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ABSTRACT: An electrochemical one-pot synthesis of enaminyl sulfonate
esters was established, featuring a quasidivided cell under constant current
conditions. The multicomponent reaction utilizes simple and readily available
alkylamines and an easy-to-use stock solution of SO, and alcohols. Omission
of additional supporting electrolyte through in-situ-generated monoalkylsul-
fite facilitates the downstream processing. A diverse scope with more than 28
examples and yields up to 85% as well as a 20-fold scale-up reaction prove the

feasibility of this novel protocol.

he B-amino sulfonyl functionality is a prevalent motif in
many pharmaceuticals or natural products. The simplest
representative of this class is the nonproteinogenic ammonium
sulfonate taurine (Figure 1). Biosynthesized from cysteine,
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Figure 1. Prominent compounds containing the f-amino sulfonyl
motif.

taurine provides numerous physiological activities, ranging
from cytoprotection' and neurotransmitter’ to its highly
discussed role as a (semi)essential nutrient’ and its application
as a therapeutic.” Taurine-derived taurocholic acid is naturally
occurring in the bile of mammals and has found application as
a choleretic.” Structurally related, the p-amino sulfone
apremilast (Otezla, Amgen, Figure 1) is one of the most-sold
pharmaceuticals worldwide, accounting for more than 2 billion
USD in sales in 2021.° As a phosphodiesterase 4 (PDE 4)
inhibitor, apremilast is administered in cases of severe psoriasis
and psoriatic arthritis. The penicillin-derived drug sulbactam,
also exhibiting a S-amino sulfone motif, is applied together
with f-lactam antibiotics to inhibit the effects of f-lactamase,
increasing the efficiency of the antibiotic drastically.” TSAO-T
(Figure 1), a spirocyclic enaminyl sultone, is able to inhibit
HIV-1 reverse transcriptase in a highly selective and non-
competitive way,” rendering it a potential lead structure for the
development of anti-AIDS medications.” Installation of these
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+ undivided constant current setup >28 examples

+ no additional supporting electrolyte up to 85%

+ common non-toxic electrodes + scalable

+ SO, stock solution + no fluorinated solvents

moieties can be achieved by conventional chemistry including
aza-Michael addition,"® cycloaddition,'' Knoevenagel reac-
tion,"> Horner-Wadsworth-Emmons reaction,> or the con-
densation of functionalized sp® carbons with formanilides."*
Recently, sodium sulfonates'®> (Scheme 1) or sulfonyl

Scheme 1. Selected Methods for the Construction of the f-
Enaminyl Sulfonyl Moiety
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hydrazides'® have emerged for the generation of vinyl sulfones,
requiring an additional oxidant in stoichiometric amounts.
Electrochemistrg on the other hand uses electric current as a
green oxidant,'’ therefore omitting toxic and/or expensive
catalysts while being inherently safe.'® Electrosynthetic
methods for the construction of enaminyl sulfones have been
developed by several groups (Scheme 1), utilizing different aryl
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sulfonyl precursors."” However, this restricts the resulting
products to sulfones, while enaminyl sulfonates are hardly
accessed and seem to be underexplored. Sulfur fluoride
exchange chemistry may be used”” but is crucially limited by
the commercial availability of suitable sulfonyl fluorides.
Utilizing the inexpensive chemical feedstock sulfur dioxide as
a central building block,”" we report a novel dehydrogenative
electrochemical multicomponent reaction for the construction
of enaminyl sulfonates starting from simple amines, SO,, and
alcohols (Scheme 1). This approach circumvents the need for
prefunctionalization and allows for the direct incorporation of
the pollutant sulfur dioxide into value-added products like
sulfonates,”” sulfonamides,” or sulfamides.”* As a source of
SO,, we employ readily available and easy-to-use stock
solutions, minimizing waste and facilitating downstream
processing, a key step for the translation into technical
application.”*”**

The initial reactivity was discovered using N,N-diisopropyl-
amine (la), SO, stock solution, and neopentyl alcohol (2a)
employing a graphite anode and stainless-steel cathode in an
undivided cell under galvanostatic conditions (Table 1).

