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Abstract: As upcoming experiments aim to probe muon conversion with unprecedented

precision, equally precise theoretical predictions are crucial to maximize discovery potential.

This applies not only to the new physics signal, muon-electron conversion, but also to

its only irreducible background, muon decay-in-orbit (DIO) near the endpoint. Accurate

computation of higher-order corrections in bound states is a long-standing challenge due to

the difficulty of systematically organizing contributions. In previous work, we developed an

Effective Field Theory framework to address this issue and applied it to muon conversion.

Here, we extend this approach to the DIO endpoint, a more complex problem due to

the presence of a neutrino-antineutrino pair in the final state. We present the most precise

prediction to date of the background spectrum relevant for future muon conversion searches,

achieving next-to-leading logarithmic prime accuracy for QED corrections.
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1 Introduction

Muon conversion, the process in which a muon converts to an electron in the vicinity of a

nucleus, remains to be observed. It provides one of the best limits on charged lepton flavor

violation (CLFV), expressed as Rµe < 7 × 10−13 [1]. Since CLFV is in practice absent in

the Standard Model (SM) due to the smallness of neutrino masses, a detection of muon

conversion would provide an indisputable sign of physics beyond the SM (BSM).

Such detection might happen in the near future, as upcoming CLFV experiments are

expected to achieve a four-order-of-magnitude reduction in the bound on Rµe through

improved sensitivity [2–6]. This remarkable experimental improvement requires precise

theoretical predictions for both the signal and its Standard Model (SM) backgrounds. It

turns out that there is only one non-reducible background: muon decay-in-orbit (DIO),

consisting of a muon decay in the vicinity of a nucleus. More specifically, it is the region

of the muon DIO spectrum near the electron-energy endpoint (for short, endpoint DIO,

or eDIO) that forms the dominant background for muon conversion searches. To optimize

the signal-to-background ratio and so enhance the chances of observing muon conversion,

upcoming experiments require precise theoretical predictions for the shape of each rate (i.e.
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for the electron-energy spectra of both muon conversion and eDIO). Since that shape is

dictated by the QED corrections (i.e. higher-order effects in the fine structure constant α),

it is of the utmost importance to have a proper theoretical prediction for the latter.

However, QED corrections in bound states are notoriously challenging. They demand

advanced techniques to rigorously define the relevant operators, consistently organize the

various contributions, and systematically avoid double counting. In addition, they are often

dominated by large logarithms arising from the hierarchy of energy scales, which spoil the

convergence of the perturbative expansion. We addressed these challenges in a previous

publication [7], where we developed a framework that cleanly separates the multiple scales

at play using Effective Field Theory (EFT) techniques. This approach allows different

types of physics to be treated systematically, as muon conversion and eDIO simultaneously

involve a heavy nucleus, a non-relativistic muon, an energetic and massive electron, and

soft real radiation. More specifically, the nucleus requires Heavy Quark Effective Theory

(HQET) [8–12], the muon calls for both Non-Relativistic QED (NRQED) [13–15] and

potential NRQED (pNRQED) [16–20], the energetic electron entails Soft-Collinear Effective

Theory (SCET) I and II [21–26], and the soft real radiation coupled to massive energetic

particles requires boosted HQET (bHQET) [27, 28].

Although this EFT framework applies to both muon conversion and eDIO (since the

hierarchy of the relevant physical scales is the same in both), ref. [7] focused on the former

and on O(α) corrections to that process. In this paper, we do the same for eDIO, which

is complicated by the presence of the neutrino-antineutrino pair in the final state. Several

works have discussed theoretical improvements for eDIO [29–35]. In particular, a great

deal of recent efforts has been devoted to understanding the impact of nuclear effects on

eDIO [36, 37]. Radiative effects pose a complementary problem that has received much

less attention in the literature. Notably, ref. [33] calculated O(α) corrections for eDIO,

but lacked a formalism capable of addressing the complexities associated with higher-order

corrections in bound states, as discussed above. By filling in this gap, our work provides not

only the most precise shape of the rate for eDIO, but also the foundations to consistently

improve the rate even more.

The paper is organized as follows. We start by discussing basic aspects of eDIO in

section 2, after which we turn to the EFT framework in section 3. There, we build on the

concepts and techniques presented in ref. [7], emphasizing the elements unique to eDIO. In

section 4 we derive a leading power factorization theorem for the eDIO rate, which allows

us to show the most accurate predictions for its shape in section 5. After presenting our

conclusions and outlook in section 6, we provide technical details in the appendix.

2 Overview of the muon decay-in-orbit endpoint

Muon DIO is the decay of a muonic atom via the standard muon decay process. It is

depicted on the left side of figure 1. The muonic atom in the initial state (which we refer

to as muonic hydrogen, µH) has the total mass MµH , and is a bound state formed by a
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Figure 1: Bound muon decay. The left diagram shows the bound state µH as a single field,

whereas the right diagram illustrates its composite structure. In both cases, the shaded

region represents short-distance perturbative interactions, distinct from the long-distance

Coulomb exchanges. The possible final state radiation X is omitted. See text for details.

muon (µ) with mass mµ and a nucleus (N) with mass MN and atomic number Z.1 The

final state includes the recoiling nucleus N , an energetic electron (e) of mass me and energy

Ee, a muon neutrino (νµ) and an electron antineutrino (ν̄e) — both of which we treat as

massless — and, in principle, arbitrary radiation denoted in what follows as X (which,

near the endpoint, is necessarily soft).

The right side of figure 1 shows the structure of µH . In the ground (1s) state, the

bound muon has a binding energy Eb, which in the non-relativistic approximation equals

Eb = −(Zα)2mµ/2, and a typical velocity relative to the nucleus v = Zα. The dots in

the diagram represent an infinite number of (potential) photons exchanged between the

nucleus and the muon. These exchanges form a ladder of velocity-enhanced interactions,

each rung contributing a factor proportional to Zα/v. Because they are unsuppressed,

they must be summed to all orders using the Schrödinger equation. The shaded disk

represents arbitrary short-distance interactions among the various fields. Unlike the photon

ladder, these interactions are perturbative, which is a consequence of considering eDIO,

where Ee ∼ O(mµ). In fact, the momentum transfer between the nucleus and the leptons

in that case is of the order of the muon mass; such a large momentum transfer puts

the intermediate states highly off-shell and thus removes the enhancement of the ladder

interactions. Ee ∼ O(mµ) also implies that the outgoing electron is ultra-relativistic; hence,

the Coulomb interactions between the electron and the nucleus are not velocity-enhanced

and so need not be resummed to all orders in Zα.2

In this paper, we are interested in the calculation of the eDIO rate in the SM, since it

is this that is taken as a background in muon conversion searches. Different approaches can

be used to calculate the rate. In addition to the EFT approach — which is systematically

introduced and applied for the first time in this paper — two other approaches have been

considered in the literature. One of them, traditionally used, resorts to numerical methods

1In what follows, we assume that Z = 13 (aluminum), implying Zα ≃ 0.1, though we keep Z as a

parameter. This justifies and fixes the hierarchy between the physical scales that we adopt.
2These effects can be easily accounted by including the electron scattering wave-function; see e.g.

refs. [38–40].
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both to solve the Dirac equation at leading order (LO) in α, as well as to calculate the

overlap integrals [30–32, 36, 41–44]. This treatment is exact in the muon velocity v = Zα

and makes it straightforward to include finite-nucleus-size effects (recoil corrections can

only be included perturbatively [32]). In principle, this approach can be extended to the

Furry picture [45], so as to go beyond the LO in α. In practice, however, such computation

is extremely challenging and has not yet been achieved.

