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1 Introduction

Muon conversion, the process in which a muon converts to an electron in the vicinity of a
nucleus, remains to be observed. It provides one of the best limits on charged lepton flavor
violation (CLFV), expressed as Rµe < 7 × 10−13 [1]. Since CLFV is in practice absent in
the Standard Model (SM) due to the smallness of neutrino masses, a detection of muon
conversion would provide an indisputable sign of physics beyond the SM (BSM).

Such detection might happen in the near future, as upcoming CLFV experiments are
expected to achieve a four-order-of-magnitude reduction in the bound on Rµe through
improved sensitivity [2–6]. This remarkable experimental improvement requires precise
theoretical predictions for both the signal and its Standard Model (SM) backgrounds. It
turns out that there is only one non-reducible background: muon decay-in-orbit (DIO),
consisting of a muon decay in the vicinity of a nucleus. More specifically, it is the region
of the muon DIO spectrum near the electron-energy endpoint (for short, endpoint DIO,
or eDIO) that forms the dominant background for muon conversion searches. To optimize
the signal-to-background ratio and so enhance the chances of observing muon conversion,
upcoming experiments require precise theoretical predictions for the shape of each rate (i.e.
for the electron-energy spectra of both muon conversion and eDIO). Since that shape is
dictated by the QED corrections (i.e. higher-order effects in the fine structure constant α), it
is of the utmost importance to have a proper theoretical prediction for the latter.
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However, QED corrections in bound states are notoriously challenging. They demand
advanced techniques to rigorously define the relevant operators, consistently organize the
various contributions, and systematically avoid double counting. In addition, they are often
dominated by large logarithms arising from the hierarchy of energy scales, which spoil the
convergence of the perturbative expansion. We addressed these challenges in a previous
publication [7], where we developed a framework that cleanly separates the multiple scales at
play using Effective Field Theory (EFT) techniques. This approach allows different types of
physics to be treated systematically, as muon conversion and eDIO simultaneously involve
a heavy nucleus, a non-relativistic muon, an energetic and massive electron, and soft real
radiation. More specifically, the nucleus requires Heavy Quark Effective Theory (HQET) [8–
12], the muon calls for both Non-Relativistic QED (NRQED) [13–15] and potential NRQED
(pNRQED) [16–20], the energetic electron entails Soft-Collinear Effective Theory (SCET)
I and II [21–26], and the soft real radiation coupled to massive energetic particles requires
boosted HQET (bHQET) [27, 28].

Although this EFT framework applies to both muon conversion and eDIO (since the
hierarchy of the relevant physical scales is the same in both), ref. [7] focused on the former
and on O(α) corrections to that process. In this paper, we do the same for eDIO, which is
complicated by the presence of the neutrino-antineutrino pair in the final state. Several works
have discussed theoretical improvements for eDIO [29–35]. In particular, a great deal of recent
efforts has been devoted to understanding the impact of nuclear effects on eDIO [36, 37].
Radiative effects pose a complementary problem that has received much less attention in the
literature. Notably, ref. [33] calculated O(α) corrections for eDIO, but lacked a formalism
capable of addressing the complexities associated with higher-order corrections in bound states,
as discussed above. By filling in this gap, our work provides not only the most precise shape
of the rate for eDIO, but also the foundations to consistently improve the rate even more.

The paper is organized as follows. We start by discussing basic aspects of eDIO in
section 2, after which we turn to the EFT framework in section 3. There, we build on the
concepts and techniques presented in ref. [7], emphasizing the elements unique to eDIO. In
section 4 we derive a leading power factorization theorem for the eDIO rate, which allows
us to show the most accurate predictions for its shape in section 5. After presenting our
conclusions and outlook in section 6, we provide technical details in the appendix.

2 Overview of the muon decay-in-orbit endpoint

Muon DIO is the decay of a muonic atom via the standard muon decay process. It is depicted
on the left side of figure 1. The muonic atom in the initial state (which we refer to as muonic
hydrogen, µH) has the total mass MµH , and is a bound state formed by a muon (µ) with mass
mµ and a nucleus (N) with mass MN and atomic number Z.1 The final state includes the
recoiling nucleus N , an energetic electron (e) of mass me and energy Ee, a muon neutrino (νµ)
and an electron antineutrino (ν̄e) — both of which we treat as massless — and, in principle,
arbitrary radiation denoted in what follows as X (which, near the endpoint, is necessarily soft).

1In what follows, we assume that Z = 13 (aluminum), implying Zα ≃ 0.1, though we keep Z as a parameter.
This justifies and fixes the hierarchy between the physical scales that we adopt.
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Figure 1. Bound muon decay. The left diagram shows the bound state µH as a single field, whereas
the right diagram illustrates its composite structure. In both cases, the shaded region represents
short-distance perturbative interactions, distinct from the long-distance Coulomb exchanges. The
possible final state radiation X is omitted. See text for details.

The right side of figure 1 shows the structure of µH . In the ground (1s) state, the
bound muon has a binding energy Eb, which in the non-relativistic approximation equals
Eb = −(Zα)2mµ/2, and a typical velocity relative to the nucleus v = Zα. The dots in
the diagram represent an infinite number of (potential) photons exchanged between the
nucleus and the muon. These exchanges form a ladder of velocity-enhanced interactions,
each rung contributing a factor proportional to Zα/v. Because they are unsuppressed, they
must be summed to all orders using the Schrödinger equation. The shaded disk represents
arbitrary short-distance interactions among the various fields. Unlike the photon ladder, these
interactions are perturbative, which is a consequence of considering eDIO, where Ee ∼ O(mµ).
In fact, the momentum transfer between the nucleus and the leptons in that case is of
the order of the muon mass; such a large momentum transfer puts the intermediate states
highly off-shell and thus removes the enhancement of the ladder interactions. Ee ∼ O(mµ)
also implies that the outgoing electron is ultra-relativistic; hence, the Coulomb interactions
between the electron and the nucleus are not velocity-enhanced and so need not be resummed
to all orders in Zα.2

In this paper, we are interested in the calculation of the eDIO rate in the SM, since it is
this that is taken as a background in muon conversion searches. Different approaches can
be used to calculate the rate. In addition to the EFT approach — which is systematically
introduced and applied for the first time in this paper — two other approaches have been
considered in the literature. One of them, traditionally used, resorts to numerical methods
both to solve the Dirac equation at leading order (LO) in α, as well as to calculate the
overlap integrals [30–32, 36, 41–44]. This treatment is exact in the muon velocity v = Zα

and makes it straightforward to include finite-nucleus-size effects (recoil corrections can only
be included perturbatively [32]). In principle, this approach can be extended to the Furry
picture [45], so as to go beyond the LO in α. In practice, however, such computation is
extremely challenging and has not yet been achieved.

