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Abstract
The accurate and rapid determination of wheat quality is of great importance for the wheat supply chain. Near-infrared 
(NIR) spectroscopy has become an established method for this purpose. So far, however, predictions for most wheat quality 
characteristics are not accurate enough to replace reference measurements, with the exception of protein content. This study 
investigates the potential to improve the prediction of 41 wheat quality parameters (protein- and starch-related parameters, 
solvent retention capacity, farinograph, extensograph, alveograph) based on a flour fractionation approach (sieve frac-
tionation, dough preparation, gluten washing) and data fusion using the established techniques of NIR spectroscopy and 
chemometrics. Results show that preprocessing of flour significantly altered the composition of the samples, which reflected 
in spectral differences of their NIR spectra. This also led to a change in the prediction accuracy for many wheat quality 
parameters. Compared to the prediction using flour spectra, flour fractionation with or without data fusion improved the 
RMSECV between 5.6 and 28.6% for 35 out of the 41 quality parameters tested, leading to R2

CV between 0.80 and 0.96 for 
many of them. Gluten, dough, and the 50–75 µm and the 75–100 µm fractions were particularly important for the improved 
predictions. The best predictions were often based on data fusion of spectra from different sample types, demonstrating the 
importance of using complementary information from different data sources to improve predictions. The results underline 
the potential of this novel approach to be established in the industry as an extension of conventional NIR spectroscopy to 
improve wheat quality prediction.
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Introduction

Wheat is an important raw material for the production of 
many staple foods for humans. It is processed into a wide 
variety of products (Pojić and Mastilović 2013). As the num-
ber of products increased and processing methods became 
more advanced, the industry established more and more 
quality standards. This resulted in the need for more and 
more tests to analyze these quality standards within the 
wheat supply chain. For this reason, a variety of methods for 
determining wheat quality were established over the years 
(Miralbés 2004). These include not only analytical methods 
to examine the constitution of the samples, but also rheologi-
cal methods to determine the functional properties as well 
as baking tests that reflect the end-product quality. However, 
these conventional methods are time-consuming, expensive 
and usually require a large amount of flour and equipment 
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(Miralbés 2004; Pojić and Mastilović 2013). For this reason, 
it has long been established that wheat quality is determined 
indirectly by measuring a parameter that can be determined 
fast and that reliably reflects wheat quality. In practice, this 
is the protein content, as the gluten proteins in particular 
strongly govern the functional and end-product properties 
of wheat. An established method for determining the protein 
content is Near-infrared (NIR) spectroscopy, which allows 
an accurate prediction within just a few minutes. However, 
many studies have shown that the protein content is not a 
suitable indicator of wheat quality, as the correlations with 
other properties (e.g., water absorption, dough development 
time, baking volume) are rather low. Nevertheless, in prac-
tice, the price of wheat is based on protein content, which 
means that farmers are not paid for the actual quality of their 
grain and also use high-nitrogen fertilization to achieve the 
highest possible protein content, which can lead to ground-
water pollution (Gabriel et al. 2017; Nagel-Held et al. 2022, 
2024). Therefore, it is of utmost importance for the entire 
wheat supply chain to find methods that enable an accurate 
and rapid determination of many different wheat quality 
characteristics with as little flour and effort as possible.

Spectroscopy is a suitable method for this purpose, as 
NIR spectroscopy in particular is already widely used to 
determine not only the protein content, but also, e.g., the 
water content, ash content, and the particle size of flour. 
It meets the requirements of speed, low flour quantity, and 
ease of handling and NIR spectrometers are already widely 
available (Pojić and Mastilović 2013). For this reason, 
several studies have tested NIR spectroscopy in particular 
for the prediction of other wheat quality traits, especially 
rheological and end-product characteristics. However, the 
reported predictions are often poor or only good enough for 
screening purposes (Dowell et al. 2006; Gabriel et al. 2017; 
Jirsa et al. 2008; Miralbés 2003, 2004; Nagel-Held et al. 
2022, 2024), which is already a step forward for breeders 
but not good enough for the further wheat supply chain to 
actually replace the reference analyses. One possible new 
approach is to preprocess the flour into flour fractions and 
dough before spectroscopic analysis. The hypothesis behind 
this is that this preprocessing changes the composition of 
the samples by enriching and depleting certain components. 
Additionally, various reactions take place that further alter 
the composition, especially when the gluten network is 
formed during dough preparation. This could also change 
the signals in the spectra and reduce the problematic super-
imposition of signals in NIR spectroscopy, which might 
have a positive effect on the prediction accuracy of various 
wheat quality characteristics. Other studies have already 
shown that NIR spectroscopy can detect changes during 
dough preparation (Alava et al. 2001; Albanell et al. 2012; 
Wesley et al. 1998) and changes specifically in the gluten 
protein structure induced by heat and moisture (Bruun et al. 

2007). Ziegler et al. (2025a) have shown that flour fractiona-
tion resulted in spectral changes of fluorescence spectra and 
significantly improved the prediction of rheological char-
acteristics like the dough development time. Furthermore, 
Ziegler et al. (2025b) have presented promising results for 
an improved prediction of specific loaf volume using flour 
fractionation in combination with NIR spectroscopy. They 
have shown that data fusion is a valuable tool to further 
improve predictions, as complementary information for the 
prediction of baking quality was contained in spectra of dif-
ferent flour fractions.

The aim of this study is to test the potential of the novel 
approach of flour fractionation with and without data fusion 
in combination with NIR spectroscopy to improve the pre-
diction of a wide variety of analytical and rheological meas-
urements of wheat flour. Predicted are protein and wet gluten 
content, Osborne and SDSS-GMP (sodium dodecyl sulfate 
soluble proteins — glutenin macropolymer) fractionation, 
Hagberg falling number, starch damage, and solvent reten-
tion capacity (SRC) as well as farinograph, extensograph, 
and alveograph analyses. The practical relevance of the 
tested methods is ensured by using a very diverse sample set 
consisting of 50 commercially available wheat flour samples 
originating from ten countries and four harvest years.

Material and Methods

Wheat and Flour Samples

The sample set used in this study consisted of 50 commer-
cially available wheat samples, representing mixtures of 
many different cultivars. It was a diverse sample set, because 
samples were harvested in different years (2019 – 2022) 
and were of different qualities although wheat classes were 
mostly unknown. Twenty-seven samples originated from 
Germany while others were grown in Australia, the USA, 
Latvia, Lithuania, Mexico, India, Poland, Romania, and 
Ukraine. The wheat samples were milled by Mühlenchemie 
GmbH & Co. KG (Ahrensburg, Germany) using a Buhler 
MLU 202 laboratory mill. After milling, the ash content 
of the flour samples was adjusted to approximately 0.60%.

Rheological and Analytical Measurements

All used reference analyses and methods as well as the 
obtained parameters are specified in Table 1. For Osborne 
and SDSS-GMP fractionation, detailed method descriptions 
are provided in the subsequent sections. The number of rep-
etitions for every analysis varied between one and three, 
since the amount of flour was limited. Descriptive statistics 
for every obtained parameter can be found in Table 2. For 
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parameters where the number of samples listed in this table 
is 49, the measurement of one sample was missing.

Osborne Fractionation

Flour (100 mg) was extracted in three stages according to 
Wieser et al. (1998). In the first extraction step, the albumin 
and globulin fraction was obtained. After the addition of 1 mL 
of salt solution (400 mmol/L NaCl and 67 mmol/L Na2PO4/
KH2PO4 (pH 7.6)) to the flour, the suspension was vortexed 
for 2 min and stirred for 10 min at 22 °C. Afterwards, the 
suspension was centrifuged (25 min, 22 °C, 3550 rcf) and 
the supernatant was collected in a 2 mL volumetric flask. 
The procedure was repeated once more. Then, the residue 
from the albumin and globulin fraction was extracted three 
times using 0.5 mL of 60% ethanol, each time using the same 
procedure as for the albumin and globulin fraction. In the 
last extraction step, the glutenin fraction was obtained by 
extracting the residue from the gliadin fraction under reduc-
ing conditions using 10 mg/mL dithiothreitol (DTT) in buffer 
solution (0.1 mol/L TRIS-HCl (pH 7.5)/1-propanol (50%, 
v/v) with 12 g urea). After the addition of 1 mL of buffer 
solution to the residue, the suspension was vortexed for 2 min 
and stirred for 30 min in a water bath at 60 °C. Afterwards, 
the suspension was centrifuged (25 min, 22 °C, 3550 rcf) 
and the supernatant was collected in a 2 mL volumetric 
flask. The procedure was repeated once more. The collected 

supernatants in the three volumetric flasks of all three extrac-
tion steps were filled up to 2 mL with the respective solvents, 
filtered (0.45 µm), and separated by ultra-high-performance 
liquid chromatography (UHPLC). Specifications on UHPLC 
separation are provided in Supplementary Material S1.

SDSS‑GMP Fractionation

To obtain the SDS-soluble proteins, 100 mg of flour was 
extracted using 1 mL of SDS solution (1% (w/v) SDS in 
0.05 mol/L NaH2PO4 (pH 6.9)). After vortexing for 2 min 
and stirring for 30 min at 22 °C, the sample was centrifuged 
(25 min, 22 °C, 3550 rcf). The supernatant was collected in 
a 5 mL volumetric flask and the procedure was repeated one 
more time. Afterwards, the GMP fraction was extracted from 
the residue using 1 mL of GMP extraction solution (50% 
(v/v) propan-1-ol, 0.05 mol/L Na2HPO4/KH2PO4 (pH 7.5) 
and 1% (w/v) DTT). The suspension was vortexed for 2 min 
and stirred for 30 min in a water bath at 60 °C before cen-
trifugation (25 min, 22 °C, 3550 rcf). The supernatant was 
collected in a 2 mL volumetric flask and the extraction was 
repeated one more time. The collected supernatants in the 
two volumetric flasks were filled up with the respective sol-
vents, filtered (0.45 µm), and separated by UHPLC. Specifi-
cations on UHPLC separation are provided in Supplementary 
Material S1.

