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Abstract

The accurate and rapid determination of wheat quality is of great importance for the wheat supply chain. Near-infrared
(NIR) spectroscopy has become an established method for this purpose. So far, however, predictions for most wheat quality
characteristics are not accurate enough to replace reference measurements, with the exception of protein content. This study
investigates the potential to improve the prediction of 41 wheat quality parameters (protein- and starch-related parameters,
solvent retention capacity, farinograph, extensograph, alveograph) based on a flour fractionation approach (sieve frac-
tionation, dough preparation, gluten washing) and data fusion using the established techniques of NIR spectroscopy and
chemometrics. Results show that preprocessing of flour significantly altered the composition of the samples, which reflected
in spectral differences of their NIR spectra. This also led to a change in the prediction accuracy for many wheat quality
parameters. Compared to the prediction using flour spectra, flour fractionation with or without data fusion improved the
RMSECYV between 5.6 and 28.6% for 35 out of the 41 quality parameters tested, leading to R2CV between 0.80 and 0.96 for
many of them. Gluten, dough, and the 50-75 um and the 75-100 pm fractions were particularly important for the improved
predictions. The best predictions were often based on data fusion of spectra from different sample types, demonstrating the
importance of using complementary information from different data sources to improve predictions. The results underline
the potential of this novel approach to be established in the industry as an extension of conventional NIR spectroscopy to
improve wheat quality prediction.
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Introduction

Wheat is an important raw material for the production of
many staple foods for humans. It is processed into a wide
variety of products (Poji¢ and Mastilovi¢ 2013). As the num-
ber of products increased and processing methods became
more advanced, the industry established more and more
quality standards. This resulted in the need for more and
more tests to analyze these quality standards within the
wheat supply chain. For this reason, a variety of methods for
determining wheat quality were established over the years
(Miralbés 2004). These include not only analytical methods
to examine the constitution of the samples, but also rheologi-
cal methods to determine the functional properties as well
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as baking tests that reflect the end-product quality. However,
these conventional methods are time-consuming, expensive
and usually require a large amount of flour and equipment
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(Miralbés 2004; Poji¢ and Mastilovi¢ 2013). For this reason,
it has long been established that wheat quality is determined
indirectly by measuring a parameter that can be determined
fast and that reliably reflects wheat quality. In practice, this
is the protein content, as the gluten proteins in particular
strongly govern the functional and end-product properties
of wheat. An established method for determining the protein
content is Near-infrared (NIR) spectroscopy, which allows
an accurate prediction within just a few minutes. However,
many studies have shown that the protein content is not a
suitable indicator of wheat quality, as the correlations with
other properties (e.g., water absorption, dough development
time, baking volume) are rather low. Nevertheless, in prac-
tice, the price of wheat is based on protein content, which
means that farmers are not paid for the actual quality of their
grain and also use high-nitrogen fertilization to achieve the
highest possible protein content, which can lead to ground-
water pollution (Gabriel et al. 2017; Nagel-Held et al. 2022,
2024). Therefore, it is of utmost importance for the entire
wheat supply chain to find methods that enable an accurate
and rapid determination of many different wheat quality
characteristics with as little flour and effort as possible.
Spectroscopy is a suitable method for this purpose, as
NIR spectroscopy in particular is already widely used to
determine not only the protein content, but also, e.g., the
water content, ash content, and the particle size of flour.
It meets the requirements of speed, low flour quantity, and
ease of handling and NIR spectrometers are already widely
available (Poji¢ and Mastilovi¢ 2013). For this reason,
several studies have tested NIR spectroscopy in particular
for the prediction of other wheat quality traits, especially
rheological and end-product characteristics. However, the
reported predictions are often poor or only good enough for
screening purposes (Dowell et al. 2006; Gabriel et al. 2017,
Jirsa et al. 2008; Miralbés 2003, 2004; Nagel-Held et al.
2022, 2024), which is already a step forward for breeders
but not good enough for the further wheat supply chain to
actually replace the reference analyses. One possible new
approach is to preprocess the flour into flour fractions and
dough before spectroscopic analysis. The hypothesis behind
this is that this preprocessing changes the composition of
the samples by enriching and depleting certain components.
Additionally, various reactions take place that further alter
the composition, especially when the gluten network is
formed during dough preparation. This could also change
the signals in the spectra and reduce the problematic super-
imposition of signals in NIR spectroscopy, which might
have a positive effect on the prediction accuracy of various
wheat quality characteristics. Other studies have already
shown that NIR spectroscopy can detect changes during
dough preparation (Alava et al. 2001; Albanell et al. 2012;
Wesley et al. 1998) and changes specifically in the gluten
protein structure induced by heat and moisture (Bruun et al.
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2007). Ziegler et al. (2025a) have shown that flour fractiona-
tion resulted in spectral changes of fluorescence spectra and
significantly improved the prediction of rheological char-
acteristics like the dough development time. Furthermore,
Ziegler et al. (2025b) have presented promising results for
an improved prediction of specific loaf volume using flour
fractionation in combination with NIR spectroscopy. They
have shown that data fusion is a valuable tool to further
improve predictions, as complementary information for the
prediction of baking quality was contained in spectra of dif-
ferent flour fractions.

The aim of this study is to test the potential of the novel
approach of flour fractionation with and without data fusion
in combination with NIR spectroscopy to improve the pre-
diction of a wide variety of analytical and rheological meas-
urements of wheat flour. Predicted are protein and wet gluten
content, Osborne and SDSS-GMP (sodium dodecyl sulfate
soluble proteins — glutenin macropolymer) fractionation,
Hagberg falling number, starch damage, and solvent reten-
tion capacity (SRC) as well as farinograph, extensograph,
and alveograph analyses. The practical relevance of the
tested methods is ensured by using a very diverse sample set
consisting of 50 commercially available wheat flour samples
originating from ten countries and four harvest years.

Material and Methods
Wheat and Flour Samples

The sample set used in this study consisted of 50 commer-
cially available wheat samples, representing mixtures of
many different cultivars. It was a diverse sample set, because
samples were harvested in different years (2019 — 2022)
and were of different qualities although wheat classes were
mostly unknown. Twenty-seven samples originated from
Germany while others were grown in Australia, the USA,
Latvia, Lithuania, Mexico, India, Poland, Romania, and
Ukraine. The wheat samples were milled by Miihlenchemie
GmbH & Co. KG (Ahrensburg, Germany) using a Buhler
MLU 202 laboratory mill. After milling, the ash content
of the flour samples was adjusted to approximately 0.60%.

Rheological and Analytical Measurements

All used reference analyses and methods as well as the
obtained parameters are specified in Table 1. For Osborne
and SDSS-GMP fractionation, detailed method descriptions
are provided in the subsequent sections. The number of rep-
etitions for every analysis varied between one and three,
since the amount of flour was limited. Descriptive statistics
for every obtained parameter can be found in Table 2. For
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Table 1 List of reference analyses with used methods, number of replicates, and measured parameters

Reference analyses (abbreviation) Method Number  Measured parameters
of repli-
cates
Flour protein ICC 159 2 Protein content
Wet gluten; Gluten Index ICC 155 2 Wet gluten content; Gluten Index
Osborne fractionation See section “Osborne Fractionation” 3 Osborne total extractable proteins; albumin and globu-

SDSS-GMP fractionation

ICC 107/1
AACC 76-31

Hagberg falling number
Starch damage

Solvent retention capacity (SRC)
using an automated system

Farinograph (FA) ICC 115
Extensograph (EX) ICC 114/1
Alveograph (AL) ICC 121

See section “SDSS-GMP Fractionation” 3

Method based on AACC 56-11.02.02

lin; gliadin; glutenin; gliadin/glutenin ratio
SDSS-GMP total proteins; SDSS; GMP; GMP-HMW;

GMP-LMW
2 Hagberg falling number
Starch damage
1 Water; sucrose; lactic acid; sodium carbonate
2 Dough development time DDT; water absorption

WAM; stability S; dough softening DS (10 min after
start); quality number FQN

2 Energy (45 min); resistance (45 min); extensibil-
ity (45 min); maximum (45 min); ratio number
(45 min); ratio number max. (45 min)

1 Maximum pressure C,..; tenacity P; extensibility L;
swelling index G; deformation energy W; ratio P/L;
elasticity index Ie; strength coefficient K; strain
hardening index SH; minimum of first derivative

D,i,; maximum of first derivative D,

parameters where the number of samples listed in this table
is 49, the measurement of one sample was missing.

Osborne Fractionation

Flour (100 mg) was extracted in three stages according to
Wieser et al. (1998). In the first extraction step, the albumin
and globulin fraction was obtained. After the addition of 1 mL
of salt solution (400 mmol/L NaCl and 67 mmol/L Na,PO,/
KH,PO, (pH 7.6)) to the flour, the suspension was vortexed
for 2 min and stirred for 10 min at 22 °C. Afterwards, the
suspension was centrifuged (25 min, 22 °C, 3550 rcf) and
the supernatant was collected in a 2 mL volumetric flask.
The procedure was repeated once more. Then, the residue
from the albumin and globulin fraction was extracted three
times using 0.5 mL of 60% ethanol, each time using the same
procedure as for the albumin and globulin fraction. In the
last extraction step, the glutenin fraction was obtained by
extracting the residue from the gliadin fraction under reduc-
ing conditions using 10 mg/mL dithiothreitol (DTT) in buffer
solution (0.1 mol/L TRIS-HCI (pH 7.5)/1-propanol (50%,
v/v) with 12 g urea). After the addition of 1 mL of buffer
solution to the residue, the suspension was vortexed for 2 min
and stirred for 30 min in a water bath at 60 °C. Afterwards,
the suspension was centrifuged (25 min, 22 °C, 3550 rcf)
and the supernatant was collected in a 2 mL volumetric
flask. The procedure was repeated once more. The collected

supernatants in the three volumetric flasks of all three extrac-
tion steps were filled up to 2 mL with the respective solvents,
filtered (0.45 um), and separated by ultra-high-performance
liquid chromatography (UHPLC). Specifications on UHPLC
separation are provided in Supplementary Material S1.