The other approach used to calculate the eDIO rate is dubbed in what follows the SC

approach [33]. Besides the expansion in powers of α, it contains a double expansion. The

first is around the endpoint and amounts to retaining only the leading term in ∆E, defined

as the small difference between Ee and the maximum (i.e. endpoint) energy of the outgoing

electron, Emax
e . Then, the second expansion is performed, in powers of the velocity Zα,

thereby establishing a connection with traditional Feynman diagrams for scattering pro-

cesses. In the SC approach, the rate can be calculated at the next-to-leading order (NLO)

in α; moreover, the calculation can be performed analytically. This was done in ref. [33] by

combining the fixed order NLO result, on the one hand, with the YFS resummation [46] of

the soft photons, on the other. Since it lacks systematic scale separation, the SC approach

is not suitable for resummation of collinear logarithms. Furthermore, it lacks both the

transparent field-theoretical definitions and the systematic improvability that character-

ize the EFT approach. In particular, it does not provide a clear path towards calculating

higher-power corrections in ∆E/mµ, which naturally appear in the EFT approach as power

corrections. It also does not justify why YFS resummation is applicable to bound muon.

However, it provides the foundation for the EFT treatment described in this article.

Therefore, we start by reviewing the SC approach. We restrict ourselves to the results

here, and leave the details to the appendix. At LO in α and Zα, we have

Γ′
LO ≡

dΓLO
µH→eNνµν̄e

dEe
=

1024Γ0 Z
5α5∆E5

5πm6
µ

+O
(
∆E6

)
, (2.1)

where Γ0 = G2
Fm

5
µ/

(
192π3

)
is the LO free muon decay rate in the limit of a massless

electron. For aluminum (Z = 13) and ∆E = me, Γ
′
LO ≃ 3.76× 10−33. At NLO in α, and

still assuming aluminum, we write

Γ′
NLO

Γ′
LO

= 1 +
α

π

{
− 26

15
ln

(
mµ

me

)
+

[
2 ln

(
2mµ

me

)
− 2

]
ln

(
∆E

mµ

)
+ 6.31

}
, (2.2)

where the term 6.31 comes from the vertex corrections, vacuum polarization effects and

the correction to the muon wave-function at the origin.3 Supplementing the NLO result

with YFS resummation for soft photons, we have4

Γ′
NLO+YFS

Γ′
LO

=

(
∆E

mµ

)α
π

[
2 ln

(
2mµ
me

)
−2

]
+
α

π

[
6.31− 26

15
ln

(
mµ

me

)]
. (2.3)

3In the subsequent parts of this article, we will provide the interpretation of this factor in terms of the

long and short distance contributions.
4Here in what follows, ‘LO’ and ‘NLO’ refer by default to orders in powers of α.
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Figure 2: Differential eDIO rate in the SC approach. Left panel: LO and NLO+YFS

rates, normalized to Γ0, with inset for ∆E ≃ me. Right: LO, NLO and NLO+YFS rates

normalized to LO.

We compare the differential rates at LO, NLO and NLO+YFS in figure 2, normalized

to Γ0 on the left panel and to Γ′
LO on the right one. The endpoint energy is Emax

e :=

mµ − Erec + Eb = 104.971, where Erec is the recoil energy [34]. The right panel illustrates

that the NLO corrections are large (around 13% in modulus for ∆E ≃ me), a result that

has its origins in the aforementioned large logarithms present in the calculation. As already

suggested, this provides one of the motivations to introduce the EFT approach that follows.

Before that, we comment on our treatment of the nucleus. We follow here the approach

of ref. [7], which we briefly summarize. We take the nucleus N as a dynamical, elementary

field, instead of a field composed of nucleons or quarks. This is justified by the fact that we

are interested in energies at and below the muon mass scale. In the leading approximation

in the expansion around the endpoint, the nuclear charge distribution only affects the

overall normalization of the eDIO spectrum; that is, it does not affect the shape of the

spectrum, which is our focus here. The prescription to include finite-nucleus-size effects

has been described in ref. [33], and can be included in the EFT framework through spatially

non-local operators.

3 EFT

As discussed in the Introduction, the EFT framework required to perform perturbative

calculations in both muon conversion and eDIO was developed in ref. [7]. The technical

details are provided there and will generally not be repeated here. Instead, we summarize

the essential elements, with a focus on eDIO, especially on the technical complications

related to the presence of neutrinos in the final state.

The eDIO spectrum is characterized by a hierarchy of scales,

MN ≫ mµ ∼ Ee ≫ Zαmµ ≫ (Zα)2mµ ∼ me ∼ ∆E, (3.1)

which determines the EFT framework. That is, the framework is built to clearly separate

these different scales, and allow a systematic, field-theoretical computation of the physical
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Figure 3: Chart of the scales relevant for muon eDIO. Each scale is associated with an

EFT. See text for details.

observables. It corresponds to a double expansion, the recoil and the power expansion,

respectively organized by powers of the parameters

λR ≡ mµ

MN
, λ ≡ Zα ∼

√
me

mµ
. (3.2)

In this work, we focus on leading recoil and leading power (LP) contributions. Nonetheless,

the power-suppressed terms, which correspond to Zα and ∆E/mµ corrections, can be

computed using the usual EFT methods. Given eq. (3.1), the EFT framework comprises

five different physical scales,

hard-nuclear scale: µhn ∼MN ,

hard scale: µh ∼ mµ ≃ Ee = O(λRMN ),

semi-hard scale: µsh ∼ Zαmµ = O(λµh),

soft scale: µs ∼ (Zα)2mµ ≃ me ≃ ∆E = O(λ2 µh),

soft-collinear scale: µsc ∼ me
∆E

mµ
= O(λ4 µh),

and uses a different EFT at each of the five scales. Figure 3 illustrates this structure,

showing the Lagrangian governing the relevant dynamical fields in each EFT. This chart

differs from that of ref. [7] only by the inclusion of neutrinos. These carry negligible energy,

are electrically neutral and assumed to be massless; thus, it is sufficient to describe them

using the Weyl Lagrangian at all scales.