Table 1   List of reference analyses with used methods, number of replicates, and measured parameters

Reference analyses (abbreviation) Method Number 
of repli-
cates

Measured parameters

Flour protein ICC 159 2 Protein content
Wet gluten; Gluten Index ICC 155 2 Wet gluten content; Gluten Index
Osborne fractionation See section “Osborne Fractionation” 3 Osborne total extractable proteins; albumin and globu-

lin; gliadin; glutenin; gliadin/glutenin ratio
SDSS-GMP fractionation See section “SDSS-GMP Fractionation” 3 SDSS-GMP total proteins; SDSS; GMP; GMP-HMW; 

GMP-LMW
Hagberg falling number ICC 107/1 2 Hagberg falling number
Starch damage AACC 76-31 1 Starch damage
Solvent retention capacity (SRC) Method based on AACC 56-11.02.02 

using an automated system
1 Water; sucrose; lactic acid; sodium carbonate

Farinograph (FA) ICC 115 2 Dough development time DDT; water absorption 
WAM; stability S; dough softening DS (10 min after 
start); quality number FQN

Extensograph (EX) ICC 114/1 2 Energy (45 min); resistance (45 min); extensibil-
ity (45 min); maximum (45 min); ratio number 
(45 min); ratio number max. (45 min)

Alveograph (AL) ICC 121 1 Maximum pressure Cmax; tenacity P; extensibility L; 
swelling index G; deformation energy W; ratio P/L; 
elasticity index Ie; strength coefficient K; strain 
hardening index SH; minimum of first derivative 
Dmin; maximum of first derivative Dmax
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Flour Fractionation and Dough Preparation

Air jet sieving of flour samples was performed using the 
200LS-N Hosokawa Alpine AG (Augsburg, Germany) air jet 
sieve machine at 2500–2600 Pa. Five different sieves (mesh 
sizes: 32 µm, 50 µm, 75 µm, 100 µm) were used to sieve 

70 g of flour into the following five sieve fractions: < 32 µm, 
32–50 µm, 50–75 µm, 75–100 µm, > 100 µm. Each fraction 
was sieved for 10 min before the flour remaining on the sieve 
was transferred to the next largest sieve.

Dough was prepared in a 50 g farinograph using 30 g of 
flour (14% moisture) and 0.60 g of salt according to ICC No. 

Table 2   Descriptive statistics and squared Pearson correlation coefficient of individual quality parameters and protein content

Parameter r2
Pearson; protein (-) Number of 

samples (-)
Mean ± SD Minimum Maximum Range

Protein (%) 1.00 50 12.2 ± 1.6 9.2 16.5 7.3
Wet gluten (%) 0.83 50 27.9 ± 4.2 19.5 38.0 18.6
Gluten Index (-) 0.01 50 93 ± 8 59 100 41
Osborne total (g/100 g) 0.92 50 11.91 ± 1.63 9.38 16.54 7.17
Albumin and globulin (mg/g) 0.24 50 23.11 ± 2.12 18.76 28.55 9.80
Gliadin (mg/g) 0.93 50 65.30 ± 10.97 47.02 98.18 51.16
Glutenin (mg/g) 0.79 50 30.70 ± 4.45 23.47 41.96 18.49
Gliadin/glutenin (-) 0.14 50 2.13 ± 0.18 1.70 2.67 0.97
SDSS/GMP total (g/100 g) 0.83 50 10.82 ± 1.53 8.00 14.95 6.95
SDSS (mg/g) 0.72 50 93.14 ± 11.11 75.47 126.34 50.87
GMP (mg/g) 0.63 50 15.08 ± 5.70 2.83 28.31 25.48
GMP-HMW (mg/g) 0.48 50 3.75 ± 1.66 0.40 7.22 6.82
GMP-LMW (mg/g) 0.66 50 11.33 ± 4.18 2.43 21.47 19.04
Hagberg falling number (s) 0.16 50 411 ± 82 296 668 372
Starch damage (Ai%) 0.09 50 95.24 ± 0.50 94.34 96.58 2.24
SRC water (%) 0.10 50 66.3 ± 3.3 56.3 73.2 16.9
SRC sucrose (%) 0.46 50 106.0 ± 5.2 94.8 119.8 25.0
SRC lactic acid (%) 0.29 50 132.2 ± 13.8 98.1 157.5 59.4
SRC sodium carbonate (%) 0.00 50 89.8 ± 6.3 75.3 104.1 28.8
FA DDT (min) 0.50 50 2.70 ± 2.05 1.18 8.35 7.17
FA WAM (%) 0.30 50 58.2 ± 2.6 54.3 65.3 11.0
FA S (min) 0.55 49 7.31 ± 5.46 1.54 24.77 23.23
FA DS (FE) 0.63 50 47 ± 28 3 112 109
FA FQN (-) 0.49 49 80 ± 64 23 291 268
EX energy 45 min (cm2) 0.66 49 100 ± 25 40 163 123
EX resistance 45 min (BU) 0.01 49 313 ± 44 195 408 213
EX extensibility 45 min (mm) 0.74 49 164 ± 25 125 231 106
EX maximum 45 min (BU) 0.30 49 447 ± 73 208 560 352
EX ratio number 45 min (-) 0.29 49 2.0 ± 0.4 1.2 3.0 1.9
EX ratio number (Max.) 45 min (-) 0.03 49 2.8 ± 0.5 1.7 3.7 2.1
AL Cmax (-) 0.72 50 2542 ± 444 1834 3742 1908
AL P (mm H2O) 0.20 50 92 ± 17 62 138 76
AL L (mm) 0.28 50 93 ± 23 47 141 94
AL G (-) 0.27 50 21.2 ± 2.7 15.2 26.4 11.2
AL W (10−4 J) 0.74 50 276 ± 82 145 530 385
AL P/L (-) 0.02 50 1.07 ± 0.44 0.52 2.94 2.42
AL Ie (%) 0.75 50 53.8 ± 5.7 37.4 69.8 32.4
AL K (-) 0.10 50 4766 ± 746 3445 6199 2754
AL SH (-) 0.46 50 1.78 ± 0.09 1.51 1.99 0.48
AL Dmin (-) 0.10 50 −2.49 ± 0.48 −3.77 −1.82 1.95
AL Dmax (-) 0.16 50 6.72 ± 0.70 5.44 8.41 2.97
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115 (30 °C, 63 rpm, optimum water absorption WAM) until 
the dough development time was reached. Two 15 g dough 
pieces were washed out with a glutomatic 2202 (Ing. Stefan 
Kastenmüller GmbH, Martinsried, Germany) according to 
ICC No. 155 using 80 µm metal sieves. The four obtained 
gluten pieces as well as the remaining dough were covered 
and rested in a temperature-controlled chamber for 10 min 
at 25 °C before they were frozen at −28 °C. This procedure 
was repeated three times in total to obtain three dough pieces 
and six gluten pieces for each flour sample. Furthermore, the 
collected starch slurry was centrifuged at 3046 rcf for 1 min 
using a VWR Mega Star 600R centrifuge (VWR interna-
tional GmbH, Darmstadt, Germany). The precipitate was 
also frozen at −28 °C and the supernatant discarded. All 
frozen samples were freeze-dried for 24 h in a Christ Alpha 
1–4 (Martin Christ Gefriertrocknungsanlagen GmbH, Oster-
ode, Germany) on the day after preparation. The freeze-dried 
samples were milled using the Ultra Centrifugal Mill ZM 
200 (0.5 mm sieve, 12,000  rpm) (Retsch GmbH, Haan, 
Germany).

Flours and sieve fractions were stored in airtight contain-
ers in the dark at around 15 °C to minimize sample changes. 
Freeze-dried dough, gluten, and starch samples were addi-
tionally stored in aluminum containers to prevent permea-
tion of water vapor. They were brought to room temperature 
(21 ± 1 °C) 24 h prior to spectroscopic analyses.

Spectroscopic Analysis

Near-infrared spectra were recorded using the MPA (Bruker 
Optik GmbH, Ettlingen, Germany) in diffuse reflectance 
mode as absorbance spectra. A rotating cup (quartz glass, 
Ø 5.1 cm) was used to measure samples with a resolution 
of 8 cm−1, a scanner velocity of 10 kHz, and 64 scans per 
measurement. Six measurements were performed for every 
sample. In between measurements, samples were thoroughly 
mixed. Before each measurement, a slight compaction was 
carried out by lightly tapping the filled cup on the table for 
ten times.

Chemometric Analysis

All analyses were performed using MATLAB (R2021b, The 
MathWorks, Inc). The workflow is presented in Fig. 1 and 
described in the following sections. As each of the 50 flour 
samples was fractionated into five sieve fractions, gluten, 
starch, and dough, spectra of a total of 450 samples were 
recorded. Due to the sixfold determination of spectra, a total 
of 2700 spectra were available for analysis.

NIR spectra were preprocessed using a number of dif-
ferent preprocessing routines including Savitzky-Golay 
smoothing (order, 2; frame length, 25) and differentiation 
(order, 2; frame length, 13) filters, detrending (order, 2), 

highpass filter (as described by Mburu et al. (2021)), stand-
ard normal variate transformation (SNV), multiplicative 
scatter correction (MSC), extended multiplicative scatter 
correction (EMSC), min-max normalization, 1. norm and 
2. norm normalization, and autoscaling of variables. Differ-
ent individual and combined preprocessing approaches of 
the methods named above were tested. In every case, mean 
spectra were calculated after preprocessing for each of the 50 
samples of every sample type (flour, sieve fractions, gluten, 
starch, dough) and subsequently used for further analyses.

Principal component analysis (PCA) of spectra of flour, 
flour fractions, and dough was performed to analyze score 
and loading plots for spectral differences. Prediction models 
for all 41 parameters of different rheological and analytical 
measurements listed in Table 1 were calculated using NIR 
spectra of flour, flour fractions, and dough. Two different 
model-building approaches were followed after spectral pre-
processing. In the first approach (a), the prediction models 
were calculated based on the individual spectra of flour, flour 
fractions, and dough. In the second approach (b), data fusion 
was carried out prior to the model-building process by con-
catenating mean preprocessed spectra of different sample 
types. Data fusion was only tested within a particular frac-
tionation method. The reason is that the fusion of spectra 
across different fractionation methods (i.e., spectra of sieve 
fractions and spectra of dough, gluten, or starch) would dras-
tically increase the amount of work and equipment needed 
to obtain all necessary spectra for prediction, making the 
procedure irrelevant for practical application.

