

# 5D Calorimetry: Recent Results

**Uli Einhaus, Bohdan Dudar**  
**LCWS Valencia**  
**15.10.2025**

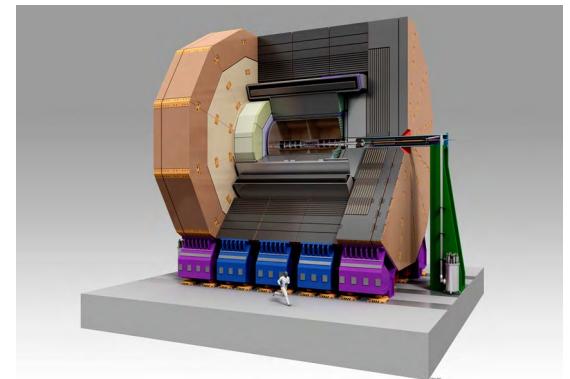


- 5 dimensions of calorimeter data:  $x, y, z, E, t$
- Aim: study of implementation and utilisation of ps-timing capability in high-granularity calorimeter to improve performance
- Calo5D project working on various aspects from hardware over reconstruction simulation to physics impact
- This talk: using neural networks / ML and timing to enhance calorimeter performance
- Cooperation with Jan Kieseler (KIT) on ML part



# ILD detector setup

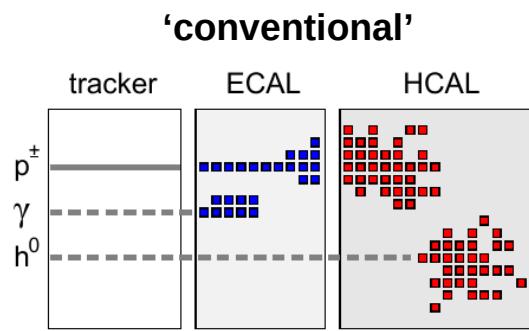
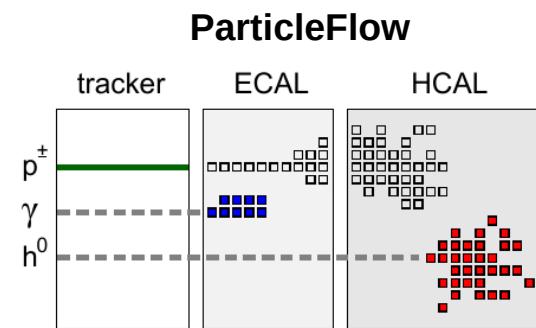
- International Large Detector, developed for ILC, now also proposed for FCC-ee
- Full-sim in DD4HEP, simulation and reconstruction chain ‘battle-proven’ in large MC productions
- Setup:
  - Si vertex + gaseous tracker, calorimeter inside 3.5 T magnet
  - ECal: 5x5 mm<sup>2</sup> in 30 layers
  - HCal: 3x3 cm<sup>2</sup> in 48 layers
- Designed for ParticleFlow with low-material tracker and high-granularity calorimeter



[arxiv:2003.01116](https://arxiv.org/abs/2003.01116)

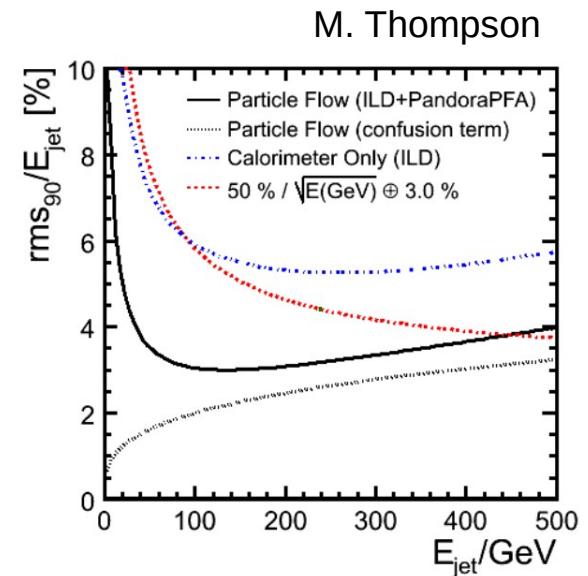
# ParticleFlow overview

- Idea: utilise the best subdetector for each particle / jet constituent
  - work horse: highly granular calorimeter
  - future collider detectors (e.g. ILD) developed with PFlow in mind, also applied to existing detectors (e.g. CMS HGCAL for HL-LHC)



