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ABSTRACT

Bentonite plays a critical role in engineered barrier systems designed for radioactive waste storage in geological
repositories especially in crystalline formations. Ensuring its long-term stability under realistic hydro-
geochemical conditions is vital for evaluating the safety of these repositories. This study investigated the in-
fluence of controlled water flow in a shear zone on the erosion of bentonite through a 4.5-year Long-Term In-Situ
Test (LIT) at the Grimsel Test Site, Switzerland. Compacted Ca-Mg-type FEBEX bentonite rings (with 90 %
montmorillonite content) were positioned in-situ in an emplacement borehole intersecting a water-conducting
shear zone providing direct contact with low-mineralized glacial meltwater. X-ray computed tomography
scanning, along with digital rock physics methods, were used to quantify bentonite mass loss and the contact
shear zone aperture distribution on over-cored LIT samples. A Random Forest classifier, a machine learning
technique, was used for segmentation, which enabled more precise quantification of bentonite mass loss and
improved fault characterization. This approach used multiphase segmentation, allowing accurate distinction
between different material phases in the cored interval, which is essential for resolving complex interactions in
heterogeneous systems. The selection of the correct region of interest was crucial for minimizing segmentation
errors and improving mass loss quantification by reducing interferences from non-relevant structures. The
aperture distribution between the three boreholes over-cored within the shear zone was evaluated with a mean
thickness of 2.90 + 1.09 mm (20). Furthermore, the bentonite mass loss was computed from the scanned images
and compared with mobilised montmorillonite colloid masses, continuously sampled in the water from obser-
vation boreholes (0.11-0.12 m and 6 m distance) measured by inductively coupled plasma mass spectrometry
(ICP-MS) and laser-induced breakdown detection (LIBD) techniques. The data evaluation of both techniques used
in this study provided erosion rates <2 kg/m?/y, which are at least two orders of magnitude below the mass loss
assessment rates of 500 to 1500 kg/m?/y defined by safety case considerations of the Swedish Nuclear Fuel and
Waste Management Company (Svensk Kdrnbranslehantering Aktiebolag, SKB) and the Finnish company POSIVA
handling the final disposal of the spent nuclear fuel generated by its owners, the nuclear plant operators Teol-
lisuuden Voima and Fortum. The creation of a digital twin model for the bentonite-water-shear zone system
provided new insights into the erosion processes showing inhomogeneous erosion in contact with real fracture
geometries.
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1. Introduction

The concept of a passive multi-barrier system in a geological disposal
facility is generally considered for the long-term isolation of radioactive
waste from the biosphere (Sellin and Leupin, 2013). Beside the host rock
as natural geological barrier, the engineered barrier system (EBS) en-
hances safety through different materials such as corrosion-resistant
canisters or low-permeable buffer material between waste packages
and host rock. The buffer is often composed of bentonite, with high
montmorillonite content, sometimes mixed with additional materials e.
g., quartz sand. The key properties of a bentonite-based buffer are the
low hydraulic permeability, the self-sealing ability due to the swelling
pressure, and the long-term mineralogical stability (Sellin and Leupin,
2013). Groundwater uptake will yield swelling of bentonite buffers and
a swelling pressure will develop due to the space restrictions (Gens et al.,
2009). Even if host rock fractures are intersecting the bentonite buffer it
will continue to swell and expand into the open space potentially formed
by these fractures. The formation and release of montmorillonite col-
loids (Missana et al., 2003) in response to swelling could form a trans-
port pathway for strong-sorbing radionuclides under certain
geochemical conditions (Kretzschmar and Schafer, 2005; Quinto et al.,
2017; Schafer et al., 2012). These conditions of low-mineralized
groundwater are typically found in meteoric or glacial meltwater.
Below the so-called critical coagulation concentration (Birgersson et al.,
2011; Seher et al., 2020), individual montmorillonite layers may swell
sufficiently to give the clay/water system a sol character, i.e., form
montmorillonite colloidal particles. The critical coagulation concentra-
tion (CCC) is determined in monovalent systems (e.g. Na) and used as a
pessimistic concentration limit for spontaneous clay colloid release.
Bentonite colloids released would decrease the total buffer mass.

A Derjaguin-Landau-Verwey-Overbeek-theory (DLVO)-based force-
balance model for clay layers initially valid only for sodium can be
used to calculate the swelling and advective mass loss of montmoril-
lonite in fractures as parallel plates or with different roughness simu-
lated by aperture standard deviations and correlation lengths (Huber
et al., 2021; Liu et al., 2009).

The CFM (Colloid Formation and Migration) Project at the Grimsel
Test Site and its LIT (Long term in-situ Test) erosion experiment gives
the opportunity to check, under realistic and controlled low ionic
strength water conditions, the bentonite release rates and mass loss via
(a) colloid monitoring in the water of a natural fracture zone (MI shear
zone) and (b) the post-mortem analysis of the over-cored experimental
set-up via analysis of the computer-tomography (CT) data
(Schlickenrieder et al., 2017). The focus of this work is on the CT data
post-processing by means of Digital Rock Physics (DRP), machine
learning-based (ML) segmentation, and finally the estimate of bentonite
mass loss in comparison to the groundwater colloid analysis.