SDSS-GMP Fractionation

To obtain the SDS-soluble proteins, 100 mg of flour was
extracted using 1 mL of SDS solution (1% (w/v) SDS in
0.05 mol/L NaH,PO, (pH 6.9)). After vortexing for 2 min
and stirring for 30 min at 22 °C, the sample was centrifuged
(25 min, 22 °C, 3550 rcf). The supernatant was collected in
a 5 mL volumetric flask and the procedure was repeated one
more time. Afterwards, the GMP fraction was extracted from
the residue using 1 mL of GMP extraction solution (50%
(v/v) propan-1-ol, 0.05 mol/L Na,HPO,/KH,PO, (pH 7.5)
and 1% (w/v) DTT). The suspension was vortexed for 2 min
and stirred for 30 min in a water bath at 60 °C before cen-
trifugation (25 min, 22 °C, 3550 rcf). The supernatant was
collected in a 2 mL volumetric flask and the extraction was
repeated one more time. The collected supernatants in the
two volumetric flasks were filled up with the respective sol-
vents, filtered (0.45 um), and separated by UHPLC. Specifi-
cations on UHPLC separation are provided in Supplementary
Material S1.
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Table 2 Descriptive statistics and squared Pearson correlation coefficient of individual quality parameters and protein content

Parameter rzpeamm; protein () Number of Mean+SD Minimum Maximum Range
samples (-)
Protein (%) 1.00 50 122+1.6 9.2 16.5 7.3
Wet gluten (%) 0.83 50 279+4.2 19.5 38.0 18.6
Gluten Index (-) 0.01 50 93+8 59 100 41
Osborne total (g/100 g) 0.92 50 11.91+1.63 9.38 16.54 7.17
Albumin and globulin (mg/g) 0.24 50 23.11+2.12 18.76 28.55 9.80
Gliadin (mg/g) 0.93 50 65.30+10.97 47.02 98.18 51.16
Glutenin (mg/g) 0.79 50 30.70+4.45 23.47 41.96 18.49
Gliadin/glutenin (-) 0.14 50 2.13+0.18 1.70 2.67 0.97
SDSS/GMP total (g/100 g) 0.83 50 10.82+1.53 8.00 14.95 6.95
SDSS (mg/g) 0.72 50 93.14+11.11 75.47 126.34 50.87
GMP (mg/g) 0.63 50 15.08+5.70 2.83 28.31 25.48
GMP-HMW (mg/g) 0.48 50 3.75+1.66 0.40 7.22 6.82
GMP-LMW (mg/g) 0.66 50 11.33+4.18 2.43 21.47 19.04
Hagberg falling number (s) 0.16 50 411482 296 668 372
Starch damage (Ai%) 0.09 50 95.24+0.50 94.34 96.58 2.24
SRC water (%) 0.10 50 66.3+3.3 56.3 73.2 16.9
SRC sucrose (%) 0.46 50 106.0+5.2 94.8 119.8 25.0
SRC lactic acid (%) 0.29 50 132.2+13.8 98.1 157.5 59.4
SRC sodium carbonate (%) 0.00 50 89.8+6.3 75.3 104.1 28.8
FA DDT (min) 0.50 50 2.70+£2.05 1.18 8.35 7.17
FA WAM (%) 0.30 50 582+2.6 543 65.3 11.0
FA 'S (min) 0.55 49 7.31+£5.46 1.54 24.77 23.23
FA DS (FE) 0.63 50 4728 3 112 109
FA FQN (-) 0.49 49 80+ 64 23 291 268
EX energy 45 min (cm?) 0.66 49 100+25 40 163 123
EX resistance 45 min (BU) 0.01 49 313+44 195 408 213
EX extensibility 45 min (mm) 0.74 49 164 +25 125 231 106
EX maximum 45 min (BU) 0.30 49 447+173 208 560 352
EX ratio number 45 min (-) 0.29 49 2.0+04 1.2 3.0 1.9
EX ratio number (Max.) 45 min (-) 0.03 49 2.8+0.5 1.7 3.7 2.1
AL Cx () 0.72 50 2542 +444 1834 3742 1908
AL P (mm H,0) 0.20 50 92+17 62 138 76
AL L (mm) 0.28 50 93+23 47 141 94
ALG (-) 0.27 50 212427 15.2 26.4 11.2
AL W (10741) 0.74 50 276 +£82 145 530 385
AL P/L (-) 0.02 50 1.07+0.44 0.52 2.94 242
AL Ie (%) 0.75 50 53.8+5.7 374 69.8 324
ALK (-) 0.10 50 4766 +746 3445 6199 2754
AL SH (-) 0.46 50 1.78 +0.09 1.51 1.99 0.48
AL D, (-) 0.10 50 -2.49+0.48 -3.77 -1.82 1.95
ALD,,, (-) 0.16 50 6.72+0.70 5.44 8.41 2.97

Flour Fractionation and Dough Preparation

Air jet sieving of flour samples was performed using the
200LS-N Hosokawa Alpine AG (Augsburg, Germany) air jet
sieve machine at 2500-2600 Pa. Five different sieves (mesh
sizes: 32 um, 50 um, 75 um, 100 um) were used to sieve
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70 g of flour into the following five sieve fractions: <32 um,
32-50 pm, 50-75 pm, 75-100 pum, > 100 um. Each fraction
was sieved for 10 min before the flour remaining on the sieve
was transferred to the next largest sieve.

Dough was prepared in a 50 g farinograph using 30 g of
flour (14% moisture) and 0.60 g of salt according to ICC No.
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115 (30 °C, 63 rpm, optimum water absorption WAM) until
the dough development time was reached. Two 15 g dough
pieces were washed out with a glutomatic 2202 (Ing. Stefan
Kastenmiiller GmbH, Martinsried, Germany) according to
ICC No. 155 using 80 um metal sieves. The four obtained
gluten pieces as well as the remaining dough were covered
and rested in a temperature-controlled chamber for 10 min
at 25 °C before they were frozen at —28 °C. This procedure
was repeated three times in total to obtain three dough pieces
and six gluten pieces for each flour sample. Furthermore, the
collected starch slurry was centrifuged at 3046 rcf for 1 min
using a VWR Mega Star 600R centrifuge (VWR interna-
tional GmbH, Darmstadt, Germany). The precipitate was
also frozen at —28 °C and the supernatant discarded. All
frozen samples were freeze-dried for 24 h in a Christ Alpha
1-4 (Martin Christ Gefriertrocknungsanlagen GmbH, Oster-
ode, Germany) on the day after preparation. The freeze-dried
samples were milled using the Ultra Centrifugal Mill ZM
200 (0.5 mm sieve, 12,000 rpm) (Retsch GmbH, Haan,
Germany).

Flours and sieve fractions were stored in airtight contain-
ers in the dark at around 15 °C to minimize sample changes.
Freeze-dried dough, gluten, and starch samples were addi-
tionally stored in aluminum containers to prevent permea-
tion of water vapor. They were brought to room temperature
(211 °C) 24 h prior to spectroscopic analyses.

Spectroscopic Analysis

Near-infrared spectra were recorded using the MPA (Bruker
Optik GmbH, Ettlingen, Germany) in diffuse reflectance
mode as absorbance spectra. A rotating cup (quartz glass,
@ 5.1 cm) was used to measure samples with a resolution
of 8 cm™!, a scanner velocity of 10 kHz, and 64 scans per
measurement. Six measurements were performed for every
sample. In between measurements, samples were thoroughly
mixed. Before each measurement, a slight compaction was
carried out by lightly tapping the filled cup on the table for
ten times.

Chemometric Analysis

All analyses were performed using MATLAB (R2021b, The
MathWorks, Inc). The workflow is presented in Fig. 1 and
described in the following sections. As each of the 50 flour
samples was fractionated into five sieve fractions, gluten,
starch, and dough, spectra of a total of 450 samples were
recorded. Due to the sixfold determination of spectra, a total
of 2700 spectra were available for analysis.

NIR spectra were preprocessed using a number of dif-
ferent preprocessing routines including Savitzky-Golay
smoothing (order, 2; frame length, 25) and differentiation
(order, 2; frame length, 13) filters, detrending (order, 2),

highpass filter (as described by Mburu et al. (2021)), stand-
ard normal variate transformation (SNV), multiplicative
scatter correction (MSC), extended multiplicative scatter
correction (EMSC), min-max normalization, 1. norm and
2. norm normalization, and autoscaling of variables. Differ-
ent individual and combined preprocessing approaches of
the methods named above were tested. In every case, mean
spectra were calculated after preprocessing for each of the 50
samples of every sample type (flour, sieve fractions, gluten,
starch, dough) and subsequently used for further analyses.

Principal component analysis (PCA) of spectra of flour,
flour fractions, and dough was performed to analyze score
and loading plots for spectral differences. Prediction models
for all 41 parameters of different rheological and analytical
measurements listed in Table 1 were calculated using NIR
spectra of flour, flour fractions, and dough. Two different
model-building approaches were followed after spectral pre-
processing. In the first approach (a), the prediction models
were calculated based on the individual spectra of flour, flour
fractions, and dough. In the second approach (b), data fusion
was carried out prior to the model-building process by con-
catenating mean preprocessed spectra of different sample
types. Data fusion was only tested within a particular frac-
tionation method. The reason is that the fusion of spectra
across different fractionation methods (i.e., spectra of sieve
fractions and spectra of dough, gluten, or starch) would dras-
tically increase the amount of work and equipment needed
to obtain all necessary spectra for prediction, making the
procedure irrelevant for practical application.