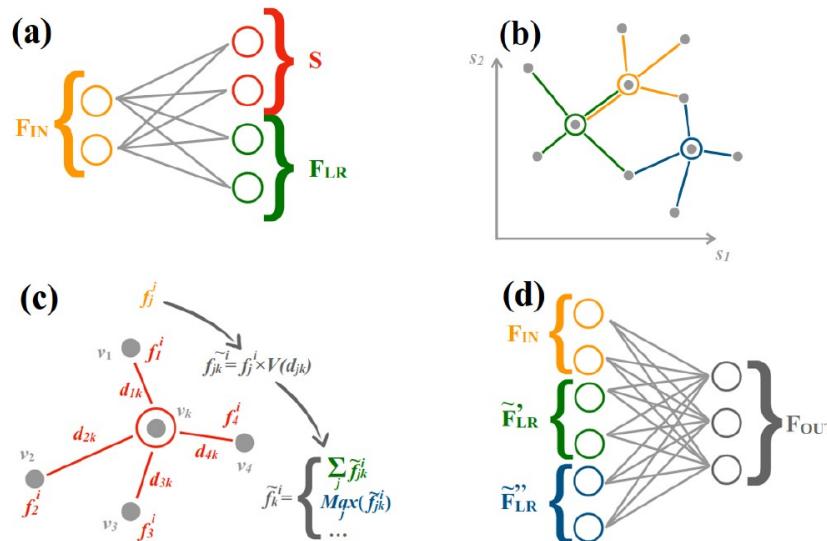
$$\sigma_{jet} = f_{charged} \cdot \sigma_{Tracker} \oplus f_y \cdot \sigma_{ECal} \oplus f_{neutral} \cdot \sigma_{HCAL} \oplus \sigma_{confusion} \oplus \sigma_{leakage}$$

- Use neural networks and timing to reduce confusion term
- Issue with number of channels for fixed-geometry NN (e.g. CNN) → use GNN



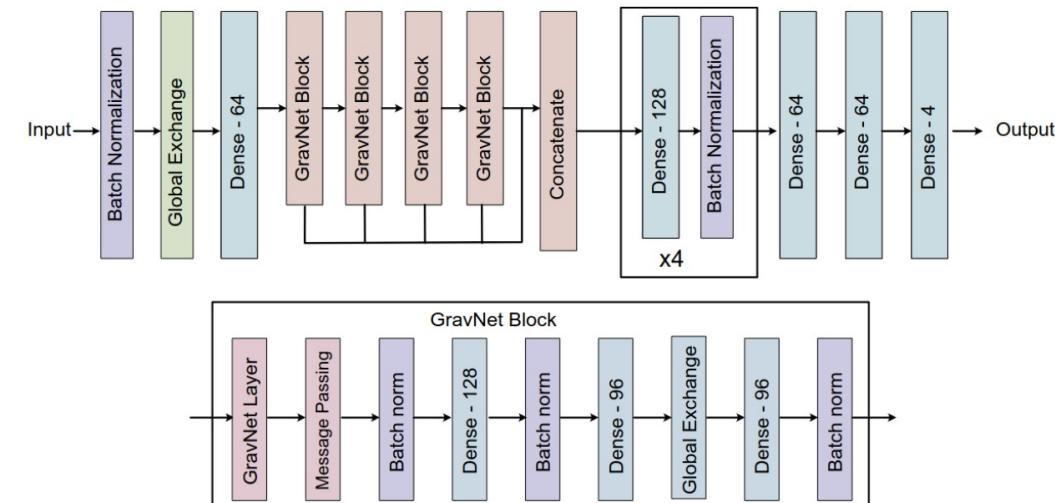
# Overview GravNet + Object Condensation

