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Abstract—Autonomous personal mobility vehicle (APMYV) is
an innovative small autonomous transportation device designed
for individual use in mixed-traffic environments, such as shared
spaces and indoor environments. To enhance the interaction
experience between pedestrians and APMVs and to prevent
potential risks, it is crucial to investigate pedestrians’ walking
behaviors when interacting with APMVs and to understand
the psychological processes underlying these behaviors. This
study aims to investigate the causal relations between subjective
evaluations of pedestrians and their walking behaviors during
interactions with an APMYV equipped with an external human-
machine interface (¢eHMI). An experiment of pedestrian-APMYV
interaction was conducted with 42 pedestrian participants, in
which various eHMIs on the APMV were designed to induce
participants to experience different levels of subjective evalua-
tions and generate the corresponding walking behaviors. Based
on the hypothesized model of the pedestrian’s cognition-decision-
behavior process, the results of causal discovery align with
the previously proposed model. Furthermore, this study further
analyzes the direct and total causal effects of each factor and
investigates the causal processes affecting several important
factors in the field of human-vehicle interaction, such as situation
awareness, trust in vehicle, risk perception, hesitation in decision
making, and walking behaviors.

Index Terms—Autonomous personal mobility vehicle (APMYV),
pedestrian-vehicle interactions, external human-machine inter-
face (eHMI), causal discovery.

I. INTRODUCTION

UTONOMOUS personal mobility vehicles (APMVs)
are innovative small autonomous transportation devices
designed to provide convenient, safe, and efficient mobil-
ity for individuals [1], [2] (see Fig. 1). APMVs typically
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Fig. 1. The APMV with an eHMI can convey driving intentions to pedestrians
through voice and visual cues.

feature autonomous driving levels ranging from SAE levels
3 to 5 [3]. While many well-known APMVs are currently
developed based on electric wheelchairs' or semi-open small
vehicles,” APMVs are not exclusively designed for the
elderly or people with disabilities. Indeed, APMVs aim to
address the “last one mile” problem and enhance short-
distance mobility for a broader range of users [2]. APMVs
usually operate at low speed, especially in environments
shared with pedestrians or other non-motorized vehicles.
For example, APMVs can serve as last-mile transportation
solutions in urban areas [4], connecting public transit stops
to final destinations within city centers, commercial zones,
or residential neighborhoods. They are also ideal for short-
distance commutes within university campuses [1], [5], [6],
parks, or shopping centers [7], [8]. As a result, APMVs will
inevitably and frequently interact with other road users, such as
pedestrians [2], [9], [10].

A. Communication Issues in Pedestrians-APMYV Interactions

In some studies, potential risks have been identified in the
interaction between APMVs and pedestrians. For example,

'WHILL Autonomous developed by WHILL Inc.: https://youtu.be/
vJWhwNnUPRs
2RakuRo developed by ZMP Inc.: https://youtu.be/[WhbJOrBwjM
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Fig. 2. A hypothesized model of pedestrian’s cognition-decision-behavior process in human-vehicle interactions was proposed in [1] and [11]. The Q1 to Q6
are subjective evaluation questionnaires using in the experiments; and the crossing initiation time (CIT), crossing time (CT) and after crossing time (ACT)
are the time spent on the three stages of crossing the road (see section III-G).

Liu et al. [1], [11] reported that pedestrians tended to per-
ceive danger because they were confused in understanding
the driving intentions of the APMV during the interaction.
Yamin and Park [12] also emphasizes that a lack of effective
communication between the APMV and pedestrians can lead
to potential collision risks for pedestrians.

To address this challenge, the integration of an External
Human-Machine Interface (eHMI) into the APMV has been
identified as an effective approach to convey driving intentions
to pedestrians [2], [5].

B. Related Studies

1) Human-AV (APMV) Interaction With eHMI: At present,
a significant amount of studies on eHMI focus on interac-
tions between pedestrians and autonomous vehicles (AVs)
[13], [14], [15], [16], [17], [18], [19], [20], [21]. Only
a limited number of studies have focused on interac-
tions between small types of smart mobility vehicles,
such as APMVs, with pedestrians in shared spaces using
eHMIs [2], [22], [23].

These studies have drawn conclusions about the influence
of eHMI usage on pedestrians’ subjective evaluations and
behaviors by comparing different experimental conditions,
such as various eHMIs and driving behavior scenarios. For
example, information from eHMIs has been shown to help
pedestrians understand the vehicle’s intention [16], [19],
[20], [21], [23], enhance their sense of safety [14], [20],
[21], [24], foster trust in the AV [19], [21], [24], support
decision-making [13], [15], [21], improve crossing initiation
time (CIT) [17], [18], and guide walking behaviors [21]. In
contrast, some studies [25], [26] showed that eHMIs might
lead to over-trust from pedestrians toward AVs, especially
when pedestrians fail to correctly interpret the AVs’ intentions
from the eHMI, or over-interpret the eHMI information. This
over-trust could induce risky behaviors of pedestrians during
interactions with AVs, thereby increasing the likelihood of
accidents.

Although the aforementioned studies have explored how the
use of eHMISs in interactions between pedestrians and AVs or
APVMs could improve pedestrians’ subjective experiences and
behavioral responses, and might induce inappropriate levels
of trust, their findings were primarily based on comparative
and correlational analyses, thus the underlying mechanisms
behind these effects remain unclear. Specifically, the causal
relations, including causal paths, effects, and processes among
pedestrians’ psychological states and their walking behaviors

during interactions with AVs or APVMs, remain insufficiently
validated or explored. Furthermore, the examination of interac-
tions involving pedestrians and APMVs is even less prevalent
in existing research.

2) Causal Relation Analysis: Structural Equation Modeling
(SEM) is primarily used to test and estimate parameters of
a predefined causal structure based on a theoretical model
[27]. SEMs are commonly used to analyze and validate causal
relations between multiple variables in studies of human-robot
interactions [28], [29], [30] and human-vehicle interactions
[31], [32].

Unlike conventional SEMs, causal discovery methods aim
to automatically learn the causal structure from observational
data [33], [34]. These methods include constraint-based meth-
ods such as the Peter-Clark (PC) algorithm [35], score-based
methods such as Greedy Equivalence Search (GES) [36],
and SEM-based approaches such as the Linear Non-Gaussian
Acyclic Model (LiINGAM) [37]. Currently, causal discovery is
widely used across various research fields, such as psychology
[38], economics [39], neuroscience [40], as well as astronomy
[41].

In the field of pedestrian—~APMYV interaction, a preliminary
work of this study has been published in [42], which presents
an initial causal discovery modeling pedestrians’ psychological
states to their walking behaviors. In this preliminary work,
we invited 18 participants as pedestrians to interact with
the APMV. Through causal discovery, we found some direct
causal relations between some factors of subjective evaluations
and walking behaviors. However, due to the small number of
participants, some direct causal relations of subjective factors,
such as causal effects related to trust and perceived danger,
are not statistically stable and have low reproducibility via
bootstrap.

C. Purpose

Based on a large-scale subject experiment with 42 partic-
ipants, this study aims to discover and analyze the causal
relations between subjective evaluations of pedestrians and
their walking behaviors during interactions with an APMV
via a data-driven approach, including scenarios where the
APMV communicates with pedestrians using eHMIs as well
as scenarios without eHMI communication. Furthermore, this
study aims to investigate the previously proposed hypothesized
model (see Fig. 2) based on data-driven causal discovery
results.
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D. Contributions

The novelty of this study is that it employs a data-driven
causal discovery approach to uncover a causal process from
pedestrians’ subjective evaluations to their walking behaviors
during interactions with APMVs. In addition, we further
analyze the total causal effects of each factor and investigate
the causal processes affecting several important factors, such
as trust in the vehicle, in the field of human-vehicle interaction.

The contributions of this study are as follows:

1) A data-driven causal discovery approach was used
to investigate a hypothesized model of pedestrians’
cognition-decision-behavior process in human-vehicle
interaction (see Fig. 2).

