
PHYSICAL REVIEW B 112, 214508 (2025)

Multiterminal Josephson junctions with tunable topological properties

Panch Ram ,1,2,* Detlef Beckmann ,3 Romain Danneau ,3 and Wolfgang Belzig 2,†

1Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
2Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany

3Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Karlsruhe D-76021, Germany

(Received 24 January 2025; revised 7 October 2025; accepted 19 November 2025; published 8 December 2025)

Since the discovery of the Andreev reflection process at normal-metal/superconductor junctions and the corre-
sponding Andreev bound states in superconductor/normal-metal/superconductor junctions, various multiterminal
Josephson junctions have been studied to explore many exotic phases of quantum matter, where the formation
of Andreev bound states in the normal region account for dissipationless supercurrent and play a central role in
determining exotic properties. Recently, an intriguing aspect of the multiterminal Josephson junctions has been
proposed to study the topological properties, wherein the Andreev bound states acquire topological characteris-
tics upon tuning the phase differences of superconducting terminals. In this work, we investigate topologically
nontrivial phases in four-terminal Josephson junctions based on square and graphene lattices. Additionally, we
apply a gating potential that smoothly drives the Andreev bound states from a topologically nontrivial state to a
topologically trivial state. Furthermore, we observe that the gating potential in our setup produces similar physics
of the topological Andreev bound states of the double (single) quantum-dot multiterminal Josephson junctions
when the gating potential is small (large) compared to the superconducting energy gap.

DOI: 10.1103/2p7b-2hc2

I. INTRODUCTION

Although the underlying concepts of topology in math-
ematics have been known since the seventeenth century,
the successful integration of this idea into condensed mat-
ter physics is relatively recent, emerging only about two
decades ago with the discovery of novel topological quantum
materials, such as topological insulators [1–4], topological
semimetals [5], and topological superconductors [6]. The
topological insulators exhibit insulating bulk states while sup-
porting conducting surface states at the edges, whereas the
electronic states of the topological semimetals demonstrate
responses to externally applied electric and magnetic fields. In
the case of the topological superconductors, the time-reversal
symmetry is broken in two-dimensional planar systems, and
they differ fundamentally from the Bose-Einstein condensate
of Cooper pairs. Moreover, the study of topological supercon-
ductors has advanced the development of Majorana fermions,
which are their own antiparticles and obey non-Abelian braid-
ing statistics [7–9]. These Majorana zero-energy modes are
particularly significant for their potential use as qubits in
topological quantum computation [10–13].

The nontrivial topology in such real-world materials is
often hard coded, requiring some specific interactions such as
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strong spin-orbit coupling. However, a branch of topological
investigations has recently gained attention in the condensed
matter community—synthetic quantum matters—where inter-
nal degrees of freedom can be easily tuned, offering greater
control over topological properties. Examples of such syn-
thetic quantum systems include topological photonics [14,15],
topological driven Floquet systems [16], topological elec-
trical circuits [17], and multiterminal Josephson junctions
(MTJJs) [18–31]. The MTJJs, in particular, comprise multiple
BCS-type superconducting leads and can, in principle, host
topologically nontrivial Andreev bound states (ABSs) in syn-
thetic space of the superconducting phase differences. These
topological ABSs result in an integer-valued first Chern num-
ber which is related to a quantized transconductance between
two superconducting terminals [18]. Moreover, in the MTJJs,
a nontrivial higher-dimensional topology can be easily engi-
neered by simply increasing the number of superconducting
leads [18,32].