After preprocessing and data fusion, principal component
regression (PCR) and partial least squares regression (PLSR)
were tested as prediction models for every of the 41 param-
eters. One to ten components were tested for modeling. For
every model, a leave-one-out cross-validation (LOOCV) was
performed and the predictive ability was assessed by cal-
culating metrics according to Egs. 1 to 3. The best models
were determined by the minimum root mean squared error
of cross-validation (RMSECV). To compare the predictive
performance of different models for the same parameter,
the percentage improvement or worsening of the RMSECV
Ixmsecy Was calculated according to Eq. 4. Positive values
of Ixmsecv indicate that the RMSECYV of the model data is
improved compared to the model reference, while negative
values indicate that the RMSECYV is worsened. Especially
in case of data fusion, it is always important to assess the
effect of data fusion on the predictive performance, as data
fusion is only beneficial if it actually leads to an improved
prediction compared to models based on the individual data.
To assess the effect of data fusion using Eq. 4, the mini-
mum RMSECYV of the two individual models was used for
the RMSECV el reference- FOT €xample, model 1 was based
on data 1 and yielded RMSECV 1. Model 2 was based on
data 2 and yielded RMSECV 2. Model 3 was based on the
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Flour fractionation

;

NIR Spectroscopy

50 samples each of 9 sample types (flour, sieve fractions, gluten, starch, dough) with 6 replicates each

- 2,700 spectra

Spectral preprocessing, mean calculation

50 samples each of 9 sample types (flour, sieve fractions, gluten, starch, dough)

- 450 mean spectra for every spectral preprocessing approach tested

PCA

\ 4

4 )

Approach (a)

Individual spectra of different
sample types

- 50 mean spectra for each of the

9 sample types
\ ple typ /

\ 4

\ 4
/ Approach (b) \

Data fusion of spectra of different
sample types

-> horizontal concatenation of the
50 mean spectra for different
combinations of sample types

K(e.g. gluten & dough) /

\ 4

Regression modeling for every of the 41 wheat quality parameters

PCR & PLSR using LOOCV

- every model was evaluated by calculating R%.,, RMSECV, NRMSECV,,

IRMSECV

Fig. 1 Workflow for the chemometric analysis
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concatenated data 1 and 2 and yielded RMSECYV 3. Then,
RMSECYV 3 would be used for RMSECV 4. gata @nd the
minimum value of RMSECV 1 and RMSECYV 2 would be
used for RMSECV el reference-

The following metrics were calculated for every model of
all 41 wheat quality parameters listed in Table 2.

Z?:l (yi - f:)z

2
- 2 ()
zi:l <y,-— y)
n AN 2
i1 \YVi = Vi
RMSECV = M 2)
n
NRMSECY,,._ (7] = RMSECY 1 "
max ™ Ymin
RMSECVmodel data
Ixmsecy [%] =100% — RMSECY <100 % (4)

model reference

where R%.y is the coefficient of determination of cross-
validation, RMSECYV is the root mean squared error of
cross-validation, NRMSECV, .. is the range normalized
RMSECY, n is the total number of samples of the parameter
that is predicted (49 or 50 samples according to Table 2), y,
is the measured value of the i-th sample, 3, is the predicted
value of the i-th sample, ¥ is the mean value of the sample
set (listed for each of the 41 parameters in Table 2), y, ., 1S
the maximum value of the sample set (see Table 2), y,;, is
the minimum value of the sample set (see Table 2), Ippsecy
is the improvement of the RMSECV, and RMSECV _4e1 data
is the RMSECYV of the model that is to be compared to the
RMSECYV of the reference model RMSECV e reference-

It should be emphasized that in this study, the R’y was
specified as the coefficient of determination according to
Eq. 1. As an important difference compared to the squared
Pearson correlation coefficient, which is also frequently
reported in the literature, this metric can actually become
negative. A negative coefficient of determination shows that
the predictions based on the model are very poor, even worse
than if the mean value of the sample set was simply used for
the prediction.

Results and Discussion

Wheat quality predictions for a total of 41 parameters cov-
ering a broad spectrum of established analytical and rheo-
logical analyses for flour characterization (protein-related
parameters, Hagberg falling number, starch damage, SRC,
farinograph, extensograph, alveograph) were calculated

based on spectra of flour, flour fractions, and dough with and
without data fusion. The discussion of the obtained results is
divided into four parts. In the first section, the spectral dif-
ferences of flour, flour fractions, and dough are presented. In
the second part, the potential of flour fractionation and data
fusion for improved prediction of wheat quality is evaluated
using the calculated improvement of the RMSECV Ipyisecy-
Next, the individual quality parameters and their achieved
predictive performances are discussed in more detail. In the
final section, a general discussion of influencing factors on
the predictions is presented.

Analysis of Spectral Difference of Flour Fractions
and Dough

Example spectra of flour, sieve fractions, gluten, starch,
and dough are presented in Fig. 2. Spectra were SNV trans-
formed to remove the influence of particle size differences.
It can be seen that the general characteristics of the spectra
appear very similar to the naked eye and that only the glu-
ten spectrum shows clear differences compared to the other
spectra.

To investigate the spectral differences in more detail,
two separate PCAs were performed for the two fractiona-
tion methods to analyze their effects on the composition and
spectra of the obtained fractions separately. Score and load-
ing plots are shown in Fig. 3. In the loading plots, four dif-
ferent spectral regions (I-IV) are marked for further discus-
sion. Loadings were interpreted with the help of a literature
review and related to possible differences in the composition
of flour, flour fractions, and dough. However, NIR spectra
are characterized by broad and overlapping peaks and one
molecular vibration usually contributes to multiple peaks in
the spectrum because of different combination and overtone
vibrations (Workman and Weyer 2012). Consequently, clear
peak assignments are difficult, which is why the assignments
found in the literature are sometimes contradictory. For this
reason, the discussion of peak assignments in the following
sections of this study does not claim to be exhaustive and
was kept more general.

PCA of Flour, Dough, Gluten, and Starch Spectra

A clear separation of scores can be observed for the spec-
tra of flour, gluten, starch, and dough along the principal
components PC1 and PC2. PC3, on the other hand, does not
seem to separate the spectra of different fractions, but the
spectra of different samples within each fraction.

The loadings of PC2, which clearly separates flour from
the other fractions, show two interesting peaks in region II
(around 5100 cm™") and in region IV (around 7100 cm™).
Both peaks are known to be related to the OH vibrations of
water (Bruun et al. 2007; Salgé and Gergely 2012; Workman

@ Springer



48 Page 8 of 24

Food Analytical Methods (2026) 19:48

<32um

Absorbance [SNV units]
o =
o ()] - (4]

o
3
)

14

-1.5
9000

7000 6000 5000 4000
Wavenumber [cm'1]

8000

— Gluten

Absorbance [SNV units]
o =
o ()] - (4]

o
3
)

14

-1.5
9000

7000 6000 5000 4000
Wavenumber [cm'1]

8000

Fig.2 Mean NIR spectra of all 50 flour samples for sieve fractions and flour (left) and dough, gluten, starch, and flour (right). Spectra were pre-

processed by SNV transformation

and Weyer 2012) and therefore this separation along PC2
is thought to be caused by differences in the water content.
Because gluten, starch, and dough have been freeze-dried,
the water content of these fractions is much lower compared
to the water content of flour. The scores of the gluten spectra
are somewhat closer to flour, because gluten showed hygro-
scopic behavior during the measurements, which caused the
water content to increase after freeze-drying.

The loadings of PC1 show many peaks related to protein
vibrations. Peaks in region I (around 4200-4500 cm™") are
known to be related to CH vibrations. They originate from
proteins, carbohydrates, and also lipids. However, peaks in
this region show high sensitivity to protein secondary struc-
ture (a-helix, f-sheet, random coil) and are also influenced
by amino acid side chain vibrations and their microenviron-
ment (Bruun et al. 2007; Salg6 and Gergely 2012; Workman
and Weyer 2012). Peaks in region II (around 4900 cm™})
originate from protein NH vibrations, but they are located
at the flank of the water peak and are therefore masked by
water signals (Workman and Weyer 2012). Signals in region
III (around 5750-5900 cm™") are due to CH and SH vibra-
tions. Again, many protein signals originating from different
protein secondary structures (a-helix, -sheet), cysteine, and
amino acid side chain vibrations as well as their microenvi-
ronment and their interactions are responsible for signals in
this region (Bruun et al. 2007; Workman and Weyer 2012).
The separation of sample types along PC1 is in accordance
with this observation. Gluten has a much higher protein con-
tent than the other samples, which is why its distance from
the other scores is greatest. However, the protein content
of dough is also higher than the protein content of flour,
because its water content was reduced by freeze-drying,
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which is why the scores of dough are closest to the scores
of gluten. Starch is protein depleted, which is why it has the
most negative scores among the flour fractions. It is interest-
ing to note that the scores of flour cannot be separated from
the scores of starch along PC1, although the protein content
of flour is clearly higher than the protein content of starch.
This could indicate that the separation of dough and gluten
from starch and flour along PC1 is not only caused by the
increased protein content of dough and gluten. It might also
be influenced to a large extent by the changes in protein
structure and changes in the interactions of proteins with
other flour constituents caused by the development of the
gluten network during dough formation. This observation is
supported by the fact that other researchers have successfully
monitored differences in protein structure caused, e.g., by
gluten hydration, denaturation, wheat maturation, and dough
formation using NIR spectroscopy (Bruun et al. 2007; Salgb
and Gergely 2012; Wesley et al. 1998; Workman and Weyer
2012). Despite the general non-specificity of NIR peaks, the
results of the study show that NIR spectra contain a large
amount of information about the protein structures and their
changes in various processes. This information could in turn
be useful for predicting rheological wheat dough character-
istics in particular.

The loadings of PC3, whose scores distinguish between
different samples rather than between fractions, show some
similarities to PC1 for peaks especially in regions I, II, and
III. This underlines that differences in the samples regarding
water content, protein content, and structure, but also differ-
ences due to carbohydrates and lipids (e.g., region I, around
4200-4300 cm™') (Bruun et al. 2007; Salgé and Gergely
2012; Workman and Weyer 2012), can be detected by NIR
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spectroscopy and lead to a differentiation of samples. It is
interesting to note that the PC3 scores, especially for glu-
ten, but also to a certain extent for starch and dough, show
greater scattering than the PC3 scores of flour. This could
indicate that the differences between the samples could be
emphasized and amplified by the fractionation procedure,
which could also have a positive effect on wheat quality
predictions if these differences are related to differences in
the property of interest that is to be predicted.