2) A direct causal effect of situational awareness on trust in
APMV was identified, highlighting the need to calibrate
trust by providing information that improves situational
awareness and helps pedestrians form an accurate mental
model.

3) This study found that when the APMV conveyed its
driving intentions to pedestrians through eHMI during
or before changes in driving behavior, it enhanced sub-
jective evaluations of pedestrians and made their walking
behaviors more efficient during interactions.

II. CAUSAL DISCOVERY

A. Hypothesized Model of Pedestrian’s
Cognition-Decision-Behavior Process

To discover the causal relations between the subjective
evaluations of pedestrians and their walking behaviors during
interactions with APMYV, this study adopts the conceptual
model of the pedestrian cognition-decision-behavior process
proposed by [1] and [11] as the hypothesized model.

As shown in Fig. 2, the hypothesized model consists of
four fundamental sections, namely i.e., awareness of the
situation [43], risk homeostasis [44], decision making and
behavior generation. The situation awareness section describes
the cognitive processes of pedestrians, including perception,
comprehension, and projection, which together form their
overall awareness of the surrounding environment [43]. This
process is supported by the mental model, which provides
the necessary prior knowledge for situation awareness [45].
Afterwards, in the risk homeostasis section, pedestrians assess
hazards based on predictions and evaluate subjective risks
(e. g., sense of danger, sense of relief) in the current situation,
taking into account their personal level of risk acceptance
(i.e., target risk). Furthermore, Liu et al. [16] suggested that
pedestrians’ trust in the APMYV interacts with the target risk,
influencing their subjective risk evaluations. Following this,
pedestrians compare their subjective risk with the acceptable
risk level (i.e., the target risk) to inform their decision-
making. Once this decision-making process is complete, the
body executes specific walking behaviors. As pedestrians
engage in these walking behaviors, they interact with objects,
e.g., APMV, in their surrounding environment, thereby
perpetuating the aforementioned process in a continuous
loop.

Importantly, it should be noted that pedestrians’ behaviors
dynamically influence their future situation awareness through
environmental interactions, as depicted by the dashed line
in Fig. 2. This indirect effect or indirect causal relation
lies outside of this study’s scope. Therefore, we assume
that the direct causal process from pedestrians’ perception in
situational awareness to their behaviors is unidirectional and
non-cyclical. This relation can be adequately represented by a
directed acyclic graph (DAG).

B. Causal Discovery via Direct Linear Non—Gaussian
Acyclic Model (DirectLiINGAM)

Causal discovery aims to uncover and understand the rela-
tions between variables from observed data, estimating which
variables have direct or indirect causal effects on others.
In which, Shimizu et al. [37] proposed the LiNGAM for
estimating DAG-based SEM by using non-Gaussianity of the
data. Thus, LINGAM is selected as the causal discovery
method in this study because it is applicable to DAGs, which
align with the structure of the hypothesized model (see Fig. 2).

The LINGAM presents a DAG as

xl 0 DY CEEIRY 0 xl el
ax; - S :
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Xn apl * - an,n—l O Xn €p
—— ——
x A x e

in which x € R” denotes the observed variables, with its
subscript specifying the causal order. The n is the number
of observed variables. The strictly lower triangular matrix
A € R indicates an adjacency matrix and the e indicates
independent error variables. In matrix A, a;; represents the
strength of the direct causal relation from x; to x;, thereby
illustrating the causal path and causal effect between these
variables.

Generally, the objective of causal discovery using SEM
is to estimate an optimal matrix A that characterizes the
data generative process, i.e., the causal relations among the
observed data. Since LINGAM assumed that the causal process
can be represented by a DAG, it permutes the matrix A
to a strictly lower triangular matrix by simultaneous equal
row and column permutations. The lower triangular matrix A
could be estimated using the independent component analysis
(ICA) [37]. However, most iterative method-based ICA algo-
rithms, such as FastICA, may depend on the initial parameter
states, making it challenging to guarantee that LINGAM
will converge to the correct solution in a finite number of
steps [46].

To address this issue, Shimizu et al. proposed
DirectLiINGAM which can directly extract causal structures
from observed data [46]. As shown in Algorithm 1,
DirectLINGAM can be divided into two stages: 1) determining
the causal order between variables, 2) optimizing the
adjacency matrix A.

In the first stage, DirectLiNGAM identifies an exogenous
variable that is most independent of the other variables, by
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Algorithm 1 DirectLiNGAM (Shimizu et al. [46])
Input: x = (x1, x2,...,x,)7 € R” where n = dim(x) € Z*.
Output: Adjacency matrix A in Eq. 1.
Stage 1: Determining the causal orders
1: while dim(x) > 0 do
2:  Perform least squares regressions of x; on x; and
compute the residual 7;;:

cov(x;, x;)

Fij = X = J

var(x;)
3:  Find a variable x,, € x that is most independent of its
residuals via mutual information (MI):

Xy = arg minZMI(xj,r,-j)
Uy
4:  Removing the influence of the exogenous variable x,,
on other variables. The other variables are update by:

Xi < FVim

5: Record the order of exogenous variable x,, and remove
it from x, then x € R* "1,
6: end while
Stage 2: Optimizing the adjacency matrix A
7: Sorting variables in x,,,, based on their causal orders.
8: Optimizing the adjacency matrix A with input x,,, via a
linear regression (e.g., Lasso) for Eq. 1.

minimizing the mutual information between the variables and
their residuals (steps 2 and 3). Once the exogenous variable
is identified, the remaining variables are updated using the
residuals between them and the exogenous variables, effec-
tively removing the exogenous variables’ influence (step
4). Next, the identified exogenous variable is recorded and
excluded from x (step 5). Then, DirectLiNGAM continues
with the remaining variables to identify additional exogenous
variables until dim(x) = 0 (steps 1 to 6). By iteratively
repeating these steps, the causal orders among variables can
be determined.

In the second stage, once the causal orders of all variables
are identified, DirectLiNGAM will rearrange the order of
variables in the vectorx (step 7). After that, DirectLiNGAM
uses least squares regression to calculate the adjacency matrix
A, ensuring that it maintains a strictly lower triangular form
in accordance with the determined causal order (step 8). For
more details on the DirectLiNGAM algorithm, please refer to
[46].

In this paper, as shown in Fig. 2, we assume that the data
generation process, i.e., causal process, from subjective eval-
uations to walking behaviors of pedestrians is unidirectional
and non-cyclical, indicating that it can be represented by a
DAG. Consequently, DirectLiNGAM is used in this study.

III. EXPERIMENT

A within-subjects experiment was conducted to measure
pedestrians’ psychological states and walking behaviors during
interactions with an APMYV, and to discover the causal relation
among these measured variables. To support robust causal
discovery, it is essential that the data set includes a wide
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range of psychological states, ranging from positive (e.g.,
driving intention is easy to understand; and feeling very safe)
to negative (e.g., driving intention is difficult to understand;
feeling very unsafe), along with the corresponding behavioral
responses. Therefore, four different eHMI conditions were
designed to induce varying levels of situation awareness in
pedestrians during the interaction.

Moreover, this experiment simulated a scenario in which the
APMV autonomously drives to pick up passengers or returns
to standby after dropping them off, i.e., operates autonomously
without a passenger, in order to induce pedestrians’ risk
perception. This is because pedestrians’ trust in the passenger
on the APMV could bias their risk perceptions, as discussed
in Liu et al. [1]. For example, pedestrians may assume that
the passenger can take over control at any time, leading them
to perceive the risk as low regardless of how dangerous the
APMV’s driving behaviors might actually be. The specific
experimental design is detailed in the following subsection.

This experiment was carried out with the approval of the
Research Ethics Committee of Nara Institute of Science and
Technology, Japan (No. 2022-1-55-1).