The DRP workflow involves using digital representations of samples
(i.e., digital twin) to simulate physical phenomena (Sadeghnejad et al.,
2023; Tian et al., 2021). The process usually starts with imaging a rock
sample using X-ray computed tomography (CT) followed by image
processing (e.g., denoising) and segmentation. Segmentation is a critical
step in the DRP workflow (Moslemipour et al., 2025; Sadeghnejad et al.,
2021). The traditional segmentation approach usually relies on manual
interaction and implementing thresholding-based algorithms (Huang
et al.,, 2021; Kapur et al., 1985; Otsu, 1979; Tsai, 1985; Wang and
Haralick, 1984), cluster analysis, and boundary detection (Vincent and
Soille, 1991). However, several challenges arise in multiphase segmen-
tation, where more than two target phases exist in an image. These
challenges include variations in greyscale intensity, noise, and phase
boundaries that makes segmentation more challenging. Additionally,
manual segmentation of large image datasets is time-consuming and
subjective to user bias. Thus, ML-based approaches can be implemented
to enhance accuracy and reproducibility.

Recent advancements in nuclear waste disposal shifted toward the
data-driven ML approaches (Hu and Pfingsten, 2023; Hu et al., 2021)
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including the image segmentation task. While supervised deep learning
approaches, such as Convolutional Neural Networks (CNNs) have gained
prominence for their ability to automatically extract image features and
achieve high classification accuracy (Niu et al., 2020; Tang et al., 2022),
shallow learning methods, such as Random Forest (RF), remain highly
effective, particularly in scenarios with limited training data (Reinhardt
et al., 2022). This makes them particularly suitable for applications
where acquiring large, annotated datasets is challenging. Moreover,
unsupervised segmentation techniques such as K-means (Dhanachandra
et al., 2015), Gaussian Mixture Models (Lee and Lee, 2010), and
autoencoder-based deep clustering (Yu et al., 2018) can be used when
labelled data is not available. While these methods are generally simpler
than supervised approaches, they often struggle capturing complex
spatial patterns.

This study presents an application of DRP to quantify bentonite mass
loss and analyze shear zone properties in the Long-term In-situ Test (LIT)
at the Grimsel Test Site (GTS), Switzerland. By integrating CT scanning
with RF classifier as a segmentation tool, precise quantification of
bentonite mass loss as well as fault aperture distribution is achieved,
overcoming the limitations of traditional thresholding methods. The
development of a digital twin model for the bentonite-shear zone system
provided insights into erosion dynamics and hydro-mechanical in-
teractions within fractured crystalline rocks.

2. Material & methods
2.1. The Grimsel Test Site (GTS)

The Grimsel Test Site (GTS) is an underground research laboratory
located in the crystalline rocks of the central Swiss Alps, approximately
350 to 520 m below ground and operated by the Swiss National Coop-
erative for the Disposal of Radioactive Waste (Nagra) (Schneeberger
et al., 2019). Two main aspects render the Grimsel Test Site suitable for
testing selected aspects on the evolution of a geological disposal facil-
ities especially the impact of glaciation scenarios on the EBS integrity.
Firstly, it is fractured crystalline rock. This implies parts characterized
by zones of higher and lower transmissivity. This combination in turn
results in a combination of advective transport dominated sections
juxtaposed to molecular diffusion dominated sections. Secondly, the
hydraulic setting is dominated by low-mineralized meteoric water with
alkaline pH conditions (Schneeberger et al., 2019) and therefore an
analogue to possible glacial water ingress related to future glaciations.

2.2. LIT experiment at GTS (design and monitoring system)

The LIT bentonite erosion experiment was initiated as part of the
Colloid Formation and Migration (CFM) project at the GTS using the
Migration (MI) shear zone (Bossart and Mazurek, 1991). The MI shear
zone is a steeply SSE dipping complex geological structure exhibiting
both brittle and ductile deformation features (Alexander et al., 2001).
The shear zone can be conceptualized as a braided system of fault zones
filled with cohesionless fault gouge, which forms permeable ground-
water pathways. The individual faults vary in thickness from a few
millimetres to several centimetres, and their porosity ranges from 10 %
to 40 % (Reiche et al., 2016). These high-porosity zones increase the
hydraulic conductivity of the shear zone and thus contribute to the
transport of water and colloidal particles. The overall fault architecture
with braided fault gouge zone is also seen in the hydraulic testing within
the MI shear zone. Local transmissivity values range from 107° to
5.107® m?/s, while the large-scale effective transmissivity is approxi-
mately 10°° m?/s (Mori et al., 2003).

The experimental setup of LIT involved the emplacement of com-
pacted FEBEX bentonite rings around a carbon-steel mandrill partly
traced with radionuclides, synthetic clay and conservative tracers within
a borehole interval about 6 m from the tunnel wall, intersecting the MI
shear zone with a diameter of 86 mm and a total length of 400 mm
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(Schlickenrieder et al., 2017). The test was in-situ for 4.5 years, during
which the bentonite experienced swelling and erosion due to uptake of
low-mineralized groundwater (ionic strength of ~2 mM and pH of 9.6
under in-situ conditions). This led to the formation of colloidal particles
at the bentonite surface that can migrated through the shear zone.
Throughout LIT, the chemical composition of the groundwater, the
evolution of colloid concentration, and radionuclide transport were
continuously monitored by sampling from near-field instrumented
borehole intervals (Noseck et al., 2020; Schafer et al., 2023). The system
was equipped with three near-field monitoring boreholes and a primary
water extraction point (surface packer) at the tunnel wall.

