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A B S T R A C T

Bentonite plays a critical role in engineered barrier systems designed for radioactive waste storage in geological 
repositories especially in crystalline formations. Ensuring its long-term stability under realistic hydro
geochemical conditions is vital for evaluating the safety of these repositories. This study investigated the in
fluence of controlled water flow in a shear zone on the erosion of bentonite through a 4.5-year Long-Term In-Situ 
Test (LIT) at the Grimsel Test Site, Switzerland. Compacted Ca-Mg-type FEBEX bentonite rings (with 90 % 
montmorillonite content) were positioned in-situ in an emplacement borehole intersecting a water-conducting 
shear zone providing direct contact with low-mineralized glacial meltwater. X-ray computed tomography 
scanning, along with digital rock physics methods, were used to quantify bentonite mass loss and the contact 
shear zone aperture distribution on over-cored LIT samples. A Random Forest classifier, a machine learning 
technique, was used for segmentation, which enabled more precise quantification of bentonite mass loss and 
improved fault characterization. This approach used multiphase segmentation, allowing accurate distinction 
between different material phases in the cored interval, which is essential for resolving complex interactions in 
heterogeneous systems. The selection of the correct region of interest was crucial for minimizing segmentation 
errors and improving mass loss quantification by reducing interferences from non-relevant structures. The 
aperture distribution between the three boreholes over-cored within the shear zone was evaluated with a mean 
thickness of 2.90 ± 1.09 mm (2σ). Furthermore, the bentonite mass loss was computed from the scanned images 
and compared with mobilised montmorillonite colloid masses, continuously sampled in the water from obser
vation boreholes (0.11–0.12 m and 6 m distance) measured by inductively coupled plasma mass spectrometry 
(ICP-MS) and laser-induced breakdown detection (LIBD) techniques. The data evaluation of both techniques used 
in this study provided erosion rates <2 kg/m2/y, which are at least two orders of magnitude below the mass loss 
assessment rates of 500 to 1500 kg/m2/y defined by safety case considerations of the Swedish Nuclear Fuel and 
Waste Management Company (Svensk Kärnbränslehantering Aktiebolag, SKB) and the Finnish company POSIVA 
handling the final disposal of the spent nuclear fuel generated by its owners, the nuclear plant operators Teol
lisuuden Voima and Fortum. The creation of a digital twin model for the bentonite-water-shear zone system 
provided new insights into the erosion processes showing inhomogeneous erosion in contact with real fracture 
geometries.
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1. Introduction

The concept of a passive multi-barrier system in a geological disposal 
facility is generally considered for the long-term isolation of radioactive 
waste from the biosphere (Sellin and Leupin, 2013). Beside the host rock 
as natural geological barrier, the engineered barrier system (EBS) en
hances safety through different materials such as corrosion-resistant 
canisters or low-permeable buffer material between waste packages 
and host rock. The buffer is often composed of bentonite, with high 
montmorillonite content, sometimes mixed with additional materials e. 
g., quartz sand. The key properties of a bentonite-based buffer are the 
low hydraulic permeability, the self-sealing ability due to the swelling 
pressure, and the long-term mineralogical stability (Sellin and Leupin, 
2013). Groundwater uptake will yield swelling of bentonite buffers and 
a swelling pressure will develop due to the space restrictions (Gens et al., 
2009). Even if host rock fractures are intersecting the bentonite buffer it 
will continue to swell and expand into the open space potentially formed 
by these fractures. The formation and release of montmorillonite col
loids (Missana et al., 2003) in response to swelling could form a trans
port pathway for strong-sorbing radionuclides under certain 
geochemical conditions (Kretzschmar and Schäfer, 2005; Quinto et al., 
2017; Schäfer et al., 2012). These conditions of low-mineralized 
groundwater are typically found in meteoric or glacial meltwater. 
Below the so-called critical coagulation concentration (Birgersson et al., 
2011; Seher et al., 2020), individual montmorillonite layers may swell 
sufficiently to give the clay/water system a sol character, i.e., form 
montmorillonite colloidal particles. The critical coagulation concentra
tion (CCC) is determined in monovalent systems (e.g. Na) and used as a 
pessimistic concentration limit for spontaneous clay colloid release. 
Bentonite colloids released would decrease the total buffer mass.

A Derjaguin-Landau-Verwey-Overbeek-theory (DLVO)-based force- 
balance model for clay layers initially valid only for sodium can be 
used to calculate the swelling and advective mass loss of montmoril
lonite in fractures as parallel plates or with different roughness simu
lated by aperture standard deviations and correlation lengths (Huber 
et al., 2021; Liu et al., 2009).

The CFM (Colloid Formation and Migration) Project at the Grimsel 
Test Site and its LIT (Long term in-situ Test) erosion experiment gives 
the opportunity to check, under realistic and controlled low ionic 
strength water conditions, the bentonite release rates and mass loss via 
(a) colloid monitoring in the water of a natural fracture zone (MI shear 
zone) and (b) the post-mortem analysis of the over-cored experimental 
set-up via analysis of the computer-tomography (CT) data 
(Schlickenrieder et al., 2017). The focus of this work is on the CT data 
post-processing by means of Digital Rock Physics (DRP), machine 
learning-based (ML) segmentation, and finally the estimate of bentonite 
mass loss in comparison to the groundwater colloid analysis.