2These effects can be easily accounted by including the electron scattering wave-function; see e.g. refs. [38–
40].
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The other approach used to calculate the eDIO rate is dubbed in what follows the SC
approach [33]. Besides the expansion in powers of α, it contains a double expansion. The first
is around the endpoint and amounts to retaining only the leading term in ∆E, defined as the
small difference between Ee and the maximum (i.e. endpoint) energy of the outgoing electron,
Emax

e . Then, the second expansion is performed, in powers of the velocity Zα, thereby
establishing a connection with traditional Feynman diagrams for scattering processes. In the
SC approach, the rate can be calculated at the next-to-leading order (NLO) in α; moreover,
the calculation can be performed analytically. This was done in ref. [33] by combining the
fixed order NLO result, on the one hand, with the YFS resummation [46] of the soft photons,
on the other. Since it lacks systematic scale separation, the SC approach is not suitable
for resummation of collinear logarithms. Furthermore, it lacks both the transparent field-
theoretical definitions and the systematic improvability that characterize the EFT approach.
In particular, it does not provide a clear path towards calculating higher-power corrections
in ∆E/mµ, which naturally appear in the EFT approach as power corrections. It also does
not justify why YFS resummation is applicable to bound muon. However, it provides the
foundation for the EFT treatment described in this article.

Therefore, we start by reviewing the SC approach. We restrict ourselves to the results
here, and leave the details to the appendix. At LO in α and Zα, we have

Γ′
LO ≡

dΓLO
µH→eNνµν̄e

dEe
= 1024Γ0 Z

5α5∆E5

5πm6
µ

+O
(
∆E6), (2.1)

where Γ0 = G2
Fm

5
µ/
(
192π3) is the LO free muon decay rate in the limit of a massless electron.

For aluminum (Z = 13) and ∆E = me, Γ′
LO ≃ 3.76 × 10−33. At NLO in α, and still

assuming aluminum, we write

Γ′
NLO
Γ′

LO
= 1 + α

π

{
− 26

15 ln
(
mµ

me

)
+
[
2 ln

(2mµ

me

)
− 2

]
ln
(
∆E
mµ

)
+ 6.31

}
, (2.2)

where the term 6.31 comes from the vertex corrections, vacuum polarization effects and the
correction to the muon wave-function at the origin.3 Supplementing the NLO result with
YFS resummation for soft photons, we have4

Γ′
NLO+YFS
Γ′

LO
=
(
∆E
mµ

)α
π

[
2 ln
( 2mµ

me

)
−2
]
+ α

π

[
6.31− 26

15 ln
(
mµ

me

)]
. (2.3)

We compare the differential rates at LO, NLO and NLO+YFS in figure 2, normalized to Γ0
on the left panel and to Γ′

LO on the right one. The endpoint energy is Emax
e := mµ − Erec +

Eb = 104.971, where Erec is the recoil energy [34]. The right panel illustrates that the NLO
corrections are large (around 13% in modulus for ∆E ≃ me), a result that has its origins in
the aforementioned large logarithms present in the calculation. As already suggested, this
provides one of the motivations to introduce the EFT approach that follows.

3In the subsequent parts of this article, we will provide the interpretation of this factor in terms of the long
and short distance contributions.

4Here in what follows, ‘LO’ and ‘NLO’ refer by default to orders in powers of α.
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Figure 2. Differential eDIO rate in the SC approach. Left panel: LO and NLO+YFS rates, normalized
to Γ0, with inset for ∆E ≃ me. Right: LO, NLO and NLO+YFS rates normalized to LO.

Before that, we comment on our treatment of the nucleus. We follow here the approach
of ref. [7], which we briefly summarize. We take the nucleus N as a dynamical, elementary
field, instead of a field composed of nucleons or quarks. This is justified by the fact that we
are interested in energies at and below the muon mass scale. In the leading approximation in
the expansion around the endpoint, the nuclear charge distribution only affects the overall
normalization of the eDIO spectrum; that is, it does not affect the shape of the spectrum, which
is our focus here. The prescription to include finite nucleus size effects has been described in
ref. [33] and can be included in the EFT framework through spatially non-local operators.

3 EFT

As discussed in the Introduction, the EFT framework required to perform perturbative
calculations in both muon conversion and eDIO was developed in ref. [7]. The technical
details are provided there and will generally not be repeated here. Instead, we summarize the
essential elements, with a focus on eDIO, especially on the technical complications related
to the presence of neutrinos in the final state.

The eDIO spectrum is characterized by a hierarchy of scales,

MN ≫ mµ ∼ Ee ≫ Zαmµ ≫ (Zα)2mµ ∼ me ∼ ∆E, (3.1)

which determines the EFT framework. That is, the framework is built to clearly separate
these different scales, and allow a systematic, field-theoretical computation of the physical
observables. It corresponds to a double expansion, the recoil and the power expansion,
respectively organized by powers of the parameters

λR ≡ mµ

MN
, λ ≡ Zα ∼

√
me

mµ
. (3.2)

In this work, we focus on leading recoil and leading power (LP) contributions. Nonetheless, the
power-suppressed terms, which correspond to Zα and ∆E/mµ corrections, can be computed
using the usual EFT methods. Given eq. (3.1), the EFT framework comprises five different
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EFT Radiation Nucleus Muon Electron Neutrinos

I

II
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Figure 3. Chart of the scales relevant for muon eDIO. Each scale is associated with an EFT. See
text for details.

physical scales,

hard-nuclear scale: µhn ∼MN ,

hard scale: µh ∼ mµ ≃ Ee = O(λR MN ),

semi-hard scale: µsh ∼ Zαmµ = O(λµh),

soft scale: µs ∼ (Zα)2mµ ≃ me ≃ ∆E = O(λ2 µh),

soft-collinear scale: µsc ∼ me
∆E
mµ

= O(λ4 µh),

and uses a different EFT at each of the five scales. Figure 3 illustrates this structure, showing
the Lagrangian governing the relevant dynamical fields in each EFT. This chart differs
from that of ref. [7] only by the inclusion of neutrinos. These carry negligible energy, are
electrically neutral and assumed to be massless; thus, it is sufficient to describe them using
the Weyl Lagrangian at all scales.

In what follows, we subsequently describe the relevant elements of each EFT. We start
with EFT II, since EFT I is not relevant for a perturbative description of eDIO [7], and is
only introduced to bridge our framework with the treatment of nuclear effects.5 For each of
the following EFTs, we discuss the relevant operators as well as their matching and running.