Table 1. Optimization of Reaction Conditions”

/LN/\ + 50, +HO /LN/\SS?O
) e TR PO

1a 2a 3a

Entry  2a [eq.] Base Anode material Yield”
1 2.0 DBU* Graphite 249
2 4.0 DBU Graphite 419%
3 4.0 DBU Graphite 50%
4 4.0 DBU Glassy Carbon 16%
S 4.0 DBU BDD 18%
6 4.0 DBU Sigraflex 55%
7 4.0 DBN Sigraflex 51%
8 4.0 ™G Sigraflex 49%
9 4.0 2,6-Lutidine Sigraflex 0%
10 52 DBU® Sigraflex 65%"
11 52 DBU*® Sigraflex 70%"¢ (61%)

“Conditions: 1a (500 umol, 1 equiv, 0.1 M), SO, (1.5 X [equiv 2a]),
2a, base (8.0 equiv), MeCN, anodellstainless-steel wire, 40 mA/cm?,
10 F, rt. “Yield determined by 'H NMR with 1,3,5-trimethoxy-
benzene as internal standard. Isolated yield in parentheses. “5.0 equiv.
“Planar stainless-steel cathode. €9.0 equiv. 767.5 mA/ cm? 11.5 F.
EPretreating of Sigraflex electrode in acetonitrile 2 h before usage.

Neopentanol was chosen due to the enhanced stability as
sulfonate.”® With the help of 1,8-diazabicyclo[5.4.0]undec-7-
ene (DBU), 3a was obtained in an '"H NMR yield of 24%
(Entry 1). Increasing the stoichiometry of the reactants (Entry
2) as well as altering the geometry of the cathode from a plate
to a thin wire improved the yield to 50% (Entry 3). This setup,
commonly known as a quasidivided cell,”” can help to prevent
undesired counter reactions,”® since the electron transfer
becomes diffusion-limited, leading to mostly solvent degrada-
tion. Screening of anode materials (Entries 4 - 6 and
Supporting Information) showed the best results with an
inexpensive and readily available graphite foil (Sigraflex).
Testing of different bases (Entries 7—9 and Supporting
Information) showed no improvement. Using a design-of-
experiments study”” (2*7'-design plan with star points, see
Supporting Information), the stoichiometry of alcohol and

1211

base, the current density, and amount of applied charge were
optimized, which resulted in an enhanced yield of 65% (Entry
10). Pretreating the Sigraflex electrode in MeCN prior to use
resulted in minor swelling, and the gNMR yield of 3a was
increased to 70%, of which 61% could be isolated (Entry 11).
The pretreating is believed to improve the diffusion of the
substrates into the porous electrode.

With these optimized conditions in hand, we explored the
scope of our newly discovered reactivity using various alkyl and
aromatic amines as well as amides (Scheme 2). Ethylamines
bearing isopropyl (3a) or cyclohexyl moieties (3b and 3c) gave
good yields ranging from 51% to 61%. Highly hindered and
rigid N-ethyl-2,2,6,6-tetramethylpiperidine was sulfonylated in
an excellent yield of 85% (3d). Its structure was verified by
single-crystal X-ray analysis (CCDC 2407541). Investigating
different alkyl chain lengths, we found a sharp decline in yield
when switching from ethyl (3e, 72%) to propyl (3f, 15%) or
butyl groups (3g, 10%). This agrees with previous reports
suggesting a kinetic preference of n-alkylamines to dehydro-
genate in the terminal position.” Additionally, numerous
dealkylated byproducts were observed for 3f and 3g (see
Supporting Information for details). NMR experiments
confirmed the displayed (E)-configuration. While N-ethyl-
pyrrolidine lead to overoxidation (see Supporting Informa-
tion), nitrogen heterocycles could be applied with our
methodology. In these cases, a competing reaction between
the exo- and endo-product was observed. Product mixtures
were obtained for the sulfonylation of N-ethylpiperidine (3h,
21%) and N-ethylazepane (3i, 14%) with exo/endo ratios of 4/
1 and 1/1, respectively. Sulfonylation of unsaturated N-
functionalized heteroaromatics occurred not at the ethyl group
but solely on the 3-position of the aromatic ring (3j, from N-
ethylpyrrole, and 3k, from N-ethylindole, both 35%). Since the
lone pair of the N atom is part of the aromatic system, removal
of an electron leads to a more stable intermediate rather than
the exocyclic cation. While the electrolysis of aniline derivatives
often results in polymerization and the formation of aniline
black,’ we were pleased to see that N,N-diethylaniline was
sulfonylated in an acceptable yield of 27% (31). By substitution
of the para-position by a methyl group, yield could be
increased to 55% (3m). Surprisingly, N-acetylation lead to no
conversion of the starting material (see Supporting Informa-
tion for examples); not even Shono-type reactivity’™ was
observed. However, starting from N-vinyl compounds and
therefore skipping the oxidation from amide to enamide
reestablished the desired reactivity. N-Vinylamides are
common motifs frequently employed in polymer chemistry.”
We achieved a good yield of 67% for the sulfonylation of N-
methyl-N-vinylacetamide (3n) and moderate yields of 46%
(30) and 49% (3p) for the two cyclic analogues. Lastly, after
the solvent was changed to benzonitrile due to limited
solubility, N-vinylcarbazole could be sulfonylated in an
acceptable yield of 28% (3q).