The DRP workflow involves using digital representations of samples 
(i.e., digital twin) to simulate physical phenomena (Sadeghnejad et al., 
2023; Tian et al., 2021). The process usually starts with imaging a rock 
sample using X-ray computed tomography (CT) followed by image 
processing (e.g., denoising) and segmentation. Segmentation is a critical 
step in the DRP workflow (Moslemipour et al., 2025; Sadeghnejad et al., 
2021). The traditional segmentation approach usually relies on manual 
interaction and implementing thresholding-based algorithms (Huang 
et al., 2021; Kapur et al., 1985; Otsu, 1979; Tsai, 1985; Wang and 
Haralick, 1984), cluster analysis, and boundary detection (Vincent and 
Soille, 1991). However, several challenges arise in multiphase segmen
tation, where more than two target phases exist in an image. These 
challenges include variations in greyscale intensity, noise, and phase 
boundaries that makes segmentation more challenging. Additionally, 
manual segmentation of large image datasets is time-consuming and 
subjective to user bias. Thus, ML-based approaches can be implemented 
to enhance accuracy and reproducibility.

Recent advancements in nuclear waste disposal shifted toward the 
data-driven ML approaches (Hu and Pfingsten, 2023; Hu et al., 2021) 

including the image segmentation task. While supervised deep learning 
approaches, such as Convolutional Neural Networks (CNNs) have gained 
prominence for their ability to automatically extract image features and 
achieve high classification accuracy (Niu et al., 2020; Tang et al., 2022), 
shallow learning methods, such as Random Forest (RF), remain highly 
effective, particularly in scenarios with limited training data (Reinhardt 
et al., 2022). This makes them particularly suitable for applications 
where acquiring large, annotated datasets is challenging. Moreover, 
unsupervised segmentation techniques such as K-means (Dhanachandra 
et al., 2015), Gaussian Mixture Models (Lee and Lee, 2010), and 
autoencoder-based deep clustering (Yu et al., 2018) can be used when 
labelled data is not available. While these methods are generally simpler 
than supervised approaches, they often struggle capturing complex 
spatial patterns.

This study presents an application of DRP to quantify bentonite mass 
loss and analyze shear zone properties in the Long-term In-situ Test (LIT) 
at the Grimsel Test Site (GTS), Switzerland. By integrating CT scanning 
with RF classifier as a segmentation tool, precise quantification of 
bentonite mass loss as well as fault aperture distribution is achieved, 
overcoming the limitations of traditional thresholding methods. The 
development of a digital twin model for the bentonite-shear zone system 
provided insights into erosion dynamics and hydro-mechanical in
teractions within fractured crystalline rocks.

2. Material & methods

2.1. The Grimsel Test Site (GTS)

The Grimsel Test Site (GTS) is an underground research laboratory 
located in the crystalline rocks of the central Swiss Alps, approximately 
350 to 520 m below ground and operated by the Swiss National Coop
erative for the Disposal of Radioactive Waste (Nagra) (Schneeberger 
et al., 2019). Two main aspects render the Grimsel Test Site suitable for 
testing selected aspects on the evolution of a geological disposal facil
ities especially the impact of glaciation scenarios on the EBS integrity. 
Firstly, it is fractured crystalline rock. This implies parts characterized 
by zones of higher and lower transmissivity. This combination in turn 
results in a combination of advective transport dominated sections 
juxtaposed to molecular diffusion dominated sections. Secondly, the 
hydraulic setting is dominated by low-mineralized meteoric water with 
alkaline pH conditions (Schneeberger et al., 2019) and therefore an 
analogue to possible glacial water ingress related to future glaciations.

2.2. LIT experiment at GTS (design and monitoring system)

The LIT bentonite erosion experiment was initiated as part of the 
Colloid Formation and Migration (CFM) project at the GTS using the 
Migration (MI) shear zone (Bossart and Mazurek, 1991). The MI shear 
zone is a steeply SSE dipping complex geological structure exhibiting 
both brittle and ductile deformation features (Alexander et al., 2001). 
The shear zone can be conceptualized as a braided system of fault zones 
filled with cohesionless fault gouge, which forms permeable ground
water pathways. The individual faults vary in thickness from a few 
millimetres to several centimetres, and their porosity ranges from 10 % 
to 40 % (Reiche et al., 2016). These high-porosity zones increase the 
hydraulic conductivity of the shear zone and thus contribute to the 
transport of water and colloidal particles. The overall fault architecture 
with braided fault gouge zone is also seen in the hydraulic testing within 
the MI shear zone. Local transmissivity values range from 10− 10 to 
5⋅10− 6 m2/s, while the large-scale effective transmissivity is approxi
mately 10− 6 m2/s (Möri et al., 2003).

The experimental setup of LIT involved the emplacement of com
pacted FEBEX bentonite rings around a carbon-steel mandrill partly 
traced with radionuclides, synthetic clay and conservative tracers within 
a borehole interval about 6 m from the tunnel wall, intersecting the MI 
shear zone with a diameter of 86 mm and a total length of 400 mm 
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(Schlickenrieder et al., 2017). The test was in-situ for 4.5 years, during 
which the bentonite experienced swelling and erosion due to uptake of 
low-mineralized groundwater (ionic strength of ~2 mM and pH of 9.6 
under in-situ conditions). This led to the formation of colloidal particles 
at the bentonite surface that can migrated through the shear zone. 
Throughout LIT, the chemical composition of the groundwater, the 
evolution of colloid concentration, and radionuclide transport were 
continuously monitored by sampling from near-field instrumented 
borehole intervals (Noseck et al., 2020; Schäfer et al., 2023). The system 
was equipped with three near-field monitoring boreholes and a primary 
water extraction point (surface packer) at the tunnel wall.