A. Participants

An a priori power analysis using G*Power [47] (ver-
sion=3.1.9.7, effect size f = 0.25, @ = 0.05, power = 0.85)
estimated the minimum sample size for repeated measures
ANOVAs under the four eHMI conditions was 26. In this
study, we invited 42 participants (self-reported genders: male
34, female: 8) with ages from 22 to 38 years (Avg.: 26.69
years, Std.: 4.36 years) from multiple countries to participate
in the experiment. There are 13 participants from Japan, 8
from Indonesia, 5 from China, 3 each from Malaysia and
Bangladesh, 2 each from Pakistan, Philippines and Vietnam,
and 1 participant each from Lebanon, Colombia, Sudan, and
Nigeria. None of the participants had previous experience
using or interacting with APMVs. The experiment lasted
approximately one hour and each participant was compensated
with 1,000 Japanese Yen for their participation.

B. APMV and Its eHMI Device

As shown in Fig. 1, a WHILL Model CR robotic wheelchair
equipped with an autonomous driving system was used as the
APMV. This APMV is equipped with a Velodyne VLP-16
LiDAR and a control PC for autonomous driving on a pre-
designed route. A display with a speaker has been installed
on top of the APMV to function as the eHMI. This eHMI
communicates driving intentions by showing relevant text on
the display and vocalizing the messages through the speaker.

C. Experimental Site

An indoor area measuring 10 mx10 m was arranged to
simulate a street crossing scene, as shown in Fig. 3. The
pedestrian’s walking path spans 7.5 meters, consisting of 4.5
meters from the initial point to the intersection, a street width
of 1.5 meters, and an additional 1.5 meters from the crossing to
the exit. On the other hand, the APMV travels a route totaling
8.25 meters, which includes 4.75 meters from the starting
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Fig. 3. Experimental settings including experimental site, driving behavior profile of the APMV and eHMI conditions.

position to the intersection, a crossing width of 2 meters, and
1.5 meters from the crossing to the end position.

A baffle plate is positioned near the pedestrians’ starting
location. This plate is structured to block the pedestrians’ view,
ensuring that they encounter the APMV from a consistent
position only after they begin walking.

D. Driving Behaviors of the APMV

Considering the size of the experimental site, as well as the
APMV’s maximum speed and acceleration capabilities, the
velocity profile of the APMYV is depicted by the red line in
Fig. 3. The APMV departs from the start position 4.75 meters
from the intersection stop line, reaching its maximum speed
of 1.67 m/s (comparable to brisk walking) after traveling 1.5
meters. The APMV maintains its maximum speed for the next
1.75 meters, then begins to decelerate, and comes to a full stop
after covering an additional 1.5 meters. After the pedestrian
has completely crossed the road, the APMV starts moving
again and drives to the goal position. In all trials, the APMV’s
velocity profiles are the same, regardless of variations in eHMI
conditions.

E. eHMI Conditions

This experiment designed four different eHMI conditions
(see the right part of Fig. 3) to measure a wide range of paired
psychological and behavioral data from pedestrians during
their interactions with the APMV. It is assumed that the eHMI
cue under each condition, in conjunction with the APMV’s
driving behaviors, can help pedestrians to vary degrees in
understanding the APMV’s driving intentions and predicting

its driving behavior. Consequently, this may lead to differences
in pedestrians’ subjective evaluations and walking behaviors.
Moreover, the designed eHMIs incorporate both visual and
voice cues to prevent differences in pedestrians’ perceptions
of the eHMI information and the timing due to inconsistent
attention. These conditions are detailed in Fig. 3.

1) Non eHMI Condition: Participants are required to depart
at the same time as APMV. In encounters between pedestrians
and APMVs, the eHMI neither shows information on the
screen nor produces sound. Consequently, the eHMI does
not assist pedestrians in comprehending the APMV’s driving
intentions and predicting its behavior. This aligns with existing
traffic scenarios where pedestrians only rely solely on vehicle
kinematics (e. g., distance, speed and acceleration) to infer its
driving intentions.

2) Early eHMI Condition: Participants are required to
depart at the same time as APMV. After the APMV departs
and accelerates for 1.5 meters, reaching its maximum speed
of 1.67 my/s, it displays “I will stop” on the eHMI screen
and provides a voice cue (see Fig. 3). After that, the eHMI
will continuously display “I will stop” until the APMV stops
in front of the stop line. After stopping, the eHMI will be
turned off. According to the situation awareness model [45]
(see Fig. 2), we assumed that this early cue may support
pedestrians to understand the APMV’s driving intentions, but
may remain difficult in the real-time prediction of driving
behaviors, potentially affecting pedestrians’ trust in the APMV
and their decision-making.

3) Sync eHMI Condition: Participants are required to
depart at the same time as APMV. The APMV begins to
decelerate at a distance of 1.5 meters before reaching the stop
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TABLE I
EHMI EXPERIENCE ORDERS FOR THE 42 PARTICIPANTS

Participants

Order of experience with eHMI conditions

(N=42) Dummy trial 1st cond. Dummy trial

2nd cond.

Dummy trial 3rd cond. Dummy trial 4th cond.

Z2Z2222Z
NN

Non-yielding — Non eHMIx3 — Non-yielding — Early eHMIx3 — Non-yielding — Sync eHMIx3 — Non-yielding — Late eHMIx3
Non-yielding — Non eHMIx3 — Non-yielding — Early eHMIx3 — Non-yielding — Late eHMIx3 — Non-yielding — Sync eHMIx3
Non-yielding — Non eHMIx3 — Non-yielding — Sync eHMIXx3 — Non-yielding — Early eHMIx3 — Non-yielding — Late eHMIX3
Non-yielding — Non eHMIx3 — Non-yielding — Sync eHMIx3 — Non-yielding — Late eHMIx3 — Non-yielding — Early eHMIx3
Non-yielding — Non eHMIx3 — Non-yielding — Late eHMIXx3 — Non-yielding — Early eHMIX3 — Non-yielding — Sync eHMIx3
Non-yielding —+ Non eHMIXx3 — Non-yielding — Late eHMIX3 — Non-yielding — Sync eHMIx3 — Non-yielding — Early eHMIx3

line. At this moment, the eHMI issues visual and voice cues,
stating “I will stop” (see Fig. 3). At the stopping line, the eHMI
will be turned off. Since Sync eHMI provides information cues
that are synchronously aligned with APMV driving behavior
(i.e., achieving verbal-action synchrony), it may support both
the comprehension of the APMV’s driving intentions and
projection of its future behavior within pedestrians’ situation
awareness [45] (see Fig. 2). This verbal-action synchrony
may further facilitate more accurate risk evaluation and more
adaptive decision-making by pedestrians.

4) Late eHMI Condition: Participants are required to depart
at the same time as APMV. During the process from the
APMV’s departure to its stop, the eHMI does not provide any
information cues to pedestrians. When the APMV stopped,
the eHMI will provide “I stopped” using both visual and
voice cues (see Fig. 3). The visual cue will continue until
the APMV departs after the pedestrian completes crossing
the road. Since the Late eHMI does not provide any cues
prior to the APMV’s stop, pedestrians can infer its driving
intentions based only on the vehicle’s kinematics. Once the
APMV stops and provides “I stopped” via the eHMI, this
serves as a post hoc confirmation of driving intention. This
confirmation information may help pedestrians understand that
the APMYV has already stopped, reducing their perceived risk
and enhancing their trust in the APMYV, after it stopped.

F. Experimental Procedure

At first, the participants were briefed on the experiment,
covering details about the APMV’s hardware and its self-
driving capabilities. Then, examples were used to familiarize
them with the eHMI, demonstrating its visual and voice cues.
However, details on the eHMI conditions and their activation
timing were not provided. The participants provided their
informed consent after all their questions were answered and
then began the experiment.

Since all participants reported having no prior encounter
experience with the APMV in their lives, we placed the Non
eHMI condition at the beginning of the experience order to
familiarize them with the interaction and establish a base-
line for comparison. The remaining three eHMI conditions
provide six potential sequence combinations using a Latin
square design. As detailed in Table I, each experience order
is randomly assigned to seven participants to minimize the
potential impact of the order effects on experimental results.
Each eHMI condition will be carried out continuously for three

trials to obtain stable subjective evaluations and behavioral
data.