Recently, various types of MTJJs have been synthe-
sized and subjected to experimental measurements; how-
ever, a clear signature of the nontrivial topology in
such systems remains elusive, due to experimental chal-
lenges in achieving the specific conditions required by the
scattering region placed in between the superconducting
terminals [33–39]. Alternatively, several proposals involving
quantum dots coupled with superconducting terminals have
been suggested, but these also require specialized coupling
between the superconducting terminals, which presents fur-
ther feasibility limitations [26–28]. More recently, however,
a system consisting of a double quantum dot coupled with
four superconducting terminals has been proposed, which
may be experimentally feasible [40]. One of the key findings
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in [40] indicates that the realization of topologically non-
trivial Andreev bound states (ABSs) requires a system
comprising at least two coupled quantum dots within a mul-
titerminal Josephson junction setting. The graphene based
MTJJs have also been extensively studied for their trans-
port properties, including Cooper pair quartets [41,42] and
supercurrent flow across multiple leads [33]. Recent efforts
have focused on probing Andreev bound state (ABS) band
structures via local spectroscopy [37]. However, a direct ob-
servation of topological ABS spectra remains challenging,
as it requires independent control of three superconducting
phases. A new study on a four-terminal InAs/Al junc-
tion reported signatures of topological ABS bands, though
interpretation is limited by the resolution of tunneling
spectroscopy [43].

Inspired by the experimental progress toward observing
the nontrivial topological ABSs in MTJJs, in this paper, we
theoretically investigate the topological properties of Andreev
bound states in four-terminal Josephson junctions based on
square and graphene lattices. Graphene is ideally suited for
experiments on multiterminal Josephson junctions due to
the high quality of graphene encapsulated in boron nitride,
the gate tunability, and the possibility of forming high-
transparency contacts with superconductors [44–56]. Ballistic
transport is routinely observed, and the limit of short Joseph-
son junctions can be easily achieved in hybrid structures
defined by e-beam lithography. Nonetheless, real-world struc-
tures will be much larger than a single quantum dot and
incorporate inhomogeneous gate potentials. We therefore fo-
cus here on finite-size systems with gate potential included.
In the short-junction limit, we demonstrate that the lowest
ABSs undergo a topological phase-transition upon tuning
the superconducting phase differences between the terminals.
In addition, we examine the robustness of these topological
ABSs in the presence of an externally applied gate potential
in the scattering region. We find that the topological nature of
these ABSs remains intact for a large gate potential relative to
the superconducting energy gap, before eventually transition-
ing into a topologically trivial phase.

The rest of the paper is ogranized as follows. In Sec. II,
we present the tight-binding model Hamiltonian of MTJJs
for both square and graphene lattices, the scattering ma-
trix theory formalism to obtain the ABS energies and the
corresponding states, and a numerical method [57] to cal-
culate the Chern number. Section III provides results for
the topological phase diagrams, obtained by using the Chern
number and minima of the lowest positive ABS energy, in the
space of model parameters. Finally, we conclude the paper in
Sec. IV.

II. MODEL AND METHOD

A. Hamiltonian

We setup a tight-binding model Hamiltonian for a system
of four-terminal Josephson junctions, as shown in Fig. 1,
based on square and graphene lattices to study the topo-
logically nontrivial ABSs, Ĥ = Ĥ0 + Ĥ�. For the square
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FIG. 1. (a) Schematic illustration of the multiterminal Josephson
junctions setup. We consider a system with four superconducting
terminals attached with a scattering region, forming Josephson junc-
tions. The scattering region is indicated in light-green with length
L and width W whereas the four superconducting (SC) leads are
depicted in the light-blue with phases φα (for α = 0 to 3). These
semi-infinite horizontal and vertical leads have the corresponding
width Ws and length Ls, respectively. Additionally, a schematic of
externally applied gating potential, acting only in the scattering
region, is shown in orange color, increasing in strength along the
diagonals. (b) We setup the system based on square and graphene
lattices and employ the KWANT [58] to numerically simulate the
tight-binding model Hamiltonians in Eqs. (1) and (2). (c) A typical
color plot and contour plot for the applied gating potential of the
form V (x, y) = Vgx2y2. (d) A discretized mesh grid in (φ1, φ2) space
is used to numerically calculate the Chern number, in Eq. (10), by
using the Fukui, Hatsugai, and Suzuki method [57].

lattice,

Ĥ0 = −t
∑
r,δ

∑
σ

(ĉ†
r,σ ĉr+δ,σ + H.c.)