In what follows, we subsequently describe the relevant elements of each EFT. We start

with EFT II, since EFT I is not relevant for a perturbative description of eDIO [7], and is

only introduced to bridge our framework with the treatment of nuclear effects.5 For each

5We keep the EFT numbering convention of ref. [7].
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of the following EFTs, we discuss the relevant operators as well as their matching and

running.

As a final note, it is worth mentioning a duality in muon DIO, related to bound vs.

unbound muons — the simple analog of the well-known quark-hadron duality in QCD. The

goal of the EFT framework that we are about to describe is the derivation of a factorization

theorem. This theorem concerns the rate for eDIO, which involves a bound state. However,

certain objects in the theorem are defined at high scales (for example, the hard function),

where the QED effects are perturbative. As such, those objects are computed with the

usual Feynman rules corresponding to free asymptotic states. This reveals the scattering

process underlying the bound-state calculation, and reflects the duality between the bound

muon decay and coherent scattering of muons on the nucleon.

3.1 EFT II: µ ∼ µh

EFT II is defined at the hard scale, taken to be of the order of the muon mass. The modes

with higher virtuality, such as hard-nuclear modes (of the order ofMN ), are integrated out.

It follows that, at leading recoil, the nucleus is taken as infinitely heavy and is described

by a static HQET field. The recoil corrections can be systematically computed using

power-suppressed HQET interactions. For leptons, EFT II can be seen as the theory of

weak interactions below the electroweak scale. The weak EFT Lagrangian is obtained after

integrating out the scales above the muon mass. Accordingly, the muon decay is described

by the renowned Fermi 4-fermion interaction,

O(II)
1 ≡ ē(h)γρPLµ

(h) ν̄(h)µ γρPLν
(h)
e , (3.3)

with PL being the left-chirality projection operator. For brevity, whenever all the fields

are evaluated at the same space-time point, we omit the position arguments of fields. The

Fermi Lagrangian reads

LFermi =
4GF√

2
O(II)

1 + h.c., (3.4)

where GF is the matching coefficient commonly known as the Fermi constant. Since this

constant does not run (i.e. it is scale independent), we take all parameters of the weak

Lagrangian as defined at the hard scale.

Anticipating the matching between EFTs II and III, we start by considering the am-

plitude A for the scattering process µN → eNνµν̄e.
6 As was shown in ref. [33], the LO

contribution is associated with a single-photon exchanged between the nucleus and the

charged leptons.7 The Feynman diagrams for this contribution are depicted in fig. 4,

with hN being the nucleus field. The muon is characterized by a four-momentum p, the

pair of neutrino-antineutrino by their total four-momentum q2, and the virtual photon ex-

6We recall the discussion on duality. We also note that the matching coefficients do not depend on the

external states; hence, we choose the simplest states that give non-zero overlap with our operators.
7This contribution is similar to that in the spectator scattering in exclusive (semi-)hadronic decays of B

mesons [47–52].
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Figure 4: LO scattering of a muon into a nucleus with the subsequent muon decay. The

black circles represent the 4-Fermi interaction. The double line represents an HQET field.

changed between the leptons and the nucleus by q1.
8 In the infinitely heavy nucleus limit,

3-momentum is not conserved in the photon-nucleus vertex (the nucleus acts as a sink for

3-momentum). Choosing for convenience the electron momentum to lie along the z axis,

the explicit parametrization of the four-momenta is

p =
(√

m2
µ + |p⃗|2, p⃗

)
, p′ =

(
Ee, 0, 0,−

√
E2

e −m2
e

)
,

q1 = (q10 , q⃗1), q2 = (q20 , q⃗2). (3.5)

For the purpose of power counting, the muon is assumed to be non-relativistic, with |p⃗| ∼
mµZα. Since we focus on the electron endpoint, i.e. Ee ≃ mµ, the momentum carried

by neutrinos is small |q⃗2| ≃ q20 ≃ ∆E. The energy transfer to the nucleus is also small,

q10 ≃ m2
µ

MN
≃ ∆E, but the spatial momentum is large, |q⃗1| ∼ mµ.

Aiming at the O(α) NLO (hard) matching between EFTs II and III, it is sufficient to

parameterize the scattering amplitude with three form-factors F
(II)
i (i = a, b, c), which are

in general a function of the momentum transfer q21 = (p − p′ − q2)
2. We thus write the

scattering amplitude as

iA(II) = 16π Zα
√
2GF ūe

{
F (II)
a

γρ
m3

µ

PL + F
(II)
b

pρ
m4

µ

PR + F (II)
c

p′ρ
m4

µ

PR

}
uµūhN

uhN
ūνµγ

ρPLvνe .

(3.6)

These form-factors, which correspond to the hard region of the loop momenta of the SC

approach, are directly related to the (hard) matching coefficients of EFT III. Due to their

length, explicit expressions are omitted here.

8Here and in what follows, the formulation ‘the pair neutrino-antineutrino’ (or simply ‘the neutrinos’)

represents the final state νµ and ν̄e. For our purposes, the two particles can be treated together. In the

end, indeed, the phase space of the two particles can be simplified to that of a single particle (for details,

cf. ref. [53]).
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3.2 EFT III: µ ∼ µsh

The LP matching conditions between EFTs II and III relate the scattering amplitude

discussed before to the matrix element of the operators defined at the semi-hard scale,

A(II) =

3∑
i=1

〈
eNν̄eνµ

∣∣∣ ∫ dt

{
C

(III)
i (t)O(III)

i (t)

}∣∣∣µN〉
. (3.7)

Here, O(III)
i are the EFT III operators, given by

O(III)
i (t) ≡ h̄

(sh)
N (0)h

(sh)
N (0)

[
ξ̄(hc)W (hc)

]
(tn+) Γ

ℓ
i Y

(sh)†
n− (0)ψ(p)(0)ν̄(sh)µ (0) Γν

i ν
(sh)
e (0), (3.8)

where ξ(hc) represents a hard-collinear electron field and ψ(p) the potential muon field,

and where W (hc) and Y
(sh)
n− are hard-collinear and semi-hard Wilson lines, respectively (for

details, cf. ref. [7]). Finally, the following Dirac structures appear in the SM:

Γℓ
1 =

/n+
2
PL, Γν

1 = /n−PL, (3.9a)

Γℓ
2 = γµ⊥PL, Γν

2 = γ⊥µPL, (3.9b)

Γℓ
3 =

/n+
2
PL, Γν

3 = /n+PL. (3.9c)

We now define, for convenience, the normalized matching coefficient C̃
(III)
i (µ):

C
(III)
i (µ) ≡ 16π Zα(µ)

√
2GF

m3
µ

C̃
(III)
i (µ). (3.10)