After preprocessing and data fusion, principal component 
regression (PCR) and partial least squares regression (PLSR) 
were tested as prediction models for every of the 41 param-
eters. One to ten components were tested for modeling. For 
every model, a leave-one-out cross-validation (LOOCV) was 
performed and the predictive ability was assessed by cal-
culating metrics according to Eqs. 1 to 3. The best models 
were determined by the minimum root mean squared error 
of cross-validation (RMSECV). To compare the predictive 
performance of different models for the same parameter, 
the percentage improvement or worsening of the RMSECV 
IRMSECV was calculated according to Eq. 4. Positive values 
of IRMSECV indicate that the RMSECV of the model data is 
improved compared to the model reference, while negative 
values indicate that the RMSECV is worsened. Especially 
in case of data fusion, it is always important to assess the 
effect of data fusion on the predictive performance, as data 
fusion is only beneficial if it actually leads to an improved 
prediction compared to models based on the individual data. 
To assess the effect of data fusion using Eq. 4, the mini-
mum RMSECV of the two individual models was used for 
the RMSECV

model reference
 . For example, model 1 was based 

on data 1 and yielded RMSECV 1. Model 2 was based on 
data 2 and yielded RMSECV 2. Model 3 was based on the 
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Fig. 1   Workflow for the chemometric analysis
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concatenated data 1 and 2 and yielded RMSECV 3. Then, 
RMSECV 3 would be used for RMSECV

model data
 and the 

minimum value of RMSECV 1 and RMSECV 2 would be 
used for RMSECV

model reference
.

The following metrics were calculated for every model of 
all 41 wheat quality parameters listed in Table 2.

where �2
CV is the coefficient of determination of cross-

validation, RMSECV is the root mean squared error of 
cross-validation, NRMSECVrange is the range normalized 
RMSECV, � is the total number of samples of the parameter 
that is predicted (49 or 50 samples according to Table 2), �� 
is the measured value of the i-th sample, �̂� is the predicted 
value of the i-th sample, 

−
� is the mean value of the sample 

set (listed for each of the 41 parameters in Table 2), �max is 
the maximum value of the sample set (see Table 2), �min is 
the minimum value of the sample set (see Table 2), �RMSECV 
is the improvement of the RMSECV , and RMSECV

model data
 

is the RMSECV of the model that is to be compared to the 
RMSECV of the reference model RMSECV

model reference
.

It should be emphasized that in this study, the R2
CV was 

specified as the coefficient of determination according to 
Eq. 1. As an important difference compared to the squared 
Pearson correlation coefficient, which is also frequently 
reported in the literature, this metric can actually become 
negative. A negative coefficient of determination shows that 
the predictions based on the model are very poor, even worse 
than if the mean value of the sample set was simply used for 
the prediction.

Results and Discussion

Wheat quality predictions for a total of 41 parameters cov-
ering a broad spectrum of established analytical and rheo-
logical analyses for flour characterization (protein-related 
parameters, Hagberg falling number, starch damage, SRC, 
farinograph, extensograph, alveograph) were calculated 

(1)�2

CV= 1 −

∑�

�=1

�

�� − �̂�
�2

∑�

�=1

�

��−
−
�
�2

(2)RMSECV =

�

∑�

�=1

�

�� − �̂�
�2

�

(3)NRMSECVrange [%] =
RMSECV

ymax− ymin

⋅ 100%

(4)�RMSECV [%] = 100% −
RMSECV

model data

RMSECV
model reference

⋅ 100%

based on spectra of flour, flour fractions, and dough with and 
without data fusion. The discussion of the obtained results is 
divided into four parts. In the first section, the spectral dif-
ferences of flour, flour fractions, and dough are presented. In 
the second part, the potential of flour fractionation and data 
fusion for improved prediction of wheat quality is evaluated 
using the calculated improvement of the RMSECV IRMSECV. 
Next, the individual quality parameters and their achieved 
predictive performances are discussed in more detail. In the 
final section, a general discussion of influencing factors on 
the predictions is presented.

Analysis of Spectral Difference of Flour Fractions 
and Dough

Example spectra of flour, sieve fractions, gluten, starch, 
and dough are presented in Fig. 2. Spectra were SNV trans-
formed to remove the influence of particle size differences. 
It can be seen that the general characteristics of the spectra 
appear very similar to the naked eye and that only the glu-
ten spectrum shows clear differences compared to the other 
spectra.

To investigate the spectral differences in more detail, 
two separate PCAs were performed for the two fractiona-
tion methods to analyze their effects on the composition and 
spectra of the obtained fractions separately. Score and load-
ing plots are shown in Fig. 3. In the loading plots, four dif-
ferent spectral regions (I–IV) are marked for further discus-
sion. Loadings were interpreted with the help of a literature 
review and related to possible differences in the composition 
of flour, flour fractions, and dough. However, NIR spectra 
are characterized by broad and overlapping peaks and one 
molecular vibration usually contributes to multiple peaks in 
the spectrum because of different combination and overtone 
vibrations (Workman and Weyer 2012). Consequently, clear 
peak assignments are difficult, which is why the assignments 
found in the literature are sometimes contradictory. For this 
reason, the discussion of peak assignments in the following 
sections of this study does not claim to be exhaustive and 
was kept more general.

PCA of Flour, Dough, Gluten, and Starch Spectra

A clear separation of scores can be observed for the spec-
tra of flour, gluten, starch, and dough along the principal 
components PC1 and PC2. PC3, on the other hand, does not 
seem to separate the spectra of different fractions, but the 
spectra of different samples within each fraction.

The loadings of PC2, which clearly separates flour from 
the other fractions, show two interesting peaks in region II 
(around 5100 cm−1) and in region IV (around 7100 cm−1). 
Both peaks are known to be related to the OH vibrations of 
water (Bruun et al. 2007; Salgó and Gergely 2012; Workman 
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and Weyer 2012) and therefore this separation along PC2 
is thought to be caused by differences in the water content. 
Because gluten, starch, and dough have been freeze-dried, 
the water content of these fractions is much lower compared 
to the water content of flour. The scores of the gluten spectra 
are somewhat closer to flour, because gluten showed hygro-
scopic behavior during the measurements, which caused the 
water content to increase after freeze-drying.

The loadings of PC1 show many peaks related to protein 
vibrations. Peaks in region I (around 4200–4500 cm−1) are 
known to be related to CH vibrations. They originate from 
proteins, carbohydrates, and also lipids. However, peaks in 
this region show high sensitivity to protein secondary struc-
ture (α-helix, β-sheet, random coil) and are also influenced 
by amino acid side chain vibrations and their microenviron-
ment (Bruun et al. 2007; Salgó and Gergely 2012; Workman 
and Weyer 2012). Peaks in region II (around 4900 cm−1) 
originate from protein NH vibrations, but they are located 
at the flank of the water peak and are therefore masked by 
water signals (Workman and Weyer 2012). Signals in region 
III (around 5750–5900 cm−1) are due to CH and SH vibra-
tions. Again, many protein signals originating from different 
protein secondary structures (α-helix, β-sheet), cysteine, and 
amino acid side chain vibrations as well as their microenvi-
ronment and their interactions are responsible for signals in 
this region (Bruun et al. 2007; Workman and Weyer 2012). 
The separation of sample types along PC1 is in accordance 
with this observation. Gluten has a much higher protein con-
tent than the other samples, which is why its distance from 
the other scores is greatest. However, the protein content 
of dough is also higher than the protein content of flour, 
because its water content was reduced by freeze-drying, 

which is why the scores of dough are closest to the scores 
of gluten. Starch is protein depleted, which is why it has the 
most negative scores among the flour fractions. It is interest-
ing to note that the scores of flour cannot be separated from 
the scores of starch along PC1, although the protein content 
of flour is clearly higher than the protein content of starch. 
This could indicate that the separation of dough and gluten 
from starch and flour along PC1 is not only caused by the 
increased protein content of dough and gluten. It might also 
be influenced to a large extent by the changes in protein 
structure and changes in the interactions of proteins with 
other flour constituents caused by the development of the 
gluten network during dough formation. This observation is 
supported by the fact that other researchers have successfully 
monitored differences in protein structure caused, e.g., by 
gluten hydration, denaturation, wheat maturation, and dough 
formation using NIR spectroscopy (Bruun et al. 2007; Salgó 
and Gergely 2012; Wesley et al. 1998; Workman and Weyer 
2012). Despite the general non-specificity of NIR peaks, the 
results of the study show that NIR spectra contain a large 
amount of information about the protein structures and their 
changes in various processes. This information could in turn 
be useful for predicting rheological wheat dough character-
istics in particular.

The loadings of PC3, whose scores distinguish between 
different samples rather than between fractions, show some 
similarities to PC1 for peaks especially in regions I, II, and 
III. This underlines that differences in the samples regarding 
water content, protein content, and structure, but also differ-
ences due to carbohydrates and lipids (e.g., region I, around 
4200–4300 cm−1) (Bruun et al. 2007; Salgó and Gergely 
2012; Workman and Weyer 2012), can be detected by NIR 

Fig. 2   Mean NIR spectra of all 50 flour samples for sieve fractions and flour (left) and dough, gluten, starch, and flour (right). Spectra were pre-
processed by SNV transformation
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Fig. 3   PCA of spectra of sieve fractions and flour (left column) and of spectra of dough, gluten, starch, and flour (right column). Spectra were 
SNV transformed before calculation of PCA. Score plots are presented in the upper and middle rows and loading plots with indicated regions for 
discussion I–IV are shown in the lower row
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spectroscopy and lead to a differentiation of samples. It is 
interesting to note that the PC3 scores, especially for glu-
ten, but also to a certain extent for starch and dough, show 
greater scattering than the PC3 scores of flour. This could 
indicate that the differences between the samples could be 
emphasized and amplified by the fractionation procedure, 
which could also have a positive effect on wheat quality 
predictions if these differences are related to differences in 
the property of interest that is to be predicted.