+
∑

r

∑
σ

(4t − μ + Vr )ĉ†
r,σ ĉr,σ , (1a)

Ĥ� =
∑

r

(�rĉ†
r,↑ĉ†

r,↓ + �∗
r ĉr,↓ĉr,↑), (1b)

where the operator ĉ†
r,σ (ĉr,σ ) creates (annihilates) an electron

with spin σ ∈ {↑,↓} at lattice site r ≡ nxx̂ + nyŷ with nx, ny ∈
Z, and δ ≡ {±x̂,±ŷ} is the nearest-neighbor vector, t and μ

are, respectively, the hopping energy amplitude and chemical
potential, while Vr ≡ V (x, y) = Vgx2y2 is added to account for
the gating potential which is only applied in the scattering
region. The superconducting pairing �r = �eiφα is nonzero
only for the lattice sites that lie in the superconducting leads,
which are labeled for the index α ∈ {0, 1, 2, 3} with the
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corresponding phases {φα}, and accounts for the s-wave sin-
glet superconducting pairing. The onsite energy 4t in Ĥ0 is
added to shift the overall energy spectrum.

Similarly, for the graphene lattice,

Ĥ0 = −t
∑
r,δ

∑
σ

(â†
r+δ,σ

b̂r,σ + H.c.)

+
∑

r

∑
σ

(Vr − μ)(â†
r,σ âr,σ + b̂†

r,σ b̂r,σ ), (2a)

Ĥ� =
∑

r

[(�râ†
r,↑â†

r,↓ + �r+τ b̂†
r,↑b̂†

r,↓) + H.c.], (2b)

where r ≡ n1�a1 + n2�a2 is lattice vector with integers n1, n2 ∈
Z, and �a1 = a(

√
3/2, 1/2) and �a2 = a(0, 1) are the primitive

vectors for graphene with lattice constant a. Here, we sep-
arately define the creation (annihilation) operators â†

r,σ and
b̂†

r,σ (âr,σ and b̂r,σ ) with spin σ ∈ {↑,↓} on two sublattices
A and B, respectively, at the lattice site positions r and r + τ

with τ = ax̂/
√

3; see Fig. 1(b). However, we consider the
same superconducting pairing �r = �r+τ ≡ �eiφα on both
sublattices.

B. Scattering matrix theory approach

To calculate the topological ABSs, we use the KWANT
software [58] to set up the tight-binding model Hamiltonians,
given in Eqs. (1) and (2) for square and graphene lattices,
and employ the scattering matrix theory approach, which is
described thoroughly in Ref. [59] for the use of multitermi-
nal Josephson junctions. This approach is well suited for a
short-junction limit, i.e., when the length (L) of the scattering
region is much smaller than the superconducting coherence
length (ξ ). In this limit, the ABS energies, |ε| < �, formed
due to electron-hole conversion process at all interfaces, are
determined by the condition

SA(ε)SN (ε)|�〉 = |�〉, (3)

which involves the scattering matrices at the interfaces for
Andreev reflection process (SA) as well as normal reflec-
tion process (SN ). Within this approach, their forms can be
written as

SA(ε) = β(ε)

(
0 r∗

A
rA 0

)
, SN (ε) =

(
S(ε) 0

0 S∗(−ε)

)
(4)

with β(ε) =
√

1 − (ε/�)2 + i(ε/�) and the Andreev reflec-
tion matrix rA is in diagonal form,

rA =

⎛
⎜⎜⎝

ieiφ0 1n0

ieiφ1 1n1

ieiφ2 1n2

ieiφ3 1n3

⎞
⎟⎟⎠, (5)

where {1nα
} are the identity matrices for the incoming scatter-

ing modes {nα} in the leads α = 0 to 3, whereas S(ε)(S∗(−ε))
corresponds to the electron (hole) scattering matrix block.
Utilizing the short-junction limit approximation, i.e., S(ε) ≈
S(ε = 0) ≡ s, we arrive at the following eigenvalue equa-
tion for the ABS states:(

s† 0
0 sT

)(
0 r∗

A
rA 0

)
|�〉 = β(ε)|�〉. (6)

Now, solving Eq. (6) yields the ABS energies and the corre-
sponding eigenstates.