As a final note, it is worth mentioning a duality in muon DIO, related to bound vs.
unbound muons — the simple analog of the well-known quark-hadron duality in QCD. The
goal of the EFT framework that we are about to describe is the derivation of a factorization
theorem. This theorem concerns the rate for eDIO, which involves a bound state. However,
certain objects in the theorem are defined at high scales (for example, the hard function),
where the QED effects are perturbative. As such, those objects are computed with the usual
Feynman rules corresponding to free asymptotic states. This reveals the scattering process

5We keep the EFT numbering convention of ref. [7].

– 6 –



J
H
E
P
1
1
(
2
0
2
5
)
1
6
6

underlying the bound-state calculation, and reflects the duality between the bound muon
decay and coherent scattering of muons on the nucleon.

3.1 EFT II: µ ∼ µh

EFT II is defined at the hard scale, taken to be of the order of the muon mass. The modes
with higher virtuality, such as hard-nuclear modes (of the order of MN ), are integrated out.
It follows that, at leading recoil, the nucleus is taken as infinitely heavy and is described
by a static HQET field. The recoil corrections can be systematically computed using
power-suppressed HQET interactions. For leptons, EFT II can be seen as the theory of
weak interactions below the electroweak scale. The weak EFT Lagrangian is obtained after
integrating out the scales above the muon mass. Accordingly, the muon decay is described
by the renowned Fermi 4-fermion interaction,

O(II)
1 ≡ ē(h)γρPLµ

(h) ν̄(h)
µ γρPLν

(h)
e , (3.3)

with PL being the left-chirality projection operator. For brevity, whenever all the fields
are evaluated at the same space-time point, we omit the position arguments of fields. The
Fermi Lagrangian reads

LFermi =
4GF√

2
O(II)

1 + h.c., (3.4)

where GF is the matching coefficient commonly known as the Fermi constant. Since this
constant does not run (i.e. it is scale independent), we take all parameters of the weak
Lagrangian as defined at the hard scale.

Anticipating the matching between EFTs II and III, we start by considering the amplitude
A for the scattering process µN → eNνµν̄e.6 As was shown in ref. [33], the LO contribution is
associated with a single-photon exchanged between the nucleus and the charged leptons.7 The
Feynman diagrams for this contribution are depicted in figure 4, with hN being the nucleus
field. The muon is characterized by a four-momentum p, the pair of neutrino-antineutrino
by their total four-momentum q2, and the virtual photon exchanged between the leptons
and the nucleus by q1.8 In the infinitely-heavy nucleus limit, 3-momentum is not conserved
in the photon-nucleus vertex (the nucleus acts as a sink for 3-momentum). Choosing for
convenience the electron momentum to lie along the z axis, the explicit parametrization
of the four-momenta is

p =
(√

m2
µ + |p⃗|2, p⃗

)
, p′ =

(
Ee, 0, 0,−

√
E2

e −m2
e

)
,

q1 = (q10 , q⃗1), q2 = (q20 , q⃗2). (3.5)
6We recall the discussion on duality. We also note that the matching coefficients do not depend on the

external states; hence, we choose the simplest states that give non-zero overlap with our operators.
7This contribution is similar to that in the spectator scattering in exclusive (semi-)hadronic decays of B

mesons [47–52].
8Here and in what follows, the formulation ‘the pair neutrino-antineutrino’ (or simply ‘the neutrinos’)

represents the final state νµ and ν̄e. For our purposes, the two particles can be treated together. In the
end, indeed, the phase space of the two particles can be simplified to that of a single particle (for details, cf.
ref. [53]).
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Figure 4. LO scattering of a muon into a nucleus with the subsequent muon decay. The black circles
represent the 4-Fermi interaction. The double line represents an HQET field.

For the purpose of power counting, the muon is assumed to be non-relativistic, with |p⃗| ∼
mµZα. Since we focus on the electron endpoint, i.e. Ee ≃ mµ, the momentum carried
by neutrinos is small |q⃗2| ≃ q20 ≃ ∆E. The energy transfer to the nucleus is also small,
q10 ≃ m2

µ

MN
≃ ∆E, but the spatial momentum is large, |q⃗1| ∼ mµ.

Aiming at the O(α) NLO (hard) matching between EFTs II and III, it is sufficient
to parameterize the scattering amplitude with three form-factors F (II)

i (i = a, b, c), which
are in general a function of the momentum transfer q2

1 = (p − p′ − q2)2. We thus write
the scattering amplitude as

iA(II) = 16π Zα
√
2GF ūe

{
F (II)

a

γρ

m3
µ

PL + F
(II)
b

pρ

m4
µ

PR + F (II)
c

p′ρ
m4

µ

PR

}
uµūhN

uhN
ūνµγ

ρPLvνe .

(3.6)

These form-factors, which correspond to the hard region of the loop momenta of the SC
approach, are directly related to the (hard) matching coefficients of EFT III. Due to their
length, explicit expressions are omitted here.

3.2 EFT III: µ ∼ µsh

The LP matching conditions between EFTs II and III relate the scattering amplitude discussed
before to the matrix element of the operators defined at the semi-hard scale,

A(II) =
3∑

i=1

〈
eNν̄eνµ

∣∣∣ ∫ dt

{
C

(III)
i (t)O(III)

i (t)
}∣∣∣µN〉. (3.7)

Here, O(III)
i are the EFT III operators, given by

O(III)
i (t) ≡ h̄

(sh)
N (0)h(sh)

N (0)
[
ξ̄(hc)W (hc)

]
(tn+) Γℓ

i Y
(sh)†

n− (0)ψ(p)(0)ν̄(sh)
µ (0) Γν

i ν
(sh)
e (0), (3.8)

where ξ(hc) represents a hard-collinear electron field and ψ(p) the potential muon field, and
where W (hc) and Y (sh)

n− are hard-collinear and semi-hard Wilson lines, respectively (for details,

– 8 –
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cf. ref. [7]). Finally, the following Dirac structures appear in the SM:

Γℓ
1 =

/n+
2 PL, Γν

1 = /n−PL, (3.9a)

Γℓ
2 = γµ

⊥PL, Γν
2 = γ⊥µPL, (3.9b)

Γℓ
3 =

/n+
2 PL, Γν

3 = /n+PL. (3.9c)

We now define, for convenience, the normalized matching coefficient C̃(III)
i (µ):

C
(III)
i (µ) ≡ 16π Zα(µ)

√
2GF

m3
µ

C̃
(III)
i (µ). (3.10)

Although, in principle, the matching should be performed for arbitrary electron energy
Ee ∼ mµ, we assume from the very beginning that Ee = mµ. This choice is justified both by
the considerable simplification it brings to the expressions, as well as by the circumstance
that the resulting factorization theorem will ultimately depend only on the hard matching
coefficients evaluated at this energy. Accordingly, up to O(α), the coefficients C̃(III)

i read

C̃
(III)
1 (2mµ,mµ;µh)= 1−α(µh)

4π

{
2ln

(4mµ

µh

)
ln
(
mµ

µh

)
− 23

3 ln
(
mµ

µh

)
+4.36248

}
, (3.11a)

C̃
(III)
2 (2mµ,mµ;µh)=−1.39732 α(µh)

4π , (3.11b)

C̃
(III)
3 (2mµ,mµ;µh)=−0.24756 α(µh)

4π . (3.11c)

As the matching is performed at the hard scale, we use the on-shell subtraction scheme
in EFT II to fix both the muon mass counterterm and the muon contribution to the α

renormalization (i.e. to the vacuum polarization counterterm). The electron contribution is
renormalized in the MS scheme. This mixed scheme ensures that the muon mass does not run
below the hard scale, and that α only runs with one flavor (the electron one). Furthermore,
it allows a straightforward comparison with the results of [33].