PCA of Flour and Sieve Fractions

The scores of flour spectra can be clearly separated from 
the scores of the sieve fractions by PC1. PC2 and PC3, on 
the other hand, are responsible for a separation of different 
sieve fractions, although neighboring particle size ranges 
overlap to a certain extent (more for PC3 than for PC2). For 
PC2, the sieve fractions show a linear trend towards lower 
scores with increasing particle size. The scores of PC3 show 
a curvature trend for the sieve fractions, with the 50–75 µm 
fraction reaching the maximum with the highest score val-
ues. When comparing the loadings for PC1 to PC3 of this 
PCA to the loadings of the PCA of flour, dough, gluten, and 
starch spectra, it becomes clear that the general trend and 
the observed regions and peaks are quite similar, even if the 
order of the loadings is different.

For flour and sieve fractions, loadings of PC1 show peaks 
related to water vibrations in region II (around 5100 cm−1) 
and in region IV (around 7100 cm−1) (Bruun et al. 2007; 
Salgó and Gergely 2012; Workman and Weyer 2012). This 
is in accordance with the reduced water content of the sieve 
fractions compared to flour, which is caused by the siev-
ing operation. Furthermore, the score values of PC1 tend to 
become smaller with decreasing particle size. Also, some 
samples tend to have even lower scores than others, because 
groupings of samples with larger negative score values for 
PC1 are visible. This might be caused by differences in room 
temperature and moisture during sieving, because the sam-
ples with the most negative scores for PC1 were prepared on 
days where these conditions were the most different from the 
other preparation days. This could have resulted in the water 
content of these samples being even lower than samples that 
were prepared on other days.

The loadings of PC2 are more difficult to interpret 
because they do not show many clear peaks throughout the 
entire wavenumber range. More generally, it seems that dif-
ferences in water content, proteins, carbohydrates, and lipids 
are responsible for the differentiation of sieve fractions along 
PC2. It appears that flour spectra are most similar to the 
50–75 µm fraction based on the scores of PC2. However, the 
exact compositional differences contributing to this differ-
entiation cannot be determined based on this PCA analysis.

The separation of sieve fractions based on PC3 is less 
clear, because the scores overlap to a greater extent. How-
ever, the loadings of PC3 are quite similar to the loadings 
of PC1 of the PCA of flour, dough, gluten, and starch spec-
tra, especially for region I (around 4200–4500 cm−1) and 
region III (around 5750–5900 cm−1). As discussed in the 
corresponding section of the other PCA, these two regions 
are strongly influenced by protein vibrations and indicate 
differences in protein secondary structure (α-helix, β-sheet, 
random coil), amino acids, and their interactions and micro-
environment. However, vibrations due to lipids and carbohy-
drates are also present, in particular in region I (Bruun et al. 
2007; Salgó and Gergely 2012; Workman and Weyer 2012). 
Further analysis showed that the sieve fractions are actually 
protein-enriched and that this protein enrichment follows 
the trend observed in the scores of PC3, meaning that the 
50–75 µm fraction had the highest protein content (results 
not shown). This indicates that, besides possible other com-
positional differences, differences in protein content and pos-
sibly also differences in protein structure of these fractions 
are captured by NIR spectroscopy and contribute to the dif-
ferentiation along PC3. It has already been observed before 
that the protein contents of different flour particle sizes differ 
and that different types of proteins are enriched in different 
particle size ranges. For example, free “wedge” proteins are 
milled to really small particle sizes and are therefore present 
in smaller particle size fractions, whereas “adherent” pro-
teins retain larger particle sizes because they are connected 
to starch granules and covered by a lipid layer (Coulson and 
Sim 1965; Jones et al. 1959). It is possible that not only the 
protein enrichment but also the separation of proteins based 
on other characteristics (e.g., structural differences) by sieve 
fractionation can contribute to improved wheat quality pre-
dictions based on NIR spectra.

Lastly, it can again be observed that the scattering of 
scores along PC1, PC2, and PC3 is greater for the sieve 
fractions than for flour. For PC1, the main cause seems to 
be differences in water content, as discussed above, but for 
PC2 and PC3, it appears that other differences between the 
samples may be emphasized and amplified by the sieving 
procedure. This could also have a positive effect on the pre-
dictions if these differences relate to differences in the prop-
erty of interest that is to be predicted.

Evaluation of the Potential of Flour Fractionation 
and Data Fusion to Improve Wheat Quality 
Predictions Based on the Improvement 
of the RMSECV IRMSECV

For all 41 wheat quality parameters tested in this study, 
prediction models using spectra of flour and flour fractions 
obtained by the two fractionation methods (sieve frac-
tionation; dough preparation followed by gluten washing) 
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with and without data fusion methods (approach (b) and 
(a), respectively) were investigated. The best predictions 
achieved by approach (a) using individual spectra of flour, 
flour fractions, and dough are presented in Table 3. Table 4 
lists improved predictions obtained by data fusion in 
approach (b) and finally Table 5 gives an overview of the 
overall best predictions comprising methods from Table 3 
and Table 4.

This part of the discussion is not intended to focus on 
the individual quality parameters and the corresponding 
predictions, but on the general ability of flour fractionation 
and data fusion as novel methods to improve wheat quality 
predictions. Consequently, the following sections discuss 
and use the improvement of the RMSECV IRMSECV to com-
pare models to demonstrate the general potential of the used 
methods for improved predictions. A more detailed discus-
sion about individual parameters can be found in the section 
“Analysis of the Predictive Performance of the Best Models 
for Individual Wheat Quality Parameters.”

The results in Table 3 show that individual spectra of 
flour fractions and dough significantly changed the pre-
dictive performance of models compared to flour spec-
tra. Dough preparation and gluten washing, as one of 
the fractionation methods, enabled an improved predic-
tion for 14 of the 41 parameters with the improvement of 
the RMSECV IRMSECV ≥ 5.0% compared to flour spectra, 
with IRMSECV ranging between 5.0 and 25.0%. Especially, 
the spectra of dough and also the spectra of gluten were 
able to achieve the improvements. Starch spectra never 
achieved an improvement ≥ 5.0% compared to flour spec-
tra; in fact, the prediction usually deteriorated. In com-
parison, the individual spectra of the sieve fractionation 
method improved the prediction of 27 of the 41 parameters 
by at least 5.0% compared to flour spectra (IRMSECV ranged 
from 5.0 to 17.9%). The spectra of the 50–75 μm and the 
75–100 μm fractions achieved the best predictions most 
frequently here.

Table 4 shows that data fusion can be a valuable method 
to achieve further improvements in the predictions. Improve-
ments of the RMSECV IRMSECV of at least 5.0% compared 
to flour spectra and individual spectra of the correspond-
ing fractionation method as well as compared to the cor-
responding models of the individual constituents of the 
fused data model were achieved for many different param-
eters and both fractionation methods. The dough prepara-
tion and gluten washing method combined with data fusion 
was able to improve the prediction of 20 parameters with 
IRMSECV ≥ 5.0%, whereby in particular the combination of 
gluten and flour spectra as well as the combination of glu-
ten and dough spectra contributed to this. In contrast, data 
fusion models of sieve fractions achieved improvements of 
at least 5.0% for 13 of the 41 parameters. In most cases, a 
combination of two spectra of sieve fractions also presented 

the greatest improvement, although the exact combination 
of spectra varied for different parameters.

Lastly, Table 5 allows a combined evaluation of the best 
results regarding the potential of both flour fractionation 
methods with and without data fusion to achieve improved 
predictions of wheat quality parameters compared to flour 
spectra. Only for six out of the 41 parameters, no improve-
ment of the RMSECV IRMSECV ≥ 5.0% was achieved by flour 
fractionation with or without data fusion. For 35 param-
eters, the highest achieved improvements IRMSECV compared 
to flour spectra were in the range of 5.6–28.6%, although 
IRMSECV was actually ≥ 15.0% for many of them. For 17 of 
these parameters, dough preparation followed by gluten 
washing was the fractionation method that yielded the best 
results, whereby this was achieved six times by single spec-
tra (especially of dough) and 11 times by combined spec-
tra after data fusion (especially the combinations of gluten 
and flour as well as gluten and dough). Sieve fractionation 
achieved the best predictions for 16 parameters, seven times 
by single spectra (especially 50–75 µm and 75–100 µm frac-
tion) and nine times by combined spectra after data fusion 
(especially combinations of two sieve fractions). For the 
parameters “SRC sucrose” and “EX energy 45 min,” both 
fractionation methods yielded equally good improvements.

In conclusion, both fractionation methods tested in this 
study contributed almost equally to the overall best models 
obtained. Spectra of sample types on which the best mod-
els were most frequently based were dough and gluten as 
well as the 50–75 µm and 75–100 µm fractions. The overall 
best models achieved were dominated by models based on 
combined spectra after data fusion. The observed predictive 
qualities are a result of the changes in composition caused 
by the fractionation methods (separation as well as chemical 
and enzymatic reactions), which in turn alter spectral sig-
nals, as also presented and discussed in the section “Analy-
sis of Spectral Difference of Flour Fractions and Dough.” 
As a result, relevant spectral signals for the prediction of the 
property of interest may be enhanced or the superimposition 
of irrelevant and interfering signals may be reduced in the 
spectra of flour fractions and dough compared to the spectra 
of flour, which could be a possible reason for improved pre-
dictions. For example, further analyses have shown that the 
50–75 µm fraction is more protein-enriched compared to the 
other sieve fractions (results not shown). It is known from 
literature that proteins with different properties enrich in dif-
ferent particle size ranges (Coulson and Sim 1965; Jones 
et al. 1959). Possibly, the NIR signals of proteins enriched 
in this sieve fraction are more relevant for the prediction of 
certain wheat quality parameters. Furthermore, NIR spectra 
of gluten and dough could contain additional valuable infor-
mation about rheological properties, because NIR spectros-
copy is able to capture information related to protein second-
ary structure (changes) and interactions of proteins, water, 
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and starch (Alava et al. 2001; Albanell et al. 2012; Bruun 
et al. 2007; Wesley et al. 1998). Other studies have already 
shown that NIR spectra of dough can contribute to improved 
predictions of wheat baking quality (Gabriel et al. 2017; 
Ziegler et al. 2025b). However, further analyses of the exact 
compositions of the different flour fractions are necessary 
to draw more detailed conclusions from the composition to 
the predictive ability. Another factor influencing the predic-
tion quality is the data fusion strategy applied. Especially 
the complex quality characteristics (e.g., rheological param-
eters) depend on many different flour components and their 
interactions in specific processes such as kneading. In some 
cases, data fusion of different spectra may yield improved 
predictions if the components and signals relevant for the 
prediction of a specific parameter have been separated into 
several fractions by the fractionation process. Thus, when 
complementary information contained in spectra of different 
fractions is combined in a prediction model by data fusion, 
the predictive performance is improved. Data fusion meth-
ods in general have already proven useful in the food context 
(Borràs et al. 2015) and also particularly for wheat quality 
predictions, as Nagel-Held et al. (2022) achieved improved 
predictions when flour spectra of different spectroscopic 
methods were combined. Ziegler et al. (2025b) showed the 
potential of different data fusion approaches for an improved 
prediction of wheat baking quality, also involving NIR spec-
tra of flour fractions and dough. However, this study is the 
first to apply data fusion of spectra of flour fractions and 
dough for the prediction of a large number of analytical and 
rheological parameters. In summary, the results of this study 
underline the strong potential of flour fractionation and data 
fusion for the improvement of a wide range of wheat quality 
predictions compared to predictions based on flour spectra.

