KIT | KIT-Bibliothek | Impressum | Datenschutz

Putting ‘filter bubble’ effects to the test: evidence on the polarizing impact of ideology-based news recommendation from two experiments in Germany and the US

Ludwig, Katharina ; Müller, Philipp; Nikolajevic, Nevena; Grote, Alexander 1
1 Institut für Wirtschaftsinformatik (WIN), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Algorithmic news recommender systems (NRS) are present in many digital platforms. A decade after Eli Pariser introduced the infamous ‘filter bubble’ hypothesis, empirical evidence challenges the assumption that recommendation algorithms predominantly create homogeneous opinion environments. Studies indicate that algorithmic platform use may amplify users’ political polarization. Whether the link between platform use and polarization can be causally explained by ideological news filtering, however, is still an unanswered question as rigid causal designs to test the notion of ‘filter bubble’ effects are still largely lacking. To fill this gap, we conducted two experimental studies in Germany (n = 1,786) and the U.S. (n = 1,306) with running NRS selecting news items based on the political orientation and political interest of its users. For both national contexts, results indicate that an NRS with a bias towards users’ political preferences increases ideological polarization among politically moderate individuals, supporting the notion of ‘filter bubble’ effects for this group. No such pattern could be found for affective polarization. Yet, in the German data, affective polarization among moderate users was reduced by a politically balanced NRS (as compared to a randomized news diet), while the same NRS increased affective polarization of politically extreme participants. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000188950
Veröffentlicht am 18.12.2025
Originalveröffentlichung
DOI: 10.1080/1369118X.2024.2435998
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik (WIN)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 03.10.2025
Sprache Englisch
Identifikator ISSN: 1369-118X, 1468-4462
KITopen-ID: 1000188950
Erschienen in Information, Communication & Society
Verlag Routledge
Band 28
Heft 13
Seiten 2321–2340
Vorab online veröffentlicht am 28.01.2025
Schlagwörter Polarization, news filtering, news recommender systems, newsalgorithms
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page