- ‘Holistic’ approach with end-2-end reconstruction - clustering and features reconstruction (position, energy, PID) in one integrated Graph Neural Network
- Calorimeter hits are clustered in (low dimension) latent space  $S$
- Feature properties  $F_{LR}$  of nearest neighbours in  $S$  are combined with different aggregator function to predict object features, weighted with  $\exp(-d^2)$   $\rightarrow$  GravNet



visualisation of the GravNet steps

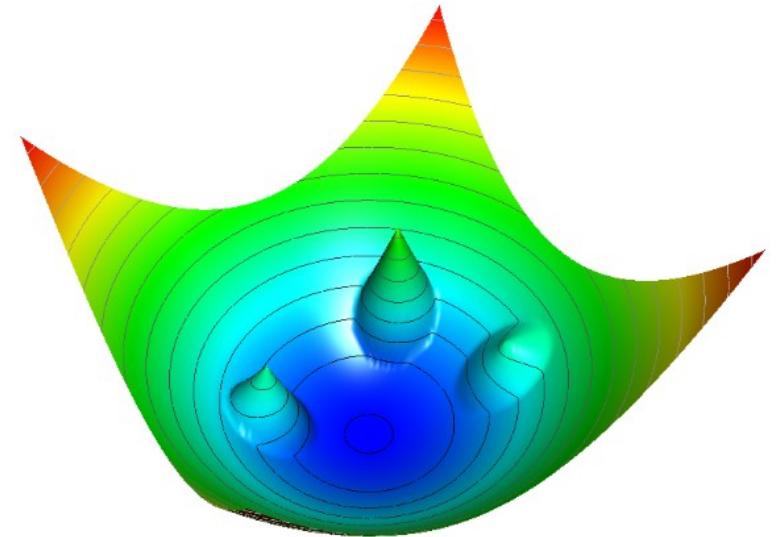
[arxiv:1902.07987](https://arxiv.org/abs/1902.07987)



GravNet model setup we used

# Object Condensation

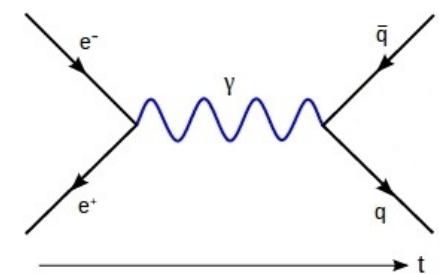
- For clustering introduce attractive potential  $\sim d^2$  for all hits belonging to an object towards each other, and a repulsive potential  $\sim -d$  with short range towards all other hits
- To reduce computational effort, introduce  $\beta$  quantifying similarity to object properties, only use hit with highest  $\beta$  per object to generate combined potential
- Additional loss per object of  $1-\beta$  of the condensation point encourages one hit per object to become representative of object and 'gather' related hits into a cluster



Object condensation attractive +  
repulsive potential visualisation  
[arxiv:2002.03605](https://arxiv.org/abs/2002.03605)

# Data set

- Use ILD MC production data set of  $e^+e^- \rightarrow (\gamma)q\bar{q}$  at 250 GeV (2fZhad), 45k events
- O(a few 1000) hits per event
- Truth: properties of MCParticle that entered calo and caused energy depositions
  - full MCParticle chain before calo from geant4 is available; in case of multiple contributions to the same hit, largest energy fraction is chosen
  - index, end point in calo (x,y,z), (energy, PID)
  - issue: particles that backscatter from the calorimeter sometimes are not registered, and hits are associated with the original particle that entered the calorimeter
- Simplification cut: all hits with  $r_{\phi,\theta} > .5$  m from true object are omitted