The borehole monitoring system (Fig. 1, CFM 11.001, CFM 11.002, 
and CFM 11.003) was designed to extract samples from the bentonite 
near field under minimal disturbance. The system consisted of the main 
borehole (CFM 06.002), where the packer system including the com
pacted bentonite rings was emplaced and the above-mentioned three 
near-field boreholes, positioned to monitor hydraulic and geochemical 
conditions.

Beside the three near-field observation boreholes at 0.11–0.12 m 
distance, the transport of colloids and radionuclides in the shear zone 
was monitored by a surface packer called “Pinkel” at a distance of 6 m 
from the source in a steady flow field. During the LIT, the flow field 
around the source was controlled as well as possible to simulate natural 
groundwater movement within the shear zone and to prevent excessive 
flushing of the bentonite source. The imposed low-gradient steady flow 
field was ideal for testing colloid migration processes as it minimises any 
remobilisation of colloids due to hydraulic pulses.

2.3. FEBEX bentonite & ring fabrication

The clay used for the LIT experiment is so-called FEBEX bentonite 
(Delavernhe et al., 2015; García-Romero et al., 2019; Lloret and Villar, 
2007; Villar et al., 1998). The FEBEX bentonite is characterized by a 
high montmorillonite content (90 %) with the major exchangeable 
cations (CEC) being 24 ± 1 Na, 35 ± 3 Ca, 31 ± 3 Mg and 2.6 ± 0.4 K 
(all values as cmol(+)/kg), which sums up to 92.5 cmol(+)/kg cations 
(Torres et al., 2017). Detailed analysis of the <2 μm fraction by XRD and 
FT-IR revealed only traces of quartz and the clay consisted of an inter
stratified illite-montmorillonite mineral with 13 % of non-swellable 
layers (Friedrich et al., 2016) in good agreement with Cuadros and 
Linares (1996).

For the preparation of the LIT within the CFM project 
(Schlickenrieder et al., 2017) it was decided to emplace the bentonite as 
compacted rings similar to the so-called LOT tests at Äspö (Karnland 
et al., 2000). The FEBEX bentonite rings were compacted in molds by 
CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y 
Tecnológicas, Spain) and had the following specifications per ring (n =
51): mass 178.71 ± 0.29 g, dry mass 158.22 ± 0.26 g, thickness 25.05 
± 0.11 mm, volume 95.93 ± 0.41 cm3 and dry density 1.65 ± 0.01 Mg/ 
m3 (Schlickenrieder et al., 2017).

Four of the bentonite rings in the center of the source emplacement 
interval were traced with 10 % Zn-labelled synthetic montmorillonite 
(Reinholdt et al., 2001; Schlickenrieder et al., 2017). The 10 % Zn- 
labelled synthetic montmorillonite was mixed with 90 % FEBEX 
bentonite and compacted into rings by CIEMAT using the same method 
and equipment applied to the other twelve rings in the source. The 
FEBEX bentonite is according to Sánchez et al. (2006) composed of 93 ±
3 % montmorillonite, 2 ± 0.5 % quartz, 2 ± 1 % potassium feldspars, 1 
± 0.7 % plagioclase, 2 ± 0.2 % cristobalite, 1 ± 0.7 % calcite and 1.5 ±
0.1 % rhyodacitic original rock (mainly, volcanic glass). Radionuclide 
tracers (45Ca, 75Se, 99Tc, 137Cs, 241Am, 233U, 242Pu & 237Np) were 
emplaced in the central part of the source in glass vials, however this 
aspect of LIT is beyond the scope of this paper and discussed e.g. in 
Quinto et al. (2019).

2.4. Bentonite colloid monitoring in the groundwater

Water samples were taken from the monitoring interval in CFM 
11.002 (0.02, 0.05 mL/min) during the first half of the LIT and then from 
CFM 11.003 (0.05 mL/min) during the latter half. Colloid concentra
tions and mean particle sizes were determined on-site in-line and off-site 
by Laser-Induced Breakdown Detection (LIBD) with optical data acqui
sition or Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 
(Geckeis et al., 2004; Hauser et al., 2002; Scherbaum et al., 1996; Stoll 
et al., 2017). Based on the bulk structural formula of the FEBEX 
bentonite [Si7.66Al0.34][Al2.68Fe0.34Mg0.91]X0.81O20(OH)4; X = (OH,F, 
Cl) = 23.82 g/mol, the elemental mass fractions of the main elements 
are calculated. The same is done for the admixture with the synthetic Zn- 
montmorillonite. These values are used to calculate colloid concentra
tions based on the ICP-MS data under the assumption that the total Zn 
and Al concentration is colloid bound and originating from the bentonite 
rings. Maximum colloid concentrations of 1.4 mg/L and 1.7 mg/L 

Fig. 1. a) Schematic of the cored interval with the position of the four boreholes, the packers, the bentonite source, and the envelope of the shear zone (i.e., the target 
fault). b) View directions toward the borehole end.
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(Rinderknecht, 2017) are calculated from the zinc and aluminum con
centrations, respectively (Huber et al., 2014).

2.5. Drilling procedure/dismantling

The experiment was over-cored (0-6 m drilled in 360 mm, coring 
from 6 to 7.7 m with 300 mm; core length was 1.7 m and 300 mm 
diameter) before cutting down for the CT analysis of the central part 
(core length 800 mm, at 6.35 to 7.15 m from tunnel surface) and after 
these CT measurements sliced into discs for various further analyses. 
Each section included, from the inside out, the steel mandrill, the 
bentonite ring, and the surrounding rock. The drilled core included a 
transversal section of the central source borehole (CFM 06.002) inside 
the steel and sections of the three near-field monitoring boreholes (CFM 
11.001, CFM 11.002, and CFM 11.003) inside the rock area. Some cables 
and linings remained in the monitoring areas.