To obtain the matching coefficients at arbitrary scales, we define Uh,i as the renormaliza-
tion group equation (RGE) evolution factor. It is obtained by solving the RGE for the coeffi-
cients C(III)

i , with the initial conditions at the hard scale. The fact that C̃(III)
2 ∼ C̃

(III)
3 ∼ O(α)

implies that C(III)
2 and C(III)

3 are not relevant at leading logarithmic (LL) and next-to-leading
logarithmic (NLL) accuracy. The RGE for C(III)

1 and its solution Uh,1 are the same as those
for C(III)

X of ref. [7]. This identity holds since a) the neutrinos do not modify the running,
b) the identity ξ̄(hc) /n+

2 PLψ
(p) = ξ̄(hc)PRψ

(p) holds and c) the operators with different Dirac
structures do not mix under RGE up to NLL accuracy.

Just as in ref. [7], the decoupling of the electron soft modes is required at this stage.
This is achieved via the definition

ξ̄(hc)(x) = ξ̄
(hc)
(0) (x)Y (s)†

n− (x−), (3.12)

and the operators O(III)
1−3 are now written in terms of the soft-decoupled field ξ̄

(hc)
(0) .

Finally, we follow ref. [7] in neglecting the semi-hard Wilson lines in what follows. Given
our assumption ∆E ∼ me, they will not contribute to the final rate.
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3.3 EFT IV: µ ∼ µs

The LP matching conditions for currents between EFTs III and IV are trivial, C(IV)
i (2mµ,

mµ;µsh) = C
(III)
i (2mµ,mµ;µsh). The most interesting features in this passage happen at

the level of the Lagrangian. The operators are now

O(IV)
i (t) ≡ h̄

(s)
N (0)h(s)

N (0)
[
ξ̄(c)W (c)

]
(tn+) Γℓ

i Y
(s)†

n− (0)Ψ(p)(0)ν̄(s)
µ (0) Γν

i ν
(s)
e (0), (3.13)

where the soft Wilson lines, arising from the field redefinitions in eq. (3.12) factor out soft
interactions at this stage. We perform the soft decoupling of the remaining fields via [7]

h̄
(s)
N = h̄

(s)
N(0)Y

(s)†
v , Ψ̄(p) = Ψ(p)

(0)Y
(s)†

v , ē(s) = ē
(s)
(0)Y

(s)†
v , (3.14a)

h
(s)
N = Y

(s)
v h

(s)
N(0), Ψ(p) = Y

(s)
v Ψ(p)

(0), e(s) = Y
(s)
v e

(s)
(0). (3.14b)

As a consequence, the operators of eqs. (3.3) can be rewritten as a product

O(IV)
i (t) = Qs,i(0)O(IV)

i(0) (t), (3.15)

with O(IV)
i(0) being the soft-decoupled operators,

O(IV)
i(0) (t) = h̄

(s)
N(0)(0)h

(s)
N(0)(0)

[
ξ̄(c)W (c)

]
(tn+)Γℓ

i Ψ
(p)
(0)(0), (3.16)

and Qs,i collects the soft operators,

Qs,i(x) = Ns,i(x)Os(x), (3.17)

with9

Os(x) =
[
Y (s)†

v Y
(s)
v Y (s)†

n− Y
(s)
v

]
(x), Ns,i(x) = ν̄(s)

µ (x) Γν
i ν

(s)
e (x). (3.18)

Eq. (3.17) reveals that the soft operators Qs,j are further factorized into two operators —
the neutrino operators Ns,i and the photon operator Os — as the neutrinos, being charge
neutral, do not interact with photons. Hence, the LO matrix element of Ns,j is tree-level
exact in QED and can be treated as a universal factor.

3.4 EFT V: µ ∼ µsc

The transition to EFT V is obtained by matching the collinear electron field onto the bHQET
field, which involves integrating out collinear modes. Near the DIO endpoint, the electron
energy can fluctuate only by a small amount of order ∆E, justifying this procedure. This
matching introduces the coefficient Cm(me;µs), which beyond one loop contains rapidity
divergences. These cancel against contributions from the soft matrix element, which receives
soft massive fermion corrections starting at two loops, leading to rapidity renormalization
group equations. Since these effects lie beyond the accuracy considered in this paper, we
will ignore this technical complication.10

9In ref. [7], there were no neutrinos, so the soft operator was simply given by Os.
10They appear at the two-loop order [54].

– 10 –



J
H
E
P
1
1
(
2
0
2
5
)
1
6
6

The LP matching conditions between EFTs IV and V are

Qs,i(0)
∫
dtC

(IV)
i (t)O(IV)

i(0) (t) = Qs,i(0)
∫
dtC

(IV)
i (t)eimen+·vetCm(me;µs)O(V)

i (0) , (3.19)

with the four-fermion operator

O(V)
i (t) ≡ h̄

(s)
N(0)h

(s)
N(0) h̄

(sc)
e Γℓ

i Ψ
(p)
(0). (3.20)

We note that, due to eq. (3.9), O(V)
1 = O(V)

3 . The coefficient Cm belongs to a class of radiative
jet functions that, in QED with a massive electron, begin contributing already at LP. This
contrasts with the case of QCD with massless quarks, where radiative jet functions are purely
power-suppressed objects, requiring explicit soft radiation to contribute (hence their name).
The same function Cm multiplies all operators O(V)

i in eq. (3.19) and it also appears in muon
conversion [7]. This illustrates the universality of the low-energy matrix elements defined
within the modern EFT approach.