Analysis of the Predictive Performance of the Best 
Models for Individual Wheat Quality Parameters

Wheat can be analyzed for its quality in the grain stage as 
well as in the flour stage after milling using many differ-
ent characterization methods. Wheat flour quality is not 
only influenced by the characteristics of the cereal grain, 
but for example also by milling conditions and flour extrac-
tion. It can be defined by various analytical and rheologi-
cal parameters that characterize both flour composition and 
flour functionality. In this study, a total of 41 analytical and 
rheological wheat flour and dough quality parameters were 
predicted, including protein-related parameters, starch prop-
erties, solvent retention capacity analysis as well as the most 
commonly performed rheological analyses (farinograph, 
extensograph, alveograph). The best models for all param-
eters are presented in Table 5. The best predictions obtained 
with flour spectra are compared with the best predictions 
obtained with spectra of flour fractions with or without data *  Im
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Table 4   Cross-validation results for overall best predictions achieved using data fusion for both fractionation methods in approach (b). Only 
results of data fusion models that achieved an improvement of the RMSECV IRMSECV of ≥ 5.0% compared to flour, individual spectra of the cor-
responding fractionation method and also compared to the corresponding models of the individual constituents of the fused data model are pre-
sented (the latter is indicated in the table). Highlighted in bold letters are results with R2

CV ≥ 0.70

Parameter Dough, gluten, starch Sieve fractions

Spectra combina-
tion (-)

R2
CV (-) RMSECV IRMSECV (%) 

(compared to)
Spectra combination (-) R2

CV (-) RMSECV IRMSECV (%) (compared 
to)

Protein (%)
Wet gluten (%) Gluten + flour 0.94 1.1 8.3 (flour)  < 32 μm + 50–75 μm 0.95 0.9 10.0 (50–75 μm)
Gluten Index (-)
Osborne total 

(g/100 g)
32–50 μm + 50–75 μm 0.92 0.47 17.6 (50–75 μm)

Albumin and 
globulin 
(mg/g)

Gliadin (mg/g) Flour + starch 0.92 3.17 7.0 (flour)  < 32 μm + 50–75 μm 0.94 2.58 16.0 (50–75 μm)
32–50 μm + 50–75 μm 0.94 2.58 16.0 (50–75 μm)

Glutenin (mg/g) Gluten + flour 0.83 1.82 10.3 (flour)
Gliadin/glutenin 

(-)
SDSS/GMP total 

(g/100 g)
 < 32 μm + 32–50 μm + 50–75 μm 0.97 0.27 10.0 

(< 32 μm + 50–75 μm)
SDSS (mg/g)  < 32 μm + 50–75 μm 0.91 3.38 12.7 (50–75 μm)
GMP (mg/g)
GMP-HMW 

(mg/g)
GMP-LMW 

(mg/g)
Hagberg falling 

number (s)
Starch damage 

(Ai%)
 < 32 μm + 50–75 μm + flour 0.88 0.17 5.6 (< 32 μm + flour)

SRC water (%) Flour + starch 0.69 1.9 5.0 (flour)
SRC sucrose (%) Flour + starch 0.77 2.5 7.4 (flour)
SRC lactic acid 

(%)
SRC sodium 

carbonate (%)
 < 32 μm + 50–75 μm 0.71 3.4 5.6 (50–75 μm)

FA DDT (min) Gluten + flour 0.87 0.73 19.8 (flour)
FA WAM (%) Flour + starch 0.83 1.1 8.3 (flour)  < 32 μm + 50–75 μm 0.86 1.0 9.1 (50–75 μm)

50–75 μm + 75–100 μm 0.86 1.0 9.1 (50–75 μm)
50–75 μm + flour 0.87 1.0 9.1 (50–75 μm)

FA S (min) Gluten + dough 0.72 2.84 7.8 (dough)
FA DS (FE)
FA FQN (-) Gluten + dough 0.67 36 7.7 (dough)
EX energy 

45 min (cm2)
Gluten + flour 0.78 12 20.0 (flour)  < 32 μm + 50–75 μm + 75–100 μ

m + > 100 μm + flour
0.78 12 7.7 (< 32 μm + 50–75 

μm + 75–100 μm + 
> 100 μm)

Gluten + dough 0.78 12 20.0 (dough)

EX resistance 
45 min (BU)

Gluten + flour 0.34 36 5.3 (gluten)

EX extensibility 
45 min (mm)

Gluten + flour 0.83 10 16.7 (flour)

EX maximum 
45 min (BU)

EX ratio number 
45 min (-)

EX ratio number 
(Max.) 45 min 
(-)

Gluten + flour 0.42 0.4 20.0 (gluten)
Gluten + dough 0.36 0.4 20.0 (gluten)

AL Cmax (-)  < 32 μm + > 100 μm + flour 0.86 165 6.3 (< 32 μm + 
> 100 μm)

AL P (mm H2O) Gluten + flour 0.78 9 10.0 (flour) 50–75 μm + 75–100 μm 0.79 8 11.1 (75–100 μm)
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fusion. For selected parameters, the predictions of the best 
models are compared in Fig. 4.

Protein‑Related Parameters

The prediction of protein content from NIR flour spectra 
has been an established technique in the industry for many 
years because it can be predicted very well with R2 values 
usually > 0.90, often > 0.95, as many studies have reported 
in the past (Dowell et al. 2006; Jirsa et al. 2008; Miralbés 
2003, 2004; Mutlu et al. 2011; Nagel-Held et al. 2022, 2024; 
Williams 2020). Wet gluten content is often predicted as 
well, because the gluten content is especially relevant for 
flour quality due to its ability to form the viscoelastic gluten 
network. Its predictive quality is often slightly lower than 
protein content, but the R2 is usually > 0.85 (Dowell et al. 
2006; Nagel-Held et al. 2022; Williams 2020). The results of 
this study are consistent with these results, as protein content 
and wet gluten content were predicted from flour spectra 
with R2

CV of 0.96 and 0.93, respectively. Flour fractionation 
did not improve the prediction of protein content, but the 
prediction of wet gluten content was improved to an R2

CV of 
0.95 by using the combination of spectra from the < 32 μm 
and the 50–75 μm fractions.

As the focus in the industry shifts more towards protein 
quality than total protein content, there is a growing interest 
in predicting protein composition from spectroscopic data to 
replace the time-consuming and expensive reference meas-
urements (Schuster et al. 2023). However, not many studies 
have reported predictions for protein composition. In this 
study, both Osborne fractionation and SDSS-GMP fractiona-
tion were performed and predicted. The gliadin and glutenin 
contents were predicted acceptably to well with an R2

CV of 
0.90 and 0.79, respectively, using flour spectra and an R2

CV 
of 0.94 and 0.83, respectively, using combinations of spec-
tra of sieve fractions. However, the content of albumin and 

globulin and the gliadin/glutenin ratio were not predicted 
well with R2

CV < 0.50 achieved with both flour and fractions 
spectra. These results are consistent with those of Dowell 
et al. (2006) and Schuster et al. (2023), who both showed 
similar trends for the predictive ability of the above protein 
fractions. No results for the prediction of SDSS-GMP frac-
tionation were found in the literature. However, this study 
achieved good results for the prediction of SDSS, GMP, and 
GMP-LMW fractions using flour spectra (R2

CV of 0.85, 0.72, 
and 0.72, respectively). Interestingly, for all three protein 
fractions, spectra of dough achieved the greatest improve-
ment in the prediction (R2

CV of 0.91, 0.80, and 0.80, respec-
tively). The GMP-HMW fraction achieved only a moderate 
predictive quality using flour spectra with an R2

CV of 0.69 
without any improvement by flour fractionation.