The borehole monitoring system (Fig. 1, CFM 11.001, CFM 11.002,
and CFM 11.003) was designed to extract samples from the bentonite
near field under minimal disturbance. The system consisted of the main
borehole (CFM 06.002), where the packer system including the com-
pacted bentonite rings was emplaced and the above-mentioned three
near-field boreholes, positioned to monitor hydraulic and geochemical
conditions.

Beside the three near-field observation boreholes at 0.11-0.12 m
distance, the transport of colloids and radionuclides in the shear zone
was monitored by a surface packer called “Pinkel” at a distance of 6 m
from the source in a steady flow field. During the LIT, the flow field
around the source was controlled as well as possible to simulate natural
groundwater movement within the shear zone and to prevent excessive
flushing of the bentonite source. The imposed low-gradient steady flow
field was ideal for testing colloid migration processes as it minimises any
remobilisation of colloids due to hydraulic pulses.

2.3. FEBEX bentonite & ring fabrication

The clay used for the LIT experiment is so-called FEBEX bentonite
(Delavernhe et al., 2015; Garcia-Romero et al., 2019; Lloret and Villar,
2007; Villar et al., 1998). The FEBEX bentonite is characterized by a
high montmorillonite content (90 %) with the major exchangeable
cations (CEC) being 24 + 1 Na, 35 + 3 Ca, 31 + 3 Mg and 2.6 + 0.4 K
(all values as cmol(+)/kg), which sums up to 92.5 cmol(+)/kg cations
(Torres et al., 2017). Detailed analysis of the <2 pm fraction by XRD and
FT-IR revealed only traces of quartz and the clay consisted of an inter-
stratified illite-montmorillonite mineral with 13 % of non-swellable
layers (Friedrich et al., 2016) in good agreement with Cuadros and
Linares (1996).
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For the preparation of the LIT within the CFM project
(Schlickenrieder et al., 2017) it was decided to emplace the bentonite as
compacted rings similar to the so-called LOT tests at Aspd (Karnland
et al., 2000). The FEBEX bentonite rings were compacted in molds by
CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y
Tecnoldgicas, Spain) and had the following specifications per ring (n =
51): mass 178.71 + 0.29 g, dry mass 158.22 + 0.26 g, thickness 25.05
+0.11 mm, volume 95.93 + 0.41 cm® and dry density 1.65 + 0.01 Mg/
m3 (Schlickenrieder et al., 2017).

Four of the bentonite rings in the center of the source emplacement
interval were traced with 10 % Zn-labelled synthetic montmorillonite
(Reinholdt et al., 2001; Schlickenrieder et al., 2017). The 10 % Zn-
labelled synthetic montmorillonite was mixed with 90 % FEBEX
bentonite and compacted into rings by CIEMAT using the same method
and equipment applied to the other twelve rings in the source. The
FEBEX bentonite is according to Sanchez et al. (2006) composed of 93 +
3 % montmorillonite, 2 + 0.5 % quartz, 2 + 1 % potassium feldspars, 1
+ 0.7 % plagioclase, 2 + 0.2 % cristobalite, 1 + 0.7 % calcite and 1.5 +
0.1 % rhyodacitic original rock (mainly, volcanic glass). Radionuclide
tracers (45Ca, 755e, 99Tc, 137Cs, 241Am, ZSSU, 242py & 237Np) were
emplaced in the central part of the source in glass vials, however this
aspect of LIT is beyond the scope of this paper and discussed e.g. in
Quinto et al. (2019).

2.4. Bentonite colloid monitoring in the groundwater

Water samples were taken from the monitoring interval in CFM
11.002 (0.02, 0.05 mL/min) during the first half of the LIT and then from
CFM 11.003 (0.05 mL/min) during the latter half. Colloid concentra-
tions and mean particle sizes were determined on-site in-line and off-site
by Laser-Induced Breakdown Detection (LIBD) with optical data acqui-
sition or Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
(Geckeis et al., 2004; Hauser et al., 2002; Scherbaum et al., 1996; Stoll
et al., 2017). Based on the bulk structural formula of the FEBEX
bentonite [Si7.eeAlo.34]1[Al2.68Fe0.34Mgo0.911X0.81020(0H)4; X = (OH,F,
Cl) = 23.82 g/mol, the elemental mass fractions of the main elements
are calculated. The same is done for the admixture with the synthetic Zn-
montmorillonite. These values are used to calculate colloid concentra-
tions based on the ICP-MS data under the assumption that the total Zn
and Al concentration is colloid bound and originating from the bentonite
rings. Maximum colloid concentrations of 1.4 mg/L and 1.7 mg/L

Borehole camera

View towards the borehole mouth

(b)

Fig. 1. a) Schematic of the cored interval with the position of the four boreholes, the packers, the bentonite source, and the envelope of the shear zone (i.e., the target

fault). b) View directions toward the borehole end.
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(Rinderknecht, 2017) are calculated from the zinc and aluminum con-
centrations, respectively (Huber et al., 2014).