For convenience, we define the complete matching coefficient in the EFT V as

C
(V)
i (µs) ≡ C

(IV)
i (2mµ,mµ;µs)Cm(me;µs) =

∫
dteimen+·vetC

(IV)
i (t)Cm(me;µs). (3.21)

Finally, we perform the soft-collinear decoupling via the definitions [7]

h̄
(s)
N(0) = h̄

(s)
N(00)Y

(sc)†
n+ , Ψ̄(p)

(0) = Ψ̄(p)
(00)Y

(sc)†
n+ , h̄(sc)

e = h̄
(s)
e(0)Y

(sc)†
ve

, (3.22a)

h
(s)
N(0) = Y

(sc)
n+ h

(s)
N(00), Ψ(p)

(0) = Y
(sc)
n+ Ψ(p)

(00), h(sc)
e = Y

(sc)
ve

h
(sc)
e(0). (3.22b)

This leads to a factorization analogous to that of eq. (3.15),

O(V)
i = Osc(0)O(V)

i(0), (3.23)

with Osc being the soft-collinear operator [7], composed of the soft-collinear Wilson lines,

Osc(x) =
[
Y (sc)†

n+ Y
(sc)
n+ Y (sc)†

ve
Y

(sc)
n+

]
(x), (3.24)

and O(V)
i(0) the decoupled four-fermion operators,

O(V)
i(0)(t) ≡ h̄

(s)
N(00)h

(s)
N(00) h̄

(sc)
e(0) Γ

ℓ
i Ψ

(p)
(00). (3.25)

4 Factorization

4.1 Factorization theorem

Having derived the operators at the soft-collinear scale, we are ready to consider the physical
observable — the differential decay rate for muon eDIO, for which we derive a factorization
theorem. The rate can be calculated using standard methods; in particular, it is determined by
the amplitude for muon DIO, in the presence of arbitrary radiation in the final state, X . The
amplitude, in turn, is obtained by inserting the current between the initial and final states,

MµH→eNνµν̄eX =
〈
e(sc)N (s)ν̄(s)

e ν(s)
µ X (s)X (sc)

∣∣∣J (0)
∣∣∣µH

〉
, (4.1)
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where the radiation X is now split into a soft component (X (s)) and soft-collinear (X (sc))
one. The current J is defined in terms of the soft and soft-collinear operators,

J (0) ≡
3∑

i=1
C

(V)
i (µs)Osc(0)Qs,i(0)O(V)

i(0)(0), (4.2)

where the coefficients C(V)
i (µs), introduced in eq. (3.21), can be related to the coefficients

C
(III)
i (2mµ,mµ;µh) through RGE; that is, up to NLL accuracy,

C
(V)
i (µs) = C

(III)
i (2mµ,mµ;µh)Uh,i(µh, µs)Cm(me;µs)

= 16π Zα(µs)
√
2GF

m3
µ

ĈiCm(me;µs), (4.3)

with Ĉi representing the hard contribution evolved to the soft scale,

Ĉi ≡
α(µh)
α(µs)

C̃
(III)
i (2mµ,mµ;µh)Uh,i(µh, µs). (4.4)

This allows us to rewrite the current as

J (0) = 16π Zα(µs)
√
2GF

m3
µ

3∑
i=1

ĈiCm(me;µs)Osc(0)Qs,i(0)O(V)
i(0)(0), (4.5)

so that the amplitude becomes

MµH→eNνµν̄eX

= 16π Zα(µs)
√
2GF

m3
µ

3∑
i=1

Ĉ
(III)
i Cm(me;µs)

〈
X (sc)e(sc)

∣∣∣Osc(0)
[
h̄

(sc)
e(0)(0)

]
α

∣∣∣0〉
×
〈
N (s)X (s)ν̄(s)

e ν(s)
µ

∣∣∣h̄(s)
N(00)(0)h

(s)
N(00)(0)

[
Γℓ

iΨ
(p)
(00)(0)

]
α
Qs,i(0)

∣∣∣µH

〉
. (4.6)

Fields associated with each scale are grouped and treated collectively (i.e. soft and soft-
collinear modes are each handled collectively), enabling the separation of soft and soft-collinear
contributions. However, the matrix elements of the sterile fields can be treated individually.
For example, the soft-collinear electron field is sterile after soft-collinear decoupling, which
allows us to write〈

X (sc)e(sc)
∣∣∣Osc(0)h̄(sc)

e(0)(0)
∣∣∣0〉 =

〈
X (sc)

∣∣∣Osc(0)
∣∣∣0〉〈e(sc)

∣∣∣[h̄(sc)
e(0)(0)

]
α

∣∣∣0〉
=
〈
X (sc)

∣∣∣Osc(0)
∣∣∣0〉 [ūhe ]α . (4.7)

In the same way, and since the potential muon defines the bound muon wave-function
together with nucleus [7], we have〈

N (s)X (s)ν̄(s)
e ν(s)

µ

∣∣∣h̄(s)
N(00)(0)h

(s)
N(00)(0)

[
Γℓ

iΨ
(p)
(00)(0)

]
α
Qs,i(0)

∣∣∣µH

〉
=
〈
X (s)ν̄(s)

e ν(s)
µ

∣∣∣Qs,i(0)
∣∣∣0〉〈N (s)

∣∣∣h̄(s)
N(00)(0)h

(s)
N(00)(0)

[
Γℓ

i Ψ
(p)
(00)(0)

]
α

∣∣∣µH

〉
=
〈
X (s)ν̄(s)

e ν(s)
µ

∣∣∣Qs,i(0)
∣∣∣0〉 1√

2mµ
ūhN

uhN

[
Γℓ

i uΨ
]

α
ψSchr.(0), (4.8)
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where ψSchr.(x) denotes the position-space wave function of the muon in the 1s state of a
hydrogen-like ion. Then, using eq. (3.17), we rewrite the amplitude as

MµH→eNνµν̄eX = 16π Zα(µs)
√
2GF

m3
µ

ψSchr.(0)√
2mµ

3∑
i=1

ūhN
uhN

ūheΓℓ
i uΨ ĈiCm(me;µs)

×
〈
X (sc)∣∣Osc(0)

∣∣0〉 〈X (s)∣∣Os(0)
∣∣0〉 〈ν̄(s)

e ν(s)
µ

∣∣Ns,i(0)
∣∣0〉. (4.9)

This allows us to finally consider the decay rate. Following ref. [7], we write it as

ΓµH→eNνµν̄eX = 1
2MµH

∫
(2π)4δ(d)

(
pµH − p′ − k′ − pν − pν̄ −

∑
i

pX i

)
d3k′

(2π)32MN

× d3p′

(2π)32Ee

d3pν

(2π)32Eν

d3pν̄

(2π)32Eν̄
dP(s) dP(sc) ∣∣MµH→eNνµν̄eXeX

∣∣2, (4.10)

with dP(s) and dP(sc) being the phase space factors of the emitted real radiation [7]. All
the integrals can be performed in 4 dimensions; however, to maintain consistency with the
scheme defined by the SC approach, we keep dP(s) and dP(sc) in d dimensions. We now
define the soft function and the soft-collinear function respectively as [7]

S(Es) ≡
∑
X (s)

∫ ∏
i

dd−1pX (s)
i

(2π)d−12EX (s)
i

δ(Es − EX (s))⟨0|O†
s(0)|X (s)⟩⟨X (s)|Os(0) |0⟩ , (4.11a)

SC(Esc) ≡
∑
X (sc)

∫ ∏
i

dd−1pX (sc)
i

(2π)d−12EX (sc)
i

δ(Esc − EX (sc))⟨0|O†
sc(0)|X (sc)⟩⟨X (sc)|Osc(0) |0⟩ .