C. Chern number

In our four-terminal Josephson junctions setup, the
ABS energies and eigenstates (εn, |n〉 for the index n =
±1,±2, · · · ) depend on the four superconducting phases.
Since out of the four phases only three are independent, we
use a gauge variance to fix one phase φ0 = 0 and determine
the ABS energies |εn| < � and wavefunctions with respect
to the remaining phases φα (for α = 1, 2, 3) [26,27]. These
phases (φ1, φ2, φ3) ∈ [0, 2π )3 form a three-dimensional pe-
riodic compact space analogous to the quasimomenta in
periodic crystals. In our setup, the lowest positive ABS en-
ergies, εn for n = ±1, close and open the gap at zero energy
upon tuning the phase differences. These phases act as the
quasi-momenta in this synthetic dimensions for the topo-
logical Andreev bound states. Therefore, for a given phase
difference, such as φ3, we define the nth state Chern number
in the space of other two phase differences (φ1, φ2) as

C(n)
12 = 1

2π

∫ 2π

0

∫ 2π

0
B(n)

12 dφ1dφ2, (7)

where B(n)
12 = ∂1A(n)

2 − ∂2A(n)
1 is the Berry curvature for the

nth state, while A(n)
1/2 = i〈n|∂1/2|n〉 is the corresponding Berry

connection. The C(n)
12 is quantized to integer values. Sim-

ilar to the conventional two-dimensional electronic systems
where a nonzero Chern number manifest as a quantized Hall
conductance [60], the nonzero integer values of C(n)

12 can
be experimentally probed in the topological regime via a
transconductance measurement G12 = (−4e2/h)CGS

12 between
the superconducting leads 1 and 2 [18]. Here h is the Planck
constant and e is the elementary charge, and CGS

12 is the
ground-state Chern number at zero temperature which is ob-
tained by summing over all negative-energy eigenstates, i.e.,
CGS

12 = ∑
n C(n)

12 such that εn < 0.
As we only obtain numerical data for the eigenspectrum of

Eq. (6), within the KWANT simulation, we use the numerical
method developed by Fukui, Hatsugai, and Suzuki in Ref. [57]
to calculate the Chern number. Specifically, we discretize
the phases 0 < φ1/2 < 2π into M × M grid points, with fi-
nite difference δφ1/2 = 2π/M, and define the link quantity
U (n)

δ �φ ( �φ) = 〈n( �φ)|n( �φ + δ �φ)〉. Here, �φ is a grid point vector in

the (φ1, φ2) space, and δ �φ represents the step to the next grid
point. Then, analogous Berry curvature is evaluated in terms
of link quantities as

B̃(n)
12 ( �φ) = ln

[
U (n)

δφ1
( �φ)U (n)

δφ2
( �φ + δφ1)

× U (n)−1

δφ1
( �φ + δφ2)U (n)−1

δφ2
( �φ)

]
. (8)

To better understand these link quantities, we consider the
nth eigenstates |�a〉, |�b〉, |�c〉, and |�d〉 for a plaquette
[see in Fig. 1(d)] at the grid points (φ1, φ2), (φ1 + δφ1, φ2),
(φ1 + δφ1, φ2 + δφ2), and (φ1, φ2 + δφ2), respectively. Then
the analogous Berry curvature in Eq. (8) is expressed as

B̃(n)
12 ( �φ) = ln[〈�a|�b〉〈�b|�c〉〈�c|�d〉〈�d |�a〉]. (9)
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Finally, the Chern number is obtained by summing over all
M × M grid points as

C(n)
12 = 1

2π

∑
{ �φ}

�[
B̃(n)

12 ( �φ)
]
, (10)

where the symbol � denotes the imaginary part. Note that B̃(n)
12

and B(n)
12 in Eqs. (8) and (7) are closely related, with B̃(n)

12 ( �φ) 

B(n)

12 ( �φ)δφ1δφ2.
In the next section, we present the results for the topo-

logical phase diagrams of the Chern number CGS
12 and the

δmin ≡ min(φ1,φ2 )ε1 of lowest Andreev band for both square
and graphene lattices. Additionally, we show the evolution
of ABS energies εn and Berry curvature B(n)