2.6. CT scanning and DRP workflow

The procedure involved multiple stages to ensure high-quality im
aging. First, the over-cored 800 mm long sample was carefully stabilized 
to minimize movement and prevent material displacement during 
transport. The sample was then secured within a specialized scanning 
chamber, where it underwent rotational imaging by a fan-beam CT 
scanner at multiple angles. The scans were performed at EMPA (Swiss 
Federal Laboratories for Materials Science and Technology). The top and 
bottom section of the core was scanned at 5 mm intervals (i.e., scan 
spacing along core), while the central location over the traced bentonite 
and the shear fault zone was scanned at 0.50 mm resolution. Only this 
higher resolution data was used in this study. Each cross-sectional image 
has a resolution of 0.39 mm. This final image has a size of 1800 × 1800 
× 400 voxels3, which is equal to 708.3 × 708.3 × 200 mm3.

Slight beam hardening artifacts, (bright rims and grayscale gradients 
toward the core centre) were observed in the CT images. In this study, no 
post-processing correction for beam hardening was applied. However, 
its potential influence on segmentation and intensity-based erosion es
timates is acknowledged. Since the analysis focused on relative changes 
and spatial patterns, particularly in regions adjacent to the shear zone, 
rather than absolute grayscale values across the entire core, the impact 
of beam hardening on the main findings is expected to be limited.

The workflow for the DRP analysis is illustrated in Fig. 2. This pro
cess involved creating a digital twin model of the borehole system from 
the CT scan images. The scanned images first underwent a pre- 
processing step, which is crucial for enhancing the quality and usabil
ity of the scans for further analysis. A non-local K-mean filter (Buades 
et al., 2011) was then applied, known for its effectiveness in preserving 
edge information while reducing noise.

2.7. Segmentation using RF

Given the scans’ composition of diverse materials such as compacted 

bentonite, rock matrix, open fracture, fault gouge, and steel mandrill, 
segmentation represents a complex challenge. Therefore, a segmenta
tion method employing a RF classifier (Breiman, 2001) was applied, 
which uses multiple decision trees and has been previously shown to 
improve segmentation compared to simple thresholding methods. The 
segmentation accuracy was further enhanced by carefully selecting the 
Region of Interest (RoI), to limit interference from non-relevant areas, 
focusing the analysis on zones relevant to the research objectives.

The RF algorithm (Fig. 3) is a ML technique that classifies pixels by 
constructing multiple decision trees and aggregating their outputs (also 
called bagging) (Geurts et al., 2009; Reinhardt et al., 2022). This 
ensemble-based approach is commonly used to improve robustness and 
reduce overfitting in image segmentation tasks (i.e., poor generalization 
on unseen data) (Breiman, 2001; Cardenas-Gallegos et al., 2025; Sharr 
et al., 2024), and is suitable for segmenting complex multiphase images. 
Multiple decision trees (here 100 trees) are built using random subsets of 
both the data and features, which helps introduce variability among the 
trees, reducing the risk of overfitting.

In the segmentation task, the RF algorithm operates by analysing the 
spatial and contextual relationships between pixels. Various image 
features, such as pixel intensity, texture, and edges, are used as input 
parameters for the classification task (Sommer et al., 2011). Moreover, 
these features are derived by applying filters at different scales to the 
input images, typically using Gaussian filters with variable standard 
deviations (i.e., the scale parameter, σ) (Sommer et al., 2011). Each 
Gaussian filter acts on the image by suppressing high-frequency com
ponents, depending on the value of its standard deviation, and produces 
smoothed image outputs that can then be used to derive features 
(Urazmatov et al., 2024). By adjusting the scale parameter, one can 
control the filter’s sensitivity to structures of varying sizes, enabling a 
more comprehensive analysis during the training phase.

In this study several filter types were implemented for each feature 
category (Table 1). For example, the Gaussian blur filter, applied at 
multiple kernel sizes, was used to generate features related to pixel in
tensity. Additionally, the Laplacian of Gaussian (LoG), Gaussian 
Gradient Magnitude (GGM), and difference of Gaussians (DoG) filters 
were applied to extract edge-related features that capture boundaries 
between different phases. The LoG filter (also referred as Marr-Hildreth 
operator) highlights regions with rapid intensity changes, effectively 
detecting edges (Jäger and Jutzi, 2023), GGM computes the gradient of 
an image by calculating Gaussian derivatives, aiding in identifying areas 
of significant intensity variation (Sanders et al., 2016), and the DoG 
filter emphasizes features at specific scales by subtracting one Gaussian- 
blurred image from another with a different scale parameter (Sandić- 
Stanković et al., 2022; Sommer et al., 2011). Lastly, Structure Tensor 
Eigenvalues (TE) and Hessian of Gaussian (HoG) Eigenvalues were used 
to evaluate the predominant directions of intensity variations (Arganda- 
Carreras et al., 2017; Sertcelik and Kafadar, 2012; Sommer et al., 2011), 
assisting in the detection of oriented structures and textures inside of 
target images. In this study, Gaussian filters with seven standard de
viations (0.3, 0.7, 1.0, 1.6, 3.5, 5.0, and 10.0) for pixel intensity features 

Fig. 2. Flowchart of digital rock physics workflow.
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were used, while six standard deviations (0.7, 1.0, 1.6, 3.5, 5.0, and 
10.0) were used for the other filters (LoG, GGM, DoG, TE, and HoG), 
resulting in a 37-feature vector for each pixel (See Table 2)

Those 37 features were generated by systematically applying a set of 
commonly used image filters across multiple spatial scales. The filters 
were selected based on prior studies showing their relevance in 
capturing intensity, edge, and texture information in multi-phase sys
tems (Arganda-Carreras et al., 2017; Sommer et al., 2011). The objective 
was to retain a comprehensive feature set that captures relevant struc
tures at different scales. However, feature importance evaluation using 
Random Forest could be considered in future work to reduce dimen
sionality and improve model efficiency.

