KIT | KIT-Bibliothek | Impressum | Datenschutz

Online Popularity Prediction Service via Minimal Substitution Reinforcement Learning for Social Networks

Wang, Ranran; Zhang, Yin ; Meyerhenke, Henning ORCID iD icon 1; Feng, Zhiliang; Maharjan, Sabita; Zhang, Yan
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

One of the key challenges of current online social platforms is predicting the size of information cascades, also known as popularity prediction or cascade prediction. Accurate popularity prediction can benefit various fields, including news distribution, market decisions, and rumor detection. However, existing popularity prediction approaches concentrate more on the historical sequences of single messages, overlooking the interactions between message diffusion and the dynamic nature of social networks, which limits the timeliness and accuracy of predictions. To address this, we propose an online popularity prediction service based on minimal substitution reinforcement learning called MSRL. Specifically, we explore a substitution theory and design a minimal substitution reinforcement learning method that models diffusion as message substitution and considers mutual information diffusion. That helps the model gain a broader perspective, allowing it to fully exploit the cooperative, competitive, or dependent relationships between information diffusions. Furthermore, the reinforcement learning scheme enables the service to dynamically adjust its parameters to respond to the dynamic social network environment in real-time. ... mehr


Originalveröffentlichung
DOI: 10.1109/TSC.2025.3586094
Scopus
Zitationen: 1
Web of Science
Zitationen: 2
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 1939-1374, 2372-0204
KITopen-ID: 1000188917
Erschienen in IEEE Transactions on Services Computing
Verlag IEEE Computer Society
Band 18
Heft 4
Seiten 2254–2266
Schlagwörter Popularity prediction, minimal substitution, reinforcement learning, online
Nachgewiesen in Scopus
Web of Science
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page