(4.11b)

After calculating the neutrino matrix element and evaluating the phase-space integrals, we
arrive at the final form of the factorization theorem:

Γ′
µH→eNνµν̄eX = 1024Γ0Z

5α(µs)5

5πm6
µ

|ψcorr|2
[∣∣Ĉ1

∣∣2+2
∣∣Ĉ2

∣∣2+∣∣Ĉ3
∣∣2] |Cm(me;µs)|2 (4.12)

×
∫ ∞

−∞
dEsc

∫ ∞

−∞
dEsS(Es)SC(Esc) (∆E−Es−Esc)5 θ(∆E−Es−Esc),

where |ψcorr|2 denotes the correction to the Schrödinger wavefunction of the bound muon [33].

4.2 Formulæ

Inserting LO expressions for all the component functions, we trivially recover eq. (2.1).
Expanding all the terms to NLO (without RGE effects) and using C̃1 = 1 +O(α), we find
the fixed order NLO expression

Γ′NLO
µH→eNνµν̄eX = 1024Γ0 Z

5α(µs)5∆E5

5πm6
µ

|ψcorr|2NLO

[
1 + 2C̃(III)

1

∣∣∣
O(α)

]
|Cm(me;µ)|2NLO,OS

×
{
1 +

∫ ∆E

−∞
dEsS(Es)

∣∣
O(α)

(∆E − Es

∆E

)5
+
∫ ∆E

−∞
dEsc SC(Esc)

∣∣
O(α)

(∆E − Esc

∆E

)5}
,

(4.13)
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where we have to consistently drop terms beyond the NLO accuracy when multiplying out
the terms. While the O(α) component of C̃(III)

1 can be read from eqs. (3.11), we have
|ψcorr|2NLO = 1 + α(µs)

π × 6.4 [7] and

|Cm(me;µ)|2NLO,OS = 1 + α(µs)
2π

{
2 ln2

(
me

µ

)
− ln

(
me

µ

)
−8
3 ln

(
me

µ

)
+ π2

12 + 2
}
,

(4.14a)∫ ∆E

−∞
dEsS(Es)

∣∣
O(α)

(∆E − Es

∆E

)5

= α(µs)
π

{
ln2
(2∆E

µ

)
− 167

30 ln
(2∆E

µ

)
− π2

8 + 17929
1800

}
, (4.14b)

∫ ∆E

−∞
dEscSC(Esc)

∣∣
O(α)

(∆E − Esc

∆E

)5

= α(µs)
π

{
− ln2

(
∆Eme

mµµ

)
+ 107

30 ln
(
∆Eme

mµµ

)
− π2

24 − 7909
1800

}
. (4.14c)

The coefficient Cm(me;µ), which is the matching coefficient introduced in eq. (3.19), is
originally renormalized using the MS subtraction scheme. To convert the final expression
to the on-shell subtraction scheme, we supplemented Cm(me;µ) by a term arising from
the α renormalization in on-shell subtraction, and denoted the resulting expression by
Cm(me;µ)NLO,OS. This scheme conversion term, written in blue in eq. (4.14a), was included
to maintain consistency with ref. [33], which used on-shell subtraction.11 By combining
eqs. (4.13) and (4.14), we confirm that eq. (2.2) is correctly reproduced. When considering
the resummation, we ignore the additional scheme conversion factor and use Cm(me;µ)
as given in ref. [7].

In order to resum the large logarithmic corrections, the scale of each function is set to
its canonical scale (thus eliminating large logs in the matching coefficients and EFT matrix
elements). The large logarithmic corrections are thus contained in the renormalization group
running factors. We choose the soft scale µs as the ultimate scale, to which all functions
are evolved. As central values, we set the hard scale to µh = 2mµ and the soft scale to
µs = me. To assess the theoretical uncertainty from scale variation, we perform a standard
7-point variation: each scale is independently varied by factors of 1/2 and 2 around its
central value, while the two extreme combinations are omitted. As mentioned above, Uh,1

(the running of C(III)
1 ) is given in ref. [7], whereas the resummed expression for SC function

can be obtained by abelian exponentiation,

∫
SC(Esc)

(∆E − Esc

∆E

)5
θ(∆E − Esc)

= exp
[
α

π

{
− ln2

(
∆Eme

mµµ

)
+ 107

30 ln
(
∆Eme

mµµ

)
− π2

24 − 7909
1800

}]
. (4.15)

11Without this term, Cm is a universal matching coefficient, identical for instance in muon conversion [7].
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We checked that, in Uh,1, the running of α between µh and µs is negligible (as expected due to
the smallness of the QED coupling; more specifically, its induces a correction of O(0.01%)).12

Neglecting it, we obtain next-to-double logarithmic accuracy; with µh = 2mµ and µs = me,
the differential rate in RG-improved perturbation theory then reads

Γ′NLO
µH→eNνµν̄eX

∣∣∣∣
Resu.

= 1024Γ0Z
5α(µs)5∆E5

5πm6
µ

×
[
1.023−0.006818ln(∆E)

+0.002403ln2(∆E)
]
×exp

{
α

90π

[(
50α
π
−90

)
ln2
(2mµ

me

)
+225ln

(2mµ

me

)

−3ln
(
mµ

∆E

)(
30ln

(
mµ

∆E

)
+107

)]}
, (4.16)

where the square-bracketed prefactor comes from |ψcorr|2NLO, from the ratio α(µh)/α(µs) in
eq. (4.4) and from the small finite pieces from the different functions after they are set to their
canonical scales. We follow the procedure and conventions (of LL, NLL, etc.) from ref. [7].

5 Numerical results and discussion

We now turn to our numerical results. We use the input values [55]

mµ = 105.658MeV, me = 0.510999MeV,
α(µs) = αOS = 1/137.035, GF = 1.166378× 10−11 MeV−2, (5.1)

where αOS is the coupling in on-shell subtraction.13 Figure 5 displays various approaches to
the differential rate, normalized to the LO prediction. The NLO and NLO+YFS curves (in
solid beige and dashed yellow, respectively) correspond to those on the right panel of figure 2,
but are restricted to a tighter range. In addition, the plot includes different approaches
with our EFT framework: LL (green), NLL (red) and NLL’ (blue). Each of these curves is
accompanied by its associated 7-point variation band, as described in section 4.2.