All image processing tasks were carried out in Dragonfly Pro (Object 
Research Systems Inc., Version 2021). For RF segmentation, the ilastik 

segmentation toolkit (Berg et al., 2019) was employed. Upon successful 
segmentation, detailed analyses such as the determination of fracture 
aperture distribution and quantification of bentonite erosion were 
conducted. By integrating DRP workflows and image processing tools, 
this study aims to enhance the analysis of subsurface structures and their 
dynamic processes, building on established geological methods.

3. Results and discussion

3.1. RF segmentation

The CT scan images first underwent a denoising process using Non- 
Local Mean Filter (NLMF) (Buades et al., 2011), enhancing the clarity 
of bentonite rings and fracture networks (Fig. 4). Unlike traditional 
denoising methods (e.g., mean or median filters), which consider only a 
pixel and its surrounding neighbours, NLMF eliminates noise by 
comparing the similarity of patches across the entire image and 
weighting pixels based on their resemblance to the target pixel. This 
process prevents image blurring, a common issue in conventional 
smoothing filters.

During the segmentation, there are several phases that are not rele
vant to the analysis in the RoI, such as the central steel mandril and 
various linings within the internal structure of the sections of the four 
boreholes. These phases and objects exhibit similar greyscale intensities, 
making accurate segmentation challenging. The greyscale distribution 
of the CT image across various phases is displayed in Fig. 5a. While the 
bentonite rings and rock matrix have distinct greyscale values, there is 
significant overlap in the greyscale values of fault gouge and open 
fractures, making it difficult to separate these phases. Furthermore, the 
tools inside the main borehole (CFM 06.002) completely overlap with 
other phases and are distributed across nearly the entire greyscale range 
(i.e., 0 to 255). Therefore, careful selection of RoI during segmentation is 
crucial to improving accuracy and ensuring meaningful analysis.

Fig. 3. Random Forest algorithm used for segmentation.

Table 1 
Examples of filters used to extract image features.

Feature 
Category

Filter Description

Intensity Gaussian Smoothing Applies a Gaussian filter to reduce noise.

Edge

Laplacian of 
Gaussian

Highlights regions of rapid intensity change 
by applying a Laplacian filter to the 
Gaussian-smoothed image.

Gaussian Gradient 
Magnitude

Measures the rate of intensity change in the 
image.

Difference of 
Gaussians

Emphasizes features at specific scales by 
subtracting one Gaussian-blurred image 
from another.

Texture

Structure Tensor 
Eigenvalues

Evaluates the predominant directions of 
intensity variations, aiding in the detection 
of oriented structures and textures.

Hessian of Gaussian 
Eigenvalues

Applies the Gaussian filter followed by 
second-order partial derivatives of the 
image, which provides information about 
the local curvature of images.

Table 2 
Details of calculations for bentonite ring erosion estimation from different scenarios.

Scenario Description Assumed Porosity 
(%)

Original partially eroded 
voxels

Fully eroded 
voxels

Equivalent eroded 
voxels

Erosion rate (kg/ 
m2/a)

1 All partially eroded voxels assumed to be fully 
eroded

100 41,789 3451 45,240 1.31

2 A porosity range was estimated for partially 
eroded voxels

72.7 33,831 0.99
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During the analysis, two main RoIs were selected. To evaluate the 
fault thickness, the background of the CT scan, as well as all four main 
holes, were removed from the RoI (Fig. 5b). For the bentonite mass loss 
analysis, only the area surrounding the central borehole (CFM 06.002) 
(including the fault area) was considered (Fig. 5c). In this RoI, the ma
terials inside the main borehole were masked out to reduce irrelevant 

information.
Various filters were applied to extract relevant features during RF 

training in this study, with Gaussian blur used to capture pixel intensity 
variations and more advanced filters such as LoG, GGM, and DoG used 
for edge detection. Additionally, TE and HoG helped identify textures. A 
37-feature vector was generated per pixel, integrating these filters with 

Fig. 4. Comparing (a) the original CT scan with (b) the filtered scan by NLMF.

Fig. 5. (a) Greyscale value for various phases available in the CT scan images. (b) RoI for fault thickness analysis (red solid frame). Masking of the four boreholes to 
reduce segmentation interferences from non-important areas. (c) Second RoI (blue dashed frame) for bentonite ring analysis. By main hole the central part of the 
packer is meant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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different standard deviations. Fig. 6 provides a detailed visual compar
ison of the original image alongside the results of various filters at 
variable Gaussian smoothing standard deviations of 1, 3.5, and 10. It is 
shown how each filter type emphasizes different aspects of the input 
image, demonstrating the contributions of each feature to the overall 
segmentation performance.

