To illustrate the procedure, consider the two-loop planar and non-planar integrals
depicted in figure 1, corresponding to the top sectors for our study. We identify five regions
of interest, which, in terms of the loop momenta listed in table 1, correspond to the following

configurations:

e Both loop momenta are small:
k2 k3 < mi, (B.1a)
with (k1 — k2)? < mi,.
¢ One loop momentum is large and the other one is small:

k2 < mi ~ k3, (B.1b)
k3 < mi ~ k7. (B.1¢)

In both cases, the difference satisfies (k1 — k2)? ~ m?.

« Both loop momenta are large: k} ~ k2 ~ m%/ Here, we further distinguish between
their difference being large or small:

(k1 — k2)* ~my,, (B.1d)
(k1 — ko) < mi . (B.1e)

In the planar case, we get scaleless integrals for the regions (B.1a), (B.1c) and (B.le).
As a result, the only non-zero regions are (B.1b) and (B.1d).
The non-zero regions can graphically be represented as

N — N + :E’ (B.2)

where thick red lines indicate a large momentum flow. At leading order in the large-mass

expansion of the integrands, the propagators with a large momentum decouple from the

%]><::x®+®. (B.3)

rest of the diagram, giving
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We compute the resulting integrals by direct integration, obtaining

;+z+2+(2—®)e+0(62)}- (B.4)

1 (m2\°
sTp (1,1,1,1,1,1,1 00)—><V>
mi \ —s
Let us remark that the two-loop vacuum contribution in (B.3) can be dropped as it is
suppressed by one power of m? w.r.t. the remaining contributions. Starting from eq. (B.4),
we construct the large-mass expansion for the associated canonical integral, which reads

2 €
¢ rgstL(111111100)—>”<mV> [62+263+264+<2 Q”)e +0 (e )}
-0 for m} — . (B.5)

Notice that the lass mass limit has been applied to the prefactor as well (i.e. rg — m%/ r1).
The non-planar case is remarkably simple, as the only non-vanishing region is (B.1d).
At leading order in the expansion in m%/, this reduces to a single vacuum diagram:

ST X

whose direct integration gives

2 10 16
m?,INp(l,l,l,l,l,l,l,O,O)%26+(206C2)+<2430C2+ SCS>€+O(€2).

(B.7)

By performing the large-mass expansion for the basis of canonical integrals J calculated in
this work, we observe that these integrals reduce, as expected, to uniform transcendental weight
combinations of multiple zeta values (The transcendental degree is assigned as [(,] — n
and [e] — —1).

C Differential equations for the transcendental functions present in .Agz)

We provide the differential equations for the independent functions that appear in the

evaluation of .A;(f) (cf. eq. (3.14)), once canonical integrals W;

i
independent functions wl(:")

are expressed in terms of
according to eq. (2.18).
We need 27 independent functions to construct the closed system of differential equations
d’LBg;g = ng;Q 1173;2 . (Cl)
The basis w32 reads
- 0 1 1 2 2 2 2 2 3 3 3
g = {uhy) oy wgy g, i) i o, wid iy, i w), wi wel iy,
@3 & 3 G 4 @) 4 & 4 (@4 () ((5) (5 } (C2)

W13y, W12, Wagys Wag,, Wy, Wiy, W13, Wiy, Wagss Wag,, Wiy, Wagy s Wi,

and the matrix of coefficients (3.0 takes the form:

Migx10 O18x8 D1gx9
Q32 = | Ogx10 Nexg Osxg | » (C.3)
O3x10 O3x8 P3xg
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with

0 0 0 0 0 0 o 0 0 0
0 0 0 0 0 0 o 0 0 0
—4Ly 0 0 0 0 0 0O 0 0 0
2Lss 0 0 0 0 0 0o 0 0 0
0 0 0 0 0 0 o 0 0 0
0 —4Lg 32 —4Ly 0 0 0 o 0 0 0
0 0 Lo 0 0 0 o 0 0 0
0 2Lz 2L L5 0 0 0o 0 0 0
0 o0 3= o 0 0 0o 0 0 0
M = . 4
1810 0 0 0 Las 0 o o o o |0 ©Y
0 0 0 0 —4Lg 3Lz 41 6L, 0 0 0
0 0 0 0 0 Lo -0 0 o0
0 0 0 0 2Lzz 2L 3Lys —Ls 0 0
0 0 0 0 0 —3Ls 3755 0 -—L; 3Lss
0 0 0 0 0 0 0 ‘lss Las o,
0 0 0 0 0 0 —Ly 0 -l Lo
0 0 0 0 0 0 ALss 0 L —Lsg
0 0 0 0 0 0 2L, 0 0 0
L L o9 0 0 0 0 0
—3Lss 335 0 —Ls 3Lgs 0 0 0
0 0 Lles Ls 7, 0 (N
Noar = g _p, 0 —% L 9 0o o |’ (C-5)
0 4Lszs 0 L5 —Lss —4L3s —2L5 2L3s
0 2L, 0 0 0 O 0 0
and
—Ly, —ks Lo 0 0 000
Psxg = | 4L3s L5 —Lgs —4Lgs —2L5 2L3s 000 |, (C.6)

2Ly 0 0 0 0 0 000

while OQ,,,xn are null m X n matrices.