Before each eHMI condition, a non-yielding dummy trial
is performed to remind participants that the APMV might
not always stop. The APMV departs one second before the
participants. It crosses the intersection without decelerating or
stopping because pedestrians are about 1 to 1.5 meters from
the intersection’s edge when it passes the stop line. The eHMI
does not show any information during this process.

As prior instructions, participants were informed that during
the experiment, you would encounter an APMV equipped
with various types of eHMIs, and these eHMIs are randomly
used in each trial. Participants were also informed that the
eHMI could simultaneously convey both visual and voice
cues but the specific configurations of each eHMI condition
were not instruct to them. Finally, participants were given
false information that the APMV would automatically decide
whether to yield to them based on their distance and movement
speed.

In each trial, participants were instructed to walk naturally
from the initial point, cross the road, and exit through a
door (refer to the blue line in Fig. 3). During this walking
process, participants needed to decide whether to yield to the
APMYV, just as they would in real traffic. After completing
each trial, participants were required to complete a post-trial
questionnaire at the desk outside the door. Then, participants
returned to the starting point to continue the next trial.

G. Measurements

1) Post-Trial Questioners: Based on the hypothesized
model shown in Fig. 2, Liu et al. [16] designed the following
six questions to evaluate each step of this model. This study
uses these six questions to evaluate pedestrians’ subjective
experiences during their interaction with the APMYV, both
when approaching and crossing the intersection. They? are:

Ql: It was easy to understand the driving intentions of the
APMV.

Q2: It was easy to predict the driving behaviors of the
APMV.

Q3: I felt it was dangerous to cross the road when I encoun-
tered the APMV.

3Since the questionnaire was completed after each trial, Q1-Q6 were
phrased in the past tense to reflect participants’ experiences during the
interaction with the APMYV, not their post-crossing feelings. This was clearly
explained in the pre-experiment instructions.
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Fig. 4. Participants’ walking durations are measured in three phases: crossing
initiation time (CIT), crossing time (CT), and after crossing time (ACT), using
the MidHip keypoint estimated by OpenPose with the BODY 25 joint set.

Q4: I trusted the APMV to interact with me safely when I
crossed the road.

Q5: 1 felt a sense of relief when I crossed the road.

Q6: I felt hesitant to make the decision of crossing the road
or not when I encountered the APMV.

These six questions were required to be answered using a
5-point Likert scale, i. e., 1="strongly disagree”, 2="disagree”,
3="“neutral”, 4="agree”, and 5="strongly agree”.

Q1 and Q2 assess comprehension and projection in pedes-
trian situation awareness during the interaction. Q3, Q4,
and QS5 evaluate the risk homeostasis process. Q6 mea-
sures hesitation in decision-making about crossing the road.
QIl, Q2, Q3, and Q6 are designed to measure pedestrians’
subjective experiences throughout the entire interaction pro-
cess, from initially perceiving the APMV to exiting the
room. Moreover, although Q4 and QS5 are phrased to assess
participants’ subjective experiences during the crossing, these
questions are designed to capture the trust in APMVs and
the sense of relief that pedestrians had accumulated before
the crossing and during the crossing. This is because trust
is a cumulative process that develops over time [48], [49],
and the sense of relief depends on the level of trust [50].
Therefore, the responses of Q4 and Q5 not only represent
the states experienced during the crossing, but also capture
whether sufficient trust and relief had already been built
beforehand.

Note that, based on the four dimensions of trust in human-
machine systems proposed by Lee and Moray [51], i.e.,
foundation, purpose, process, and performance, we considered
that performance-based trust is most important for pedestrians
interacting with an APMV. This refers to pedestrians’ trust
in the APMV’s performance to avoid collisions and ensure
safety for pedestrians. Thus, Q4 was designed to capture this
trust.

2) Walking Durations in Three Crossing Phases: Walking
durations of the participants are calculated in the three crossing
phases. Crossing Initiation Time (CIT) refers to the time
it takes for pedestrians to decide to cross the road. This
metric was used to indicate the interval between the moment
pedestrians initially perceive the APMV and the moment they
step into the intersection. Crossing Time (CT) refers to the
duration between the moment pedestrians enter the intersection
and the moment they completely cross the intersection. After
Crossing Time (ACT) refers to the time it takes pedestrians
to walk from the end of the intersection to the designated end
point.

To measure the walking durations mentioned above, the
walking processes of participants were recorded by a camera
(1920 x 1080 pixels with 30 FPS) shown in Fig. 3. Then,
OpenPose [52] based on the BODY 25 joint set is used to
extract skeletal features of participants during their walking
process (see Fig. 4). Then, the feature point of the waist called
the MidHip point is used to represent the walking position
of participants in the image coordinate system. The existence
time of the MidHip point during the three stages is used to
represent CIT, CT, and ACT. Specifically, as shown in Fig. 4,
CIT is defined as the time taken for the pedestrian’s MidHip
keypoint to move from 350 pixels to 1000 pixels;CT is the
time taken for the MidHip keypoint to move from 1000 pixels
to 1330 pixels; while ACT is the time taken for it to move
from 1330 pixels to 1600 pixels on the image’s horizontal
axis.

H. Prior Knowledge of DirectLINGAM

After measuring the data on participants’ subjective evalu-
ations and walking behaviors, we applied DirectLINGAM to
discover the causal relations from their subjective evaluations
to walking behaviors. Based on the hypothesized model shown
in Fig. 2, we have set prior knowledge in DirectLiNGAM to
specify the inputs and outputs of this process. Specifically,
although perception is the first stage of situation awareness,
it refers to the behavioral process of detecting or noticing
elements in the environment and primarily involves sensory
input, such as visual or auditory signals. Therefore, QI is
designated as input, i.e., a prior exogenous variable, because
comprehension could be considered as the initial stage of
pedestrians’ cognition (rather than awareness). This means
that Q1 is assumed to be an independent factor within the
model, unaffected by other variables but capable of influ-
encing them. Furthermore, as the aim of this study is to
discover the causal relations from pedestrians’ psychological
states to their behavior, CIT, CT, and ACT are designated
as the outputs, i.e., prior endogenous variables. This means
they are assumed to be dependent variables, influenced by
other variables but do not influence others. The causal
relations among the remaining variables are inferred using
DirectLiNGAM.

IV. RESULTS
A. Data Summary

Considering the differences in interaction timing and dis-
tance between pedestrians and the APMYV in the non-yielding
dummy condition compared to other eHMI conditions, data
from this condition is excluded from the analysis.

Throughout the experiment, data from a total of 504 trials
(126 trials per eHMI condition) were collected, each consisting
of nine factors: six subjective evaluation factors (Q1 to Q6) and
three factors of walking behavior (CIT, CT and ACT). Table II
shows the descriptive statistics of each factor under all eHMI
conditions. By assessing the maximum, minimum values,
and standard deviation (std) for each factor, the collected
data are deemed comprehensive, covering a wide range of
psychological states and walking behaviors of pedestrians,
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TABLE I
DESCRIPTIVE STATISTICS OF ALL FACTORS UNDER FOUR EHMI CONDITIONS AND THEIR SPEARMAN CORRELATION COEFFICIENTS