PCA of Flour and Sieve Fractions

The scores of flour spectra can be clearly separated from
the scores of the sieve fractions by PC1. PC2 and PC3, on
the other hand, are responsible for a separation of different
sieve fractions, although neighboring particle size ranges
overlap to a certain extent (more for PC3 than for PC2). For
PC2, the sieve fractions show a linear trend towards lower
scores with increasing particle size. The scores of PC3 show
a curvature trend for the sieve fractions, with the 50-75 pm
fraction reaching the maximum with the highest score val-
ues. When comparing the loadings for PC1 to PC3 of this
PCA to the loadings of the PCA of flour, dough, gluten, and
starch spectra, it becomes clear that the general trend and
the observed regions and peaks are quite similar, even if the
order of the loadings is different.

For flour and sieve fractions, loadings of PC1 show peaks
related to water vibrations in region II (around 5100 cm™)
and in region IV (around 7100 cm™!) (Bruun et al. 2007;
Salg6 and Gergely 2012; Workman and Weyer 2012). This
is in accordance with the reduced water content of the sieve
fractions compared to flour, which is caused by the siev-
ing operation. Furthermore, the score values of PC1 tend to
become smaller with decreasing particle size. Also, some
samples tend to have even lower scores than others, because
groupings of samples with larger negative score values for
PC1 are visible. This might be caused by differences in room
temperature and moisture during sieving, because the sam-
ples with the most negative scores for PC1 were prepared on
days where these conditions were the most different from the
other preparation days. This could have resulted in the water
content of these samples being even lower than samples that
were prepared on other days.

The loadings of PC2 are more difficult to interpret
because they do not show many clear peaks throughout the
entire wavenumber range. More generally, it seems that dif-
ferences in water content, proteins, carbohydrates, and lipids
are responsible for the differentiation of sieve fractions along
PC2. It appears that flour spectra are most similar to the
50-75 um fraction based on the scores of PC2. However, the
exact compositional differences contributing to this differ-
entiation cannot be determined based on this PCA analysis.
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The separation of sieve fractions based on PC3 is less
clear, because the scores overlap to a greater extent. How-
ever, the loadings of PC3 are quite similar to the loadings
of PC1 of the PCA of flour, dough, gluten, and starch spec-
tra, especially for region I (around 42004500 cm™!) and
region III (around 5750-5900 cm™Y). As discussed in the
corresponding section of the other PCA, these two regions
are strongly influenced by protein vibrations and indicate
differences in protein secondary structure (a-helix, p-sheet,
random coil), amino acids, and their interactions and micro-
environment. However, vibrations due to lipids and carbohy-
drates are also present, in particular in region I (Bruun et al.
2007; Salgé and Gergely 2012; Workman and Weyer 2012).
Further analysis showed that the sieve fractions are actually
protein-enriched and that this protein enrichment follows
the trend observed in the scores of PC3, meaning that the
50-75 um fraction had the highest protein content (results
not shown). This indicates that, besides possible other com-
positional differences, differences in protein content and pos-
sibly also differences in protein structure of these fractions
are captured by NIR spectroscopy and contribute to the dif-
ferentiation along PC3. It has already been observed before
that the protein contents of different flour particle sizes differ
and that different types of proteins are enriched in different
particle size ranges. For example, free “wedge” proteins are
milled to really small particle sizes and are therefore present
in smaller particle size fractions, whereas “adherent” pro-
teins retain larger particle sizes because they are connected
to starch granules and covered by a lipid layer (Coulson and
Sim 1965; Jones et al. 1959). It is possible that not only the
protein enrichment but also the separation of proteins based
on other characteristics (e.g., structural differences) by sieve
fractionation can contribute to improved wheat quality pre-
dictions based on NIR spectra.

Lastly, it can again be observed that the scattering of
scores along PC1, PC2, and PC3 is greater for the sieve
fractions than for flour. For PC1, the main cause seems to
be differences in water content, as discussed above, but for
PC2 and PC3, it appears that other differences between the
samples may be emphasized and amplified by the sieving
procedure. This could also have a positive effect on the pre-
dictions if these differences relate to differences in the prop-
erty of interest that is to be predicted.

Evaluation of the Potential of Flour Fractionation
and Data Fusion to Improve Wheat Quality
Predictions Based on the Improvement

of the RMSECV Igysecy

For all 41 wheat quality parameters tested in this study,
prediction models using spectra of flour and flour fractions
obtained by the two fractionation methods (sieve frac-
tionation; dough preparation followed by gluten washing)
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with and without data fusion methods (approach (b) and
(a), respectively) were investigated. The best predictions
achieved by approach (a) using individual spectra of flour,
flour fractions, and dough are presented in Table 3. Table 4
lists improved predictions obtained by data fusion in
approach (b) and finally Table 5 gives an overview of the
overall best predictions comprising methods from Table 3
and Table 4.

This part of the discussion is not intended to focus on
the individual quality parameters and the corresponding
predictions, but on the general ability of flour fractionation
and data fusion as novel methods to improve wheat quality
predictions. Consequently, the following sections discuss
and use the improvement of the RMSECV Izysgcy to com-
pare models to demonstrate the general potential of the used
methods for improved predictions. A more detailed discus-
sion about individual parameters can be found in the section
“Analysis of the Predictive Performance of the Best Models
for Individual Wheat Quality Parameters.”

The results in Table 3 show that individual spectra of
flour fractions and dough significantly changed the pre-
dictive performance of models compared to flour spec-
tra. Dough preparation and gluten washing, as one of
the fractionation methods, enabled an improved predic-
tion for 14 of the 41 parameters with the improvement of
the RMSECV Ipysecy = 5.0% compared to flour spectra,
with Ipyvspey ranging between 5.0 and 25.0%. Especially,
the spectra of dough and also the spectra of gluten were
able to achieve the improvements. Starch spectra never
achieved an improvement > 5.0% compared to flour spec-
tra; in fact, the prediction usually deteriorated. In com-
parison, the individual spectra of the sieve fractionation
method improved the prediction of 27 of the 41 parameters
by at least 5.0% compared to flour spectra (Ixpspcy ranged
from 5.0 to 17.9%). The spectra of the 50-75 pm and the
75-100 pm fractions achieved the best predictions most
frequently here.

Table 4 shows that data fusion can be a valuable method
to achieve further improvements in the predictions. Improve-
ments of the RMSECV Igyspcy of at least 5.0% compared
to flour spectra and individual spectra of the correspond-
ing fractionation method as well as compared to the cor-
responding models of the individual constituents of the
fused data model were achieved for many different param-
eters and both fractionation methods. The dough prepara-
tion and gluten washing method combined with data fusion
was able to improve the prediction of 20 parameters with
Ixmsecy =5.0%, whereby in particular the combination of
gluten and flour spectra as well as the combination of glu-
ten and dough spectra contributed to this. In contrast, data
fusion models of sieve fractions achieved improvements of
at least 5.0% for 13 of the 41 parameters. In most cases, a
combination of two spectra of sieve fractions also presented

the greatest improvement, although the exact combination
of spectra varied for different parameters.

Lastly, Table 5 allows a combined evaluation of the best
results regarding the potential of both flour fractionation
methods with and without data fusion to achieve improved
predictions of wheat quality parameters compared to flour
spectra. Only for six out of the 41 parameters, no improve-
ment of the RMSECV Iy gpcy = 5.0% was achieved by flour
fractionation with or without data fusion. For 35 param-
eters, the highest achieved improvements Ippgpcy compared
to flour spectra were in the range of 5.6-28.6%, although
Ixmsecy Was actually > 15.0% for many of them. For 17 of
these parameters, dough preparation followed by gluten
washing was the fractionation method that yielded the best
results, whereby this was achieved six times by single spec-
tra (especially of dough) and 11 times by combined spec-
tra after data fusion (especially the combinations of gluten
and flour as well as gluten and dough). Sieve fractionation
achieved the best predictions for 16 parameters, seven times
by single spectra (especially 50-75 um and 75-100 pym frac-
tion) and nine times by combined spectra after data fusion
(especially combinations of two sieve fractions). For the
parameters “SRC sucrose” and “EX energy 45 min,” both
fractionation methods yielded equally good improvements.