2.5. Drilling procedure/dismantling

The experiment was over-cored (0-6 m drilled in 360 mm, coring
from 6 to 7.7 m with 300 mm; core length was 1.7 m and 300 mm
diameter) before cutting down for the CT analysis of the central part
(core length 800 mm, at 6.35 to 7.15 m from tunnel surface) and after
these CT measurements sliced into discs for various further analyses.
Each section included, from the inside out, the steel mandrill, the
bentonite ring, and the surrounding rock. The drilled core included a
transversal section of the central source borehole (CFM 06.002) inside
the steel and sections of the three near-field monitoring boreholes (CFM
11.001, CFM 11.002, and CFM 11.003) inside the rock area. Some cables
and linings remained in the monitoring areas.

2.6. CT scanning and DRP workflow

The procedure involved multiple stages to ensure high-quality im-
aging. First, the over-cored 800 mm long sample was carefully stabilized
to minimize movement and prevent material displacement during
transport. The sample was then secured within a specialized scanning
chamber, where it underwent rotational imaging by a fan-beam CT
scanner at multiple angles. The scans were performed at EMPA (Swiss
Federal Laboratories for Materials Science and Technology). The top and
bottom section of the core was scanned at 5 mm intervals (i.e., scan
spacing along core), while the central location over the traced bentonite
and the shear fault zone was scanned at 0.50 mm resolution. Only this
higher resolution data was used in this study. Each cross-sectional image
has a resolution of 0.39 mm. This final image has a size of 1800 x 1800
x 400 voxels®, which is equal to 708.3 x 708.3 x 200 mm?.

Slight beam hardening artifacts, (bright rims and grayscale gradients
toward the core centre) were observed in the CT images. In this study, no
post-processing correction for beam hardening was applied. However,
its potential influence on segmentation and intensity-based erosion es-
timates is acknowledged. Since the analysis focused on relative changes
and spatial patterns, particularly in regions adjacent to the shear zone,
rather than absolute grayscale values across the entire core, the impact
of beam hardening on the main findings is expected to be limited.

The workflow for the DRP analysis is illustrated in Fig. 2. This pro-
cess involved creating a digital twin model of the borehole system from
the CT scan images. The scanned images first underwent a pre-
processing step, which is crucial for enhancing the quality and usabil-
ity of the scans for further analysis. A non-local K-mean filter (Buades
et al., 2011) was then applied, known for its effectiveness in preserving
edge information while reducing noise.

2.7. Segmentation using RF

Given the scans’ composition of diverse materials such as compacted

Region of
Interest (Rol)
selection

Start Noise Reduction
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bentonite, rock matrix, open fracture, fault gouge, and steel mandrill,
segmentation represents a complex challenge. Therefore, a segmenta-
tion method employing a RF classifier (Breiman, 2001) was applied,
which uses multiple decision trees and has been previously shown to
improve segmentation compared to simple thresholding methods. The
segmentation accuracy was further enhanced by carefully selecting the
Region of Interest (Rol), to limit interference from non-relevant areas,
focusing the analysis on zones relevant to the research objectives.

The RF algorithm (Fig. 3) is a ML technique that classifies pixels by
constructing multiple decision trees and aggregating their outputs (also
called bagging) (Geurts et al., 2009; Reinhardt et al., 2022). This
ensemble-based approach is commonly used to improve robustness and
reduce overfitting in image segmentation tasks (i.e., poor generalization
on unseen data) (Breiman, 2001; Cardenas-Gallegos et al., 2025; Sharr
et al., 2024), and is suitable for segmenting complex multiphase images.
Multiple decision trees (here 100 trees) are built using random subsets of
both the data and features, which helps introduce variability among the
trees, reducing the risk of overfitting.

In the segmentation task, the RF algorithm operates by analysing the
spatial and contextual relationships between pixels. Various image
features, such as pixel intensity, texture, and edges, are used as input
parameters for the classification task (Sommer et al., 2011). Moreover,
these features are derived by applying filters at different scales to the
input images, typically using Gaussian filters with variable standard
deviations (i.e., the scale parameter, ¢) (Sommer et al., 2011). Each
Gaussian filter acts on the image by suppressing high-frequency com-
ponents, depending on the value of its standard deviation, and produces
smoothed image outputs that can then be used to derive features
(Urazmatov et al., 2024). By adjusting the scale parameter, one can
control the filter’s sensitivity to structures of varying sizes, enabling a
more comprehensive analysis during the training phase.

In this study several filter types were implemented for each feature
category (Table 1). For example, the Gaussian blur filter, applied at
multiple kernel sizes, was used to generate features related to pixel in-
tensity. Additionally, the Laplacian of Gaussian (LoG), Gaussian
Gradient Magnitude (GGM), and difference of Gaussians (DoG) filters
were applied to extract edge-related features that capture boundaries
between different phases. The LoG filter (also referred as Marr-Hildreth
operator) highlights regions with rapid intensity changes, effectively
detecting edges (Jager and Jutzi, 2023), GGM computes the gradient of
an image by calculating Gaussian derivatives, aiding in identifying areas
of significant intensity variation (Sanders et al., 2016), and the DoG
filter emphasizes features at specific scales by subtracting one Gaussian-
blurred image from another with a different scale parameter (Sandic-
Stankovi¢ et al., 2022; Sommer et al., 2011). Lastly, Structure Tensor
Eigenvalues (TE) and Hessian of Gaussian (HoG) Eigenvalues were used
to evaluate the predominant directions of intensity variations (Arganda-
Carreras et al., 2017; Sertcelik and Kafadar, 2012; Sommer et al., 2011),
assisting in the detection of oriented structures and textures inside of
target images. In this study, Gaussian filters with seven standard de-
viations (0.3, 0.7, 1.0, 1.6, 3.5, 5.0, and 10.0) for pixel intensity features

Fracture
Thickness
Evaluation
Segmentation
using Random End
Forest (RF)

Erosion Analysis

Fig. 2. Flowchart of digital rock physics workflow.
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Fig. 3. Random Forest algorithm used for segmentation.