Although, in principle, the matching should be performed for arbitrary electron energy

Ee ∼ mµ, we assume from the very beginning that Ee = mµ. This choice is justified both

by the considerable simplification it brings to the expressions, as well as by the circumstance

that the resulting factorization theorem will ultimately depend only on the hard matching

coefficients evaluated at this energy. Accordingly, up to O(α), the coefficients C̃
(III)
i read

C̃
(III)
1 (2mµ,mµ;µh) = 1− α(µh)

4π

{
2 ln

(
4mµ

µh

)
ln

(
mµ

µh

)
− 23

3
ln

(
mµ

µh

)
+ 4.36248

}
,

(3.11a)

C̃
(III)
2 (2mµ,mµ;µh) = −1.39732

α(µh)

4π
, (3.11b)

C̃
(III)
3 (2mµ,mµ;µh) = −0.24756

α(µh)

4π
. (3.11c)

As the matching is performed at the hard scale, we use the on-shell subtraction scheme

in EFT II to fix both the muon mass counterterm and the muon contribution to the α

renormalization (i.e. to the vacuum polarization counterterm). The electron contribution

is renormalized in the MS scheme. This mixed scheme ensures that the muon mass does

not run below the hard scale, and that α only runs with one flavor (the electron one).

Furthermore, it allows a straightforward comparison with the results of [33].
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To obtain the matching coefficients at arbitrary scales, we define Uh,i as the renor-

malization group equation (RGE) evolution factor. It is obtained by solving the RGE

for the coefficients C
(III)
i , with the initial conditions at the hard scale. The fact that

C̃
(III)
2 ∼ C̃

(III)
3 ∼ O(α) implies that C

(III)
2 and C

(III)
3 are not relevant at leading logarithmic

(LL) and next-to-leading logarithmic (NLL) accuracy. The RGE for C
(III)
1 and its solution

Uh,1 are the same as those for C
(III)
X of ref. [7]. This identity holds since a) the neutrinos

do not modify the running, b) the identity ξ̄(hc)
/n+

2 PLψ
(p) = ξ̄(hc)PRψ

(p) holds and c) the

operators with different Dirac structures do not mix under RGE up to NLL accuracy.

Just as in ref. [7], the decoupling of the electron soft modes is required at this stage.

This is achieved via the definition

ξ̄(hc)(x) = ξ̄
(hc)
(0) (x)Y (s)†

n− (x−), (3.12)

and the operators O(III)
1−3 are now written in terms of the soft-decoupled field ξ̄

(hc)
(0) .

Finally, we follow ref. [7] in neglecting the semi-hard Wilson lines in what follows.

Given our assumption ∆E ∼ me, they will not contribute to the final rate.

3.3 EFT IV: µ ∼ µs

The LP matching conditions for currents between EFTs III and IV are trivial, C
(IV)
i (2mµ,

mµ;µsh) = C
(III)
i (2mµ,mµ;µsh). The most interesting features in this passage happen at

the level of the Lagrangian. The operators are now

O(IV)
i (t) ≡ h̄

(s)
N (0)h

(s)
N (0)

[
ξ̄(c)W (c)

]
(tn+) Γ

ℓ
i Y

(s)†
n− (0)Ψ(p)(0)ν̄(s)µ (0) Γν

i ν
(s)
e (0), (3.13)

where the soft Wilson lines, arising from the field redefinitions in eq. (3.12) factor out soft

interactions at this stage. We perform the soft decoupling of the remaining fields via [7]

h̄
(s)
N = h̄

(s)
N(0)Y

(s)†
v , Ψ̄(p) = Ψ

(p)
(0)Y

(s)†
v , ē(s) = ē

(s)
(0)Y

(s)†
v , (3.14a)

h
(s)
N = Y

(s)
v h

(s)
N(0), Ψ(p) = Y

(s)
v Ψ

(p)
(0), e(s) = Y

(s)
v e

(s)
(0). (3.14b)

As a consequence, the operators of eqs. (3.3) can be rewritten as a product

O(IV)
i (t) = Qs,i(0)O(IV)

i(0) (t), (3.15)

with O(IV)
i(0) being the soft-decoupled operators,

O(IV)
i(0) (t) = h̄

(s)
N(0)(0)h

(s)
N(0)(0)

[
ξ̄(c)W (c)

]
(tn+)Γ

ℓ
i Ψ

(p)
(0)(0), (3.16)

and Qs,i collects the soft operators,

Qs,i(x) = Ns,i(x)Os(x), (3.17)

with9

Os(x) =
[
Y (s)†
v Y

(s)
v Y (s)†

n− Y
(s)
v

]
(x), Ns,i(x) = ν̄(s)µ (x) Γν

i ν
(s)
e (x). (3.18)

9In ref. [7], there were no neutrinos, so the soft operator was simply given by Os.
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Eq. (3.17) reveals that the soft operators Qs,j are further factorized into two operators —

the neutrino operators Ns,i and the photon operator Os — as the neutrinos, being charge

neutral, do not interact with photons. Hence, the LO matrix element of Ns,j is tree-level

exact in QED and can be treated as a universal factor.

3.4 EFT V: µ ∼ µsc

The transition to EFT V is obtained by matching the collinear electron field onto the

bHQET field, which involves integrating out collinear modes. Near the DIO endpoint,

the electron energy can fluctuate only by a small amount of order ∆E, justifying this

procedure. This matching introduces the coefficient Cm(me;µs), which beyond one loop

contains rapidity divergences. These cancel against contributions from the soft matrix

element, which receives soft massive fermion corrections starting at two loops, leading

to rapidity renormalization group equations. Since these effects lie beyond the accuracy

considered in this paper, we will ignore this technical complication.10

The LP matching conditions between EFTs IV and V are

Qs,i(0)

∫
dtC

(IV)
i (t)O(IV)

i(0) (t) = Qs,i(0)

∫
dtC

(IV)
i (t)eimen+·vetCm(me;µs)O(V)

i (0) , (3.19)

with the four-fermion operator

O(V)
i (t) ≡ h̄

(s)
N(0)h

(s)
N(0) h̄

(sc)
e Γℓ

i Ψ
(p)
(0). (3.20)

We note that, due to eq. (3.9), O(V)
1 = O(V)

3 . The coefficient Cm belongs to a class of

radiative jet functions that, in QED with a massive electron, begin contributing already at

LP. This contrasts with the case of QCD with massless quarks, where radiative jet functions

are purely power-suppressed objects, requiring explicit soft radiation to contribute (hence

their name). The same function Cm multiplies all operators O(V)
i in eq. (3.19) and it also

appears in muon conversion [7]. This illustrates the universality of the low energy matrix

elements defined within the modern EFT approach.