Descriptive Statistics

Spearman Correlation Coefficient

Factor VIF
N mean std. median IQR min max Q1 Q2 Q3 Q4 Q5 Q6 CIT CT ACT

QI Understand 504 3.97 1.20 4.00 2.00 1.00 5.00 |00 -0.67 *#% 10.68 **% (.42 k(.70 ¥ -0.32 #+* (011 * -0.08 3.53
Q2 Predict 504 3.89 1.20 4.00 2.00 1.00 5.00 -0.68 ##% 0.66 *** 0.41 *** -0.69 FF* -0.28 *** -0.12 ** -0.09 *  3.68
Q3 Dangerous 504 2.17 1.20 2.00 2.00 1.00 5.00 -0.67 *** -0.68 *#** -0.75 ##% -0.46 *** 0.19 *** 0.03 0.02 3.25
Q4 Trust 504 3.81 1.16 4.00 2.00 1.00 5.00 0.68 *#% .66 *** -0.75 *** 0.59 #*% (.72 #&% -(0.25 *** -0.05 0.00 2.94
Q5 Relief 504 3.81 1.17 4.00 2.00 1.00 5.00 0.42 **% (.41 *#% -(0.46 *** (.59 ##* -0.43 ##% -0.25 *** -0.07 -0.02 1.37
Q6 Hesitant 504 2.51 1.35 2.00 3.00 1.00 5.00 -0.70 ##* -0.69 *#*#* -0.72 ##% -(0.43 Hkk 0.30 *** (.08 0.05 3.33
CIT 504 3.06 0.83 2.87 1.00 1.70 6.11 -0.32 *** -0.28 *** (),19 *#* (.25 *** (.25 *** ()30 *** 0.45 *** 0.44 *** 140
CT 504 1.19 0.18 1.17 0.20 0.73 2.37 -0.11 *  -0.12 ** 0.03 -0.05 -0.07 0.08 0.45 #k* 2.52
ACT 504 096 0.13 0.93 0.17 0.60 1.33 -0.08 -0.09 * 0.02 0.00 -0.02 0.05 0.44 ***—2.53

Q1 to Q6: 1="strongly disagree”, 2="disagree”, 3="neutral”, 4="agree”, 5="strongly agree”. CIT, CT and ACT: the unit is in second.
1P < .05, %% :p < .01, % %% :p < .001. VIF: Variance Inflation Factor (commonly acceptable threshold: VIF< 4 or VIF< 10 [53]).
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Fig. 5. Results of subjective evaluations (Q1 to Q6) and walking behavior
factors (CIT, CT and ACT).

which is suitable for causal discovery. Table II also shows
Spearman correlation coefficients between each pair of factors,
which helps us to preliminarily discover potential relations
among them.

To assess multicollinearity among the independent variables,
we computed the Variance Inflation Factor (VIF) [53] for
each factor. Table II also presents the VIF for each factor.
According to a commonly acceptable threshold of VIF below
4 [53], the multicollinearity of each factor was considered
acceptable.

B. Subjective Evaluations and Walking Behaviors Under
Each eHMI Condition

Under each eHMI condition, the results of subjective evalu-
ations and walking behavior factors are presented in Fig. 5 as
box plots with paired point plots. These box plots visualize a
comparison of the median and distribution of responses under
the different eHMI conditions. These paired-point plots show
average factor values for each participant in three trials per

TABLE III

FRIEDMAN TEST RESULTS FOR SUBJECTIVE EVALUATIONS AND WALKING
BEHAVIOR FACTOR UNDER FOUR EHMI CONDITIONS

Factor w ddof1 ddof2 F p

Q1 Understand 0.407 2.952 121.048 28.098 <.001 ##*
Q2 Predict 0.357 2.952 121.048 22.778 <.001 ***
Q3 Dangerous 0.195 2.952 121.048 9.948 <.001 ***
Q4 Trust 0.248 2.952 121.048 13.542 <.001 ***
Q5 Relief 0.118 2.952 121.048 5511 <.001 ***
Q6 Hesitant 0.232 2.952 121.048 12.359 <.001 ##*
CIT 0.423 2.952 121.048 30.075 <.001 ***
CT 0.257 2.952 121.048 14.212 <.0071 ##*
ACT 0.188 2.952 121.048 9.468 <.001 sk

#Hdp < .001.

eHMI condition. Lines between conditions indicate changes in
the relevant factors for each participant. The green line shows
higher average factor values on the right condition, while the
red line shows the opposite.

This experiment aims to use various eHMI conditions
to influence pedestrians’ subjective evaluations and walking
behaviors when interacting with APMVs, facilitating causal
analysis among these variables. To validate this motivation,
the Friedman test was performed to determine whether there
were differences in each factor among four eHMI condi-
tions, as the Shapiro-Wilk test indicated that the results for
each factor did not conform to a normal distribution. The
results of the Friedman test are shown in Table III that all
factors had significant differences among the four eHMI con-
ditions, respectively. Then, Wilcoxon signed-rank tests with
Benjamini/Hochberg FDR corrections were used as post-hoc
pairwise comparisons of the main effect of eHMI conditions
on subjective evaluations and walking durations, as shown in
Table IV.

C. Direct Causal Relations and Their Statistical Reliability

Due to the differences in scale among Q1-Q6, CIT, CT, and
ACT, all variables were standardized using z-scores prior to
applying DirectLiNGAM. The estimated causal model using
DirectLiNGAM is shown in Fig. 6. This causal model shows
the direct relations (i.e., the direct causal paths and their
direct causal effects) among the nine factors. Arrows between
nodes indicate the direct causal path. The value next to each
arrow represents the direct causal effect corresponding to the
elements of the adjacency matrix.
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TABLE IV

POST-HOC TWO-SIDED PAIRWISE COMPARISONS USING THE WILCOXON
SIGNED-RANK TEST WITH BENJAMINI/HOCHBERG FDR CORRECTION
FOR THE MAIN EFFECT OF EHMI CONDITIONS ON THE FACTORS OF
SUBJECTIVE EVALUATIONS AND WALKING BEHAVIOR

eHMI eHMI Mean Std. Mean Std. .
A B (A A ® @® W opadi CLES
Early Late 4.57 0.64 359 121 420 <.001%*%* 0.757
Early Non 4.57 0.64 328 120 46.0 <.001*%%* 0.816
Q1 Early Sync 4.57 0.64 443 0.69 76.0 122 0.560
Late Non 3.59 1.21 328 1.20 188.0 157 0.579
Late Sync 3.59 121 443 0.69 585 <.001%*%%* 0.291
Non Sync 328 120 443 069 155 <.001% 0216
Early Late 444 081 354 1.10 74.0 <.001#*%%* 0.762
Early Non 444 081 330 1.16 81.0 <.001*%*%* 0.788
Q Early Sync 444 081 429 0.71 128.0 145 0.592
Late Non 3.54 1.10 3.30 1.16 195.5 .099 0.562
Late  Sync 3.54 110 429 071 615 <.001* 0297
Non Sync 330 1.16 429 071 550 <.001%* 0253
Early Late 191 097 225 1.11 121.0 076 0411
Early Non 191 097 268 123 845 1002 ** 0.312
Q3 Early Sync 191 097 185 0.86 156.0 434 0.507
Late Non 225 1.11 2.68 1.23 156.0 .066 0.400
Late Sync 225 1.11 1.85 0.86 119.0 040 * 0.600
Non Sync 2.68 123 185 0.86 550 <.001%*%*%* 0.700
Early Late 4.09 090 3.73 1.02 139.0 040 * 0.598
Early Non 4.09 090 325 123 515 <.001%*%%* 0.689
Q4 Early Sync 4.09 090 4.17 0.77 156.0 629 0.480
Late Non 3.73 1.02 325 123 755 010* 0.613
Late Sync 373 1.02 4.17 0.77 71.0 005 ** 0.381
Non Sync 325 123 417 077 255 <.001#  0.285
Early Late 398 1.08 3.82 0.96 105.0 149 0.562
Early Non 398 1.08 341 121 86.0 022* 0.642
Q5 Early Sync 398 1.08 4.05 1.04 1565 637 0.489
Late Non 3.82 096 341 1.21 133.0 .049 * 0.598
Late Sync 3.82 096 4.05 1.04 995 .082 0.422
Non Sync 341 121 4.05 1.04 120.0 022 * 0.351
Early Late 2.07 1.08 272 126 96.5 005 #* 0.348
Early Non 2.07 1.08 3.23 124 57.5 <.001%*** 0.249
Q6 Early Sync 2.07 1.08 2.02 0.83 195.0 864 0.483
Late Non 272 126 3.23 1.24 1435 017* 0.389
Late Sync 272 126 2.02 0.83 52.0 <.001%*%*%* 0.654
Non Sync 3.23 124 202 0.83 17.5 <.001*%** 0.780
Early Late 2.76 0.53 334 094 56.0 <.001%*%%* 0.322
Early Non 2.76 0.53 332 0.76 54.0 <.001%*%%* 0.277
CIT Early Sync 2.76 0.53 2.82 0.51 339.0 .196 0.470
Late Non 334 094 332 0.76 413.5 831 0.484
Late Sync  3.34 094 282 0.51 89.5 <.001*** 0.656
Non Sync 3.32 0.76 2.82 0.51 55.0 <.001%*%*%* 0.694
Early Late 1.15 0.15 1.26 0.19 60.5 <.001*** 0.312
Early Non 1.15 0.15 1.18 0.16 3355 228 0.471
CT Early Sync 1.15 0.15 1.16 0.12 3235 247 0.481
Late Non 126 0.19 1.18 0.16 133.5 <.00] *** 0.657
Late Sync 1.26 0.19 1.16 0.12 59.5 <.001*%** 0.677
Non Sync 1.18 0.16 1.16 0.12 330.5 237 0.516
Early Late 0.95 0.13 099 0.11 83.0 <.001%*%%* 0.390
Early Non 095 0.13 095 0.12 389.5 539 0.478
ACT Early Sync 095 0.13 094 0.12 348.0 562 0.523
Late Non 099 0.11 0.95 0.12 204.5 007 ** 0.585
Late Sync 099 0.11 094 0.12 71.5 <.001%*%%* 0.623
Non Sync 095 0.12 094 0.12 358.0 526 0.527