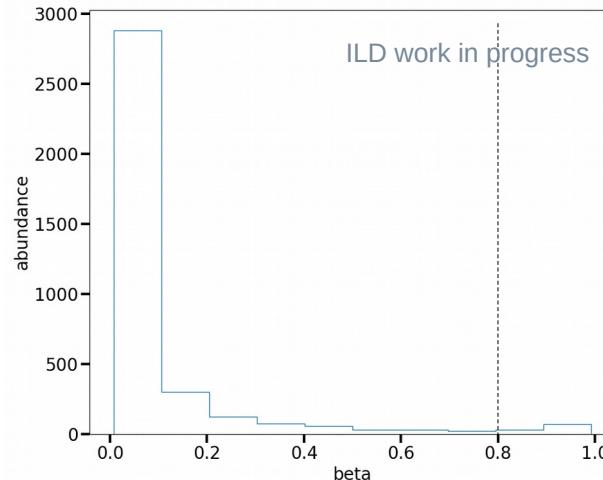
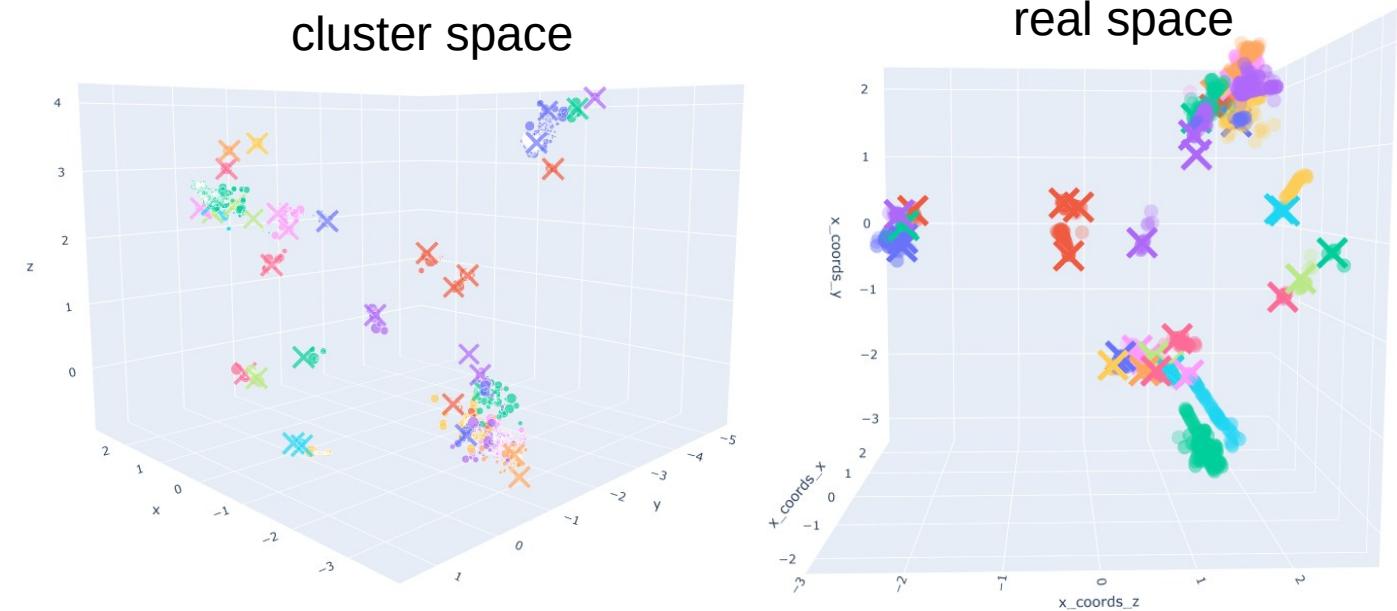
# Properties used

- Input: tracks, ECal and HCal hits with 9 properties each
  - $x, y, z, r_{x,y}, \theta, \eta, E$  (p for a track), time, ID (isTrack)
  - three timing ‘resolutions’ are compared: perfect, smeared with 100 ps, none ( $t==0$ )
  - time tail cut:  $t [ t>20\text{ns} ] := -1$
- Output: 12
  - target:  $\beta$ , cluster coordinates  $(x,y,z)$ , position  $(x,y,z)$ , energy, PID (4 channels)
- Loss:
  - object condensation  $\rightarrow \beta$ , cluster coordinates
  - hit loss  $\rightarrow$  position (energy and class not used atm)
- $$L_{pos} = \text{Huber} \left( \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2 + 10^{-6}}, 0.1 \right)$$