12 with respect to
(φ1, φ2) for different values of φ3. These quantities are calcu-
lated using Eqs. (6), (8), and (10). For the calculation, we set
t = 1, with all energy parameters expressed in units of t , and
fix the superconducting pairing value to � = 0.005t . A typi-
cal value in a conventional superconductor is � ≈ 1.2 meV.
For graphene lattice, the hopping energy is approximately
t ≈ 2.8 eV and the lattice constant is a ≈ 0.246 nm, therefore,
comparatively � = 1.2 meV ∼0.43 × 10−3t which leads to
the coherence length ξ = h̄vF /� = √

3ta/(2�) ≈ 2060a =
0.51µm. Hence, the actual device made of graphene super-
conducting leads will require size Ls > ξ (∼ 2060a). This is
ensured in our calculation by taking the semi-infinite leads
in the scattering approach. However, as we consider � =
0.005t (approximately ten times higher than the actual value)
in the KWANT calculation, it reduces the superconducting
coherence length to ξ ≈ 173a ≈ 43 nm and, consequently, the
system size of the scattering region is reduced, allowing for a
smaller scattering region and thereby enabling real-time simu-
lations of the topological ABS energy spectra. We consider the
scattering region of size L = 20a ≈ 5 nm and W = 12a ≈ 3
nm. Therefore, L ≈ 0.12ξ , the system is well within the short
junction limit, i.e., ξ � L.

III. RESULTS

A. Square

For the square lattice, we consider the system size of
our four-terminal junctions shown in Figs. 1(a) and 1(b),
with the scattering region L = W = 24a, whereas the widths
of semi-infinite leads 0 and 2 have Ws = L − 2, and the
lengths of leads 1 and 3 have Ls = Ws. We parametrize the
global chemical potential as μ = (1 − η)E1 + ηE2, where
η ∈ (0, 1) is an independent parameter. The values of E1

and E2 are fixed using the dispersion relation formula for a
square lattice, En(k) = 4t − 2t cos(ka) − 2t cos( πa

Ws
n), of an

ideal semi-infinite sheet of width Ws. We choose the two
lowest mode energies E1 ≡ En=1(k = 0) ≈ 4.07� and E2 ≡
En=2(k = 0) ≈ 16.2�, and set E1 < μ < E2 for η ∈ (0, 1).
This condition ensures that only one conducting channel is
available in each lead for the Andreev process of electron-hole
conversion.

We first set the gating potential to zero (i.e., Vg = 0) and
present results for the nontrivial topological phases in terms of
the ground state Chern number, CGS

12 , calculated from Eq. (10),
and also the corresponding phase boundaries are obtained by

evaluating the minimum of the lowest ABS energy δmin ≡
min(φ1,φ2 )ε1, from Eq. (6), in the parameter space of φ3 and η.
Figure 2(a)(i) shows the phase diagram for the Chern number,
highlighting large stable regions (yellow and dark purple)
where CGS

12 �= 0, indicating topologically nontrivial phases,
while the gray region, where CGS

12 = 0, corresponds to a topo-
logically trivial phase. We observe a phase transition from the
topologically trivial phase to the nontrivial phase along both
the φ3 and η directions. We obtain results similar to the double
quantum-dot system attached to four superconducting leads
when varing φ3 [40], showing a nontrivial topological phase
transition from CGS

12 = 1(−1) to CGS
12 = −1(1), depending on

η, at φ3 = π . Interestingly, by varying η, i.e., the global chem-
ical potential μ, the nontrivial Chern number also changes
around η ≈ 0.4 even though the conducting channel for the
Andreev process remains fixed. Additionally, we determine
the phase boundaries by simply tracking the minimum value
of the lowest positive ABS energy, see in Fig. 2(a)(iii). It
clearly marks the boundaries where the gap becomes zero,
i.e., δmin = 0. Several plots of CGS

12 and δmin are explicitly
shown in Figs. 2(a)(ii) and 2(a)(iv) as a function of φ3 for
selected values of η = 0.22, 0.37, 0.68, and 0.84. Clearly, as η

increases, the topologically nontrivial phases for CGS
12 initially

shrink, but after η ≈ 0.4, these regions expand again. How-
ever, with further increase in η, the system eventually enters
the topologically trivial phase; see also Fig. 2(a)(i).