To fix the integration constants, we match the solution of the differential equations to
boundary values in the limit s — 0. All components of @ are equal to zero except for

wgg) =-1, and wg) 0= -3(. (C.7)

s=0 S=

D Evaluation of Chen iterated integrals

To evaluate a Chen iterated integral [aq,. .. ;] in the phase-space point & = {s,t,u, 1}, we
consider a straight line from the large-mass limit Zy = {0,0,0, 1} to & as integration path:

v (Z) = (1 —y)Zo +yx. (D.1)
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We rewrite the integration kernels L; = log o; in terms of the line parameter y € [0, 1],
obtaining

H:EO(_))Zl
e ]z, / dy1 f1(y1), (D.2)
[ TR TR T / dyn fo(yn / dyn-1 fn-1(Yn-1) / dy1 fi(y1),

where the functions f;(y;) are the pullbacks of the differential forms dlog «; along the path
v dyn fu(yn) = 7" dlog ai,, i.e. fu(yn) = Li, (Z(yn))-

The pullbacks f,,(y,) might become degenerate along the path v. In particular, they
might:

e Vanish, in case no dependence over the line parameter is left. In this work, for general
values of the kinematics, this happens only for the kernels L3y and L33. Due to the
absence of the line parameter y, all iterated integrals containing such kernels will
evaluate to zero. Pullbacks might also vanish for specific phase-space points ¥ (e.g.,
Lo drops any dependence on y for phase-space points satisfying m%l =t2/(t - 1)).

e Collapse on a single term, since overall constant factors will be lost through differentia-
tion. In our calculation, this happens for

Ly = logm% — logy,

=logs — logy,
Ls =logt — logy,
Ly =logu — logy,

D.3
Ly =log(4m?% —s) —logy, (D-3)

Lz =log(mf —t)  — logy,
Ly = log(mj; —u)  —logy,
Lig = log(m}; —tu) — 2logy.

The integration kernels now might carry a starting point singularity, which cannot be
addressed using the general formula of eq. (D.2) and require a dedicated prescription. This
issue is analogous to the G(0,...,0;z) term in the context of generalised polylogarithms
(GPLs) [97], where it is defined as

1
G(0,...,0;y) = —'log"y. (D.4)
n!
In our case, the problematic kernel is dlogy. Hence, we define the iterated integral
y Yn Y2 1
/ dlog yn/ dlog ypn_1... dlogy; = —log"y. (D.5)
0 0 0 n!

When considering iterated integrals with general dlog integration kernels, some letters
might contain an overall y™ factor in the argument of the logarithm. Such factor needs to be
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extracted to make integrals free of starting point singularities. In our case, we find:
Ly — logy + log _m‘}{sy2 — Bm%sy + m%{ + sZy} ,
Li7 — logy + log _m%y — 4m%{ + s] ,
Lyy — 2 logy + log _stuy +t2 — 2tu + uﬂ ,

Lyt —logy  +log [-m¥ty +mi; + %],

Loo — logy + log —m%{uy + m%{ + qu] , (D.6)
Log — logy + log {qu — sty — u} , '
Loy — logy + log _m%, — suy — t} ,

Los — logy + log _m%{y — 85— tuy} ,

Loy — 2 logy + log {m‘}{sy +mb — mEsuy — 2m%t + tﬂ ,

Log — 2 logy + log _m‘}{sy + m‘}q — m%sty — Zm%{u + uﬂ ,

where the logarithms on the r.h.s. are now regular at y — 0, and we took m%/ = 1 for simplicity.

Another delicate point is the presence of endpoint singularities, that is, singularities
occurring in the outermost integration kernel at y = 1, resulting in a divergent iterated
integral. Except for Lsy, L33 (which do not contain y at all), Lss, Lss, Ls7, Lsg, La1, Las,
Lyg, and Lyg, all integration kernels can develop endpoint singularities. Such singularities can
be extracted applying shuffle relations to the iterated integrals, even though a much more
practical solution is to add a small offset to the phase-space point of interest.