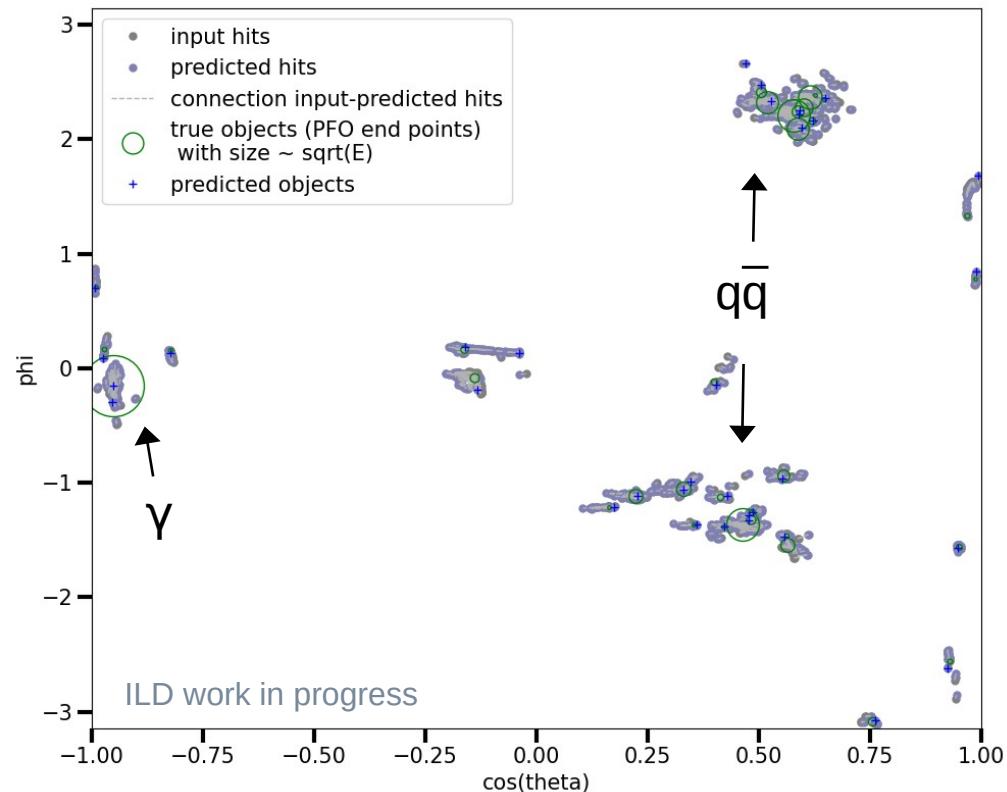
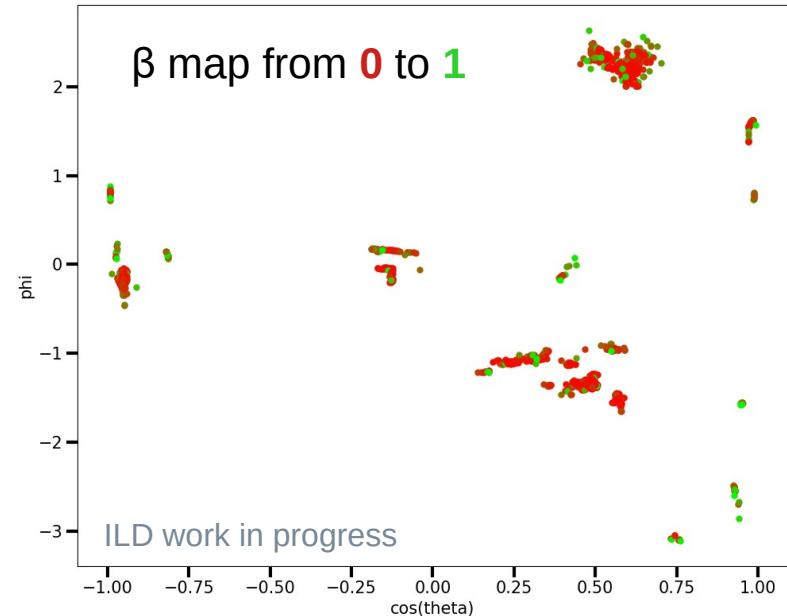
# Post-inference thresholding

- For predicted objects, i.e. PFOs, thresholds of min beta and min dist to next PFO are chosen after running inference
- beta: few entries with values close to 1 represent the well reconstructed PFOs
- In space projections: matching colours belong to the same MCParticle, X mark predicted PFOs, here for  $\beta > 0.8$