In conclusion, both fractionation methods tested in this
study contributed almost equally to the overall best models
obtained. Spectra of sample types on which the best mod-
els were most frequently based were dough and gluten as
well as the 50-75 um and 75-100 um fractions. The overall
best models achieved were dominated by models based on
combined spectra after data fusion. The observed predictive
qualities are a result of the changes in composition caused
by the fractionation methods (separation as well as chemical
and enzymatic reactions), which in turn alter spectral sig-
nals, as also presented and discussed in the section “Analy-
sis of Spectral Difference of Flour Fractions and Dough.”
As aresult, relevant spectral signals for the prediction of the
property of interest may be enhanced or the superimposition
of irrelevant and interfering signals may be reduced in the
spectra of flour fractions and dough compared to the spectra
of flour, which could be a possible reason for improved pre-
dictions. For example, further analyses have shown that the
50-75 pm fraction is more protein-enriched compared to the
other sieve fractions (results not shown). It is known from
literature that proteins with different properties enrich in dif-
ferent particle size ranges (Coulson and Sim 1965; Jones
et al. 1959). Possibly, the NIR signals of proteins enriched
in this sieve fraction are more relevant for the prediction of
certain wheat quality parameters. Furthermore, NIR spectra
of gluten and dough could contain additional valuable infor-
mation about rheological properties, because NIR spectros-
copy is able to capture information related to protein second-
ary structure (changes) and interactions of proteins, water,
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9 and starch (Alava et al. 2001; Albanell et al. 2012; Bruun
*_ et al. 2007; Wesley et al. 1998). Other studies have already
Q . .
%: I I shov&{n t.hat NIR spectra of Flough can contrlbgte to improved
Eloe T o= predictions of wheat baking quality (Gabriel et al. 2017;
Ziegler et al. 2025b). However, further analyses of the exact
a compositions of the different flour fractions are necessary
= to draw more detailed conclusions from the composition to
= o o w2233 8 .. - . ] .
2w 2 — 3 <2 the predictive ability. Another factor influencing the predic-
tion quality is the data fusion strategy applied. Especially
—~ the complex quality characteristics (e.g., rheological param-
2 M0 O VAN ¢ o eters) depend on many different flour components and their
o i R R HI . . . . .
Klcoocooessos S interactions in specific processes such as kneading. In some
2 cases, data fusion of different spectra may yield improved
% g/ £ g & ¢ 5. g E 5. 5. predictions if the components and signals relevant for the
£ |2 S g s >2srsses prediction of a specific parameter have been separated into
El8l T T YOS T Y TTT several fractions by the fractionation process. Thus, when
1 (=¥ [eERVARS S O N S v n u . . . . .
@ la e A complementary information contained in spectra of different
fractions is combined in a prediction model by data fusion,
® the predictive performance is improved. Data fusion meth-
*5 ods in general have already proven useful in the food context
2 e x @ 5 . :
2| o o 2o+ 2722 (Borras et al. 2015) and also particularly for wheat quality
Sl e 8 S @ =1 predictions, as Nagel-Held et al. (2022) achieved improved
predictions when flour spectra of different spectroscopic
5 methods were combined. Ziegler et al. (2025b) showed the
E 0 - © T @ potential of different data fusion approaches for an improved
o n oo S o < .. . . . .
|2 IsaTFSSS prediction of wheat baking quality, also involving NIR spec-
tra of flour fractions and dough. However, this study is the
0 first to apply data fusion of spectra of flour fractions and
<1029 Z8Tgeag dough for the prediction of a large number of analytical and
g Dl SeeeseS rheological parameters. In summary, the results of this study
S underline the strong potential of flour fractionation and data
= = fusion for the improvement of a wide range of wheat quality
) g £ ®Bs5HESS predictions compared to predictions based on flour spectra.
= ) =T 2 5 3 3 83 3 =
Sl&|88 238288283
B Analysis of the Predictive Performance of the Best
> 3 Models for Individual Wheat Quality Parameters
= =Y R ag583|2 Wheat can be analyzed for its quality in the grain stage as
X | = o caemcSSo|® . O . ;
e well as in the flour stage after milling using many differ-
= B ent characterization methods. Wheat flour quality is not
' <
Hic ] . . .
AR Cxwm x| E only influenced by the ch.ar.acterlstlf:s. of the cereal grain,
Elk|ls S Sses8s33|3 but for example also by milling conditions and flour extrac-
g tion. It can be defined by various analytical and rheologi-
f‘ cal parameters that characterize both flour composition and
2 flour functionality. In this study, a total of 41 analytical and
& rheological wheat flour and dough quality parameters were
E predicted, including protein-related parameters, starch prop-
= 2 erties, solvent retention capacity analysis as well as the most
] e . .
E = ‘§ commonly performed rheological analyses (farinograph,
g - 77‘ . —~ g extensograph, alveograph). The best models for all param-
~ % E ~ =2 : f~CT % % 8 eters are presented in Table 5. The best predictions obtained
22} —~ =~ £ _E o . . o« .
2 = - O R exhaan ‘% with flour spectra are compared with the best predictions
R 22 222222325 obtained with spectra of flour fractions with or without data
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Table 4 Cross-validation results for overall best predictions achieved using data fusion for both fractionation methods in approach (b). Only
results of data fusion models that achieved an improvement of the RMSECV Iyspcy 0f >5.0% compared to flour, individual spectra of the cor-
responding fractionation method and also compared to the corresponding models of the individual constituents of the fused data model are pre-
sented (the latter is indicated in the table). Highlighted in bold letters are results with R%x, > 0.70

Parameter

Dough, gluten, starch

Sieve fractions

Spectra combina- R’y ()

tion (-)

RMSECV

Irmsecy (%)
(compared to)

Spectra combination (-)

Rey ()

RMSECV

Irmskcy (%) (compared
to)

Protein (%)
Wet gluten (%)
Gluten Index (-)

Osborne total
(/100 g)

Albumin and
globulin
(mglg)

Gliadin (mg/g)

Glutenin (mg/g)
Gliadin/glutenin
)
SDSS/GMP total
(/100 g)
SDSS (mg/g)
GMP (mg/g)
GMP-HMW
(mg/g)
GMP-LMW
(mglg)
Hagberg falling
number (s)

Starch damage
(Ai%)

SRC water (%)

SRC sucrose (%)

SRC lactic acid
(%)

SRC sodium
carbonate (%)

FA DDT (min)

FA WAM (%)

FA S (min)
FA DS (FE)
FA FON ()

EX energy
45 min (cm?)

EX resistance
45 min (BU)

EX extensibility
45 min (mm)

EX maximum
45 min (BU)

EX ratio number
45 min (-)

EX ratio number
(Max.) 45 min
)

AL Cppy ()

AL P (mm H,0)

Gluten + flour

Flour + starch

Gluten + flour

Flour + starch

Flour + starch

Gluten + flour
Flour +starch

Gluten + dough

Gluten + dough
Gluten + flour
Gluten + dough

Gluten + flour

Gluten + flour

Gluten + flour
Gluten + dough

Gluten + flour

0.94

0.92

0.83

0.69
0.77

0.87
0.83

0.72

0.67
0.78
0.78

0.34

0.83

0.42
0.36

0.78

11

3.17

1.82

1.9
2.5

0.73
1.1

36
12
12

36

10

0.4
0.4

8.3 (flour)

7.0 (flour)

10.3 (flour)

5.0 (flour)
7.4 (flour)

19.8 (flour)
8.3 (flour)

7.8 (dough)

7.7 (dough)
20.0 (flour)
20.0 (dough)

5.3 (gluten)

16.7 (flour)

20.0 (gluten)
20.0 (gluten)

10.0 (flour)

<32 pm +50-75 pm

32-50 pm + 50-75 pm

<32 pm +50-75 pm
32-50 pm+50-75 pm

<32 pm + 32-50 pm + 50-75 pm

<32 pm+50-75 pm

<32 pm + 50-75 pm + flour

<32 pm+50-75 pm

<32 pm+50-75 pm
50-75 pm +75-100 pm
50-75 pm + flour

<32 pm +50-75 pm +75-100 p
m+ > 100 pm + flour

<32 pm+ >100 pm + flour

50-75 pm + 75-100 pm

0.94
0.94

0.91

0.71

0.86
0.86
0.87

0.78

0.86

0.9

0.47

2.58
2.58

0.27

3.38

34

1.0
1.0
1.0

12

165

10.0 (50-75 pm)

17.6 (50-75 pm)

16.0 (50-75 pm)
16.0 (50-75 pm)

10.0
(<32 pm+50-75 pm)

12.7 (50-75 pm)

5.6 (<32 pm + flour)

5.6 (50-75 pm)

9.1 (5075 pm)
9.1 (5075 pm)
9.1 (5075 pm)

7.7 (<32 pm +50-75
pm+75-100 pm +
>100 pm)

6.3 (<32 pm+
>100 pm)

11.1 (75-100 pm)
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Table 4 (continued)

Parameter Dough, gluten, starch Sieve fractions
Spectra combina- R*cy (-)  RMSECV  Iyyseev (%) Spectra combination (-) Ry ()  RMSECV  Iyysecv (%) (compared
tion (-) (compared to) to)
AL L (mm) Gluten + flour 0.63 14 17.6 (flour)
AL G (-) Gluten + flour 0.62 1.7 15.0 (flour) <32 pm+50-75 pm 0.55 1.8 5.3 (<32 pm)
50-75 pm+75-100 pm 0.57 1.8 5.3 (50-75 pm)
ALW (1074 J) 50-75 pm + flour 0.90 26 13.3 (Flour)
AL P/L (-) Gluten + flour 0.45 0.33 13.2 (flour)
AL Ie (%) Gluten +dough 0.85 23 17.9 (dough)
ALK ()
AL SH (-) Gluten + flour 0.77 0.05 16.7 (gluten)
Gluten + dough 0.80 0.05 16.7 (gluten)
AL Dy, ()
ALD,,, (-) Flour +dough  0.72 0.37 5.1 (flour)

fusion. For selected parameters, the predictions of the best
models are compared in Fig. 4.

Protein-Related Parameters

The prediction of protein content from NIR flour spectra
has been an established technique in the industry for many
years because it can be predicted very well with R? values
usually > 0.90, often > 0.95, as many studies have reported
in the past (Dowell et al. 2006; Jirsa et al. 2008; Miralbés
2003, 2004; Mutlu et al. 2011; Nagel-Held et al. 2022, 2024;
Williams 2020). Wet gluten content is often predicted as
well, because the gluten content is especially relevant for
flour quality due to its ability to form the viscoelastic gluten
network. Its predictive quality is often slightly lower than
protein content, but the R? is usually > 0.85 (Dowell et al.
2006; Nagel-Held et al. 2022; Williams 2020). The results of
this study are consistent with these results, as protein content
and wet gluten content were predicted from flour spectra
with RZCV of 0.96 and 0.93, respectively. Flour fractionation
did not improve the prediction of protein content, but the
prediction of wet gluten content was improved to an R2CV of
0.95 by using the combination of spectra from the <32 pm
and the 50-75 pm fractions.

As the focus in the industry shifts more towards protein
quality than total protein content, there is a growing interest
in predicting protein composition from spectroscopic data to
replace the time-consuming and expensive reference meas-
urements (Schuster et al. 2023). However, not many studies
have reported predictions for protein composition. In this
study, both Osborne fractionation and SDSS-GMP fractiona-
tion were performed and predicted. The gliadin and glutenin
contents were predicted acceptably to well with an R*.y of
0.90 and 0.79, respectively, using flour spectra and an R2CV
of 0.94 and 0.83, respectively, using combinations of spec-
tra of sieve fractions. However, the content of albumin and

globulin and the gliadin/glutenin ratio were not predicted
well with R?y < 0.50 achieved with both flour and fractions
spectra. These results are consistent with those of Dowell
et al. (2006) and Schuster et al. (2023), who both showed
similar trends for the predictive ability of the above protein
fractions. No results for the prediction of SDSS-GMP frac-
tionation were found in the literature. However, this study
achieved good results for the prediction of SDSS, GMP, and
GMP-LMW fractions using flour spectra (R2CV 0f 0.85,0.72,
and 0.72, respectively). Interestingly, for all three protein
fractions, spectra of dough achieved the greatest improve-
ment in the prediction (RzCV of 0.91, 0.80, and 0.80, respec-
tively). The GMP-HMW fraction achieved only a moderate
predictive quality using flour spectra with an R2CV of 0.69
without any improvement by flour fractionation.