The digital twin achieved after segmentation by the RF algorithm is 

shown in Fig. 7, highlighting its effectiveness in identifying distinct 
phases, including steel mandrill, bentonite rings, fault gouge, open 
fractures and the rock matrix (which is not shown in this figure). The 
segmentation process reveals clear distinctions between different ma
terial phases. The results demonstrate that applying multiphase seg
mentation in combination with carefully selected RoIs enables accurate 
and reliable image analysis, facilitating a more detailed evaluation of the 

Fig. 6. Representation of features extracted from top view of the main borehole. From left to right: three various Gaussian smoothing with a standard deviation of 1, 
3.5, and 10. From top to bottom: various applied filters.
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geological features under investigation.

3.2. Fault aperture analysis

The fault aperture and topology within the shear zone were analysed 
to better understand its structural and geometrical characteristics and 
contact area to the compacted bentonite. A 3D fault thickness map is 
depicted in Fig. 8a, highlighting the spatial distribution of the fault 
volume connecting the central borehole (CFM 06.002) to the three 
neighbouring monitoring boreholes (CFM 11.001, CFM 11.002, and 
CFM 11.003).

The fault has an aperture ranging from 0.85 to 6.93 mm with a mean 
(2σ) of 2.90 ± 1.09 mm (Fig. 8b). The surface to volume ratio of the fault 
is 1.067. The variability in fault thickness underscores the geometric 
complexity of the shear zone and highlights the care to be taken 
abstracting fault geometry toward parallel plate models (Stoll et al., 
2019). Comparable results have been found in the EP (Excavation 
Project) impregnating the fracture network with fluorescent resin and 
subsequently over-coring along the shear zone and cutting into slices of 
~3-cm thickness (Frieg et al., 1998). The surfaces of these slices were 
then photographed in visible and ultraviolet (UV) light to obtain an 
aperture distribution varying from a low-end cut-off of 10 μm (below the 
CT resolution) to an upper-end cut-off of 2 cm (Mettier et al., 2006).

Finally, the fracture aperture distributions between the main bore
hole and each of the three monitoring boreholes sections were evalu
ated. To do so, a crop from the fault region between the central borehole 
and each neighbouring borehole (shown in Fig. 8a with three boxes of 
variable colors) was considered. For each crop, the fault thickness map 
was evaluated. The fracture aperture distribution between the central 
borehole and the three monitoring boreholes is shown in Fig. 8c. The 
analysis reveals significant variations in fracture apertures, which are 
likely to affect the flow dynamics and the stability of the engineered 
barrier system over time. For example, the dipole connecting the main 
hole to CFM11.001, CFM11.002, and CFM11.003 has a mean fault 
thickness of 2.26 ± 0.86 mm, 2.99 ± 0.91 mm, and 2.69 ± 0.99 mm, 
respectively. The lower fracture aperture between CFM 11.001 and CFM 
06.002 supports the findings from hydraulic testing, where the hy
draulic connection between these two boreholes was found to be lower 
(Lanyon et al., 2014).

3.3. Bentonite erosion evaluation and its uncertainty

Once the bentonite rings come into contact with groundwater, the 
bentonite will swell into any open porosity, including the small annular 
gap between the rings and the borehole walls because of the additionally 
constructed cover sleeve, and any open fracture voids at the borehole 
wall. After calibration, the average swollen diameter of 86.9 mm was 
computed by measuring different locations of altered bentonite rings in 
the CT scan images, far from the fault region. This value was then used to 
update the bentonite ring density.

The FEBEX bentonite rings, during manufacturing and before 
installation into the main borehole, had a ring diameter of 82 mm with a 
dry density of 1.65 ± 0.01 Mg/m3 and the nominal emplaced diameter 
of the borehole was 86.00 mm. The rings had a 13.9 % gravimetric water 
content. Since all 12 FEBEX rings were precisely weighed before 
installation and given their new final swollen diameter measured from 
CT data (86.87 mm), the final average density of the bentonite rings was 
evaluated to be 1.31 Mg/m3. This average value was considered for each 
voxel to compute the erosion weight during 4.5 years of the LIT.

To quantify erosion, a cylindrical mask was applied around the target 
FEBEX bentonite rings, allowing for the analysis of material loss. The 
scan was then segmented into four phases of intact bentonite, partially 
eroded voxels, fully eroded voxels (with 100 % porosity), and steel 
mandrill (Fig. 9). As it is indicated in Fig. 9, the distribution of voxels 
identified as eroded, clearly showing their concentration in proximity to 
the shear zone. The spatial clustering supports the interpretation that 
erosion is localized and likely driven by shear-induced processes, rather 
than random noise or imaging artifacts. By counting the segmented 
eroded volume from the initial structure within the cylindrical bentonite 
mask, the extent of erosion was quantified. This approach enabled 
precise calculations of bentonite mass loss and helped in comparing CT- 
based erosion estimates with independent geochemical assessments, 
such as the colloid quantification by means of LIBD/ICP-MS.

The multiphase segmentation using the RF algorithm was applied 
slice by slice on 2D image data; however, since these slices are part of a 
registered 3D volume, the segmented pixels correspond to voxels in 
three-dimensional space. Out of 9,900,000 voxels in the RoI, a total of 
3451 fully eroded voxels and 41,789 partially eroded voxels were 
identified, each voxel having a size of 0.39 × 0.39 × 0.5 μm (7.72 ×

Fig. 7. (a) 3D and (b) 2D segmentation results using the RF algorithm. In the 2D image, the black background is the host rock.
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10− 11 m3). These values represent a small but spatially localized fraction 
of voxels, predominantly concentrated near the shear zone (see Fig. 9). 
While the overall proportion is low, the non-random distribution sup
ports the interpretation that the grayscale variations are due to localized 
erosion rather than imaging artifacts or material inhomogeneities.