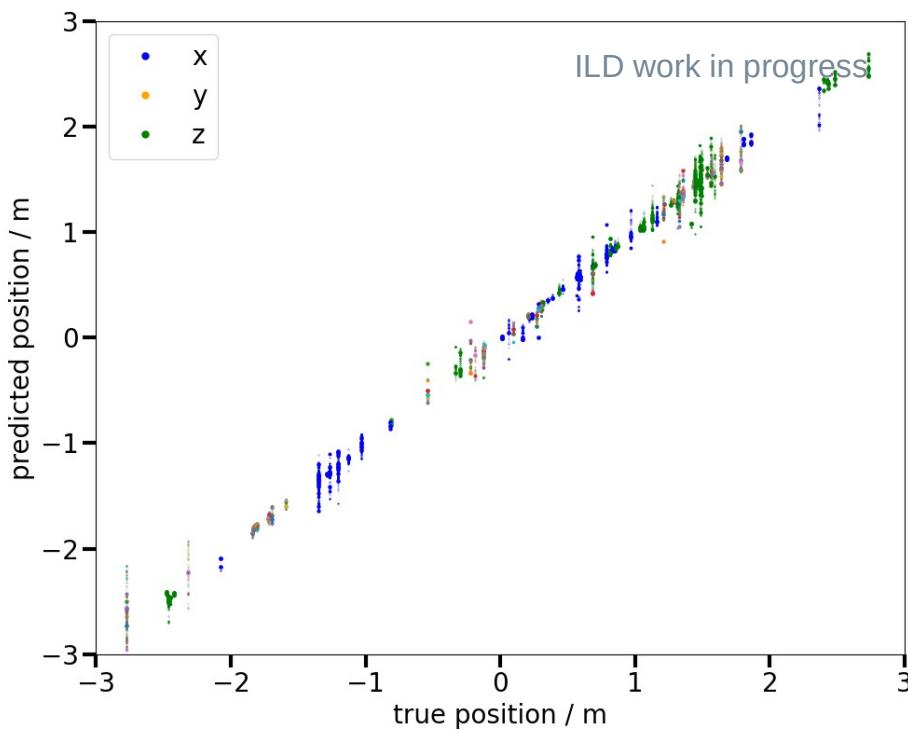
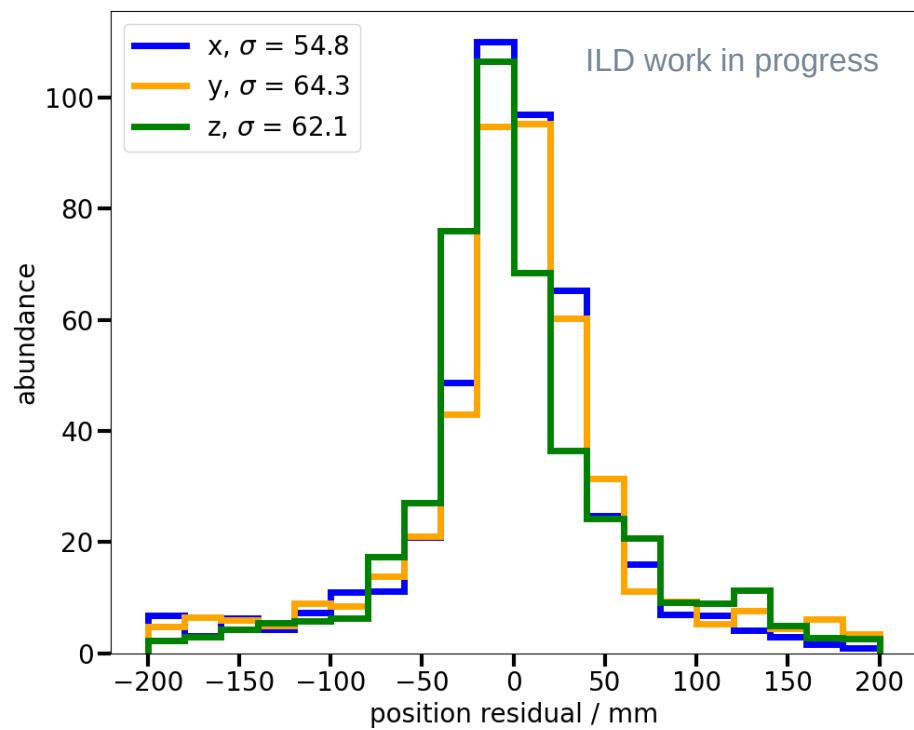
# Angular projection of example event

- Predicted positions excellently clustered around targets
- In many cases one predicted PFO (+) per MCParticle (o), here: 35 and 34



# Position reconstruction

- Position per hit, weighted with beta
- Good correlation, hit position prediction uncertainty about 6 cm with current training setup