*p < .05, ¥*¥:ip < .01, ***:p < .001. CLES: common language effect size.

To wvalidate the non-Gaussian error assumption of
DirectLiNGAM, Shapiro—Wilk test was separately conducted
on the residuals of each variable in the inferred causal model.
The results confirmed that all residuals were significantly non-
Gaussian (p < .001), which supported the assumption of
DirectLINGAM.

Further, a summary of model fit indices for the causal
model estimated using DirectLiNGAM is presented in the first
row of Table V. The computation formulas and interpretation
guidelines for these model fit indices can be found in [54]

Situation awareness

QI1.Understand

Risk evaluation

F0.19

£0.24

‘Walking behaviors

After Crossing Time Crossing Initiation Time

Fig. 6. A causal model showing direct causal paths and their corresponding
direct causal effects, estimated by DirectLiNGAM from data on nine factors
measured across 504 trials. (blue node: a prior exogenous variable, red nodes:
prior endogenous variables).
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Fig. 7. Bootstrapped causal model estimated via DirectLiNGAM 5000
times, showing direct paths with the median direct causal effects and the
replication probabilities exceeding 30%. (blue node: exogenous variable; red
node: endogenous variables).

and [55]. The result of the chi-square test (y?(22) = 6.362,
Py = 999) indicated that the causal model provided an
acceptable fit. In line with the acceptable thresholds of
model fit suggested by [54], the comparative fit index (CFI),
goodness-of-fit index (GFI), adjusted goodness-of-fit index
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TABLE V
MODEL FIT SUMMARY OF THE CAUSAL MODEL AND THE BOOTSTRAPPED CAUSAL MODEL ESTIMATED VIA DIRECTLINGAM

X2 (dof) Py XZasetine (dof)  CFI GFI AGFI NFI TLI ~ RMSEA

Causal model (Fig. 6) 6.362 (22) 999 2214.372 (22) 1.000 0.997 0.997 0.997 1.007 0.000
Bootstrapped causal model (Fig. 7)  30.688 (22) 103 2214.372 (22) 0.996 0.986 0.986 0.986 0.996 0.028
Acceptable thresholds [54] - > .050 - >0.950 >0.950 >0.950 >0.950 >0.950 < 0.070

CFI: comparative fit index. GFI: goodness-of-fit index; AGFI: adjusted goodness-of-fit index; NFI: normed fit index.
TLI: Tucker-Lewis index; RMSEA: root mean square error of approximation.
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Fig. 8. The median total causal effects of 5000 times DirectLiNGAM via bootstrap. The total causal effects with reproducibility probabilities exceeding 30%

are presented.

(AGFI), normed fit index (NFI), Tucker-Lewis index (TLI),
and root mean square error of approximation (RMSEA) also
indicated that the causal model estimated by DirectLINGAM
fit the data well. Nonetheless, Py .999, CFI
1.000, TLI = 1.007, RMSEA = 0.000 may also imply potential
overfitting.

To verify the statistical reliability of the estimated direct
causal relations, the bootstrap method was applied [56].
Specifically, bootstrap resampling was conducted to generate
new datasets by repeated random sampling from the measured
dataset. Each resampled dataset retains the same size as the
measured dataset. A total of 5000 times of bootstrap resam-
pling were performed, generating 5000 new datasets. For each
dataset, DirectLiNGAM was used to conduct causal discovery
and independently estimate the adjacency matrix A. There-
after, the 5000 adjacency matrices of A were aggregated to
calculate the median direct causal effects of non-zero elements
and their probability of occurrence, i.e., the reproducibility
probability of the direct causal relations. Causal paths with
replication probabilities below 30% were pruned, i.e., their
corresponding median direct causal effects were set to zero.
Figure 7 shows the estimated median direct causal effects with
reproducibility probabilities greater than 30%, as determined
from the 5000 bootstrap with DirectLiNGAM. The repro-
ducibility probability for each direct causal relation is labeled
next to each arrow in Fig. 7. The second row of Table V
shows a summary of the fit indices for this bootstrap causal
model. The chi-square test result (y%(22) = 30.688, Py = .103)
indicated that the causal model provided an acceptable fit.
Additionally, the CFI, GFI, NFI, TLI, and RMSEA values
also suggested that the bootstrapped causal model fitted the
data well, according to the acceptable thresholds suggested by
[54].

D. Total Causal Effects and Their Statistical Reliability

Total causal effect quantifies the change in the effect variable
when the cause variable is altered (i. e., intervention) [57]. It
includes both direct causal effects and indirect causal effects
from the cause variable to the effect variable.

To calculate a more reliable total effect, the bootstrap
method was also used 5000 times. The bootstrap outputs the
medians of total causal effects and their reproducibility proba-
bilities (i.e., the probabilities of whether total effects are non-
zero) over the DirectLiNGAM results via bootstrap samplings.

Since Q1 is assumed to be an exogenous variable, unaffected
by other variables but capable of influencing them, the total
causal effects of the other variables on Q2-Q6, as well as
on CIT, CT, and ACT, were calculated separately. These total
causal effects with reproducibility probabilities exceeding 30%
are presented in Fig. 8.

V. DISCUSSION

A. Causal Discovery From Subjective Evaluations to
Walking Behaviors

The direct causal relations between the factors and the
results of their bootstrap-based statistical reliability are shown
in Figs. 6 and 7, respectively. All the direct causal relations
between factors shown in Fig. 6 are confirmed to have at
least 56% reliability as shown in Fig. 7. The only difference
is that, compared to the causal relation discovered directly
from the collected data, a new direct causal relation from
QI to Q3 is discovered after using 5000 times of bootstrap,
with a reliability of 56%. This suggests that as the number
of participants increases further, understanding the driving
intention may directly affect their sense of danger during
encounters with the APMV.
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Overall, the general flow of the results from causal discovery
aligns with the hypothesized model (see Fig. 2), where the
outcomes of situation awareness lead to risk evaluation, the
outcomes of risk evaluation lead to hesitation in decision-
making, and the results of hesitation lead to walking behaviors.

Next, we will discuss in detail the findings of causal effects
on each factor by combining their reliable direct causal effects
(see Fig. 7) and total causal effects (see Fig. 8).

1) Causal Effects on the Prediction of APMV’s Behaviors:
Fig. 7 shows a high reproducibility probability (100%) direct
causal relation from Q1 to Q2. Furthermore, Fig. 8 also shows
that the total causal effect on Q2 was attributed solely to QI.
Those results suggest that the participants’ understanding of
the APMV’s driving intentions (Q1) positively affects their
prediction (Q2) of the APMV’s driving behavior.