In general, the good predictability of protein content 
is due to the fact that this is an analytical quality param-
eter for which classical absorbers exist in the NIR region 
(e.g., CH, SH, but especially NH and CONH2) (Pojić and 
Mastilović 2013; Workman and Weyer 2012). In this study, 
the improved models for protein parameters based on spectra 
of flour fractions were often achieved by a combination of 
two sieve fractions. Apart from Gluten Index, the 50–75 µm 
fraction was always included in these models. First, this 
shows that complementary information about protein com-
position and concentration is contained in spectra of differ-
ent fractions, which is why data fusion models often led to 
the best results. Second, the importance of the 50–75 µm 
fraction for protein parameters is in accordance with the 
results presented in the section “Analysis of Spectral Dif-
ference of Flour Fractions and Dough.” The 50–75 µm 
fraction showed the highest protein enrichment among the 
sieve fractions (results not shown), which also reflected in 
the PCA score plot. One possible reason why the spectra of 
this fraction are especially relevant for the prediction is that 
the higher protein content of this fraction simply increased 

Table 4   (continued)

Parameter Dough, gluten, starch Sieve fractions

Spectra combina-
tion (-)

R2
CV (-) RMSECV IRMSECV (%) 

(compared to)
Spectra combination (-) R2

CV (-) RMSECV IRMSECV (%) (compared 
to)

AL L (mm) Gluten + flour 0.63 14 17.6 (flour)
AL G (-) Gluten + flour 0.62 1.7 15.0 (flour)  < 32 μm + 50–75 μm 0.55 1.8 5.3 (< 32 μm)

50–75 μm + 75–100 μm 0.57 1.8 5.3 (50–75 μm)
AL W (10−4 J) 50–75 μm + flour 0.90 26 13.3 (Flour)
AL P/L (-) Gluten + flour 0.45 0.33 13.2 (flour)
AL Ie (%) Gluten + dough 0.85 2.3 17.9 (dough)
AL K (-)
AL SH (-) Gluten + flour 0.77 0.05 16.7 (gluten)

Gluten + dough 0.80 0.05 16.7 (gluten)
AL Dmin (-)
AL Dmax (-) Flour + dough 0.72 0.37 5.1 (flour)
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Table 5   Summary of best predictions achieved using flour spectra and best improvements achieved using either individual spectra of flour frac-
tions (approach (a)) or combined spectra by data fusion (approach (b)). The improvement of the RMSECV IRMSECV compared to flour spectra is 
indicated. Highlighted in bold letters are results with R2

CV ≥ 0.70 for flour spectra and results with R2
CV ≥ 0.70 and IRMSECV ≥ 5.0% for improved 

predictions. Further model specifications (preprocessing method, model type, number of components) can be found in Supplementary Material S1

* Improvement of the RMSECV IRMSECV compared to flour spectra

Parameter Best prediction from flour spectra Improved prediction using spectra of flour fractions and dough (individual spectra or combina-
tions)

R2
CV (-) RMSECV NRM-

SECVrange 
(%)

Spectrum or Combination (-) R2
CV (-) RMSECV NRM-

SECVrange 
(%)

IRMSECV* (%)

Protein (%) 0.96 0.3 4.12 No improvement ≥ 5.0%
Wet gluten (%) 0.93 1.2 6.46  < 32 μm + 50–75 μm 0.95 0.9 4.84 25.0
Gluten Index (-) 0.03 7 17.08 75–100 μm 0.41 6 14.64 14.3
Osborne total (g/100 g) 0.86 0.60 8.37 32–50 μm + 50–75 μm 0.92 0.47 6.56 21.7
Albumin and globulin (mg/g) 0.20 1.88 19.19 50–75 μm 0.43 1.59 16.23 15.4
Gliadin (mg/g) 0.90 3.41 6.67  < 32 μm + 50–75 μm 0.94 2.58 5.05 24.3

32–50 μm + 50–75 μm 0.94 2.58 5.05 24.3
Glutenin (mg/g) 0.79 2.03 10.98 Gluten + flour 0.83 1.82 9.85 10.3
Gliadin/glutenin (-) 0.47 0.14 14.44 No improvement ≥ 5.0%
SDSS/GMP total (g/100 g) 0.94 0.37 5.33  < 32 μm + 32–50 μm + 50–75 μm 0.97 0.27 3.89 27.0
SDSS (mg/g) 0.85 4.32 8.50 Dough 0.91 3.24 6.37 25.0
GMP (mg/g) 0.72 3.00 11.78 Dough 0.80 2.52 9.89 16.0
GMP-HMW (mg/g) 0.69 0.92 13.50 No improvement ≥ 5.0%
GMP-LMW (mg/g) 0.72 2.20 11.56 Dough 0.80 1.85 9.72 15.9
Hagberg falling number (s) 0.72 44 11.83 No improvement ≥ 5.0%
Starch damage (Ai%) 0.87 0.18 8.04  < 32 μm + 50–75 μm + flour 0.88 0.17 7.59 5.6
SRC water (%) 0.66 2.0 11.84  < 32 μm 0.76 1.7 10.06 15.0
SRC sucrose (%) 0.73 2.7 10.80 50–75 μm 0.77 2.5 10.00 7.4

Flour + starch 0.77 2.5 10.00 7.4
SRC lactic acid (%) 0.67 7.9 13.30 No improvement ≥ 5.0%
SRC sodium carbonate (%) 0.61 3.9 13.55  < 32 μm + 50–75 μm 0.71 3.4 11.81 12.8
FA DDT (min) 0.80 0.91 12.70 Gluten + flour 0.87 0.73 10.19 19.8
FA WAM (%) 0.79 1.2 10.91 50–75 μm + flour 0.87 1 9.1 16.7
FA S (min) 0.59 3.45 14.86 Gluten + dough 0.72 2.84 12.23 17.7
FA DS (FE) 0.77 14 12.85 Dough 0.81 12 11.01 14.3
FA FQN (-) 0.53 43 16.05 Gluten + dough 0.67 36 13.44 16.3
EX energy 45 min (cm2) 0.67 15 12.20 Gluten + flour 0.78 12 9.76 20.0

Gluten + dough 0.78 12 9.76 20.0
 < 32 μm + 50–75 μm + 75–100 μ

m + > 100 μm + flour
0.78 12 9.76 20.0

EX resistance 45 min (BU) 0.05 43 20.19 Gluten + flour 0.34 36 16.91 16.3
EX extensibility 45 min (mm) 0.75 12 11.33 Gluten + flour 0.83 10 9.44 16.7
EX maximum 45 min (BU) 0.35 58 16.48 Gluten 0.48 52 14.78 10.3
EX ratio number 45 min (-) 0.29 0.4 21.06 No improvement ≥ 5.0%
EX ratio number (Max.) 45 min 

(-)
0.07 0.5 23.82 Gluten + flour 0.42 0.4 19.05 20.0

AL Cmax (-) 0.81 190 9.96  < 32 μm + > 100 μm + flour 0.86 165 8.65 13.2
AL P (mm H2O) 0.68 10 13.16 50–75 μm + 75–100 μm 0.79 8 10.53 20.0
AL L (mm) 0.45 17 18.09 Gluten + flour 0.63 14 14.9 17.6
AL G (-) 0.44 2.0 17.86 Gluten + flour 0.62 1.7 15.18 15.0
AL W (10−4 J) 0.87 30 7.80 Dough 0.91 24 6.24 20.0
AL P/L (-) 0.28 0.38 15.71 50–75 μm 0.46 0.33 13.64 13.2
AL Ie (%) 0.75 2.9 8.96 Gluten + dough 0.85 2.3 7.1 20.7
AL K (-) 0.78 350 12.71 50–75 μm 0.83 309 11.22 11.7
AL SH (-) 0.44 0.07 14.59 Gluten + dough 0.80 0.05 10.42 28.6
AL Dmin (-) 0.71 0.26 13.34 75–100 μm 0.79 0.23 11.8 11.5
AL Dmax (-) 0.68 0.39 13.14 75–100 μm 0.79 0.32 10.78 17.9
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Fig. 4   Fit comparison for selected best models from Table 5
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absorbance signals of vibrations originating from protein. 
Another (additional) reason could be that certain proteins 
have accumulated in this fraction due to the separation of 
particle sizes whose signals are more relevant for the pre-
diction of protein fractions. Interestingly, the SDSS- and 
GMP-related fractions are best predicted using spectra of 
dough. Possibly, the proteins in these fractions show spe-
cific structural changes during dough formation which can 
be differentiated by NIR spectroscopy because NIR spectra 
contain information about amino acid composition and also 
about protein secondary structure (Bruun et al. 2007; Salgó 
and Gergely 2012; Workman and Weyer 2012). This could 
be the reason for improved predictions of certain protein 
fractions using dough spectra.

Starch Properties (Hagberg Falling Number, Starch 
Damage)

Two important starch-related properties of interest are the 
Hagberg falling number and starch damage. Starch damage 
relates to the amount of starch granules damaged during 
milling, which depends on the grain hardness and the mill-
ing procedure. It is susceptible to α-amylase activity, which 
affects starch paste consistency and also the sugar supply in 
yeast dough fermentation (Cauvain 2015; Miralbés 2004). 
The Hagberg falling number is a measure of the α-amylase 
activity, because it measures the decreasing viscosity of a 
starch paste (Delwiche et al. 2018; Edwards 2007).

The prediction of both parameters by NIR spectroscopy 
of wheat has been tested in numerous studies, but only 
starch damage was successfully predicted with R2 values 
often > 0.90 (Lancelot et al. 2021; Miralbés 2004; Pojić and 
Mastilović 2013; Williams 2020). The prediction accuracy 
achieved in this study using flour spectra is similar to these 
results. The improvement achieved by a combination of 
sieve fractions was only minor. As damaged and undam-
aged starch are not chemically different, it is unlikely that 
NIR spectroscopy can distinguish between both. It is more 
likely to be an indirect calibration caused by correlations of 
starch damage to other parameters that can be predicted from 
NIR spectra (Dowell et al. 2006). It could also be a result 
of the ability of NIR spectroscopy to distinguish differences 
in hardness, which relates to the content of damaged starch 
(Pojić and Mastilović 2013).

Hagberg falling number has not yet been successfully 
predicted in the literature (Delwiche et al. 2018; Dowell 
et al. 2006; Nagel-Held et al. 2024). Surprisingly, in this 
study, an R2

CV of 0.72 was achieved by flour spectra. No 
improvement was observed by flour fractionation and data 
fusion. It is unlikely that NIR spectroscopy can distinguish 
α-amylase from other proteins (Delwiche et al. 2018). Con-
sequently, the better prediction achieved in this study may be 
a result of an indirect calibration enabled by specific sample 

set characteristics. However, the highest correlation to the 
other parameters tested in this study was an r2

Pearson of 0.45 
with the farinograph dough stability.

It may be an intuitive assumption that the prediction of 
starch parameters can be improved by NIR spectra of the 
starch fraction. However, this was not the case. One pos-
sible cause is that the starch fraction underwent such major 
changes during preparation that it is no longer possible to 
establish a relationship with the flour parameters. The reason 
for this is that the starch suspension was stored during the 
three production rounds of dough and gluten and only cen-
trifuged at the end of the process for each flour sample. Dur-
ing this time, many (enzymatic) reactions could have taken 
place. Furthermore, not all starch particles were separated 
from the suspension by the centrifugation process, resulting 
in the loss of some material that could have been relevant 
for the prediction.

Solvent Retention Capacity

SRC analysis is based on the exaggerated swelling of differ-
ent flour polymeric compounds (gluten proteins, damaged 
starch, solvent-accessible arabinoxylans/pentosans) in dif-
ferent solvents (water, 5% lactic acid solution, 5% sodium 
carbonate solution, 50% sucrose solution) without heat or 
shear. The pattern of SRC values is used to estimate flour 
and baking quality (Kweon et al. 2011).