In general, the good predictability of protein content
is due to the fact that this is an analytical quality param-
eter for which classical absorbers exist in the NIR region
(e.g., CH, SH, but especially NH and CONH,) (Poji¢ and
Mastilovi¢ 2013; Workman and Weyer 2012). In this study,
the improved models for protein parameters based on spectra
of flour fractions were often achieved by a combination of
two sieve fractions. Apart from Gluten Index, the 50-75 um
fraction was always included in these models. First, this
shows that complementary information about protein com-
position and concentration is contained in spectra of differ-
ent fractions, which is why data fusion models often led to
the best results. Second, the importance of the 50—75 um
fraction for protein parameters is in accordance with the
results presented in the section “Analysis of Spectral Dif-
ference of Flour Fractions and Dough.” The 50-75 um
fraction showed the highest protein enrichment among the
sieve fractions (results not shown), which also reflected in
the PCA score plot. One possible reason why the spectra of
this fraction are especially relevant for the prediction is that
the higher protein content of this fraction simply increased
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Table5 Summary of best predictions achieved using flour spectra and best improvements achieved using either individual spectra of flour frac-
tions (approach (a)) or combined spectra by data fusion (approach (b)). The improvement of the RMSECV Igpcy compared to flour spectra is
indicated. Highlighted in bold letters are results with R’y >0.70 for flour spectra and results with R%~y >0.70 and Ipyspcy > 5.0% for improved
predictions. Further model specifications (preprocessing method, model type, number of components) can be found in Supplementary Material S1

Parameter Best prediction from flour spectra Improved prediction using spectra of flour fractions and dough (individual spectra or combina-
tions)
Roy () RMSECV NRM- Spectrum or Combination (-) R’y ()  RMSECV NRM- Inmseev™ (%)
SECVrange SECV e
(%) (%)
Protein (%) 0.96 0.3 4.12 No improvement >5.0%
Wet gluten (%) 0.93 1.2 6.46 <32 pm+50-75 pm 0.95 0.9 4.84 25.0
Gluten Index (-) 0.03 7 17.08 75-100 pm 0.41 6 14.64 14.3
Osborne total (g/100 g) 0.86 0.60 8.37 32-50 pm +50-75 pm 0.92 0.47 6.56 21.7
Albumin and globulin (mg/g) 0.20 1.88 19.19 50-75 pm 0.43 1.59 16.23 15.4
Gliadin (mg/g) 0.90 341 6.67 <32 pm +50-75 pm 0.94 2.58 5.05 24.3
32-50 pm + 50-75 pm 0.94 2.58 5.05 24.3
Glutenin (mg/g) 0.79 2.03 10.98 Gluten + flour 0.83 1.82 9.85 10.3
Gliadin/glutenin (-) 0.47 0.14 14.44 No improvement >5.0%
SDSS/GMP total (g/100 g) 0.94 0.37 5.33 <32 pm+32-50 pm+50-75 pm  0.97 0.27 3.89 27.0
SDSS (mg/g) 0.85 4.32 8.50 Dough 0.91 3.24 6.37 25.0
GMP (mg/g) 0.72 3.00 11.78 Dough 0.80 2.52 9.89 16.0
GMP-HMW (mg/g) 0.69 0.92 13.50 No improvement > 5.0%
GMP-LMW (mg/g) 0.72 2.20 11.56 Dough 0.80 1.85 9.72 15.9
Hagberg falling number (s) 0.72 44 11.83 No improvement >5.0%
Starch damage (Ai%) 0.87 0.18 8.04 <32 pm +50-75 pm + flour 0.88 0.17 7.59 5.6
SRC water (%) 0.66 2.0 11.84 <32 pm 0.76 1.7 10.06 15.0
SRC sucrose (%) 0.73 2.7 10.80 50-75 pm 0.77 2.5 10.00 7.4
Flour + starch 0.77 2.5 10.00 7.4
SRC lactic acid (%) 0.67 7.9 13.30 No improvement > 5.0%
SRC sodium carbonate (%) 0.61 39 13.55 <32 pm+50-75 pm 0.71 34 11.81 12.8
FA DDT (min) 0.80 0.91 12.70 Gluten + flour 0.87 0.73 10.19 19.8
FA WAM (%) 0.79 1.2 10.91 50-75 pm + flour 0.87 1 9.1 16.7
FA S (min) 0.59 3.45 14.86 Gluten + dough 0.72 2.84 12.23 17.7
FA DS (FE) 0.77 14 12.85 Dough 0.81 12 11.01 14.3
FA FQN (-) 0.53 43 16.05 Gluten + dough 0.67 36 13.44 16.3
EX energy 45 min (cm?) 0.67 15 12.20 Gluten + flour 0.78 12 9.76 20.0
Gluten + dough 0.78 12 9.76 20.0
<32 pm +50-75 pm +75-100 p 0.78 12 9.76 20.0
m+ > 100 pm + flour
EX resistance 45 min (BU) 0.05 43 20.19 Gluten + flour 0.34 36 16.91 16.3
EX extensibility 45 min (mm) 0.75 12 11.33 Gluten + flour 0.83 10 9.44 16.7
EX maximum 45 min (BU) 0.35 58 16.48 Gluten 0.48 52 14.78 10.3
EX ratio number 45 min (-) 0.29 0.4 21.06 No improvement >5.0%
EX ratio number (Max.) 45 min  0.07 0.5 23.82 Gluten + flour 0.42 0.4 19.05 20.0
(O]
AL C, () 0.81 190 9.96 <32 pm+ >100 pm + flour 0.86 165 8.65 13.2
AL P (mm H,0) 0.68 10 13.16 50-75 pm + 75-100 pm 0.79 8 10.53 20.0
AL L (mm) 0.45 17 18.09 Gluten + flour 0.63 14 14.9 17.6
ALG(-) 0.44 2.0 17.86 Gluten + flour 0.62 1.7 15.18 15.0
ALW (1074)) 0.87 30 7.80 Dough 0.91 24 6.24 20.0
AL P/L (-) 0.28 0.38 15.71 50-75 pm 0.46 0.33 13.64 13.2
AL Ie (%) 0.75 2.9 8.96 Gluten + dough 0.85 2.3 7.1 20.7
ALK (-) 0.78 350 12.71 50-75 pm 0.83 309 11.22 11.7
AL SH (-) 0.44 0.07 14.59 Gluten + dough 0.80 0.05 10.42 28.6
ALD,;, () 0.71 0.26 13.34 75-100 pm 0.79 0.23 11.8 11.5
ALD,,, () 0.68 0.39 13.14 75-100 pm 0.79 0.32 10.78 17.9

“Improvement of the RMSECV Iyspcv compared to flour spectra
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absorbance signals of vibrations originating from protein.
Another (additional) reason could be that certain proteins
have accumulated in this fraction due to the separation of
particle sizes whose signals are more relevant for the pre-
diction of protein fractions. Interestingly, the SDSS- and
GMP-related fractions are best predicted using spectra of
dough. Possibly, the proteins in these fractions show spe-
cific structural changes during dough formation which can
be differentiated by NIR spectroscopy because NIR spectra
contain information about amino acid composition and also
about protein secondary structure (Bruun et al. 2007; Salgd
and Gergely 2012; Workman and Weyer 2012). This could
be the reason for improved predictions of certain protein
fractions using dough spectra.

Starch Properties (Hagberg Falling Number, Starch
Damage)

Two important starch-related properties of interest are the
Hagberg falling number and starch damage. Starch damage
relates to the amount of starch granules damaged during
milling, which depends on the grain hardness and the mill-
ing procedure. It is susceptible to a-amylase activity, which
affects starch paste consistency and also the sugar supply in
yeast dough fermentation (Cauvain 2015; Miralbés 2004).
The Hagberg falling number is a measure of the a-amylase
activity, because it measures the decreasing viscosity of a
starch paste (Delwiche et al. 2018; Edwards 2007).

The prediction of both parameters by NIR spectroscopy
of wheat has been tested in numerous studies, but only
starch damage was successfully predicted with R? values
often > 0.90 (Lancelot et al. 2021; Miralbés 2004; Poji¢ and
Mastilovi¢ 2013; Williams 2020). The prediction accuracy
achieved in this study using flour spectra is similar to these
results. The improvement achieved by a combination of
sieve fractions was only minor. As damaged and undam-
aged starch are not chemically different, it is unlikely that
NIR spectroscopy can distinguish between both. It is more
likely to be an indirect calibration caused by correlations of
starch damage to other parameters that can be predicted from
NIR spectra (Dowell et al. 2006). It could also be a result
of the ability of NIR spectroscopy to distinguish differences
in hardness, which relates to the content of damaged starch
(Poji¢ and Mastilovi¢ 2013).

Hagberg falling number has not yet been successfully
predicted in the literature (Delwiche et al. 2018; Dowell
et al. 2006; Nagel-Held et al. 2024). Surprisingly, in this
study, an R2CV of 0.72 was achieved by flour spectra. No
improvement was observed by flour fractionation and data
fusion. It is unlikely that NIR spectroscopy can distinguish
a-amylase from other proteins (Delwiche et al. 2018). Con-
sequently, the better prediction achieved in this study may be
a result of an indirect calibration enabled by specific sample

@ Springer

set characteristics. However, the highest correlation to the
other parameters tested in this study was an r* of 0.45
with the farinograph dough stability.

It may be an intuitive assumption that the prediction of
starch parameters can be improved by NIR spectra of the
starch fraction. However, this was not the case. One pos-
sible cause is that the starch fraction underwent such major
changes during preparation that it is no longer possible to
establish a relationship with the flour parameters. The reason
for this is that the starch suspension was stored during the
three production rounds of dough and gluten and only cen-
trifuged at the end of the process for each flour sample. Dur-
ing this time, many (enzymatic) reactions could have taken
place. Furthermore, not all starch particles were separated
from the suspension by the centrifugation process, resulting
in the loss of some material that could have been relevant
for the prediction.