This result aligned with the process of situation awareness
[43] in the hypothesized model (see Fig. 2). Additionally,
[16], [23], [58] also mentions that a good understanding of
the intentions of automation systems can improve the user’s
ability to predict the behavior of AVs or APMVs.

2) Causal Effects on the Trust in APMV: Moreover,
Fig. 7 shows that participants’ trust in APMV (Q4) tends to
increase if the driving intentions of APMV could be easily
understood (Q1) and the driving behavior could be easily
predicted (Q2). This suggests that the pedestrians’ trust in
an APMV is the situational trust [59], primarily affected
by their understanding of the APMV’s intentions and pre-
diction of its behaviors, rather than by initial trust or trust
propensity.

This finding is consistent with the results of [16], [60],
[61], and [62] in the interactions between humans and AV. In
addition, Yang et al. [63] introduced from another perspective
that the higher the transparency of an automation system,
the more users tend to trust the system. Similarly, M. Faas
et al. [64] used an eHMI to enhance the transparency of
an AV system by displaying its status and intentions, which
can improve pedestrian trust. These studies also indirectly
suggested that users’ situational awareness of the automation
system influences their trust in it.

We considered that the above results and conclusions could
offer insights into an important topic in human-machine
systems: calibrating humans’ trust in automation systems.
Specifically, Holldnder et al. [25], Kaleefathullah et al. [26]
reported that during interactions between pedestrians and AVs
equipped with eHMIs, there is a potential risk that pedestrians
develop over-trust in the eHMI and the AV, which could
lead to unsafe situations. Therefore, we consider that, to
calibrate the trust of humans (i.e., pedestrians in this study)
in automation systems, it is necessary to help them calibrate
their situation models (see Fig. 2). Furthermore, Endsley
[45] suggested that the situation model is supported by the
mental model, which provides the necessary prior knowledge
for situation awareness. Meanwhile, [65], [66] pointed out
that the mental model is a highly organized and dynamic
knowledge structure. It serves as an internal representation
of a target system that contains meaningful declarative and
procedural knowledge derived from long-term experience and
study. Therefore, in summary, to calibrate the trust of humans

(i.e., pedestrians in this study) in automation systems (i.e.,
the APMV in this study), it is essential to calibrate their
mental model of the automation system. For example, some
studies suggested the use of pre-instruction [16] and educa-
tional HMI [67] to help users develop an accurate mental
model.

3) Causal Effects on the Sense of Relief: From Fig. 7, we
found that pedestrians feel relief (Q5) during interactions with
an APMV only when they have established sufficient trust (Q4)
in it, as Q4 was identified as the only direct causal effect on
Q5, with a reproducibility probability of 100%. This finding
not only provides empirical support for [50], which argued that
“anshin” (corresponding to QS5, sense of relief, in this study)
is highly dependent on trust, but it can also help explain the
results reported in [16], which showed that higher pedestrian
trust in AVs is associated with a greater sense of relief when
crossing the road.

Moreover, from the total causal effects on Q5, Fig. 8 shows
that, in addition to the direct causal effect from the trust in
APMV (Q4), understanding the APMV’s driving intentions
(Q1) and predicting its driving behavior (Q2) also have indirect
effects on the sense of relief (Q5). This result further shows
that pedestrians’ trust, based on their understanding of the
APMV’s driving intention, improves their sense of relief
during interactions with the APMV.

4) Causal Effects on the Sense of Danger: We found that
QI1, Q2, and Q4 have negative direct causal effects on Q3,
as shown in Fig. 7. Similarly, Fig. 8 shows that only the
above three factors (Q1, Q2, and Q4) have negative total
causal effects on Q3. These findings suggest that participants
experience a marked increase in perceived danger when they
face challenges in understanding the APMV’s driving inten-
tions, encounter difficulties in predicting its driving behavior,
and exhibit a lack of trust in the APMV. This result corre-
sponds to [16], noting that inadequate situational awareness
of AVs heightens pedestrians’ perceived danger. Moreover,
de Clercq et al. [14] demonstrated that clear AV driving
intentions reduce this perceived risk. Similarly, Liu et al.
[1] found that diminished comprehension of APMV driv-
ing intentions raises the conditional probability of perceived
danger. Moreover, Kenesei et al. [68] observed that trust in
the AV’s performance can reduce the user’s perceived risk,
which aligns with our findings. In contrast, Zhang et al.
[69] reported that perceived risk can inversely affect users’
initial trust in AVs. We hypothesize that, in human-machine
systems, initial trust is influenced by subjective risk. Once trust
reaches a certain level, it begins to inversely affect subjective
risk. This hypothesis needs to be further validated in future
studies.

5) Causal Effects on the Hesitation in Decision-Making:
For both the direct and total causal effects, as shown in Fig. 7
and Fig. 8, Q6 was negatively influenced by Q1, Q2, and Q4,
while being positively influenced by Q3. This suggests that
participants showed increased hesitation in decision-making
when they struggled to comprehend the APMV’s driving
intentions, predict its behavior, had lower trust, and perceived
higher danger.
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This aligns with Liu et al. [1] regarding pedestrians’ sub-
jective evaluations during encounters with AVs. However, [1]
did not clarify the causal relations between these factors.
Additionally, Yang et al. [70] found that when pedestrians
could better understand the AV’s intentions through eHMI,
they turned their heads less before crossing the street, which
means they had greater confidence and reduced uncertainty in
the crossing. The confidence in crossing the street observed
here can also be interpreted as being negatively correlated
with hesitation in decision-making. In other words, when
pedestrians can more easily understand the AV’s intentions,
their hesitation in decision-making decreases, which aligns
with our finding.

6) Causal Effects on Walking Behaviors: Although QlI,
Q3, and Q6 were designed to measure participants’ subjec-
tive experiences during the processes of CIT, CT, and ACT,
respectively, and Q5 was designed to measure their sense of
relief during CIT and CT, the causal discovery results revealed
that Q1, Q3, Q5, and Q6 exhibited a direct causal relation
only with CIT (see Figs. 7 and 8). These results suggest that
pedestrians’ subjective experiences before initiating crossing,
such as intention understanding, danger perception, sense
of relief, and hesitation, accumulate over time and play a
crucial role in their walking behaviors before the crossing,
i.e., the CIT. Once the crossing action is initiated, these
subjective experiences may no longer significantly influence
CT or ACT.

Consequently, the discussion focuses on CIT as the behavior
most affected by subjective experiences. Figs. 7 and 8 show
that CIT was negatively affected by Q1, Q3, QS5, and positively
affected by Q6. This suggests that easier understanding in
driving intention and a higher sense of relief allow pedestrians
to start crossing the road more quickly, thereby shortening their
CIT. In contrast, hesitation has a positive impact, delaying
the initiation of crossing. The above findings align with the
conclusions of [17] and [70], which suggested that when
pedestrians could easily understand the driving intentions
of AVs conveyed through eHMIs, their CIT also decreased.
Furthermore, Lee et al. [18], [71] reported that as pedestrians
became more familiar with the information displayed on
eHMIs, meaning they were better able to understand these
information, then their CIT decreased.

Additionally, there seems to be a perplexing result where the
direct causal effect from Q3 to CIT was negative, i.e., —0.29,
shown in Fig. 7, but the correlation coeflicient between Q3 and
CIT was positive, i.e., 0.19, shown in Table II. This could
be considered because correlation analysis focuses on the
relation between two variables, whereas DirectLINGAM based
on SEM involves a multivariate linear regression analysis.
Further evidence lies in the fact that while Q3 had a direct
causal effect of —0.29 on CIT (a negative influence, meaning
decreased perception of danger delays crossing initiation),
its total causal effect on CIT is —0.14, which was smaller
than the direct causal effect. This suggests that Q3 has a
positive indirect causal effect on CIT through Q6, which
partially offsets its negative direct effect in the total causal
effect.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

B. Effects of eHMI Conditions on Subjective Evaluations
and Walking Behaviors Based on Causal Discovery Results

Firstly, an obvious result is that the post-hoc multiple com-
parisons (see Table 1V) did not reveal significant differences
between Early eHMI and Sync eHMI in their effects on
the six subjective evaluations and three walking behaviors.
We considered that the limited size of the experimental site
(see Fig. 3) resulted in a time difference of only about one
second between the information cues of Early eHMI and Sync
eHMI. This minor time difference was likely imperceptible
to the participants, as a few participants reported after the
experiment that they did not perceive any distinction in the
timing of the information cue between Early eHMI and
Sync eHMI.