To better understand these phases, we plot the subgap
Andreev energy bands (ε±1) as functions of φ1 and φ2, in
Fig. 2(b), at η = 0.22 for various values of φ3 [shown also in
Fig. 2(a)(ii) as inverted triangles]. We observe that the overall
Andreev spectrum remains gapped at φ3 = 0. However, as φ3

increases, both bands touch at zero energy and become gapless
at a certain critical value of φ3 ≈ 0.21π at a single point (Weyl
point). Further tuning of φ3 leads to reopening of the gap and
the system goes into a topologically nontrivial regime with
CGS

12 = 1; see the subplots for φ3 = 0.3π and 0.6π . The gap
closes again at φ3 = π , now at two Weyl points, and opens
with increasing φ3 > π , exhibiting another topological phase
transition with CGS

12 = −1 (the Andreev bands for π < φ3 �
2π are not plotted for brevity, as they look similar to the plots
for 0 � φ3 � π ). In Fig. 2(c), we present the Berry curvature
B12 for the lower Andreev band εn=−1 at η = 0.22 for a set
of selected values of φ3 = 0, 0.15π, 0.25π, 0.95π, 1.05π . It
is evident that B12 changes sign at the Weyl point(s) near
the critical values of φ3 where the phase transition occurs,
for instance, see the second and third subplots of B12 near
the φ3 = 0.21π and the last two subplots near φ3 = π in
Fig. 2(c). This demonstrates that the Andreev states exhibit
a topologically nontrivial nature in the parameter space of the
superconducting phase differences and chemical potential.

Next, we introduce the gating potential (i.e., Vg �= 0) and
investigate its effect on the topologically nontrivial phases
while keeping the global chemical potential fixed at η = 0.3
and 0.6, respectively. Both points (blue star markers) are
indicated in Fig. 2(a)(i). In Fig. 3, we show the results for
CGS

12 and δmin in the parameter space of φ3 and Vg. For η =
0.3, the stable topologically nontrivial regions expand with
increasing strength of Vg, and the Chern number becomes
CGS

12 = ±1 for almost the entire range of φ3, before even-
tually transitioning into the topologically trivial phase with
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FIG. 2. (a) Topological phase diagram for the Chern number CGS
12 in (i) and the corresponding phase boundaries from minimum gap δmin

(of the lowest ABS energy) in (iii) are plotted in the parameters space (φ3, η) when the gating potential is set to zero, i.e., Vg = 0, whereas,
they are also shown for a few selected values of η in (ii) and (iv). (b), (c) At a fixed η = 0.22, the Andreev-energy dispersions ε±1 (in unit of
�) and the Berry curvature B12 (for the lower band) with respect to the phase differences φ1 and φ2 for a set of different φ3 values. The chosen
φ3 values are shown in the corresponding plots of (b) and (c); while particularly for the ε±1, they are also shown in (a)(ii) as inverted black
triangles.

CGS
12 = 0, see in Fig. 3(a). These phase transition boundaries

are again accurately captured by the condition δmin = 0, as
shown in Fig. 3(b). Interestingly, for η = 0.6 in Fig. 3(c), we
observe that tuning Vg, the nontrivial phase transition changes
from CGS

12 = −1(1) to CGS
12 = 1(−1) well before the system

transitions into the trivial phase. The minima of the Andreev
lower band again show these phase boundaries; see Fig. 3(d).

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

V
g
/Δ

η = 0.3(a)

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40
(b)

0.0 0.5 1.0 1.5 2.0
φ3/π

0

15

30

45

60

V
g
/Δ

η = 0.6(c)

0.0 0.5 1.0 1.5 2.0
φ3/π

0

15

30

45

60
(d)

−1

0

CGS
12

−1

0

1

CGS
12

0.0

0.2

0.4

δmin

Δ

0.0

0.2

0.4

δmin

Δ

1

FIG. 3. Topological phases for Chern number CGS
12 and the corre-

sponding phase boundaries from δmin with respect to φ3 and Vg for
fixed values of η = 0.3 and 0.6.