Once we have made sure that the iterated integrals are all finite, except for some explicit
singular terms, we can proceed to numerically evaluate them. To this end, we employ the
fact that we can differentiate a depth n iterated integral n times w.r.t. the line parameter y,
obtaining a closed system of differential equations of the form

Oy ey, s iy i, ] (y) = Oy, () [iys - -5 iy ]y (),

(D.7)
Iy [any (y) = (Oyea(y)) lo (v) »
ay []O (y) = 07
where the notation is to be understood as
[aim"'aainflvain}o(y)E/ dynfln yn / dyn lfln 1 yn 1 / dylle
(D.S)
with boundary conditions in y = 0
[ah Onp—1, an]o (O> 0 )
(D.9)
[al]o (0) =0,
Ho (0) =1
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We rely on the MATHEMATICA package DIFFEXP [59] to implement the discussion above
and numerically evaluate the iterated integrals. To make full use of DIFFEXP routines we also
need to provide all imaginary prescriptions (+id or —id) necessary to cross the singularities
along the integration path. The individual imaginary prescriptions are uniquely determined
from the Feynman prescription on the Mandelstam invariants (+id), except for logy, which
we set to +id. This arbitrary choice will not introduce any ambiguity in the numerical
results of the functions .Al(z).

E Computational details

The computation time required to evaluate the independent functions is strongly influenced
by the size of the numerators and denominators at a given point, as DIFFEXP performs
significantly faster when handling “simple” rational numbers. To illustrate this feature, let
us consider the following two points:

3125 1875 625 625
1= Tao ' ta0 ) Tacdars ) (E1>
128 128 ' 1287256
3125 1875 625 625
={ 4107 107 S 107, == 1} E.2
2 {128 0 — oy T g 10 o 1y (E.2)

with z; = {s;, t;, u, m%{’i, m%/Z}

We evaluate the functions at both points by solving the differential equations in a
straight-line path starting from the large mass expansion. We target two orders in € and a
numerical precision of 16 significant figures. Transporting the solution to point x; requires 27
integration segments and a total computation time of 218 seconds. In contrast, evaluation
at point z9 requires 337 segments in 1809 seconds.

Let us also remark that the requested precision is not always guaranteed by DIFFEXP.
A pratical method of estimating the actual numerical uncertainty is to evaluate a given point
along two distinct integration paths. As an alternative path, we consider the straight line
starting from the point zy defined in eq. (4.7). The evaluation takes 39 seconds for z; and
120 seconds for xo. By comparing the numerical evaluation of the independent functions (as
well as the form factors), obtained from both paths, we estimate their numerical uncertainty
to be of the orders O (107?%) for z1 and O (107'2) for w».

The benchmarks were obtained with a single thread on a system equipped with an AMD
RyzeEN 9 9700X and 32 GB of DDR5 RAM, running UBUNTU 24.04.

F Organisation of ancillary files

The ancillary files of this paper can be found at [60]. They are split into two main directories
containing the analytic construction of the canonical integrals and of the form factors. We
describe below the files contained in each directory.

Canonical integrals.

e Alphabet.m: includes the letters of the alphabet of the integral families discussed in
this paper. Each letter is represented by al[i] with i=0,1,...,77.
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e Sqrts.m: contains the definition of the 7; of eq. (2.6) in terms of irreducible square
roots, suitable for implementation with DIFFEXP (e.g. 11 = \/sy/s — 4m3%,).

o Atilde_fam.m (with fam=PL, PLx12, NP ): contains the connection matrices Ax with
X = PL,PLx12,NP, according to eq. (2.3).

e MIs_fam.m (with fam=PL, PLx12, NP ): contains the canonical master integrals Jx with
X = PL,PLx12,NP. The definition of the integral follows the notation of eq. (2.2).

e Mappings_J_to_J.m: contains the sector mappings among the canonical integrals of

families PL, PLx12, and NP.

e Mappings_J_to_W.m: contains the mappings of the canonical integrals of PL, PLx12,
and NP onto the rotated canonical integrals W of eq. (2.17). ash

—

e Mappings_W_to_w.m: contains the decomposition of the rotated canonical integrals W
(k ), according to eq. (2.18).

into transcendental functions w;,

(k")

e Solution_w_CII.m: contains the solution of the functions w; * up to transcendental

weight six in terms of Chen iterated integrals.

o DEQ_w.m: contains the differential equations (DEQ) for all the 327 functions wz(f/) (wfun)
functions present in the analytic evaluation of the rotated canonical integrals W, and

the boundary values at s =t = u = 0, coming from s > 0 (wfun0).

Form factors.

e Ai.m (with ¢ = 1,2,3): contains the functions AE? (Ai[n]) at order O (€") with
n=20,1,2.

e run_DiffExp.m: contains the script to numerically evaluate the functions
w®) and AP
i in
Data Availability Statement. The supplemental material of this paper, containing all
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