Table 1
Examples of filters used to extract image features.

Feature Filter Description
Category
Intensity Gaussian Smoothing ~ Applies a Gaussian filter to reduce noise.
. Highlights regions of rapid intensity change
Laplacian of 8018 . 8 . p. Y &
. by applying a Laplacian filter to the
Gaussian . .
Gaussian-smoothed image.
Edee Gaussian Gradient Measures the rate of intensity change in the
8 Magnitude image.
. Emphasizes features at specific scales b
Difference of P . X P . v
X subtracting one Gaussian-blurred image
Gaussians
from another.
Evaluates the predominant directions of
Structure Tensor . . L e .
. intensity variations, aiding in the detection
Eigenvalues .
of oriented structures and textures.
Texture Applies the Gaussian filter followed by

Hessian of Gaussian
Eigenvalues

second-order partial derivatives of the
image, which provides information about
the local curvature of images.

were used, while six standard deviations (0.7, 1.0, 1.6, 3.5, 5.0, and
10.0) were used for the other filters (LoG, GGM, DoG, TE, and HoG),
resulting in a 37-feature vector for each pixel (See Table 2)

Those 37 features were generated by systematically applying a set of
commonly used image filters across multiple spatial scales. The filters
were selected based on prior studies showing their relevance in
capturing intensity, edge, and texture information in multi-phase sys-
tems (Arganda-Carreras et al., 2017; Sommer et al., 2011). The objective
was to retain a comprehensive feature set that captures relevant struc-
tures at different scales. However, feature importance evaluation using
Random Forest could be considered in future work to reduce dimen-
sionality and improve model efficiency.

All image processing tasks were carried out in Dragonfly Pro (Object
Research Systems Inc., Version 2021). For RF segmentation, the ilastik

Table 2

segmentation toolkit (Berg et al., 2019) was employed. Upon successful
segmentation, detailed analyses such as the determination of fracture
aperture distribution and quantification of bentonite erosion were
conducted. By integrating DRP workflows and image processing tools,
this study aims to enhance the analysis of subsurface structures and their
dynamic processes, building on established geological methods.

3. Results and discussion
3.1. RF segmentation

The CT scan images first underwent a denoising process using Non-
Local Mean Filter (NLMF) (Buades et al., 2011), enhancing the clarity
of bentonite rings and fracture networks (Fig. 4). Unlike traditional
denoising methods (e.g., mean or median filters), which consider only a
pixel and its surrounding neighbours, NLMF eliminates noise by
comparing the similarity of patches across the entire image and
weighting pixels based on their resemblance to the target pixel. This
process prevents image blurring, a common issue in conventional
smoothing filters.

During the segmentation, there are several phases that are not rele-
vant to the analysis in the Rol, such as the central steel mandril and
various linings within the internal structure of the sections of the four
boreholes. These phases and objects exhibit similar greyscale intensities,
making accurate segmentation challenging. The greyscale distribution
of the CT image across various phases is displayed in Fig. 5a. While the
bentonite rings and rock matrix have distinct greyscale values, there is
significant overlap in the greyscale values of fault gouge and open
fractures, making it difficult to separate these phases. Furthermore, the
tools inside the main borehole (CFM 06.002) completely overlap with
other phases and are distributed across nearly the entire greyscale range
(i.e., 0 to 255). Therefore, careful selection of RoI during segmentation is
crucial to improving accuracy and ensuring meaningful analysis.

Details of calculations for bentonite ring erosion estimation from different scenarios.

Scenario  Description Assumed Porosity Original partially eroded Fully eroded Equivalent eroded Erosion rate (kg/
(%) voxels voxels voxels m?/a)
1 All partially eroded voxels assumed to be fully 100 41,789 3451 45,240 1.31
eroded
2 A porosity range was estimated for partially 72.7 33,831 0.99

eroded voxels
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(a)

Fig. 4. Comparing (a) the original CT scan with (b) the filtered scan by NLMF.
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Fig. 5. (a) Greyscale value for various phases available in the CT scan images. (b) Rol for fault thickness analysis (red solid frame). Masking of the four boreholes to
reduce segmentation interferences from non-important areas. (c) Second Rol (blue dashed frame) for bentonite ring analysis. By main hole the central part of the
packer is meant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

During the analysis, two main Rols were selected. To evaluate the
fault thickness, the background of the CT scan, as well as all four main
holes, were removed from the Rol (Fig. 5b). For the bentonite mass loss
analysis, only the area surrounding the central borehole (CFM 06.002)
(including the fault area) was considered (Fig. 5c). In this Rol, the ma-
terials inside the main borehole were masked out to reduce irrelevant

information.