Overall, we find that the topologically nontrivial phases re-
main robust even when the gating potential is turned on.
Remarkably, Vg enhances the stable regions of topologically
nontrivial phases for moderate to large values compared to
the superconducting energy gap.

B. Graphene

For the graphene lattice, we set up the four-terminal system
as shown in Figs. 1(a) and 1(c). The system size for the
scattering region is L = 20a and W = 12a; however, Ws = W
for the leads 0 and 2, while Ls = Ws for the leads 1 and
3, respectively. Similar to the square lattice, we parametrize
the global chemical potential as μ = (1 − η)E1 + ηE2, where
E1 and E2 are fixed using the conduction band dispersion
relation: En(k) = t

√
1 + 4 cos( ka

2 ) cos( πa
Ws

n) + cos2( πa
Ws

n) for
an ideal semi-infinite sheet of armchair graphene with width
Ws. We fix E1 < μ < E2 for η ∈ (0, 1) by choosing the two
lowest energy modes E1 ≡ En=4Ws/3(k = 0) = 0 and E2 ≡
En=4Ws/3+1(k = 0) ≈ 21.7�, respectively.

Now, we present the results for the topological phase dia-
gram of the graphene based four-terminal system. In Figs. 4(a)
and 4(b), we plot CGS

12 and δmin, respectively, in the parameter
space (φ3, η) for Vg = 0. Notice that initially the system re-
mains in the topologically trivial phase with CGS

12 = 0 as η is
tuned. However, it transitions into the topologically nontrivial
phases with CGS

12 = ±1 upon further tuning. Eventually, it re-
enters the trivial phase as η approaches 1. Additionally, unlike
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FIG. 4. (a), (b) Topological nontrivial phases for the graphene
lattice, obtained from the Chern number CGS

12 and corresponding
phase boundaries from δmin, in parameters space of φ3 and η when the
gating potential is absent Vg = 0. For fixed η = 0.55 in (c), (d) and
η = 0.75 in (e), (f), the topologically nontrivial phases are robust and
evolve upon tuning Vg.

the square lattice, we observe a bifurcation around the phase
transition point φ3 = π of the topologically nontrivial phases.
These phase boundaries are also clearly observed in Fig. 4(b)
where δmin becomes zero. Next, we show the results in the
presence of Vg for fixed η in the parameter space (φ3,Vg).
For η = 0.55 in Figs. 4(c) and 4(d) we observe a phase di-
agram similar to that in Figs. 3(a) and 3(b) for the square
lattice. Furthermore, when we set η = 0.75, the bifurcation
around φ3 = π closes as Vg increases. In Figs. 4(e) and 4(f),
we notably do not observe the phase transition between the
topologically nontrivial phases upon tuning Vg, unlike the case
in the square lattice in Figs. 3(c) and 3(d). Nevertheless, it is
present along φ3, which is the common feature of both lattices.

C. Bogoliubov-de Gennes method

In this section, we validate the results obtained from the
scattering matrix theory approach in the previous two sec-
tions using the Bogoliubov-de Gennes (BdG) method. Unlike
the scattering matrix approach, where the electron and hole
normal-state S-matrices S(ε) and S∗(−ε) are approximated
as S(ε) ≈ S(ε = 0), which is only valid in the short-junction
limit, the BdG method is numerically exact and does not
impose such a constraint and is applicable across all junction
regimes. However, the BdG method involves diagonalizing
the full Hamiltonian matrix, which restricts its applicability
to relatively small system sizes. Nevertheless, the system size
considered here, determined by the superconducting coher-
ence length ξ for � = 0.005t , remains numerically feasible
using sparse matrix techniques.
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FIG. 5. Chern number CGS
12 vs φ3 obtained from the scattering

matrix (SM) method (solid line) and the BdG method (markers) for
both the lattices in the absence and presence of gating potential Vg.