Following these promising results, we explored the scope of
the alcohols (Scheme 3). Besides neopentanol (3d, 85%),
simple primary alkyl alcohols like methanol or ethanol yielded
64% (4a) and 69% (4b), respectively. Even very apolar 1-
decanol could be converted into the respective sulfonate ester
in a satisfying yield of 69% (4c). With racemic 2-
methylbutanol, an excellent yield of 85% was achieved (4d).
Using secondary alcohols resulted in yields of 58% (4e, with
isopropanol), 67% (4f, with cyclohexanol), and 58% (4g) for
the sterically demanding 2-adamantol. Tertiary alcohols such
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Scheme 2. Scope of Amines, Anilines, and Vinyl Amides”
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“Isolated yields displayed. R = neopentyl. Conditions: amine 1 (500 pmol, 1 equiv, 0.1 M), SO, (7.8 equiv), 2a (5.2 equiv), DBU (9.0 equiv),
Sigraflexllstainless-steel wire, 67.5 mA/cm? 11.5 F, rit. 1725 F. 575 F. “PhCN as solvent.

Scheme 3. Scope of Alcohols”
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“Conditions: 1d (500 gmol, 1 equiv, 0.1 M), SO, (7.8 equiv), alcohol
2 (5.2 equiv), DBU (9.0 equiv), Sigraflexllstainless-steel wire, 67.5
mA/cm? 11.5 F, r.t. Isolated yields displayed.

as tert-butanol however could not be converted with our
methodology (see Supporting Information for limitations),
most probably due to their bulkiness. Similar observations
were made in previous projects.”” Demonstrating the range of
applicable alcohols, an acceptable yield of 38% was achieved
for methyl lactate (4h). Since amides do not interfere with the
desired reactivity, two N-Boc-protected aminoalcohols were
tested, which resulted in yields of 62% (4i) and 47% (4j),
respectively. Even labile 3-cyclohexenol was converted into the
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corresponding sulfonate, albeit with a lowered yield of 21%
(4k). Unfortunately, the use of phenols such as 2,4-
dichlorophenol did not yield the desired product but resulted
in the formation of dimers instead (see Supporting
Information). Using secondary amines instead of alcohols,
we could isolate only minor amounts of the desired
sulfonamides (see Supporting Information for examples).
Since an 'H NMR sample of the crude reaction mixture
indicated a moderate yield of 44%, we suspect degradation of
the enaminyl sulfonamide during column chromatography.
To showcase robustness and scalability of our dehydrogen-
ative sulfonylation, enaminyl sulfonate 3d was synthesized in a
gram scale reaction (Scheme 4, 20-fold scale-up, see

Scheme 4. Gram Scale Synthesis of 3d“

K # O*\\S/O
=
N SO HO/\K H
* 2 ¥ cond.

N
3d

84% (76%, 2.42 g)

1d 2a

“Conditions: 1d (10.0 mmol, 1 equiv, 0.1 M), SO, (7.8 equiv), 2a
(5.2 equiv), DBU (9.0 equiv), Sigraflexllstainless-steel wire, 67.5 mA/
cm? 115 F, r.t. Yield determined via 'H NMR. Isolated yield in
parentheses.

Supporting Information). Herein, we observed a similar 'H
NMR vyield (84% vs 90% in the small scale) and only a minor
decline in isolated yield (76%, 2.42 g vs 85%). A similar scale-
up experiment with N-methyl-N-vinylacetamide yielded 84% of
3n (compared to 67% in the small-scale, see Supporting
Information for details).