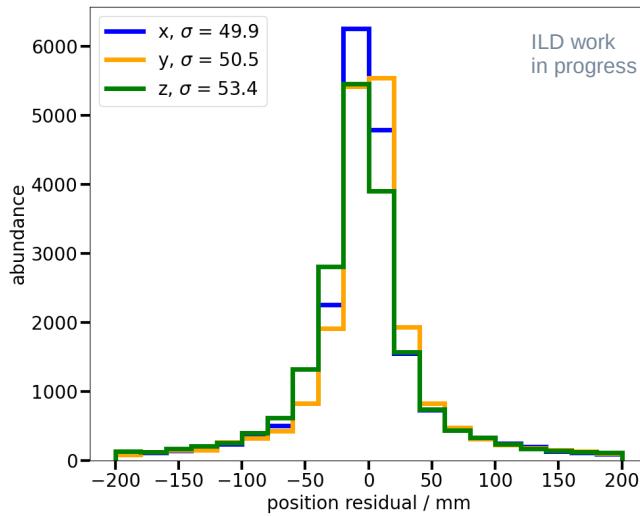


# Impact of timing

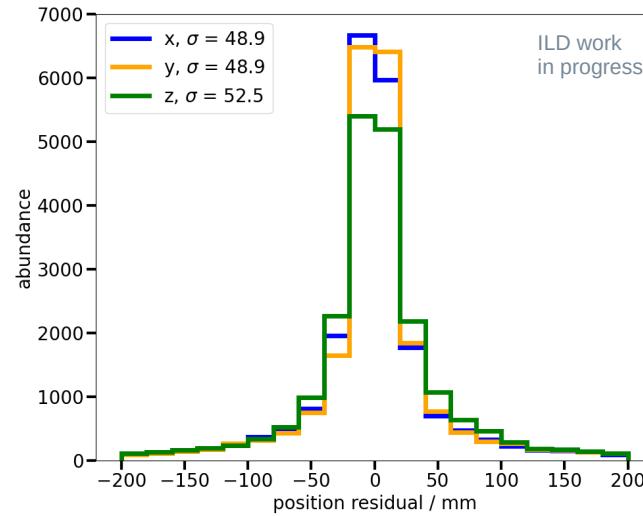
Work in progress!

- PFO position prediction, statistics for 400 test events,  $\sim 50$  mm position uncertainty
- Slight improvement ( $\sim 1$  mm;  $\Delta_\sigma \approx 0.3$  mm) with adding time