A 100 % porosity was considered for the fully eroded voxels. These 
voxels based on their dark greyscale value were easily differentiated 
from the other voxels during the segmentation using RF. However, those 
voxels that have higher grey intensity were separated from these voxels 
and assigned as partially eroded voxels. In othe+r words, just a fraction 
of the bentonite was eroded in these voxels during the 4.5-year LIT ex
periments. To estimate the uncertainty of erosion, two scenarios were 
considered. In the pessimistic case all these voxels were considered as 
fully eroded, which is the maximum possible erosion. In a more realistic 
scenario, the porosity of these voxels is estimated based on their grey
scale range in comparison to the greyscale value of unaltered bentonite 
rings.

The histogram of greyscale intensity value of bentonite rings and 
partially eroded voxels are depicted in Fig. 10, which span in a greyscale 
range of 0 to 145 (with a mean of 74) and 0 to 79 (mean of 33) out of 

255, respectively. Since no calibration data of density versus greyscale 
intensity was available, it was decided to roughly estimate the porosity 
of the eroded voxels using the unaltered bentonite ring area in the CT 
images. It is assumed that the porosity of the internal bentonite voxels (i. 
e., those far from the erosion surface) remain constant over time and are 
equal to the initial porosity of 38.9 % (Schlickenrieder et al., 2017). As 
the resolution of CT scanning was not high enough to resolve the 
microporosity within the bentonite rings; therefore, the mean greyscale 
intensity (Gb,2 = 74) in the bentonite greyscale histogram is assumed of 
this porosity value (38.9 %). Consequently, the other tail of this histo
gram (Gb,1 = 0) given by the partially eroded voxels of the same ma
terial represents approximately 100 % porosity (i.e., a pore voxel). If the 
partially eroded voxels follow a linear trend between greyscale intensity 
and porosity, like unaltered bentonite rings, then using Eq. (1) the mean 
intensity range of partially eroded voxels (33 out of 255) corresponds to 
the porosity of approximately 72.7 %, which shows that these voxels 
have 33.8 % higher porosity than unaltered bentonite voxels (38.9 %). 

Φpe =
(
Gpe − Gb,1

)Φb,1 − Φb,2

Gb,2 − Gb,1
+Φb,2 (1) 

Fig. 8. (a) 3D Fault thickness map. The fault volume connecting neighbouring boreholes to the central borehole is also highlighted by three boxes in different colors 
(b) Fault thickness histogram. (c) Dipole aperture distributions between the main borehole (CFM 06.002) and the three neighbouring monitoring holes (CFM 11.001, 
CFM 11.002, and CFM 11.003) as indicated by the coloured boxes.
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It is important to acknowledge that the estimation of bentonite mass 
loss based solely on CT grayscale intensity data, without a supporting 
calibration data relating grayscale values to material density, might 
introduce uncertainties in the quantitative analysis. Although this 
assumption may not be completely correct, at least it provides a rough 
estimate of eroded voxel porosity. Consequently, the quantitative 
erosion values presented should be regarded as indicative rather than 
definitive, serving primarily to highlight relative trends rather than 
absolute mass loss. However, the pessimistic scenario, in which all 
partially eroded voxels are considered fully eroded, represents the 
maximum possible mass loss. This approach provides an upper bound 
estimate of bentonite erosion, serving as a conservative reference that 
likely overestimates the actual erosion but offers a useful limit for 
interpretation. By comparing this maximum erosion estimate with the 
more conservative, grayscale-based calculation, we gain a better un
derstanding of the potential range of bentonite loss, thereby framing the 
uncertainty and improving the overall assessment.

The following table summarizes the eroded amount for different 
scenarios. In the scenario, where all partially eroded voxels are assumed 
to be fully eroded (i.e., pessimistic assumption), the total number of 
eroded voxels is 45,240. Given the voxel volume of 7.72 × 10− 11 m3 and 

the corrected bentonite density of 1.31 Mg/m3, the total bentonite 
erosion over 4.5 years (1600 days) of the LIT is estimated to be 1.04 g/y. 
In the second scenario, where the mean porosity of partially eroded 
voxels is accounted for, the estimated erosion rate would be 0.78 g/y. By 
considering the mean fault aperture (2.90 ± 1.09 mm) and the given 
bentonite diameter of 86.87 mm, a contact area between fault and 
bentonite rings of 7.91⋅10− 4 m2 can be estimated. Thus, the contact area 
normalized erosion rates will be between 0.99 and 1.31 kg/m2/y. The 
erosion percentage toward the three neighbouring boreholes 
(CFM11.001, CFM11.002, and CFM11.003) was estimated to be 21 %, 
45 %, and 34 %, respectively, which is in accordance with the average 
fault contact areas of 6.16⋅10− 4 m2, 8.16⋅10− 4 m2, and 7.34⋅10− 4 m2. 
The findings indicate that the maximum erosion occurred in the direc
tion from the central borehole toward CFM11.002, which has the 
highest average fault thickness (2.99 ± 0.91 mm) as well as contact 
area.