To gain insight toward a possible reaction mechanism,
several control experiments were conducted (Table 2). As
expected, no signs of the desired product were detected when

https://doi.org/10.1021/acs.orglett.4c04746
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Table 2. Control Experiments

Entry Deviation from the standard conditions® Yield”
1 No charge passed 0%
2 No base (+ 0.1 M Bu,NBF, for conductivity) 0%
3 + TEMPO (3 equiv) 38%
4 + BHT (3 equiv) 20%

“la (500 ymol, 1 equiv, 0.1 M), SO, (7.8 equiv), 2a (5.2 equiv),
DBU (9.0 equiv), Sigraflexllstainless-steel wire, 67.5 mA/ cm? 11.5 F,
r.t. ®Yield determined via 'H NMR.

omitting electric charge or base (Entries 1 and 2). By addition
of radical scavengers 2,2,6,6-tetramethylpiperidinyloxyl
(TEMPO, Entry 3) or butylated hydroxytoluene (BHT,
Entry 4), the yield dropped significantly but did not diminish
completely. This may be attributed to the fact that TEMPO as
well as BHT are readily oxidized, which competes with
oxidation of the amine substrate.”* With BHT, N,N-
diisopropylvinylamine (which, according to literature re-
ports,**™*> is only stable below —20 °C for prolonged time)
and a neopentyl sulfonyl species could be trapped and detected
via GC/MS, respectively (see Supporting Information).
Unsurprisingly, cyclic voltammetry experiments (see Support-
ing Information) showed the early oxidation of the amine
substrate, while the products and alkoxy sulfonyl intermediate
were stable toward oxidation.

Based on these results and previous literature reports, we
propose the following mechanism (Scheme S): First, the

Scheme 5. Proposed Reaction Mechanism

____________ 0..9 } ROH
RZN/\ 1 trapped . - } 2
26 1  intermediates
k_/K.\z H* ,’«‘ \ ; /(‘S)‘
RN L\ 07ToR
H A ' \‘ 1 +B
_________ ! N - HB*
N . P
RN RoN L
w B c : (0] OR
Q 00 Do
o 3
z RNZ"0R « ~
<L
e 90 8 o2
S. T S.
Rzltlé\F/ OR  -HB" RN~ N""0R

tertiary alkylamine substrate 1 gets oxidized at the anode to the
enamine A, releasing two protons in the process, which are
intercepted by an excess of base. Electrochemical oxidation of
amines to enamines is well-established in the literature®® and
has been used in similar transformations for the construction of
enaminyl sulfones.'” Subsequently, A is oxidized again in a
one-electron fashion,”” yielding radical cation B, which is
stabilized by allylic resonance structure C. Multiple literature
reports”® have identified C as the predominant form of the
enamine radical cation, which is better described as an @-imino
radical.”’ O-Monoalkylsulfite D can be formed in situ by
insertion of SO, into the O—H bond of the alcohol 2, with
DBU shifting the equilibrium toward the deprotonated species.
Such intermediates have been known for a long time*’ and put
to synthetic use on multiple occasions already.””** They also
provide the conductivity necessary for electrolysis, which is
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why the need for an additional supporting electrolyte is
circumvented. D adds to resonance structure C, forming the S-
centered radical E. Noteworthily, we did not find any evidence
for a nucleophilic O- or S-attack of D to the iminium carbon of
ion C. On the other hand, the ability of SO,-derived species to
trap free radicals and the extraordinary stability of the resulting
S-centered radicals is well-known.”"*" Subsequently, E under-
goes another anodic oxidation to F, and deprotonation through
an excess of base finally affords the desired enaminyl sulfonate.
As a counter reaction, the high current density on the stainless-
steel wire leads mostly to solvent degradation and hydrogen
evolution, as evidenced by the formation of bubbles observed
during the scale-up experiment.

In summary, we developed a new electrochemical
dehydrogenative multicomponent reaction affording enaminyl
sulfonates from abundant alkylamines, SO,, and alcohols. The
process features inexpensive electrode materials and utilizes a
simple quasidivided setup under galvanostatic conditions. An
extensive scope of more than 28 examples with yields up to
85% as well as a gram-scale reaction demonstrates the
feasibility of this first-of-its-kind transformation. Our one-pot
method opens a new and straightforward pathway for the
construction of up-to-this-date underexplored enaminyl
sulfonate esters.
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