For convenience, we define the complete matching coefficient in the EFT V as

C
(V)
i (µs) ≡ C

(IV)
i (2mµ,mµ;µs)Cm(me;µs) =

∫
dteimen+·vetC

(IV)
i (t)Cm(me;µs). (3.21)

Finally, we perform the soft-collinear decoupling via the definitions [7]

h̄
(s)
N(0) = h̄

(s)
N(00)Y

(sc)†
n+

, Ψ̄
(p)
(0) = Ψ̄

(p)
(00)Y

(sc)†
n+

, h̄(sc)e = h̄
(s)
e(0)Y

(sc)†
ve , (3.22a)

h
(s)
N(0) = Y

(sc)
n+

h
(s)
N(00), Ψ

(p)
(0) = Y

(sc)
n+

Ψ
(p)
(00), h(sc)e = Y

(sc)
ve h

(sc)
e(0). (3.22b)

This leads to a factorization analogous to that of eq. (3.15),

O(V)
i = Osc(0)O(V)

i(0), (3.23)

10They appear at the two-loop order [54].
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with Osc being the soft-collinear operator [7], composed of the soft-collinear Wilson lines,

Osc(x) =
[
Y (sc)†
n+

Y
(sc)
n+

Y (sc)†
ve Y

(sc)
n+

]
(x), (3.24)

and O(V)
i(0) the decoupled four-fermion operators,

O(V)
i(0)(t) ≡ h̄

(s)
N(00)h

(s)
N(00) h̄

(sc)
e(0) Γ

ℓ
i Ψ

(p)
(00). (3.25)

4 Factorization

4.1 Factorization theorem

Having derived the operators at the soft-collinear scale, we are ready to consider the phys-

ical observable — the differential decay rate for muon eDIO, for which we derive a factor-

ization theorem. The rate can be calculated using standard methods; in particular, it is

determined by the amplitude for muon DIO, in the presence of arbitrary radiation in the

final state, X . The amplitude, in turn, is obtained by inserting the current between the

initial and final states,

MµH→eNνµν̄eX =
〈
e(sc)N (s)ν̄(s)e ν(s)µ X (s)X (sc)

∣∣∣J (0)
∣∣∣µH〉

, (4.1)

where the radiation X is now split into a soft component (X (s)) and soft-collinear (X (sc))

one. The current J is defined in terms of the soft and soft-collinear operators,

J (0) ≡
3∑

i=1

C
(V)
i (µs)Osc(0)Qs,i(0)O(V)

i(0)(0), (4.2)

where the coefficients C
(V)
i (µs), introduced in eq. (3.21), can be related to the coefficients

C
(III)
i (2mµ,mµ;µh) through RGE; that is, up to NLL accuracy,

C
(V)
i (µs) = C

(III)
i (2mµ,mµ;µh)Uh,i(µh, µs)Cm(me;µs)

=
16π Zα(µs)

√
2GF

m3
µ

ĈiCm(me;µs), (4.3)

with Ĉi representing the hard contribution evolved to the soft scale,

Ĉi ≡
α(µh)

α(µs)
C̃

(III)
i (2mµ,mµ;µh)Uh,i(µh, µs). (4.4)

This allows us to rewrite the current as

J (0) =
16π Zα(µs)

√
2GF

m3
µ

3∑
i=1

ĈiCm(me;µs)Osc(0)Qs,i(0)O(V)
i(0)(0), (4.5)

so that the amplitude becomes

MµH→eNνµν̄eX =
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=
16π Zα(µs)

√
2GF

m3
µ

3∑
i=1

Ĉ
(III)
i Cm(me;µs)

〈
X (sc)e(sc)

∣∣∣Osc(0)
[
h̄
(sc)
e(0)(0)

]
α

∣∣∣0〉
×
〈
N (s)X (s)ν̄(s)e ν(s)µ

∣∣∣h̄(s)N(00)(0)h
(s)
N(00)(0)

[
Γℓ
iΨ

(p)
(00)(0)

]
α
Qs,i(0)

∣∣∣µH〉
. (4.6)

Fields associated with each scale are grouped and treated collectively (i.e. soft and soft-

collinear modes are each handled collectively), enabling the separation of soft and soft-

collinear contributions. However, the matrix elements of the sterile fields can be treated

individually. For example, the soft-collinear electron field is sterile after soft-collinear

decoupling, which allows us to write〈
X (sc)e(sc)

∣∣∣Osc(0)h̄
(sc)
e(0)(0)

∣∣∣0〉 =
〈
X (sc)

∣∣∣Osc(0)
∣∣∣0〉〈e(sc)∣∣∣[h̄(sc)e(0)(0)

]
α

∣∣∣0〉
=

〈
X (sc)

∣∣∣Osc(0)
∣∣∣0〉 [ūhe ]α . (4.7)

In the same way, and since the potential muon defines the bound muon wave-function

together with nucleus [7], we have〈
N (s)X (s)ν̄(s)e ν(s)µ

∣∣∣h̄(s)N(00)(0)h
(s)
N(00)(0)

[
Γℓ
iΨ

(p)
(00)(0)

]
α
Qs,i(0)

∣∣∣µH〉
=
〈
X (s)ν̄(s)e ν(s)µ

∣∣∣Qs,i(0)
∣∣∣0〉〈N (s)

∣∣∣h̄(s)N(00)(0)h
(s)
N(00)(0)

[
Γℓ
i Ψ

(p)
(00)(0)

]
α

∣∣∣µH〉
=
〈
X (s)ν̄(s)e ν(s)µ

∣∣∣Qs,i(0)
∣∣∣0〉 1√

2mµ
ūhN

uhN

[
Γℓ
i uΨ

]
α
ψSchr.(0), (4.8)

where ψSchr.(x) denotes the position-space wave function of the muon in the 1s state of a

hydrogen-like ion. Then, using eq. (3.17), we rewrite the amplitude as

MµH→eNνµν̄eX =
16π Zα(µs)

√
2GF

m3
µ

ψSchr.(0)√
2mµ

3∑
i=1

ūhN
uhN

ūheΓ
ℓ
i uΨ ĈiCm(me;µs)

×
〈
X (sc)

∣∣Osc(0)
∣∣0〉 〈

X (s)
∣∣Os(0)

∣∣0〉 〈
ν̄(s)e ν(s)µ

∣∣Ns,i(0)
∣∣0〉. (4.9)

This allows us to finally consider the decay rate. Following ref. [7], we write it as

ΓµH→eNνµν̄eX =
1

2MµH

∫
(2π)4δ(d)

(
pµH − p′ − k′ − pν − pν̄ −

∑
i

pX i

) d3k′

(2π)32MN

× d3p′

(2π)32Ee

d3pν
(2π)32Eν

d3pν̄
(2π)32Eν̄

dP(s) dP(sc)
∣∣MµH→eNνµν̄eXeX

∣∣2, (4.10)

with dP(s) and dP(sc) being the phase space factors of the emitted real radiation [7]. All

the integrals can be performed in 4 dimensions; however, to maintain consistency with the

scheme defined by the SC approach, we keep dP(s) and dP(sc) in d dimensions. We now

define the soft function and the soft-collinear function respectively as [7]

S(Es) ≡
∑
X (s)

∫ ∏
i

dd−1pX (s)
i

(2π)d−12EX (s)
i

δ(Es − EX (s))⟨0|O†
s(0)|X (s)⟩⟨X (s)|Os(0) |0⟩ , (4.11a)
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SC(Esc) ≡
∑
X (sc)

∫ ∏
i

dd−1pX (sc)
i

(2π)d−12EX (sc)
i

δ(Esc − EX (sc))⟨0|O†
sc(0)|X (sc)⟩⟨X (sc)|Osc(0) |0⟩ .