We now consider a system with the superconducting leads
of finite length attached to the scattering region, as shown in
Fig. 1(a), and set up the Bogoliubov-de Gennes Hamiltonian,

HBdG =
(

H0 �r
�∗

r −H0

)
, (11)

for both the lattices in the KWANT [58]. The Hamilton-
ain HBdG is written in the particle-hole basis using the
model Hamiltonians given in Eqs. (1) and (2) for square and
graphene lattices. We numerically compute the full energy
spectrum by diagonalizing the HBdG Hamiltonian matrix in
Eq. (11) and sort the Andreev subgap energy states with |ε| <

� to calculate the topological Chern number. The length of the
SC leads is set to Ls 
 12L to ensure the short junction limit
for � = 0.005t . We use a standard sparse matrix technique
to numerically diagonalize the large HBdG matrix. The system
size and model parameters are considered the same as those
used in Secs. III A and III B for the scattering matrix (SM)
method for square and graphene lattices. In Fig. 5 we show
the plots of the topological Chern number CGS

12 with respect
to φ3, which are obtained using the BdG method (markers)
and are compared with the SM method (solid line) when Vg

is absent and present at a specific value of η = 0.37 (square)
and 0.55 (graphene). Clearly, in Figs. 5(a) and 5(b), both
methods provide remarkable agreement, except that the BdG
method shows a slightly broader range for the topologically
nontrivial phase with CGS

12 = ±1 when gating potential is
absent (Vg = 0); see in Fig. 5(a). For the graphene lattice,
shown in Figs. 5(c) and 5(d), we observe that the BdG method
shows the phase transition between the topologically trivial to
nontrivial phases. However, the BdG data do not exactly fall
on the SM line. Nonetheless, the values of the Chern number
remain CGS

12 = ±1 or CGS
12 = 0 throughout. Overall, we find

that the Andreev states calculated using both methods exhibit
topological phase transitions in our multiterminal Josephson
junctions setup for the square and graphene lattices.
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IV. CONCLUSION

We have investigated the topologically nontrivial phases,
arising due to the Andreev bound states, in the multiterminal
Josephson junctions based on square and graphene lattices.
By setting the tight-binding models system in the KWANT
software [58] and employing the scattering matrix theory
and the Bogoliubov-de Gennes theory in the short-junction
limit, we have studied the topological nature of the Andreev
bound states both in the absence and presence of an ex-
ternally applied gating potential in the scattering region of
MTJJs. Without the gating potential, i.e., when Vg = 0, we
find that the topologically nontrivial stable phases exist with
CGS

12 = ±1 in a larger region of the parameter space defnined
by the superconducting phase difference φ3 and the global
chemical potential μ. The phase transitions are marked by
closing and opening of the Andreev energy bands with re-
spect to the superconducting phase differences for suitable
model parameter values. Interestingly, we also observe phase
transitions between the topologically nontrivial phases upon
tuning φ3 and μ for the square lattice, however, this feature
is only present along φ3 in the case of graphene, as shown
in Figs. 2(a) and 4(a). Moreover, these nontrivial topologi-
cal phases are present even when the gating potential Vg is
introduced, remaining stable for moderate to large values of

Vg relative to �. However, the system enters a topologically
trivial phase of ABSs, with CGS

12 = 0, upon further increase
of Vg. Hence, the gating potential Vg produces physics similar
to that of topological ABSs in a double (single) quantum dot
coupled to four Josephson junctions [40]. Additionally, for a
fixed μ, we observe that phase transitions also occur between
the topologically nontrivial phases in response to Vg for the
square lattice, whereas this feature is absent along the Vg for
the graphene. Our results demonstrate that the topological
properties can persist in experimentally relevant finite-size
systems with gate potentials included.
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[11] M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Ma-
jorana bound state in a coupled quantum-dot hybrid-nanowire
system, Science 354, 1557 (2016),.

[12] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.
Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus,

K. Flensberg, and J. Alicea, Milestones toward Majorana-based
quantum computing, Phys. Rev. X 6, 031016 (2016).

[13] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.
Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y.
Oreg, C. M. Marcus, and M. H. Freedman, Scalable designs for
quasiparticle-poisoning-protected topological quantum compu-
tation with Majorana zero modes, Phys. Rev. B 95, 235305
(2017).

[14] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological pho-
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