Until now, the prediction of SRC values has not been a 
focus of studies predicting wheat quality parameters, as it is 
a technique less commonly used to characterize flour qual-
ity compared to the other flour characteristics tested in this 
study. Only Lancelot et al. (2021) tested the prediction of 
SRC values using NIR spectra of flour and obtained good 
predictions with R2

Prediction > 0.80 for water, lactic acid, and 
sodium carbonate SRC and an R2

Prediction of 0.75 for sucrose 
SRC. In contrast, the prediction results in this study are 
worse and sucrose SRC is the parameter that can be pre-
dicted best. For flour spectra, R2

CV ranged from 0.61 to 0.73 
while the results were improved to R2

CV between 0.71 and 
0.77 for water, sucrose, and sodium carbonate SRC, mainly 
using the < 32 µm and the 50–75 µm fractions. No improve-
ment was achieved for the lactic acid parameter. As the 
composition of the different flour fractions in relation to the 
polymers captured by SRC is largely unclear, no conclusion 
can be drawn as to why these particular fractions appear to 
be important for the predictions. A possible explanation for 
the better predictions of Lancelot et al. (2021) is that they 
only predicted the SRC parameters of the same flour after 
different storage conditions and times. As a consequence, 
there will have been greater similarities between the cali-
bration and validation dataset than if they had used com-
pletely different flour samples, which may have improved 
the predictions.
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Generally, the swelling behavior of different polymers 
relates to their chemical structure, as this structure is respon-
sible for the solvent-polymer interactions (Kweon et al. 
2011). Different structural characteristics contribute to dif-
ferent vibrations detected by NIR spectroscopy. From the 
results reported in the literature (Miralbés 2004; Pojić and 
Mastilović 2013; Williams 2020) and also in this study, it 
appears that NIR spectroscopy can detect and distinguish 
signals related to different major flour components. How-
ever, it is likely that the swelling behavior is not only influ-
enced by the amounts of different polymers, but also by their 
specific structural characteristics (e.g., protein secondary 
structure, amylose and amylopectin ratios). Other studies 
suggest that NIR spectroscopy can capture at least some of 
this structural information and the interactions of flour com-
ponents with water (Alava et al. 2001; Bruun et al. 2007; 
Salgó and Gergely 2012). However, it seems that not all rel-
evant information for the prediction of the swelling behavior 
can be detected by NIR spectroscopy, neither from flour nor 
from fractions or dough spectra, which is why the achieved 
predictive quality in this study is only moderate to good.

Rheological Parameters (Farinograph, Extensograph, 
Alveograph)

There is a great interest in the prediction of rheological 
parameters, because the many empirical rheological meas-
urements available to evaluate wheat quality are time-con-
suming and require a large amount of flour. Because they 
simulate the flour behavior in processes such as kneading or 
proofing, they provide important information on flour quality 
(Edwards 2007; Pojić and Mastilović 2013). The most com-
monly established methods are farinograph, extensograph, 
and alveograph measurements, which is why the parameters 
of these methods were predicted in this study.

Farinograph water absorption is the only parameter 
for which most studies agree on the prediction accuracy. 
Reported R2 values usually range from around > 0.70 
to < 0.90 (Dowell et al. 2006; Miralbés 2004; Mutlu et al. 
2011; Nagel-Held et al. 2022; Pojić and Mastilović 2013; 
Williams 2020). This is in accordance with the results in this 
study, because an R2

CV of 0.79 was achieved using spectra 
of flour and an R2

CV of 0.87 was obtained using the com-
bination of the 50–75 µm fraction and flour spectra. Miral-
bés (2004) attributed the good prediction to the fact that 
water absorption is mostly governed by macromolecules like 
proteins and damaged starch and that NIR spectra contain 
information about these. Possibly, the proteins (and other 
compounds) enriched in the 50–75 µm fraction strongly 
influence water absorption, which is why this fraction again 
contributed to an improved prediction.

Contrary to this, the reported predictions for some of the 
rheological parameters are consistently not good enough for 

screening purposes. This is the case, for example, for the 
extensograph ratio number and resistance, where R2 values 
are usually < 0.50 (Nagel-Held et al. 2022, 2024), which is 
also in accordance with the results of this study. It seems 
that some parameters simply cannot be related to signals 
captured by NIR spectroscopy and that the novel approach 
of flour fractionation and data fusion can also not achieve an 
acceptable predictive quality for these parameters.

For most rheological parameters, the reported prediction 
accuracies in the literature vary and range from R2 values 
indicating that they cannot be predicted from NIR spectra 
of wheat (often between 0 and 0.50) to R2 values that show 
an acceptable prediction by NIR spectroscopy (> 0.70; 
sometimes even > 0.80). This is for example the case for the 
farinograph dough development time, stability, and dough 
softening; for the extensograph energy and extensibility; and 
for the alveograph parameters W, P, L, and P/L (Dowell et al. 
2006; Jirsa et al. 2008; Miralbés 2003, 2004; Mutlu et al. 
2011; Nagel-Held et al. 2022, 2024; Pojić and Mastilović 
2013). Interestingly, acceptable to good predictions with 
0.75 ≤ R2

CV ≤ 0.87 were achieved from flour spectra for mul-
tiple parameters in this study, including farinograph dough 
development time and dough softening; extensograph exten-
sibility; and alveograph Cmax, W, Ie, and K. Flour fractiona-
tion and data fusion improved the results of these param-
eters to 0.81 ≤ R2

CV ≤ 0.91, often involving spectra of gluten 
and dough. Furthermore, the predictions of the parameters 
farinograph stability, extensograph energy and alveograph 
P, SH, Dmin, and Dmax were improved by flour fractionation 
and data fusion to R2

CV values between 0.72 and 0.80, most 
often using spectra of gluten and dough. Sometimes, sieve 
fractions were also involved in the best models for the pre-
dictions of these parameters, including most frequently the 
50–75 µm and the 75–100 µm fractions, among others. Data 
fusion proved to be an important contributor to the improved 
predictions, as in many cases the best models were achieved 
using a combination of spectra. This again indicates that 
complementary information is contained in spectra of flour, 
flour fractions, and dough.

In summary, for many of the rheological parameters pre-
dicted in this study, higher prediction accuracies were already 
achieved using NIR spectra of flour compared to the results 
reported in the literature. Furthermore, the novel approach of 
flour fractionation and data fusion was able to improve the 
predictions of many of the tested parameters. However, the 
general predictive quality of rheological parameters was lim-
ited to R2

CV < 0.90. Various reasons for the inconsistency in 
the predictive qualities reported for rheological parameters in 
numerous studies are discussed. This involves especially the 
characteristics of the samples used (varieties, growing loca-
tions, harvest years, number of samples) (Dowell et al. 2006; 
Nagel-Held et al. 2024; Pojić and Mastilović 2013). Many 
studies have shown that the predictions are generally better 
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when samples are classified according to these characteristics 
and then separate models are calculated for different classes 
(Dowell et al. 2006; Nagel-Held et al. 2024; Miralbés 2003). 
Although the sample set in this study is small and a true vali-
dation of results has to be performed, the sample set is very 
diverse, because the wheat samples were commercially avail-
able mixtures originating from ten countries and four harvest 
years. The results therefore show that NIR spectroscopy has 
the potential to predict many rheological parameters with 
acceptable accuracy without sample classification if the sam-
ple set is diverse enough to include many possible variations in 
the calibration dataset. The results could be further improved 
by including many more samples from more locations and har-
vest years in the model-building process. However, the predic-
tive quality of rheological parameters may generally be limited, 
because the errors of the reference analyses are generally much 
larger compared to analytical determinations of, e.g., protein 
content (Nagel-Held et al. 2024; Pojić and Mastilović 2013).

General Discussion of Factors Influencing 
the Predictive Quality

The prediction accuracy is affected by various general influ-
encing factors. An overview is presented in Fig. 5. Some 
of these factors have already been outlined in the previous 
discussion.

Two main factors that have already been discussed in 
previous sections are the properties of the samples used 
and the accuracy of the reference analyses (Dowell et al. 

2006; Nagel-Held et al. 2024; Pojić and Mastilović 2013). 
When establishing prediction models, the number of sam-
ples should be large and the samples should cover a wide 
range of the property of interest (e.g., low to high protein 
content, short to long dough development times). However, 
as samples cannot be custom made, this is difficult to con-
trol. Also, the distribution of sample values in this study was 
not ideal for some wheat quality parameters, as can be seen 
in Fig. 4. Nevertheless, the results of this study show that 
prediction models can be successfully established based on 
a diverse sample set (varieties, growing location, harvest 
years). This suggests that the predictions may further be 
improved if even more samples are used for modeling, from 
even more countries of origin, harvest years, etc. For some 
wheat quality parameters, the achievable prediction accuracy 
may be limited in advance by the accuracy of the reference 
analyses, which is especially true for rheological analyses 
(Nagel-Held et al. 2024; Pojić and Mastilović 2013). It is 
likely that the limited prediction accuracies of rheological 
parameters achieved in this study in Tables 3, 4, and 5 are 
(at least partly) a result of this. A larger number of repeti-
tions of these reference analyses could contribute to reduced 
measurement errors and consequently to increased predic-
tion accuracies in future studies.