(4.11b)

After calculating the neutrino matrix element and evaluating the phase-space integrals, we

arrive at the final form of the factorization theorem:

Γ′
µH→eNνµν̄eX =

1024Γ0 Z
5α(µs)

5

5πm6
µ

|ψcorr|2
[∣∣Ĉ1

∣∣2 + 2
∣∣Ĉ2

∣∣2 + ∣∣Ĉ3

∣∣2] |Cm(me;µs)|2

×
∫ ∞

−∞
dEsc

∫ ∞

−∞
dEsS(Es)SC(Esc) (∆E − Es − Esc)

5 θ(∆E − Es − Esc), (4.12)

where |ψcorr|2 denotes the correction to the Schrödinger wavefunction of the bound muon [33].

4.2 Formulæ

Inserting LO expressions for all the component functions, we trivially recover eq. (2.1).

Expanding all the terms to NLO (without RGE effects) and using C̃1 = 1+O(α), we find

the fixed order NLO expression

Γ
′NLO
µH→eNνµν̄eX =

1024Γ0 Z
5α(µs)

5∆E5

5πm6
µ

|ψcorr|2NLO

[
1 + 2C̃

(III)
1

∣∣∣
O(α)

]
|Cm(me;µ)|2NLO,OS

×

{
1 +

∫ ∆E

−∞
dEsS(Es)

∣∣
O(α)

(
∆E − Es

∆E

)5

+

∫ ∆E

−∞
dEsc SC(Esc)

∣∣
O(α)

(
∆E − Esc

∆E

)5
}
,

(4.13)

where we have to consistently drop terms beyond the NLO accuracy when multiplying out

the terms. While the O(α) component of C̃
(III)
1 can be read from eqs. (3.11), we have

|ψcorr|2NLO = 1 + α(µs)
π × 6.4 [7] and

|Cm(me;µ)|2NLO,OS = 1 +
α(µs)

2π

{
2 ln2

(
me

µ

)
− ln

(
me

µ

)
−8

3
ln

(
me

µ

)
+
π2

12
+ 2

}
,

(4.14a)∫ ∆E

−∞
dEsS(Es)

∣∣
O(α)

(
∆E − Es

∆E

)5

=
α(µs)

π

{
ln2

(
2∆E

µ

)
− 167

30
ln

(
2∆E

µ

)
− π2

8
+

17929

1800

}
, (4.14b)

∫ ∆E

−∞
dEscSC(Esc)

∣∣
O(α)

(
∆E − Esc

∆E

)5

=
α(µs)

π

{
− ln2

(
∆Eme

mµµ

)
+

107

30
ln

(
∆Eme

mµµ

)
− π2

24
− 7909

1800

}
. (4.14c)

The coefficient Cm(me;µ), which is the matching coefficient introduced in eq. (3.19), is

originally renormalized using the MS subtraction scheme. To convert the final expression
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to the on-shell subtraction scheme, we supplemented Cm(me;µ) by a term arising from

the α renormalization in on-shell subtraction, and denoted the resulting expression by

Cm(me;µ)NLO,OS. This scheme conversion term, written in blue in eq. (4.14a), was included

to maintain consistency with ref. [33], which used on-shell subtraction.11 By combining

eqs. (4.13) and (4.14), we confirm that eq. (2.2) is correctly reproduced. When considering

the resummation, we ignore the additional scheme conversion factor and use Cm(me;µ) as

given in ref. [7].

In order to resum the large logarithmic corrections, the scale of each function is set to

its canonical scale (thus eliminating large logs in the matching coefficients and EFT matrix

elements). The large logarithmic corrections are thus contained in the RG running factors.

We choose the soft scale µs as the ultimate scale, to which all functions are evolved. As

central values, we set the hard scale to µh = 2mµ and the soft scale to µs = me. To assess

the theoretical uncertainty from scale variation, we perform a standard 7-point variation:

each scale is independently varied by factors of 1/2 and 2 around its central value, while the

two extreme combinations are omitted. As mentioned above, Uh,1 (the running of C
(III)
1 )

is given in ref. [7], whereas the resummed expression for SC function can be obtained by

abelian exponentiation,∫
SC(Esc)

(
∆E − Esc

∆E

)5

θ(∆E − Esc)

= exp

[
α

π

{
− ln2

(
∆Eme

mµµ

)
+

107

30
ln

(
∆Eme

mµµ

)
− π2

24
− 7909

1800

}]
. (4.15)

We checked that, in Uh,1, the running of α between µh and µs is negligible (as expected

due to the smallness of the QED coupling; more specifically, its induces a correction of

O(0.01%)).12 Neglecting it, we obtain next-to-double logarithmic accuracy; with µh = 2mµ

and µs = me, the differential rate in RG-improved perturbation theory then reads

Γ
′NLO
µH→eNνµν̄eX

∣∣∣∣
Resu.

=
1024Γ0 Z

5α(µs)
5∆E5

5πm6
µ

×
[
1.023− 0.006818 ln(∆E)

+ 0.002403 ln2(∆E)
]
× exp

{
α

90π

[(
50
α

π
− 90

)
ln2

(
2mµ

me

)
+ 225 ln

(
2mµ

me

)

− 3 ln
(mµ

∆E

)(
30 ln

(mµ

∆E

)
+ 107

)]}
, (4.16)

where the square-bracketed prefactor comes from |ψcorr|2NLO, from the ratio α(µh)/α(µs)

in eq. (4.4) and from the small finite pieces from the different functions after they are set

to their canonical scales. We follow the procedure and conventions (of LL, NLL, etc.) from

ref. [7].