Pearson

Solvent Retention Capacity

SRC analysis is based on the exaggerated swelling of differ-
ent flour polymeric compounds (gluten proteins, damaged
starch, solvent-accessible arabinoxylans/pentosans) in dif-
ferent solvents (water, 5% lactic acid solution, 5% sodium
carbonate solution, 50% sucrose solution) without heat or
shear. The pattern of SRC values is used to estimate flour
and baking quality (Kweon et al. 2011).

Until now, the prediction of SRC values has not been a
focus of studies predicting wheat quality parameters, as it is
a technique less commonly used to characterize flour qual-
ity compared to the other flour characteristics tested in this
study. Only Lancelot et al. (2021) tested the prediction of
SRC values using NIR spectra of flour and obtained good
predictions with R%p . iciion > 0.80 for water, lactic acid, and
sodium carbonate SRC and an R%p.icqi0n Of 0.75 for sucrose
SRC. In contrast, the prediction results in this study are
worse and sucrose SRC is the parameter that can be pre-
dicted best. For flour spectra, R’y ranged from 0.61 to 0.73
while the results were improved to R’y between 0.71 and
0.77 for water, sucrose, and sodium carbonate SRC, mainly
using the <32 pum and the 50-75 um fractions. No improve-
ment was achieved for the lactic acid parameter. As the
composition of the different flour fractions in relation to the
polymers captured by SRC is largely unclear, no conclusion
can be drawn as to why these particular fractions appear to
be important for the predictions. A possible explanation for
the better predictions of Lancelot et al. (2021) is that they
only predicted the SRC parameters of the same flour after
different storage conditions and times. As a consequence,
there will have been greater similarities between the cali-
bration and validation dataset than if they had used com-
pletely different flour samples, which may have improved
the predictions.
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Generally, the swelling behavior of different polymers
relates to their chemical structure, as this structure is respon-
sible for the solvent-polymer interactions (Kweon et al.
2011). Different structural characteristics contribute to dif-
ferent vibrations detected by NIR spectroscopy. From the
results reported in the literature (Miralbés 2004; Poji¢ and
Mastilovi¢ 2013; Williams 2020) and also in this study, it
appears that NIR spectroscopy can detect and distinguish
signals related to different major flour components. How-
ever, it is likely that the swelling behavior is not only influ-
enced by the amounts of different polymers, but also by their
specific structural characteristics (e.g., protein secondary
structure, amylose and amylopectin ratios). Other studies
suggest that NIR spectroscopy can capture at least some of
this structural information and the interactions of flour com-
ponents with water (Alava et al. 2001; Bruun et al. 2007;
Salgé and Gergely 2012). However, it seems that not all rel-
evant information for the prediction of the swelling behavior
can be detected by NIR spectroscopy, neither from flour nor
from fractions or dough spectra, which is why the achieved
predictive quality in this study is only moderate to good.

Rheological Parameters (Farinograph, Extensograph,
Alveograph)

There is a great interest in the prediction of rheological
parameters, because the many empirical rheological meas-
urements available to evaluate wheat quality are time-con-
suming and require a large amount of flour. Because they
simulate the flour behavior in processes such as kneading or
proofing, they provide important information on flour quality
(Edwards 2007; Poji¢ and Mastilovié¢ 2013). The most com-
monly established methods are farinograph, extensograph,
and alveograph measurements, which is why the parameters
of these methods were predicted in this study.

Farinograph water absorption is the only parameter
for which most studies agree on the prediction accuracy.
Reported R? values usually range from around > 0.70
t0 <0.90 (Dowell et al. 2006; Miralbés 2004; Mutlu et al.
2011; Nagel-Held et al. 2022; Poji¢ and Mastilovi¢ 2013;
Williams 2020). This is in accordance with the results in this
study, because an chv of 0.79 was achieved using spectra
of flour and an R of 0.87 was obtained using the com-
bination of the 50-75 um fraction and flour spectra. Miral-
bés (2004) attributed the good prediction to the fact that
water absorption is mostly governed by macromolecules like
proteins and damaged starch and that NIR spectra contain
information about these. Possibly, the proteins (and other
compounds) enriched in the 50-75 um fraction strongly
influence water absorption, which is why this fraction again
contributed to an improved prediction.

Contrary to this, the reported predictions for some of the
rheological parameters are consistently not good enough for

screening purposes. This is the case, for example, for the
extensograph ratio number and resistance, where R* values
are usually < 0.50 (Nagel-Held et al. 2022, 2024), which is
also in accordance with the results of this study. It seems
that some parameters simply cannot be related to signals
captured by NIR spectroscopy and that the novel approach
of flour fractionation and data fusion can also not achieve an
acceptable predictive quality for these parameters.

For most rheological parameters, the reported prediction
accuracies in the literature vary and range from R? values
indicating that they cannot be predicted from NIR spectra
of wheat (often between 0 and 0.50) to R? values that show
an acceptable prediction by NIR spectroscopy (> 0.70;
sometimes even > 0.80). This is for example the case for the
farinograph dough development time, stability, and dough
softening; for the extensograph energy and extensibility; and
for the alveograph parameters W, P, L, and P/L (Dowell et al.
2006; Jirsa et al. 2008; Miralbés 2003, 2004; Mutlu et al.
2011; Nagel-Held et al. 2022, 2024; Poji¢ and Mastilovi¢
2013). Interestingly, acceptable to good predictions with
0.75 <R’y <0.87 were achieved from flour spectra for mul-
tiple parameters in this study, including farinograph dough
development time and dough softening; extensograph exten-
sibility; and alveograph C,,,,, W, Ie, and K. Flour fractiona-
tion and data fusion improved the results of these param-
eters to 0.81 < R%*-, <0.91, often involving spectra of gluten
and dough. Furthermore, the predictions of the parameters
farinograph stability, extensograph energy and alveograph
P, SH, D, and D ,,,, were improved by flour fractionation
and data fusion to R2CV values between 0.72 and 0.80, most
often using spectra of gluten and dough. Sometimes, sieve
fractions were also involved in the best models for the pre-
dictions of these parameters, including most frequently the
50-75 um and the 75-100 pm fractions, among others. Data
fusion proved to be an important contributor to the improved
predictions, as in many cases the best models were achieved
using a combination of spectra. This again indicates that
complementary information is contained in spectra of flour,
flour fractions, and dough.

In summary, for many of the rheological parameters pre-
dicted in this study, higher prediction accuracies were already
achieved using NIR spectra of flour compared to the results
reported in the literature. Furthermore, the novel approach of
flour fractionation and data fusion was able to improve the
predictions of many of the tested parameters. However, the
general predictive quality of rheological parameters was lim-
ited to R*-y <0.90. Various reasons for the inconsistency in
the predictive qualities reported for rheological parameters in
numerous studies are discussed. This involves especially the
characteristics of the samples used (varieties, growing loca-
tions, harvest years, number of samples) (Dowell et al. 2006;
Nagel-Held et al. 2024; Poji¢ and Mastilovi¢ 2013). Many
studies have shown that the predictions are generally better
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when samples are classified according to these characteristics
and then separate models are calculated for different classes
(Dowell et al. 2006; Nagel-Held et al. 2024; Miralbés 2003).
Although the sample set in this study is small and a true vali-
dation of results has to be performed, the sample set is very
diverse, because the wheat samples were commercially avail-
able mixtures originating from ten countries and four harvest
years. The results therefore show that NIR spectroscopy has
the potential to predict many rheological parameters with
acceptable accuracy without sample classification if the sam-
ple set is diverse enough to include many possible variations in
the calibration dataset. The results could be further improved
by including many more samples from more locations and har-
vest years in the model-building process. However, the predic-
tive quality of rtheological parameters may generally be limited,
because the errors of the reference analyses are generally much
larger compared to analytical determinations of, e.g., protein
content (Nagel-Held et al. 2024; Poji¢ and Mastilovi¢ 2013).

General Discussion of Factors Influencing
the Predictive Quality

The prediction accuracy is affected by various general influ-
encing factors. An overview is presented in Fig. 5. Some
of these factors have already been outlined in the previous
discussion.

Two main factors that have already been discussed in
previous sections are the properties of the samples used
and the accuracy of the reference analyses (Dowell et al.

Specific challenges
(e.g. sensitivity to OH
from water)

Detectability
(molecular vibrations,
relations to property of
interest, detection limit)

NIR Spectroscopy

Distinguishability
(direct or indirect

2006; Nagel-Held et al. 2024; Poji¢ and Mastilovi¢ 2013).
When establishing prediction models, the number of sam-
ples should be large and the samples should cover a wide
range of the property of interest (e.g., low to high protein
content, short to long dough development times). However,
as samples cannot be custom made, this is difficult to con-
trol. Also, the distribution of sample values in this study was
not ideal for some wheat quality parameters, as can be seen
in Fig. 4. Nevertheless, the results of this study show that
prediction models can be successfully established based on
a diverse sample set (varieties, growing location, harvest
years). This suggests that the predictions may further be
improved if even more samples are used for modeling, from
even more countries of origin, harvest years, etc. For some
wheat quality parameters, the achievable prediction accuracy
may be limited in advance by the accuracy of the reference
analyses, which is especially true for rheological analyses
(Nagel-Held et al. 2024; Poji¢ and Mastilovi¢ 2013). It is
likely that the limited prediction accuracies of rheological
parameters achieved in this study in Tables 3, 4, and 5 are
(at least partly) a result of this. A larger number of repeti-
tions of these reference analyses could contribute to reduced
measurement errors and consequently to increased predic-
tion accuracies in future studies.