Water samples from near-field borehole intervals in CFM11.001, 
CFM11.002, and CFM11.003 showed estimated colloid concentrations 
of 1.4–1.7 mg/L back-calculated based on the element mass fractions in 
the FEBEX bentonite structural formula. These values are calculated 
under the assumption that the total Zn or Al concentration is colloid 
bound and originating from the bentonite rings, respectively. LIBD 
measurements in the same boreholes revealed approx. 0.07 mg/L 
colloidal concentrations. Further analysis of the “Pinkel” surface packer 
showed mean concentrations of 0.005 mg/L nanoparticulate fraction. 
Taking an extraction flow of 0.05 mL/min at the observation boreholes 
CFM11.001, CFM11.002, and CFM11.003 and 25 mL/min at the Pinkel 
surface packer a mass loss rate of 0.001 g/y (LIBD), 0.045 g/y (ICP-MS) 
and 0.066 g/y (for Pinkel) could be estimated, which results in contact 
area normalized erosion rates of 0.002 to 0.107 kg/m2/y. The signifi
cantly lower erosion rates quantified via groundwater monitoring 
analysis can be explained by the colloid retardation observed even under 
these unfavorable colloid attachment conditions in migration studies 
(Reiche et al., 2016).

Most importantly, all estimated erosion values, including the pessi
mistic scenario, remain below the critical range for repository evalua
tion regarding mass loss, reinforcing the long-term integrity of FEBEX 
bentonite as a geotechnical barrier material. A buffer failure criterion set 
by SKB is a mass loss of 1200 kg from originally 22,000 kg in one 
emplacement hole (SKB, 2011). Both techniques used in this study show 
erosion rates <2 kg/m2/y, at least two orders of magnitude below mass 
loss assessment rates of 500 to 1500 kg/m2/y (POSIVA, 2017).

Fig. 9. a) 3D segmentation results using the RF algorithm for erosion evaluation. A cylindrical mask was applied around the FEBEX rings. b) The same as (a) but the 
bentonite voxels were not shown for comparison purpose.

Fig. 10. Grey intensity histogram for bentonite and partially eroded voxels.

S. Sadeghnejad et al.                                                                                                                                                                                                                           Applied Clay Science 276 (2025) 107915 

10 



4. Conclusion

This study investigated the impact of a fractured zone on bentonite 
erosion in an in-situ experiment at the Grimsel Test Site (GTS), 
Switzerland, simulating a bentonite barrier in a deep geological re
pository for radioactive waste. By combining X-ray computed tomog
raphy scanning, digital rock physics, and segmentation with a Random 
Forest classifier in ilastik applied to the over-cored sample, we obtained 
a detailed quantification of the distribution of fault apertures and 
bentonite loss. The correct selection of the region of interest played a 
crucial role in minimizing segmentation errors, while uncertainty 
analysis refined erosion estimates.

The results demonstrate that the fault aperture distribution within 
the shear zone is highly heterogeneous, with a mean aperture of 2.90 ±
1.09 mm. This variability in fault thickness controls hydrodynamics in 
the fracture and underscores the complexity of fluid and particle 
transport within the shear zone. Further, careful consideration is advo
cated when using abstracted fault geometries to assess the long-term 
performance of engineered barrier systems in geological repositories. 
Hydraulic characterization between the central and the monitoring 
boreholes confirmed heterogeneity not only in the fracture aperture but 
also in the hydraulic connectivity.

The random forest segmentation approach enabled a clear visual 
separation of different material phases, including bentonite, rock ma
trix, fault gouge, and open fractures, based on their distinct greyscale 
and textural features in the CT images. This method improved the ac
curacy of mass loss quantification and fault characterization, over
coming the limitations of traditional thresholding techniques. Although 
not benchmarked against other segmentation methods, the benefit of 
this approach was validated qualitatively through expert visual inspec
tion and its ability to support robust, consistent phase distinction 
essential for downstream analysis.

The segmentation results revealed that the bentonite rings experi
enced partial and heterogenous erosion, with the total erosion rate 
estimated to be between 0.99 and 1.31 kg/m2/y for FEBEX bentonite. All 
estimated erosion values remain below the critical range for repository 
evaluation regarding mass loss, reinforcing the long-term integrity of 
FEBEX bentonite as a geotechnical barrier material within the tested 
conditions. The erosion rates estimated within this study are <2 kg/m2/ 
a and therefore at least two orders of magnitude below mass loss 
assessment rates of 500 to 1500 kg/m2/a (POSIVA, 2017). The erosion 
masses within this study was FEBEX bentonite a Ca–Mg dominated 
bentonite. Based on colloid migration studies performed so far, which 
show lower colloid recovery compared to the conservative tracer in this 
shear zone (Reiche et al., 2016), it is assumed that the significantly 
lower erosion rates estimated via groundwater monitoring analysis can 
be linked to colloid retardation/attachment to fracture surfaces or 
clogging.

CRediT authorship contribution statement

Saeid Sadeghnejad: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Software, Methodology. Sarah Hupfer: 
Investigation. Janis Pingel: Investigation. Bill Lanyon: Writing – 
original draft, Methodology, Conceptualization. Raphael Schnee
berger: Writing – original draft, Project administration, Conceptuali
zation. Ingo Blechschmidt: Project administration, Conceptualization. 
Ursula Alonso: Writing – original draft, Investigation, Conceptualiza
tion. Wolfgang Hauser: Validation, Investigation, Conceptualization. 
Stephanie Kraft: Investigation. Horst Geckeis: Project administration, 
Funding acquisition, Conceptualization. Thorsten Schäfer: Writing – 
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Ludwig, P., Plaschke, M., Schäfer, T., Geckeis, H., 2019. Ultratrace determination of 
99TC in small natural water samples by accelerator mass spectrometry with the gas- 
filled analyzing magnet system. Anal. Chem. 91, 4585–4591.
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Sandić-Stanković, D.D., Kukolj, D.D., Le Callet, P., 2022. Quality assessment of DIBR- 
synthesized views based on sparsity of difference of closings and difference of 
Gaussians. IEEE Trans. Image Process. 31, 1161–1175.
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