11Without this term, Cm is a universal matching coefficient, identical for instance in muon conversion [7].
12α(µ) does not run when the SC function is evolved from its natural scale to the soft scale, since that

natural scale is below the electron mass scale.
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5 Numerical results and discussion

We now turn to our numerical results. We use the input values [55]

mµ = 105.658MeV, me = 0.510999MeV,

α(µs) = αOS = 1/137.035, GF = 1.166378× 10−11MeV−2, (5.1)

where αOS is the coupling in on-shell subtraction.13 Fig. 5 displays various approaches to

the differential rate, normalized to the LO prediction. The NLO and NLO+YFS curves (in

104.0 104.2 104.4 104.6 104.8 105.0
0.78

0.80

0.82

0.84

0.86

0.88

0.90

Figure 5: Differential rate for eDIO against Ee, normalized to the LO result, for different

approaches. See text for details.

solid beige and dashed yellow, respectively) correspond to those on the right panel of fig.

2, but are restricted to a tighter range. In addition, the plot includes different approaches

with our EFT framework: LL (green), NLL (red) and NLL’ (blue). Each of these curves

is accompanied by its associated 7-point variation band, as described in section 4.2.

The transition from LL to NLL accuracy leads to noticeable shifts, largely driven by

the inclusion of the factor |ψcorr|2, which in the on-shell subtraction scheme corresponds

to a single logarithm and is absent from the LL result. At NLL’ order, the uncertainty

band becomes significantly narrower than at NLL, reflecting the improved perturbative

stability of the expansion. The NLL and NLL’ bands overlap across the entire range

of Ee displayed, except in the extreme endpoint region (large Ee, or equivalently very

small ∆E), where the assumption ∆E ∼ me breaks down and further resummation would

be required. Interestingly, the NLO+YFS curve lies very close to the NLL’ prediction

throughout the range. It should be emphasized, however, that the NLL’ result provides

a consistent EFT treatment with systematic resummation of large logarithms and a well-

defined estimate of theoretical uncertainties, while the NLO+YFS curve only implements

13While the on-shell subtraction scheme fixes the value of α in the so-called Thomson limit (i.e. for

vanishing photon momentum), that value is the same as α(µs), since α does not run below the soft scale.
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a partial resummation tied to the on-shell subtraction scheme. For the present accuracy

and chosen parameters, the latter nonetheless provides a very good approximation to the

NLL’ result.

This result — the NLL’ curve — is the most precise prediction to date of the spectrum

of eDIO, describing a correction to the LO differential result of 12.30% for ∆E = me. For

phenomenological applications, we provide an expression for that curve; defining δE ≡
∆E/Emax

e , we have

Γ
′NLL’

Γ′LO
=

(δE)0.008285
(
0.9930 +

[
0.01480 + 0.002287 ln(δE)

]
ln(δE)

)
exp

(
0.002323

[
ln(δE)− 0.006527

]2) . (5.2)

We also obtain the number of DIO events near the endpoint. To that end, we integrate

the differential spectrum Γ
′X, where X denotes the level of accuracy considered. The

integration is performed over an interval of size ∆E′ (set by the radiation cut) up to the

endpoint energy Emax
e . We define the ratio between this integral at accuracy X and the

corresponding LO integral as the KX factor,

KX(∆E
′) ≡

∫ Emax
e

Emax
e −∆E′ Γ

′X dEe∫ Emax
e

Emax
e −∆E′ Γ

′LO dEe

. (5.3)

In table 1, we show KX for several values of the cut on the radiation around ∆E′ ∼ me,

and for X = LL,NLL,NLL’.

∆E′ (MeV) 0.25 0.5 0.75 1 1.25

KLL(%) 85.59+0.26
−0.44 87.23+0.26

−0.30 88.10+0.27
−0.38 88.69+0.27

−0.46 89.13+0.26
−0.53

KNLL(%) 85.50+0.87
−1.27 87.63+0.69

−1.10 88.81+0.59
−1.00 89.61+0.51

−0.93 90.22+0.45
−0.87

KNLL’(%) 85.91+0.17
−0.20 87.31+0.18

−0.20 88.14+0.18
−0.20 88.73+0.18

−0.20 89.20+0.18
−0.21

Table 1: KX factor, describing the reduction in the number of background events at

accuracy X with respect to LO for a given cut on the radiation energy ∆E′, shown for

X = LL,NLL,NLL’ and for several values of ∆E′ around me. Each entry is quoted as

x+a
−b , where x denotes the central value (with scales set to their central choices), and a

and b represent the upper and lower deviations from the corresponding 7-point variation

envelope.

In addition to the perturbative uncertainty of the LP term discussed earlier, three

further sources of theoretical error affect the radiatively corrected spectrum. First, power-

suppressed terms proportional to ∆E/mµ become increasingly important away from the

endpoint, but they are already included in the existing numerical evaluations of the full

spectrum at LO. The missing contributions therefore enter only in the radiative corrections.

Second, while an all-order computation in Zα can be performed using the numerical method

outlined at the end of page 3, this approach is currently restricted to LO in α. The first
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genuine subleading Coulombic contributions, of order α × Zα, are thus absent, and once

again this omission affects only the radiative corrections. These two effects introduce an

additional uncertainty that we estimate to be suppressed by a factor of order Zα relative to

the NLL’ corrections computed here over the universal LL terms, and therefore expected to

remain safely below the percent level, though a more precise quantification would require

a dedicated study. Third, finite nuclear size effects, although nontrivial, do not modify the

spectral shape at LO but are expected to induce a shift in the overall normalization. A

detailed treatment of these corrections in the presence of QED radiation will be presented

in future work.

6 Conclusions

A remarkable improvement in precision is anticipated in upcoming searches for muon con-

version, the process of a bound muon decaying into an electron. It is therefore of the

utmost importance to derive precise predictions for both muon conversion and its only

irreducible background, muon decay-in-orbit near the endpoint of the electron spectrum

(eDIO). Due to bound-state effects and an intricate hierarchy of scales, however, precise

calculations for both processes are remarkably complex. In a previous work, we presented

a formalism to address this problem, resorting to a multiplicity of EFT techniques [7].

There, we applied the formalism to muon conversion, deriving a factorization theorem, as

well as the matching coefficients and their RGEs.

In this paper, we applied the formalism to eDIO. New challenges appear in this case,

due to the presence of νµ and ν̄e in the decay products. We derived the factorization

theorem, which involves functions not present in muon conversion. On the other hand,

many of the functions participating in the factorization theorem of eDIO are the same as in

muon conversion, which stresses the power of the EFT formalism. Our approach describes

a perturbative, consistent and systematically improvable framework for the calculation of

the eDIO rate. We calculated O(α) corrections to the relevant matching coefficients, as

well as their RGEs. This allowed us to provide the most precise spectrum for eDIO, thus

increasing the chances of detecting muon conversion.