The characteristics of NIR spectroscopy strongly govern
the achieved prediction accuracies. These include specific
challenges that NIR spectroscopy faces (e.g., the broad
peaks and the superimposition of strong water signals
originating from OH vibrations in multiple regions of the
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Fig.5 Overview of factors influencing the predictive quality
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spectrum) (Workman and Weyer 2012) as well as the general
detectability and distinguishability of signals that relate to
the property of interest that is to be predicted (Delwiche
et al. 2018). This means that the property of interest must
be related in some way to molecules present in the sample
which show signals in NIR spectra in a measurable quan-
tity. Furthermore, it is necessary that NIR spectroscopy is
able to distinguish these signals from signals of other mol-
ecules that contribute to the same vibrations due to simi-
lar or identical molecular structures. As some researchers
have noted in the past, it is likely that NIR spectroscopy
can only achieve this to a limited extent. For example, dam-
aged and undamaged starch are not chemically different and
also the spectra of amylose and amylopectin are very similar
(Dowell et al. 2006; Poji¢ and Mastilovi¢ 2013). Regarding
protein-related vibrations, NIR spectroscopy can distinguish
between different protein conformations (Bruun et al. 2007;
Salg6 and Gergely 2012; Workman and Weyer 2012), but
it is unlikely that it can, for example, detect a specific pro-
tein (e.g., a-amylase) because of this (Delwiche et al. 2018).
On top of this, it has been suggested multiple times that
some signals in NIR spectra originate from the interactions
of different molecules (e.g., water, carbohydrates, proteins)
(Alava et al. 2001; Wesley et al. 1998), but it is unclear
to what extent NIR spectroscopy can distinguish between
the exact carbohydrates or proteins that participate in the
interactions. Consequently, it has been suggested before that
many of the achieved prediction accuracies may be results of
indirect calibrations, especially regarding correlations to the
protein content as a property that can be predicted very well
from NIR spectra due to the characteristic protein vibrations
(Dowell et al. 2006; Miralbés 2004; Schuster et al. 2023). As
presented in Table 2, the protein content is also correlated to
multiple wheat quality parameters which showed good pre-
diction accuracies in this study shown in Table 5 (especially
protein fractions and rheological parameters). However, the
achieved prediction accuracies using flour spectra are often
higher than the simple correlations to protein content (e.g.,
for wet gluten, SDSS-GMP fractionation, some farinograph
and alveograph parameters). Furthermore, the predictions
of many of these and additional parameters were improved
using flour fractionation with or without data fusion. In sum-
mary, it is therefore likely that NIR calibrations of wheat
quality are to some extent indirect, but it appears that for
some wheat quality parameters, additional information can
be captured by NIR spectroscopy to improve the predictions
compared to the simple correlations to protein content.

The chemometric method used to establish the prediction
model also has a major influence on the achieved predic-
tion accuracy. The interactions of the chosen preprocessing
algorithm(s) and the data fusion method (if applicable) as
well as the model type (linear, non-linear) and the exact
model itself are crucial for the success or failure of the

modeling. Consequently, it is necessary to optimize all of
the above points to achieve the highest possible prediction
accuracy using the exact methods tested. However, this is
still a question of trial and error, which makes the model
optimization a computationally intensive process, depending
on how extensive the tested methods are (Borras et al. 2015;
Du et al. 2022; Poji¢ and Mastilovi¢ 2013). In this study, a
variety of different preprocessing algorithms were tested.
Different methods yielded the best models, as shown in Sup-
plementary Material S1. Data fusion successfully improved
the prediction of many parameters, as presented in Tables 4
and 5, although multiple different combinations of spectra
yielded the best models. Only two linear regression models
(PCR, PLSR) were tested in this study. Non-linear models
could further improve the predictions, because it is likely
that some of the wheat quality parameters have non-linear
relationships with the signals captured by NIR spectroscopy
(Poji¢ and Mastilovi¢ 2013). However, successful optimiza-
tion of non-linear models often requires a larger number of
flour samples and even more computing time, as many dif-
ferent hyperparameters have to be optimized. Consequently,
the results of this study can serve as a starting point to decide
for which wheat quality parameters it might be worthwhile
to test non-linear models in future studies.

Lastly, in this particular study, the flour fractionation
procedure strongly influenced the model accuracy. Flour
fractionation separates flour components with different prop-
erties. In sieving, this is achieved because different flour
components were milled to different particle sizes, as they
exhibit different properties in milling (Jensen et al. 1982;
Jones et al. 1959). In dough preparation and gluten wash-
ing, the separation is due to the gluten network development
and the inherent property of certain molecules to remain
together in this network when the dough is washed out,
while others are separated by the washing solution (Schopf
et al. 2021). This separation of different flour components
changes the composition of the obtained fractions compared
to flour by enriching and depleting different components
in different fractions. Additionally, different chemical and
enzymatic reactions take place during flour fractionation
and dough preparation, which further alter the properties
of the obtained fractions. As shown in this study in Figs. 2
and 3, this results in spectral differences, which in turn
have a major influence on the model accuracies presented
in Tables 3, 4, and 5 and Supplementary Material S1. The
results of this study emphasize that flour fractionation is a
valuable new method that allows better prediction of wheat
quality compared to flour spectra for many quality param-
eters. However, from the analyses performed in this study,
no exact conclusion can be drawn as to why especially the
50-75 pm and the 75-100 pum fractions as well as gluten
and dough were the most important sample types for the
prediction of many parameters with or without data fusion.
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Further studies could yield more insights into the relation-
ship between wheat quality parameters and flour fractions
by analyzing the detailed composition of the flour fractions.
Additionally, further fractionation methods (e.g., triboelec-
tric separation) that make use of other properties of flour
components for the separation could also be tested for the
prediction of wheat quality.

Conclusion

This study investigated the potential to improve the predic-
tion of wheat quality based on a flour fractionation approach
(sieve fractionation, dough preparation, and gluten wash-
ing) and data fusion using the established techniques of NIR
spectroscopy and chemometrics and a diverse sample set
consisting of 50 commercially available wheat flour samples
with many different qualities, countries of origin and harvest
years. A variety of quality characteristics including protein-
related parameters (protein content, gluten content, Osborne
and SDSS-GMP fractionation methods), Hagberg falling
number, starch damage, SRC, and parameters of rheologi-
cal analyses (farinograph extensograph, alveograph) were
predicted.

Flour fractionation and dough preparation altered the
composition of the obtained fractions and dough compared
to flour, which reflected in spectral differences of their NIR
spectra and enabled a differentiation by PCA. This change
in the information content of the NIR spectra led to a change
in the prediction accuracy for many wheat quality param-
eters when predictions were based on spectra of flour frac-
tions and dough instead of flour spectra. In this way, the
RMSECV was improved between 5.6 and 28.6% for 35 out
of the 41 quality parameters tested. Dough preparation and
gluten washing as well as sieve fractionation each achieved
the best predictions for about half of these parameters. In a
majority of cases, the best models were based on data fusion
of spectra from different sample types. The fractions that
were the most relevant for the improved predictions were the
50-75 pm and the 75-100 um fractions as well as gluten and
dough. For several of the parameters tested, prediction accu-
racies of 0.80 sRZCV <0.96 were achieved using spectra of
flour (especially for protein-related parameters, starch dam-
age, farinograph DDT, alveograph C_,, and W). In contrast,
flour fractionation with or without data fusion improved the
prediction of all of these parameters (apart from protein
content) to 0.87 < R’y <0.97 and also achieved prediction
accuracies of 0.80 <R’-, <0.87 for multiple additional
parameters (for protein-related parameters, farinograph
WAM and DS, extensograph extensibility, alveograph Ie
and K and SH). In addition, the SRC parameters and several
parameters of the rheological analyses were predicted with
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0.70 < R°cy < 0.80 by flour fractionation with and without
data fusion (flour spectra achieved R’y <0.70 here).

The results of this study show that more relevant infor-
mation for the prediction of wheat quality can be gener-
ated when flour fractionation precedes NIR spectroscopy,
as different flour components are enriched and depleted by
the fractionation procedures and chemical and enzymatic
reactions further alter the composition. Additionally, data
fusion can be a valuable approach to improve the prediction
of many wheat quality parameters by combining comple-
mentary information that is present in the spectra of different
sample types. However, it seems that the general predictive
ability of some parameters using NIR spectroscopy and che-
mometrics is limited, especially regarding Hagberg falling
number, SRC parameters, and rheological analyses in gen-
eral. Possible reasons for this are high measurement errors
of reference analyses, the inability of NIR spectroscopy to
detect and distinguish signals relevant for the prediction of
these parameters, and possible non-linear relationships that
cannot be described by the linear models tested in this study.
However, since many different factors affect the prediction
quality simultaneously, it is difficult to determine the exact
reasons for the achieved prediction accuracies.

In summary, for many of the quality parameters tested,
good to very good prediction accuracies with large improve-
ments in the RMSECV were achieved for this diverse sample
set using flour fractionation with or without data fusion com-
pared to flour spectra. Further studies can test this approach
for the prediction of wheat quality using a larger number of
flour samples and possibly also other types of spectroscopic
analyses (e.g., fluorescence, Raman), fractionation meth-
ods (e.g., triboelectric separation), and regression models
(e.g., neural networks). Further studies are also needed to
analyze the composition of these sample types in order to
draw conclusions as to why specific fractions are particularly
important for the prediction of wheat quality. These could
also yield insights into the relationship between flour com-
ponents and flour quality.

The results emphasize that flour fractionation and data
fusion have the potential to be used in the industry as an
extension of conventional NIR spectroscopy and chemo-
metric techniques to predict many wheat quality parame-
ters. To ensure reliability and scalability of the method for
practical application in industrial settings, multiple aspects
should be considered. This includes standardization and
automation of fractionation and measurement procedures
to increase throughput and enhance reproducibility as well
as a cost-benefit analysis that weighs the effort for produc-
tion of flour fractions against the achieved improvement in
prediction accuracy. Furthermore, the sensitivity of predic-
tions based on flour fractions for various influencing factors
should be taken into account. Further studies could analyze
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the influences of grain characteristics (e.g., cultivar, harvest
season, moisture content) and flour milling (milling condi-
tions, flour extraction) as well as flour fractionation and NIR
measurements (equipment, fractionation protocol, measure-
ment parameters) on the prediction accuracies. These influ-
ences should be controlled as best as possible. They neces-
sitate periodic re-training of the models, which is generally
common practice for industrial spectroscopic applications
(e.g., for the prediction models of flour protein content) in
order to adapt the models to changes in product matrices
and processes over time. Also, robust calibration-transfer
methods and validation of models need to be implemented.
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