The characteristics of NIR spectroscopy strongly govern 
the achieved prediction accuracies. These include specific 
challenges that NIR spectroscopy faces (e.g., the broad 
peaks and the superimposition of strong water signals 
originating from OH vibrations in multiple regions of the 

Fig. 5   Overview of factors influencing the predictive quality
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spectrum) (Workman and Weyer 2012) as well as the general 
detectability and distinguishability of signals that relate to 
the property of interest that is to be predicted (Delwiche 
et al. 2018). This means that the property of interest must 
be related in some way to molecules present in the sample 
which show signals in NIR spectra in a measurable quan-
tity. Furthermore, it is necessary that NIR spectroscopy is 
able to distinguish these signals from signals of other mol-
ecules that contribute to the same vibrations due to simi-
lar or identical molecular structures. As some researchers 
have noted in the past, it is likely that NIR spectroscopy 
can only achieve this to a limited extent. For example, dam-
aged and undamaged starch are not chemically different and 
also the spectra of amylose and amylopectin are very similar 
(Dowell et al. 2006; Pojić and Mastilović 2013). Regarding 
protein-related vibrations, NIR spectroscopy can distinguish 
between different protein conformations (Bruun et al. 2007; 
Salgó and Gergely 2012; Workman and Weyer 2012), but 
it is unlikely that it can, for example, detect a specific pro-
tein (e.g., α-amylase) because of this (Delwiche et al. 2018). 
On top of this, it has been suggested multiple times that 
some signals in NIR spectra originate from the interactions 
of different molecules (e.g., water, carbohydrates, proteins) 
(Alava et al. 2001; Wesley et al. 1998), but it is unclear 
to what extent NIR spectroscopy can distinguish between 
the exact carbohydrates or proteins that participate in the 
interactions. Consequently, it has been suggested before that 
many of the achieved prediction accuracies may be results of 
indirect calibrations, especially regarding correlations to the 
protein content as a property that can be predicted very well 
from NIR spectra due to the characteristic protein vibrations 
(Dowell et al. 2006; Miralbés 2004; Schuster et al. 2023). As 
presented in Table 2, the protein content is also correlated to 
multiple wheat quality parameters which showed good pre-
diction accuracies in this study shown in Table 5 (especially 
protein fractions and rheological parameters). However, the 
achieved prediction accuracies using flour spectra are often 
higher than the simple correlations to protein content (e.g., 
for wet gluten, SDSS-GMP fractionation, some farinograph 
and alveograph parameters). Furthermore, the predictions 
of many of these and additional parameters were improved 
using flour fractionation with or without data fusion. In sum-
mary, it is therefore likely that NIR calibrations of wheat 
quality are to some extent indirect, but it appears that for 
some wheat quality parameters, additional information can 
be captured by NIR spectroscopy to improve the predictions 
compared to the simple correlations to protein content.

The chemometric method used to establish the prediction 
model also has a major influence on the achieved predic-
tion accuracy. The interactions of the chosen preprocessing 
algorithm(s) and the data fusion method (if applicable) as 
well as the model type (linear, non-linear) and the exact 
model itself are crucial for the success or failure of the 

modeling. Consequently, it is necessary to optimize all of 
the above points to achieve the highest possible prediction 
accuracy using the exact methods tested. However, this is 
still a question of trial and error, which makes the model 
optimization a computationally intensive process, depending 
on how extensive the tested methods are (Borràs et al. 2015; 
Du et al. 2022; Pojić and Mastilović 2013). In this study, a 
variety of different preprocessing algorithms were tested. 
Different methods yielded the best models, as shown in Sup-
plementary Material S1. Data fusion successfully improved 
the prediction of many parameters, as presented in Tables 4 
and 5, although multiple different combinations of spectra 
yielded the best models. Only two linear regression models 
(PCR, PLSR) were tested in this study. Non-linear models 
could further improve the predictions, because it is likely 
that some of the wheat quality parameters have non-linear 
relationships with the signals captured by NIR spectroscopy 
(Pojić and Mastilović 2013). However, successful optimiza-
tion of non-linear models often requires a larger number of 
flour samples and even more computing time, as many dif-
ferent hyperparameters have to be optimized. Consequently, 
the results of this study can serve as a starting point to decide 
for which wheat quality parameters it might be worthwhile 
to test non-linear models in future studies.

Lastly, in this particular study, the flour fractionation 
procedure strongly influenced the model accuracy. Flour 
fractionation separates flour components with different prop-
erties. In sieving, this is achieved because different flour 
components were milled to different particle sizes, as they 
exhibit different properties in milling (Jensen et al. 1982; 
Jones et al. 1959). In dough preparation and gluten wash-
ing, the separation is due to the gluten network development 
and the inherent property of certain molecules to remain 
together in this network when the dough is washed out, 
while others are separated by the washing solution (Schopf 
et al. 2021). This separation of different flour components 
changes the composition of the obtained fractions compared 
to flour by enriching and depleting different components 
in different fractions. Additionally, different chemical and 
enzymatic reactions take place during flour fractionation 
and dough preparation, which further alter the properties 
of the obtained fractions. As shown in this study in Figs. 2 
and 3, this results in spectral differences, which in turn 
have a major influence on the model accuracies presented 
in Tables 3, 4, and 5 and Supplementary Material S1. The 
results of this study emphasize that flour fractionation is a 
valuable new method that allows better prediction of wheat 
quality compared to flour spectra for many quality param-
eters. However, from the analyses performed in this study, 
no exact conclusion can be drawn as to why especially the 
50–75 µm and the 75–100 µm fractions as well as gluten 
and dough were the most important sample types for the 
prediction of many parameters with or without data fusion. 
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Further studies could yield more insights into the relation-
ship between wheat quality parameters and flour fractions 
by analyzing the detailed composition of the flour fractions. 
Additionally, further fractionation methods (e.g., triboelec-
tric separation) that make use of other properties of flour 
components for the separation could also be tested for the 
prediction of wheat quality.

Conclusion

This study investigated the potential to improve the predic-
tion of wheat quality based on a flour fractionation approach 
(sieve fractionation, dough preparation, and gluten wash-
ing) and data fusion using the established techniques of NIR 
spectroscopy and chemometrics and a diverse sample set 
consisting of 50 commercially available wheat flour samples 
with many different qualities, countries of origin and harvest 
years. A variety of quality characteristics including protein-
related parameters (protein content, gluten content, Osborne 
and SDSS-GMP fractionation methods), Hagberg falling 
number, starch damage, SRC, and parameters of rheologi-
cal analyses (farinograph extensograph, alveograph) were 
predicted.

Flour fractionation and dough preparation altered the 
composition of the obtained fractions and dough compared 
to flour, which reflected in spectral differences of their NIR 
spectra and enabled a differentiation by PCA. This change 
in the information content of the NIR spectra led to a change 
in the prediction accuracy for many wheat quality param-
eters when predictions were based on spectra of flour frac-
tions and dough instead of flour spectra. In this way, the 
RMSECV was improved between 5.6 and 28.6% for 35 out 
of the 41 quality parameters tested. Dough preparation and 
gluten washing as well as sieve fractionation each achieved 
the best predictions for about half of these parameters. In a 
majority of cases, the best models were based on data fusion 
of spectra from different sample types. The fractions that 
were the most relevant for the improved predictions were the 
50–75 µm and the 75–100 µm fractions as well as gluten and 
dough. For several of the parameters tested, prediction accu-
racies of 0.80 ≤ R2

CV ≤ 0.96 were achieved using spectra of 
flour (especially for protein-related parameters, starch dam-
age, farinograph DDT, alveograph Cmax and W). In contrast, 
flour fractionation with or without data fusion improved the 
prediction of all of these parameters (apart from protein 
content) to 0.87 ≤ R2

CV ≤ 0.97 and also achieved prediction 
accuracies of 0.80 ≤ R2

CV ≤ 0.87 for multiple additional 
parameters (for protein-related parameters, farinograph 
WAM and DS, extensograph extensibility, alveograph Ie 
and K and SH). In addition, the SRC parameters and several 
parameters of the rheological analyses were predicted with 

0.70 < R2
CV < 0.80 by flour fractionation with and without 

data fusion (flour spectra achieved R2
CV < 0.70 here).

The results of this study show that more relevant infor-
mation for the prediction of wheat quality can be gener-
ated when flour fractionation precedes NIR spectroscopy, 
as different flour components are enriched and depleted by 
the fractionation procedures and chemical and enzymatic 
reactions further alter the composition. Additionally, data 
fusion can be a valuable approach to improve the prediction 
of many wheat quality parameters by combining comple-
mentary information that is present in the spectra of different 
sample types. However, it seems that the general predictive 
ability of some parameters using NIR spectroscopy and che-
mometrics is limited, especially regarding Hagberg falling 
number, SRC parameters, and rheological analyses in gen-
eral. Possible reasons for this are high measurement errors 
of reference analyses, the inability of NIR spectroscopy to 
detect and distinguish signals relevant for the prediction of 
these parameters, and possible non-linear relationships that 
cannot be described by the linear models tested in this study. 
However, since many different factors affect the prediction 
quality simultaneously, it is difficult to determine the exact 
reasons for the achieved prediction accuracies.

In summary, for many of the quality parameters tested, 
good to very good prediction accuracies with large improve-
ments in the RMSECV were achieved for this diverse sample 
set using flour fractionation with or without data fusion com-
pared to flour spectra. Further studies can test this approach 
for the prediction of wheat quality using a larger number of 
flour samples and possibly also other types of spectroscopic 
analyses (e.g., fluorescence, Raman), fractionation meth-
ods (e.g., triboelectric separation), and regression models 
(e.g., neural networks). Further studies are also needed to 
analyze the composition of these sample types in order to 
draw conclusions as to why specific fractions are particularly 
important for the prediction of wheat quality. These could 
also yield insights into the relationship between flour com-
ponents and flour quality.

The results emphasize that flour fractionation and data 
fusion have the potential to be used in the industry as an 
extension of conventional NIR spectroscopy and chemo-
metric techniques to predict many wheat quality parame-
ters. To ensure reliability and scalability of the method for 
practical application in industrial settings, multiple aspects 
should be considered. This includes standardization and 
automation of fractionation and measurement procedures 
to increase throughput and enhance reproducibility as well 
as a cost-benefit analysis that weighs the effort for produc-
tion of flour fractions against the achieved improvement in 
prediction accuracy. Furthermore, the sensitivity of predic-
tions based on flour fractions for various influencing factors 
should be taken into account. Further studies could analyze 
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the influences of grain characteristics (e.g., cultivar, harvest 
season, moisture content) and flour milling (milling condi-
tions, flour extraction) as well as flour fractionation and NIR 
measurements (equipment, fractionation protocol, measure-
ment parameters) on the prediction accuracies. These influ-
ences should be controlled as best as possible. They neces-
sitate periodic re-training of the models, which is generally 
common practice for industrial spectroscopic applications 
(e.g., for the prediction models of flour protein content) in 
order to adapt the models to changes in product matrices 
and processes over time. Also, robust calibration-transfer 
methods and validation of models need to be implemented.
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