Various filters were applied to extract relevant features during RF
training in this study, with Gaussian blur used to capture pixel intensity
variations and more advanced filters such as LoG, GGM, and DoG used
for edge detection. Additionally, TE and HoG helped identify textures. A
37-feature vector was generated per pixel, integrating these filters with
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different standard deviations. Fig. 6 provides a detailed visual compar-
ison of the original image alongside the results of various filters at
variable Gaussian smoothing standard deviations of 1, 3.5, and 10. It is
shown how each filter type emphasizes different aspects of the input
image, demonstrating the contributions of each feature to the overall
segmentation performance.

The digital twin achieved after segmentation by the RF algorithm is

Original Image

Applied Clay Science 276 (2025) 107915

shown in Fig. 7, highlighting its effectiveness in identifying distinct
phases, including steel mandrill, bentonite rings, fault gouge, open
fractures and the rock matrix (which is not shown in this figure). The
segmentation process reveals clear distinctions between different ma-
terial phases. The results demonstrate that applying multiphase seg-
mentation in combination with carefully selected Rols enables accurate
and reliable image analysis, facilitating a more detailed evaluation of the

Standard deviation of Gaussian smoothing filter

Gaussian smoothing filter

o=1

c=3.5

=10

Laplacian of Gaussian (LoG) filter

Gaussian Gradient Magnitude (GGM)

filter

Difference of Gaussians (DoG) filter

Structure Tensor Eigenvalues (TE) filter

Hessian of Gaussian Eigenvalues (HoG)

filter

Fig. 6. Representation of features extracted from top view of the main borehole. From left to right: three various Gaussian smoothing with a standard deviation of 1,

3.5, and 10. From top to bottom: various applied filters.
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Bentonite
Fault Gouge

Open Fracture

(a)

geological features under investigation.

3.2. Fault aperture analysis

The fault aperture and topology within the shear zone were analysed
to better understand its structural and geometrical characteristics and
contact area to the compacted bentonite. A 3D fault thickness map is
depicted in Fig. 8a, highlighting the spatial distribution of the fault
volume connecting the central borehole (CFM 06.002) to the three
neighbouring monitoring boreholes (CFM 11.001, CFM 11.002, and
CFM 11.003).

The fault has an aperture ranging from 0.85 to 6.93 mm with a mean
(20) 0of 2.90 + 1.09 mm (Fig. 8b). The surface to volume ratio of the fault
is 1.067. The variability in fault thickness underscores the geometric
complexity of the shear zone and highlights the care to be taken
abstracting fault geometry toward parallel plate models (Stoll et al.,
2019). Comparable results have been found in the EP (Excavation
Project) impregnating the fracture network with fluorescent resin and
subsequently over-coring along the shear zone and cutting into slices of
~3-cm thickness (Frieg et al., 1998). The surfaces of these slices were
then photographed in visible and ultraviolet (UV) light to obtain an
aperture distribution varying from a low-end cut-off of 10 pm (below the
CT resolution) to an upper-end cut-off of 2 cm (Mettier et al., 2006).

Finally, the fracture aperture distributions between the main bore-
hole and each of the three monitoring boreholes sections were evalu-
ated. To do so, a crop from the fault region between the central borehole
and each neighbouring borehole (shown in Fig. 8a with three boxes of
variable colors) was considered. For each crop, the fault thickness map
was evaluated. The fracture aperture distribution between the central
borehole and the three monitoring boreholes is shown in Fig. 8c. The
analysis reveals significant variations in fracture apertures, which are
likely to affect the flow dynamics and the stability of the engineered
barrier system over time. For example, the dipole connecting the main
hole to CFM11.001, CFM11.002, and CFM11.003 has a mean fault
thickness of 2.26 + 0.86 mm, 2.99 + 0.91 mm, and 2.69 + 0.99 mm,
respectively. The lower fracture aperture between CFM 11.001 and CFM
06.002 supports the findings from hydraulic testing, where the hy-
draulic connection between these two boreholes was found to be lower
(Lanyon et al., 2014).

Applied Clay Science 276 (2025) 107915

(b)

Fig. 7. (a) 3D and (b) 2D segmentation results using the RF algorithm. In the 2D image, the black background is the host rock.

3.3. Bentonite erosion evaluation and its uncertainty

Once the bentonite rings come into contact with groundwater, the
bentonite will swell into any open porosity, including the small annular
gap between the rings and the borehole walls because of the additionally
constructed cover sleeve, and any open fracture voids at the borehole
wall. After calibration, the average swollen diameter of 86.9 mm was
computed by measuring different locations of altered bentonite rings in
the CT scan images, far from the fault region. This value was then used to
update the bentonite ring density.

The FEBEX bentonite rings, during manufacturing and before
installation into the main borehole, had a ring diameter of 82 mm with a
dry density of 1.65 + 0.01 Mg/m> and the nominal emplaced diameter
of the borehole was 86.00 mm. The rings had a 13.9 % gravimetric water
content. Since all 12 FEBEX rings were precisely weighed before
installation and given their new final swollen diameter measured from
CT data (86.87 mm), the final average density of the bentonite rings was
evaluated to be 1.31 Mg/m®. This average value was considered for each
voxel to compute the erosion weight during 4.5 years of the LIT.