The transition from LL to NLL accuracy leads to noticeable shifts, largely driven by
the inclusion of the factor |ψcorr|2, which in the on-shell subtraction scheme corresponds
to a single logarithm and is absent from the LL result. At NLL’ order, the uncertainty
band becomes significantly narrower than at NLL, reflecting the improved perturbative
stability of the expansion. The NLL and NLL’ bands overlap across the entire range of Ee

displayed, except in the extreme endpoint region (large Ee, or equivalently very small ∆E),
where the assumption ∆E ∼ me breaks down and further resummation would be required.
Interestingly, the NLO+YFS curve lies very close to the NLL’ prediction throughout the
range. It should be emphasized, however, that the NLL’ result provides a consistent EFT
treatment with systematic resummation of large logarithms and a well-defined estimate of
theoretical uncertainties, while the NLO+YFS curve only implements a partial resummation

12α(µ) does not run when the SC function is evolved from its natural scale to the soft scale, since that
natural scale is below the electron mass scale.

13While the on-shell subtraction scheme fixes the value of α in the so-called Thomson limit (i.e. for vanishing
photon momentum), that value is the same as α(µs), since α does not run below the soft scale.
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Figure 5. Differential rate for eDIO against Ee, normalized to the LO result, for different approaches.
See text for details.

tied to the on-shell subtraction scheme. For the present accuracy and chosen parameters,
the latter nonetheless provides a very good approximation to the NLL’ result.

This result — the NLL’ curve — is the most precise prediction to date of the spectrum
of eDIO, describing a correction to the LO differential result of 12.30% for ∆E = me. For
phenomenological applications, we provide an expression for that curve; defining δE ≡
∆E/Emax

e , we have

Γ′NLL’

Γ′LO =
(δE)0.008285

(
0.9930 +

[
0.01480 + 0.002287 ln(δE)

]
ln(δE)

)
exp
(
0.002323

[
ln(δE)− 0.006527

]2) . (5.2)

We also obtain the number of DIO events near the endpoint. To that end, we integrate the
differential spectrum Γ′X, where X denotes the level of accuracy considered. The integration
is performed over an interval of size ∆E′ (set by the radiation cut) up to the endpoint
energy Emax

e . We define the ratio between this integral at accuracy X and the corresponding
LO integral as the KX factor,

KX(∆E′) ≡
∫ Emax

e
Emax

e −∆E′ Γ
′X dEe∫ Emax

e
Emax

e −∆E′ Γ′LO dEe

. (5.3)

In table 1, we show KX for several values of the cut on the radiation around ∆E′ ∼ me, and
for X = LL,NLL,NLL’. For reproducibility, we include in the Supplementary Material a
Mathematica notebook containing the scripts used to generate figure 5 and table 1.

In addition to the perturbative uncertainty of the LP term discussed earlier, three further
sources of theoretical error affect the radiatively corrected spectrum. First, power-suppressed
terms proportional to ∆E/mµ become increasingly important away from the endpoint, but
they are already included in the existing numerical evaluations of the full spectrum at LO.
The missing contributions therefore enter only in the radiative corrections. Second, while an
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∆E′ (MeV) 0.25 0.5 0.75 1 1.25

KLL(%) 85.59+0.26
−0.44 87.23+0.26

−0.30 88.10+0.27
−0.38 88.69+0.27

−0.46 89.13+0.26
−0.53

KNLL(%) 85.50+0.87
−1.27 87.63+0.69

−1.10 88.81+0.59
−1.00 89.61+0.51

−0.93 90.22+0.45
−0.87

KNLL’(%) 85.91+0.17
−0.20 87.31+0.18

−0.20 88.14+0.18
−0.20 88.73+0.18

−0.20 89.20+0.18
−0.21

Table 1. KX factor, describing the reduction in the number of background events at accuracy X with
respect to LO for a given cut on the radiation energy ∆E′, shown for X = LL,NLL,NLL’ and for
several values of ∆E′ around me. Each entry is quoted as x+a

−b , where x denotes the central value
(with scales set to their central choices), and a and b represent the upper and lower deviations from
the corresponding 7-point variation envelope.

all-order computation in Zα can be performed using the numerical method outlined at the
end of page 3, this approach is currently restricted to LO in α. The first genuine subleading
Coulombic contributions, of order α × Zα, are thus absent, and once again this omission
affects only the radiative corrections. These two effects introduce an additional uncertainty
that we estimate to be suppressed by a factor of order Zα relative to the NLL’ corrections
computed here over the universal LL terms, and therefore expected to remain safely below the
percent level, though a more precise quantification would require a dedicated study. Third,
finite-nucleus-size effects, although nontrivial, do not modify the spectral shape at LO but
are expected to induce a shift in the overall normalization. A detailed treatment of these
corrections in the presence of QED radiation will be presented in future work.

6 Conclusions

A remarkable improvement in precision is anticipated in upcoming searches for muon conver-
sion, the process of a bound muon decaying into an electron. It is therefore of the utmost
importance to derive precise predictions for both muon conversion and its only irreducible
background, muon decay-in-orbit near the endpoint of the electron spectrum (eDIO). Due
to bound-state effects and an intricate hierarchy of scales, however, precise calculations for
both processes are remarkably complex. In a previous work, we presented a formalism to
address this problem, resorting to a multiplicity of EFT techniques [7]. There, we applied
the formalism to muon conversion, deriving a factorization theorem, as well as the matching
coefficients and their RGEs.

In this paper, we applied the formalism to eDIO. New challenges appear in this case, due
to the presence of νµ and ν̄e in the decay products. We derived the factorization theorem,
which involves functions not present in muon conversion. On the other hand, many of
the functions participating in the factorization theorem of eDIO are the same as in muon
conversion, which stresses the power of the EFT formalism. Our approach describes a
perturbative, consistent and systematically improvable framework for the calculation of the
eDIO rate. We calculated O(α) corrections to the relevant matching coefficients, as well as
their RGEs. This allowed us to provide the most precise spectrum for eDIO, thus increasing
the chances of detecting muon conversion.
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This work also opens several directions on improvement. One of them concerns the
inclusion of finite-nucleus-size effects or recoil corrections, which can be done in a systematic
way using our framework. Other directions involve going beyond the leading power or the
O(α) approximation, or investigating more energetic real radiation, i.e. considering electron
energies farther away from the endpoint. Our framework can also be adapted to related
processes involving bound-state decays, such as muonic atoms in BSM scenarios.
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A Details on the SC approach

In this appendix, we present details of the calculation of the muon eDIO rate using the SC
approach. As suggested in section 2, this combines Feynman diagrams involving different
scales, on the one hand, with an informal treatment of both approximations and bound-state
effects, on the other. We start by considering the LO case in section A.1, after which we
discuss the NLO case in section A.2.