This work also opens several directions on improvement. One of them concerns the

inclusion of finite nuclear size effects or recoil corrections, which can be done in a systematic

way using our framework. Other directions involve going beyond the leading power or the

O(α) approximation, or investigating more energetic real radiation, i.e. considering electron

energies farther away from the endpoint. Our framework can also be adapted to related

processes involving bound-state decays, such as muonic atoms in BSM scenarios.
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A Details on the SC approach

In this appendix, we present details of the calculation of the muon eDIO rate using the SC

approach. As suggested in section 2, this combines Feynman diagrams involving different

scales, on the one hand, with an informal treatment of both approximations and bound-

state effects, on the other. We start by considering the LO case in section A.1, after which

we discuss the NLO case in section A.2.

A.1 LO

The bound state is a superposition of free states with different momenta, leading to

MµH→eNνµν̄e =
√

2MµH

∫
d3k

(2π)3
ψ̃Sch.(k⃗)

MµN→eNνµν̄e(k⃗)√
2mµ

√
2MN

≃ ψSch.(0)√
2mµ

MµN→eNνµν̄e(k⃗ = 0), (A.1)

where is the momentum-space equivalent of ψSchr.(x), introduced in eq. (4.8), and where

MµN→eNνµν̄e is the amplitude for the free muon scattering process,

iMµN→eNνµν̄e = iM(i) + iM(ii). (A.2)

The Feynman diagrams corresponding to the subamplitudes iM(i) and iM(ii) are depicted

in figure 6. We use the non-relativistic character of the nucleus to write, for diagram (i),

γαuµ(p)...γαuN (k) ≃ γ0uµ(p)...γ0uN (k) ≃ /p

mµ
uµ(p)...

/k

MN
uN (k) = uµ(p)...uN (k). (A.3)

A similar simplification holds for diagram (ii). The kinematics of the process is approxi-

mately given by

p = (mµ, 0⃗), p′ = (Ee, 0, 0, Ee), q1 = (0, 0, 0,−Ee), q2 = (mµ − Ee, q⃗2),

k = (MN , 0⃗), k′ = (MN , 0⃗). (A.4)

This leads to the following approximations:

1

(p− q2)2 −m2
e

≃ − 1

(p′ + q2)2 −m2
µ

≃ 1

m2
µ

, γ0(/p− /q +me) ≃
/p

mµ
/p = mµ,

ūe(p
′)γρPL(/p

′ + /q2 +mµ)uµ(p) ≃ ūe(p
′)
[
2p′ρPR +mµγρPL

]
uµ(p),

1

q21
≃ − 1

m2
µ

, (A.5)
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Figure 6: Simplification of muon DIO: in the limit of Ee ∼ mµ and of zero energy transfer

from the leptons to the nucleus, both diagrams of figure 4 reduce to a 6-fermion interaction.

which in turn leads to

iMµN→eNνµν̄e ≃ i 16π Zα
√
2GFMl,ρMν,ρMN , (A.6)

with

Mρ
ν = ū(pν)γ

ρPLv(pν̄), Ml,ρ =
p′ρ
m4

µ

ūe(p
′)PRuµ(p), MN = ūN (k′)uN (k). (A.7)

Accordingly, both subamplitudes collapse in 6-fermion interactions, as depicted in figure

6. The decay width for muon DIO is then

ΓµH→eNνµν̄e =
1

2MµH

∫
(2π)4δ4(pµH − p′ − k′ − pν − pν̄)

d3k′

(2π)32Ek′

d3p′

(2π)32Ee

d3pν
(2π)32Eν

× d3pν̄
(2π)32Eν̄

∣∣MµH→eNνµν̄e

∣∣2 . (A.8)

We follow ref. [32] in that we resort to q2 to simplify the integrals of the neutrino-

antineutrino pair; we find

ΓµH→eNνµν̄e =

∫
|ψSch.(0)|2

2mµ

1

2MµH

128π2G2
FZ

2α2dq22

× dΠµN→eNq2

∑
spins

|MN |2|Ml,ρσ|2Tρσ, (A.9)

with∑
spins

|Ml,ρσ|2Tρσ =
p′ρp

′
σ

m8
µ

∑
spins

ūµ(p)PLue(p
′)ūe(p

′)PRuµ(p)
(−π)
3(2π)3

(q22gρσ − q2,ρq2,σ), (A.10a)

∑
spins

|MN |2 = 8M2
N , (A.10b)

dΠµN→eNq2 = (2π)4δ4(pµH − p′ − k′ − q2)
d3k′

(2π)32Ek′

d3p′

(2π)32Ee

d3q2
(2π)32Eq2

. (A.10c)

In the end, we expand in powers of ∆E to find the result in eq. (2.1).
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Figure 7: Feynman diagrams representing the NLO corrections to DIO. The particle

labels are shown only whenever they are not obvious.

A.2 NLO

At NLO, we consider the diagrams of figure 7. With the exception of the first two diagrams,

each diagram has a corresponding counterterm (not displayed here), which we calculate in

on-shell subtraction. Performing approximations similar to those described in section A.1,

we write the NLO amplitude as a generalization of eq. (A.6),

iMNLO
µN→eNνµν̄eX = MNLO

l,ρ Mν,ρMN , (A.11)

with Mν,ρ and MN still given in eq. (A.7), and

MNLO
l,ρ = 16π Zα(µs)

√
2GF ūe(p

′)

[
Fa

γρ

m3
µ

PL + Fb
pρ

m4
µ

PR + Fc

p′ρ
m4

µ

PR

]
uµ(p). (A.12)

As a consequence, the NLO amplitude can still be generically described by the right-hand

side diagram of figure 6, but with that diagram representing now the three operators of

eq. (A.12). The coefficients of these operators can be written perturbatively in α,

Fi = F
(α0)
i +

α

4π
F

(α1)
i +O(α2), (A.13)

such that

F (α0)
a = F

(α0)
b = 0, F (α0)

c = 1. (A.14)

The virtual corrections, UV-renormalized in on-shell subtraction, read

F
(α1)
a,OS = −1.39732, (A.15a)

F
(α1)
b,OS = −0.49511, (A.15b)
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F
(α1)
c,OS =

2

ϵ

[
ln

(
2mµ

me

)
− 1

]
− 2 ln2

(
mµ

me

)
+

23

3
ln

(
mµ

me

)
− 4 ln

(
mµ

me

)
ln

(
me

µ

)
+ 4 ln

(
me

µ

)
+ 2 ln(4) ln

(
µ

mµ

)
+ 0.10486. (A.15c)

We note that F
(α1)
c,virt. has an IR divergence, regulated by ϵ = (4 − d)/2, with d being the

dimensions. This is canceled by the one coming from the soft real emission diagrams,

depicted in figure 8.14 These can be calculated via the usual techniques [62]. It is worth

stressing that, at one loop, all the integrals of eq. (A.8) can still be performed in 4 dimen-

sions, and only the integral relative to the real emission must be performed in d dimensions.

The final NLO rate is IR finite and given by eq. (2.2).

Figure 8: Relevant real emission diagrams in DIO in the soft approximation.
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