To quantify erosion, a cylindrical mask was applied around the target
FEBEX bentonite rings, allowing for the analysis of material loss. The
scan was then segmented into four phases of intact bentonite, partially
eroded voxels, fully eroded voxels (with 100 % porosity), and steel
mandrill (Fig. 9). As it is indicated in Fig. 9, the distribution of voxels
identified as eroded, clearly showing their concentration in proximity to
the shear zone. The spatial clustering supports the interpretation that
erosion is localized and likely driven by shear-induced processes, rather
than random noise or imaging artifacts. By counting the segmented
eroded volume from the initial structure within the cylindrical bentonite
mask, the extent of erosion was quantified. This approach enabled
precise calculations of bentonite mass loss and helped in comparing CT-
based erosion estimates with independent geochemical assessments,
such as the colloid quantification by means of LIBD/ICP-MS.

The multiphase segmentation using the RF algorithm was applied
slice by slice on 2D image data; however, since these slices are part of a
registered 3D volume, the segmented pixels correspond to voxels in
three-dimensional space. Out of 9,900,000 voxels in the Rol, a total of
3451 fully eroded voxels and 41,789 partially eroded voxels were
identified, each voxel having a size of 0.39 x 0.39 x 0.5 pm (7.72 x
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Fig. 8. (a) 3D Fault thickness map. The fault volume connecting neighbouring boreholes to the central borehole is also highlighted by three boxes in different colors
(b) Fault thickness histogram. (c) Dipole aperture distributions between the main borehole (CFM 06.002) and the three neighbouring monitoring holes (CFM 11.001,

CFM 11.002, and CFM 11.003) as indicated by the coloured boxes.

107! m3). These values represent a small but spatially localized fraction
of voxels, predominantly concentrated near the shear zone (see Fig. 9).
While the overall proportion is low, the non-random distribution sup-
ports the interpretation that the grayscale variations are due to localized
erosion rather than imaging artifacts or material inhomogeneities.

A 100 % porosity was considered for the fully eroded voxels. These
voxels based on their dark greyscale value were easily differentiated
from the other voxels during the segmentation using RF. However, those
voxels that have higher grey intensity were separated from these voxels
and assigned as partially eroded voxels. In othe+r words, just a fraction
of the bentonite was eroded in these voxels during the 4.5-year LIT ex-
periments. To estimate the uncertainty of erosion, two scenarios were
considered. In the pessimistic case all these voxels were considered as
fully eroded, which is the maximum possible erosion. In a more realistic
scenario, the porosity of these voxels is estimated based on their grey-
scale range in comparison to the greyscale value of unaltered bentonite
rings.

The histogram of greyscale intensity value of bentonite rings and
partially eroded voxels are depicted in Fig. 10, which span in a greyscale
range of 0 to 145 (with a mean of 74) and 0 to 79 (mean of 33) out of

255, respectively. Since no calibration data of density versus greyscale
intensity was available, it was decided to roughly estimate the porosity
of the eroded voxels using the unaltered bentonite ring area in the CT
images. It is assumed that the porosity of the internal bentonite voxels (i.
e., those far from the erosion surface) remain constant over time and are
equal to the initial porosity of 38.9 % (Schlickenrieder et al., 2017). As
the resolution of CT scanning was not high enough to resolve the
microporosity within the bentonite rings; therefore, the mean greyscale
intensity (Gp > = 74) in the bentonite greyscale histogram is assumed of
this porosity value (38.9 %). Consequently, the other tail of this histo-
gram (Gp; = 0) given by the partially eroded voxels of the same ma-
terial represents approximately 100 % porosity (i.e., a pore voxel). If the
partially eroded voxels follow a linear trend between greyscale intensity
and porosity, like unaltered bentonite rings, then using Eq. (1) the mean
intensity range of partially eroded voxels (33 out of 255) corresponds to
the porosity of approximately 72.7 %, which shows that these voxels
have 33.8 % higher porosity than unaltered bentonite voxels (38.9 %).

Dp1 — Dpo

R

+ Dy (@)
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(b)

Fig. 9. a) 3D segmentation results using the RF algorithm for erosion evaluation. A cylindrical mask was applied around the FEBEX rings. b) The same as (a) but the

bentonite voxels were not shown for comparison purpose.
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Fig. 10. Grey intensity histogram for bentonite and partially eroded voxels.

It is important to acknowledge that the estimation of bentonite mass
loss based solely on CT grayscale intensity data, without a supporting
calibration data relating grayscale values to material density, might
introduce uncertainties in the quantitative analysis. Although this
assumption may not be completely correct, at least it provides a rough
estimate of eroded voxel porosity. Consequently, the quantitative
erosion values presented should be regarded as indicative rather than
definitive, serving primarily to highlight relative trends rather than
absolute mass loss. However, the pessimistic scenario, in which all
partially eroded voxels are considered fully eroded, represents the
maximum possible mass loss. This approach provides an upper bound
estimate of bentonite erosion, serving as a conservative reference that
likely overestimates the actual erosion but offers a useful limit for
interpretation. By comparing this maximum erosion estimate with the
more conservative, grayscale-based calculation, we gain a better un-
derstanding of the potential range of bentonite loss, thereby framing the
uncertainty and improving the overall assessment.