A.1 LO

The bound state is a superposition of free states with different momenta, leading to

MµH→eNνµν̄e =
√
2MµH

∫
d3k

(2π)3 ψ̃Sch.(k⃗)
MµN→eNνµν̄e(k⃗)√

2mµ

√
2MN

≃ ψSch.(0)√
2mµ

MµN→eNνµν̄e(k⃗ = 0), (A.1)

where is the momentum-space equivalent of ψSchr.(x), introduced in eq. (4.8), and where
MµN→eNνµν̄e is the amplitude for the free muon scattering process,

iMµN→eNνµν̄e = iM(i) + iM(ii). (A.2)

The Feynman diagrams corresponding to the subamplitudes iM(i) and iM(ii) are depicted
in figure 6. We use the non-relativistic character of the nucleus to write, for diagram (i),

γαuµ(p) . . . γαuN (k) ≃ γ0uµ(p) . . . γ0uN (k) ≃ /p

mµ
uµ(p) . . .

/k

MN
uN (k) = uµ(p) . . . uN (k).

(A.3)
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Figure 6. Simplification of muon DIO: in the limit of Ee ∼ mµ and of zero energy transfer from the
leptons to the nucleus, both diagrams of figure 4 reduce to a 6-fermion interaction.

A similar simplification holds for diagram (ii). The kinematics of the process is approximately
given by

p = (mµ, 0⃗), p′ = (Ee, 0, 0, Ee), q1 = (0, 0, 0,−Ee), q2 = (mµ − Ee, q⃗2),
k = (MN , 0⃗), k′ = (MN , 0⃗). (A.4)

This leads to the following approximations:

1
(p− q2)2 −m2

e

≃ − 1
(p′ + q2)2 −m2

µ

≃ 1
m2

µ

, γ0(/p− /q +me) ≃
/p

mµ
/p = mµ,

ūe(p′)γρPL(/p′ + /q2 +mµ)uµ(p) ≃ ūe(p′)
[
2p′ρPR +mµγρPL

]
uµ(p),

1
q2

1
≃ − 1

m2
µ

, (A.5)

which in turn leads to

iMµN→eNνµν̄e ≃ i 16π Zα
√
2GFMl,ρMν,ρMN , (A.6)

with

Mρ
ν = ū(pν)γρPLv(pν̄), Ml,ρ =

p′ρ
m4

µ

ūe(p′)PRuµ(p), MN = ūN (k′)uN (k). (A.7)

Accordingly, both subamplitudes collapse in 6-fermion interactions, as depicted in figure 6.
The decay width for muon DIO is then

ΓµH→eNνµν̄e = 1
2MµH

∫
(2π)4δ4(pµH − p′ − k′ − pν − pν̄)

d3k′

(2π)32Ek′

d3p′

(2π)32Ee

d3pν

(2π)32Eν

× d3pν̄

(2π)32Eν̄

∣∣∣MµH→eNνµν̄e

∣∣∣2 . (A.8)

We follow ref. [32] in that we resort to q2 to simplify the integrals of the neutrino-antineutrino
pair; we find

ΓµH→eNνµν̄e =
∫ |ψSch.(0)|2

2mµ

1
2MµH

128π2G2
FZ

2α2dq2
2

× dΠµN→eNq2

∑
spins

|MN |2|Ml,ρσ|2Tρσ, (A.9)
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Figure 7. Feynman diagrams representing the NLO corrections to DIO. The particle labels are shown
only whenever they are not obvious.

with∑
spins

|Ml,ρσ|2Tρσ =
p′ρp

′
σ

m8
µ

∑
spins

ūµ(p)PLue(p′)ūe(p′)PRuµ(p)
(−π)
3(2π)3 (q

2
2gρσ − q2,ρq2,σ), (A.10a)

∑
spins

|MN |2 = 8M2
N , (A.10b)

dΠµN→eNq2 = (2π)4δ4(pµH − p′ − k′ − q2)
d3k′

(2π)32Ek′

d3p′

(2π)32Ee

d3q2
(2π)32Eq2

. (A.10c)

In the end, we expand in powers of ∆E to find the result in eq. (2.1).

A.2 NLO

At NLO, we consider the diagrams of figure 7. With the exception of the first two diagrams,
each diagram has a corresponding counterterm (not displayed here), which we calculate in
on-shell subtraction. Performing approximations similar to those described in section A.1,
we write the NLO amplitude as a generalization of eq. (A.6),

iMNLO
µN→eNνµν̄eX = MNLO

l,ρ Mν,ρMN , (A.11)

with Mν,ρ and MN still given in eq. (A.7), and

MNLO
l,ρ = 16π Zα(µs)

√
2GF ūe(p′)

[
Fa

γρ

m3
µ

PL + Fb
pρ

m4
µ

PR + Fc

p′ρ
m4

µ

PR

]
uµ(p). (A.12)

As a consequence, the NLO amplitude can still be generically described by the right-hand
side diagram of figure 6, but with that diagram representing now the three operators of
eq. (A.12). The coefficients of these operators can be written perturbatively in α,

Fi = F
(α0)
i + α

4πF
(α1)
i +O(α2), (A.13)
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Figure 8. Relevant real emission diagrams in DIO in the soft approximation.

such that

F (α0)
a = F

(α0)
b = 0, F (α0)

c = 1. (A.14)

The virtual corrections, UV-renormalized in on-shell subtraction, read

F
(α1)
a,OS =−1.39732, (A.15a)

F
(α1)
b,OS =−0.49511, (A.15b)

F
(α1)
c,OS = 2

ϵ

[
ln
(2mµ

me

)
−1
]
−2ln2

(
mµ

me

)
+23

3 ln
(
mµ

me

)
−4ln

(
mµ

me

)
ln
(
me

µ

)
+4ln

(
me

µ

)
+2ln(4) ln

(
µ

mµ

)
+0.10486. (A.15c)

We note that F (α1)
c,virt. has an IR divergence, regulated by ϵ = (4 − d)/2, with d being the

dimensions. This is canceled by the one coming from the soft real emission diagrams, depicted
in figure 8.14 These can be calculated via the usual techniques [62]. It is worth stressing
that, at one loop, all the integrals of eq. (A.8) can still be performed in 4 dimensions, and
only the integral relative to the real emission must be performed in d dimensions. The final
NLO rate is IR finite and given by eq. (2.2).
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