Secondly, guided by the causal discovery results in Fig. 7,
the results of the post-hoc multiple comparisons in Table IV
are further discussed. Since only under the conditions of Early
eHMI and Sync eHMI was the driving intention of the APMV
conveyed to participants via eHMI before the vehicle came to
a stop, participants perceived the APMV’s driving intentions
to be significantly easier to understand (Q1), which directly led
to significantly easier to predict the driving behaviors (Q2), in
these two conditions compared to Late eHMI and Non eHMI,
respectively. This suggests that providing anticipated infor-
mation about future behaviors via eHMI before the APMV
stops significantly enhances pedestrians’ situation awareness
of the interaction, i.e., comprehension of the APMV’s driving
intentions and their ability to predict driving behaviors.

The above result also directly led to both Early eHMI
and Sync eHMI significantly facilitating the building of
participants’ trust in the APMV (Q4) compared to Non eHMI
and Late eHMI. Additionally, since stop-related information
was displayed on the eHMI after stopping under Late eHMI
but not under Non eHMI, the trust in the APMV was signifi-
cantly higher in the Late eHMI condition than in Non eHMI.
This suggests that the driving intention information provided
by the eHMIs might contribute to facilitating the building of
pedestrians’ trust in the APMYV, with Late eHMI being less
effective than Early eHMI and Sync eHMI, although still better
than Non eHMI.

This significant improvement in trust also led to participants
feeling significantly more relieved (Q5) when interacting with
the APMV under eHMI conditions with information cues,
i.e., Early eHMI, Sync eHMI, and Late eHMI, compared to
Non eHMI. This suggests that providing participants with
information about the APMV’s driving intentions through
eHMI during encounters can help participants feel more relief
when crossing the road.

Similarly, under the conditions of FEarly eHMI, Sync
eHMI, and Late eHMI, the significant improvements in sit-
uational awareness and trust led to a significant reduction in
participants’ perceived danger (Q3) during the interaction with
the APMYV, compared to Non eHMI. Furthermore, considering
that in the Early eHMI condition, the eHMI information was
displayed earlier than the APMV’s deceleration, there was no
significant difference in perceived danger between Early eHMI
and Late eHMI. This suggests that the alignment of explicit
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and implicit information during the interaction between the
APMYV and pedestrians impacts the pedestrians’ perception of
danger.

Under the Sync eHMI condition, the synchronized display
of the APMV’s driving intentions through eHMI enhanced
participants’ situational awareness, increased their trust in the
APMYV, and reduced their perceived danger, resulting in a
significant reduction in hesitation (Q6) when making deci-
sions, compared to all other conditions. Additionally, Early
eHMI significantly reduced participants’ hesitation compared
to Late eHMI and Non eHMI, while Late eHMI was more
effective than Non eHMI in reducing hesitation. Overall,
these results suggest that providing eHMI information can
reduce participants’ hesitation, with Sync eHMI being the most
effective.

Furthermore, the Early eHMI and Sync eHMI enhanced
pedestrians’ situational awareness, builded trust in the APMYV,
and reduce feelings of danger. As a result, they minimized
pedestrians’ hesitation when making crossing decisions, ulti-
mately shortening their CIT and increasing the efficiency of
walking behaviors.

Although Fig. 7 shows that CT and ACT are independent of
the subjective evaluation factors, we found that participants’
CT and ACT were significantly longer under the Late eHMI
condition compared to other eHMI conditions, as shown in
Table IV. We considered that only under the Late eHMI
condition does the APMV continue displaying “I stopped”
after coming to a stop, until the participant finishes crossing
and the vehicle resumes moving. This information reassures
participants that the APMV will not move, allowing them to
cross the road without haste. Although this finding was not
validated by the causal discovery in this study, we will focus
on it in future work.

In summary, this study found that it is important to convey
information on the APMV’s driving intentions to pedestrians
through eHMI when there is a change in driving behavior
or before such a change occurs. Specifically, this informa-
tion enhances pedestrians’ situational awareness and trust in
APMVs, reduces perceived risks during interactions, enables
quicker decision-making, and shortens the crossing initiation
time, thereby improving the efficiency of the interaction.

C. Limitations and Future Work

First, although the questionnaire (Q1-Q6) was developed
based on the hypothesized cognition—decision—behavior pro-
cess, it has not yet been cross-validated with established
scales assessing constructs such as trust or risk perception.
Moreover, this study only examined the causal relations
between pedestrians’ subjective experiences and their walk-
ing behaviors through a retrospective evaluation, without
considering the dynamic changes of these factors during inter-
actions with APMVs. In particular, trust in AVs is regarded
as a cumulative, dynamic variable [48], [49]. Future work
will cross-validate the questionnaire and apply other causal
discovery methods such as CaPS [72] and JIT-LINGAM
[73] to discover dynamical and nonlinear causal relations
from pedestrians’ psychological states to their walking
behaviors.

Second, the participants were predominantly young Asian
males, which may have influenced subjective experiences and
behaviors due to age, cultural, and gender-related factors, lim-
iting generalizability. Future works will expand demographic
diversity to validate the findings across broader populations
and will also investigate how cultural differences may affect
the outcomes of the causal relations.

Third, the experimental setting lacks real-world complexity,
including only the one-to-one interactions between pedestri-
ans and APMVs, the absence of passengers on the APMYV,
encounters with APMVs exhibiting fixed driving kinemat-
ics and trajectory in each trial, and limited eHMI designs.
Future work will incorporate more realistic scenarios, includ-
ing varied APMV driving kinematics and eHMI designs,
and incorporate APMV’s driving behaviors and the variety
of messages conveyed by eHMIs as factors in the causal
discovery process, aiming to construct a bidirectional causal
model that captures the mutual influences between pedestrians
and APMVs during interactions. Then, based on the discovered
causal relations, eHMI design guidelines will be developed
to enhance pedestrian-APMV interactions. Moreover, future
work will also investigate the effects of APMV’s passengers
on pedestrian-APMV interactions.

Fourth, walking durations (i.e., CIT, CT, ACT) were mea-
sured using OpenPose without accounting for perspective
distortion or participant height, which may have affected mea-
surement accuracy. In future work, improving measurement
techniques, such as using ground-based LiDAR, can enhance
the metrics’ accuracy of walking behaviors.

Finally, although this study preliminarily incorporated
pedestrians’ feelings of hesitation in decision-making within
the causal model, it did not explore the underlying decision-
making processes in depth. Thus, future work will reference
established decision-making models in pedestrian-vehicle
interactions (e. g., [74], [75]) to develop a more detailed and
comprehensive causal model that captures the progression
from pedestrians’ psychological states to their walking behav-
iors.

VI. CONCLUSION

This study investigated the causal relations from
pedestrians’ subjective evaluations to their walking behavior
during interactions with APMV. In the experiment, various
eHMIs conditions were designed to induce participants to
experience different levels of subjective evaluations and
generate corresponding walking behaviors. DirectLiNGAM
was used for causal discovery and the results were consistent
with the hypothesized model shown in Fig. 2. Furthermore,
the experimental results enriched the detailed causal relations
in the hypothetical model, such as how the outcomes of
situation awareness led to a sense of danger, trust in APMYV,
and a sense of relief; how situation awareness, the sense
of danger, and trust in APMV contributed to hesitation in
decision-making; and how situation awareness, the sense
of danger, and hesitation influenced walking behaviors.
Finally, this study found that when the APMV conveyed its
driving intentions to pedestrians through eHMI during or
before changes in driving behavior, it enhanced subjective
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evaluations of pedestrians and made their walking behaviors
more efficient during interactions.
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