The following table summarizes the eroded amount for different
scenarios. In the scenario, where all partially eroded voxels are assumed
to be fully eroded (i.e., pessimistic assumption), the total number of
eroded voxels is 45,240. Given the voxel volume of 7.72 x 10~ m® and
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the corrected bentonite density of 1.31 Mg/m?>, the total bentonite
erosion over 4.5 years (1600 days) of the LIT is estimated to be 1.04 g/y.
In the second scenario, where the mean porosity of partially eroded
voxels is accounted for, the estimated erosion rate would be 0.78 g/y. By
considering the mean fault aperture (2.90 + 1.09 mm) and the given
bentonite diameter of 86.87 mm, a contact area between fault and
bentonite rings of 7.91-10"* m? can be estimated. Thus, the contact area
normalized erosion rates will be between 0.99 and 1.31 kg/m?/y. The
erosion percentage toward the three neighbouring boreholes
(CFM11.001, CFM11.002, and CFM11.003) was estimated to be 21 %,
45 %, and 34 %, respectively, which is in accordance with the average
fault contact areas of 6.16-10 % m?, 8.16:10~* m?, and 7.34-10™* m?.
The findings indicate that the maximum erosion occurred in the direc-
tion from the central borehole toward CFM11.002, which has the
highest average fault thickness (2.99 + 0.91 mm) as well as contact
area.

Water samples from near-field borehole intervals in CFM11.001,
CFM11.002, and CFM11.003 showed estimated colloid concentrations
of 1.4-1.7 mg/L back-calculated based on the element mass fractions in
the FEBEX bentonite structural formula. These values are calculated
under the assumption that the total Zn or Al concentration is colloid
bound and originating from the bentonite rings, respectively. LIBD
measurements in the same boreholes revealed approx. 0.07 mg/L
colloidal concentrations. Further analysis of the “Pinkel” surface packer
showed mean concentrations of 0.005 mg/L nanoparticulate fraction.
Taking an extraction flow of 0.05 mL/min at the observation boreholes
CFM11.001, CFM11.002, and CFM11.003 and 25 mL/min at the Pinkel
surface packer a mass loss rate of 0.001 g/y (LIBD), 0.045 g/y (ICP-MS)
and 0.066 g/y (for Pinkel) could be estimated, which results in contact
area normalized erosion rates of 0.002 to 0.107 kg/m?/y. The signifi-
cantly lower erosion rates quantified via groundwater monitoring
analysis can be explained by the colloid retardation observed even under
these unfavorable colloid attachment conditions in migration studies
(Reiche et al., 2016).

Most importantly, all estimated erosion values, including the pessi-
mistic scenario, remain below the critical range for repository evalua-
tion regarding mass loss, reinforcing the long-term integrity of FEBEX
bentonite as a geotechnical barrier material. A buffer failure criterion set
by SKB is a mass loss of 1200 kg from originally 22,000 kg in one
emplacement hole (SKB, 2011). Both techniques used in this study show
erosion rates <2 kg/m?/y, at least two orders of magnitude below mass
loss assessment rates of 500 to 1500 kg/m?/y (POSIVA, 2017).
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4. Conclusion

This study investigated the impact of a fractured zone on bentonite
erosion in an in-situ experiment at the Grimsel Test Site (GTS),
Switzerland, simulating a bentonite barrier in a deep geological re-
pository for radioactive waste. By combining X-ray computed tomog-
raphy scanning, digital rock physics, and segmentation with a Random
Forest classifier in ilastik applied to the over-cored sample, we obtained
a detailed quantification of the distribution of fault apertures and
bentonite loss. The correct selection of the region of interest played a
crucial role in minimizing segmentation errors, while uncertainty
analysis refined erosion estimates.

The results demonstrate that the fault aperture distribution within
the shear zone is highly heterogeneous, with a mean aperture of 2.90 +
1.09 mm. This variability in fault thickness controls hydrodynamics in
the fracture and underscores the complexity of fluid and particle
transport within the shear zone. Further, careful consideration is advo-
cated when using abstracted fault geometries to assess the long-term
performance of engineered barrier systems in geological repositories.
Hydraulic characterization between the central and the monitoring
boreholes confirmed heterogeneity not only in the fracture aperture but
also in the hydraulic connectivity.

The random forest segmentation approach enabled a clear visual
separation of different material phases, including bentonite, rock ma-
trix, fault gouge, and open fractures, based on their distinct greyscale
and textural features in the CT images. This method improved the ac-
curacy of mass loss quantification and fault characterization, over-
coming the limitations of traditional thresholding techniques. Although
not benchmarked against other segmentation methods, the benefit of
this approach was validated qualitatively through expert visual inspec-
tion and its ability to support robust, consistent phase distinction
essential for downstream analysis.

The segmentation results revealed that the bentonite rings experi-
enced partial and heterogenous erosion, with the total erosion rate
estimated to be between 0.99 and 1.31 kg/m?/y for FEBEX bentonite. All
estimated erosion values remain below the critical range for repository
evaluation regarding mass loss, reinforcing the long-term integrity of
FEBEX bentonite as a geotechnical barrier material within the tested
conditions. The erosion rates estimated within this study are <2 kg/m?/
a and therefore at least two orders of magnitude below mass loss
assessment rates of 500 to 1500 kg/mz/a (POSIVA, 2017). The erosion
masses within this study was FEBEX bentonite a Ca—Mg dominated
bentonite. Based on colloid migration studies performed so far, which
show lower colloid recovery compared to the conservative tracer in this
shear zone (Reiche et al., 2016), it is assumed that the significantly
lower erosion rates estimated via groundwater monitoring analysis can
be linked to colloid retardation/attachment to fracture surfaces or

clogging.
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