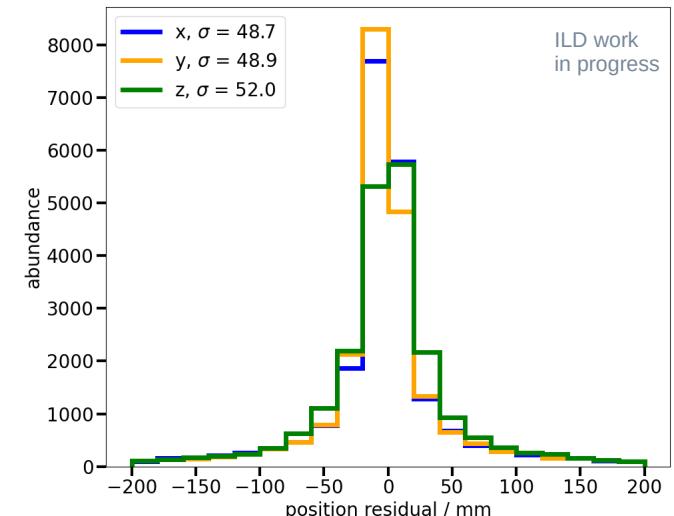
no timing



smearing with 100 ps

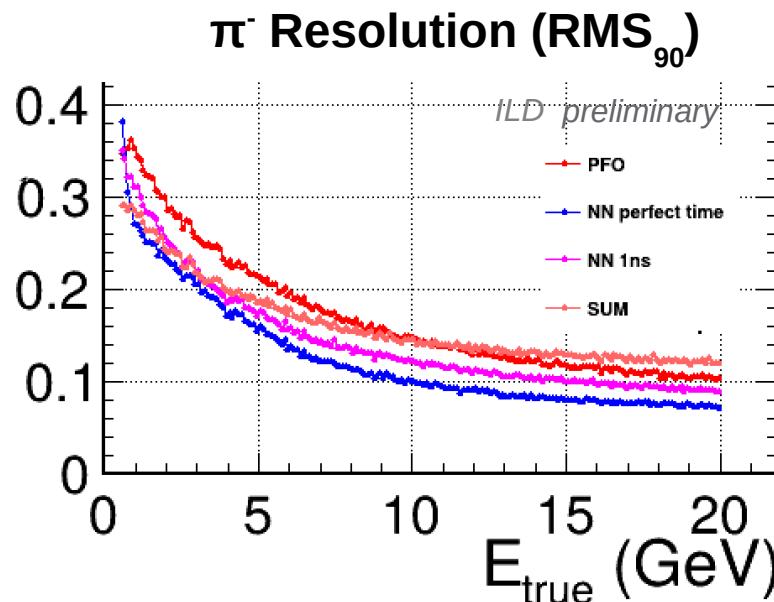


perfect timing



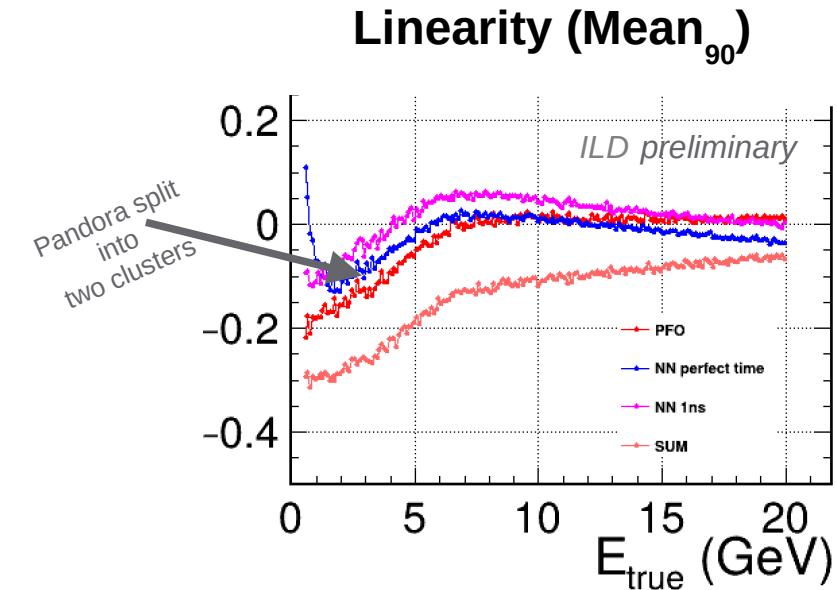
# Optimising software compensation with ML

- Starting point: single particles – ML software compensation works well here!



Results

- NN outperforms Pandora on single pions
- Better timing → better resolution!
- Could be further optimized.



Two big buts...

- Pandora is optimized for physics, not single particles!
- Migrating “single-particle” trained NN on physics events is challenging due to confusions

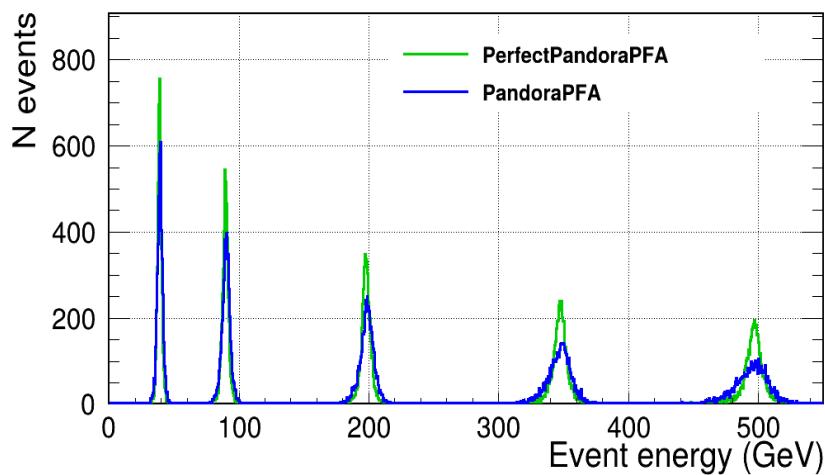
# Application to full $q\bar{q}$ events

## Setup:

- ❖  $Z' \rightarrow q\bar{q}$  (u, d, s)
- ❖ ILD full reconstruction
- ❖  $E_{CM}$ : 40, 91, 200, 350, 500 GeV

## Challenge:

- ❖ NN that outperforms Pandora PF
- ❖ Estimate role of timing



## Current approach

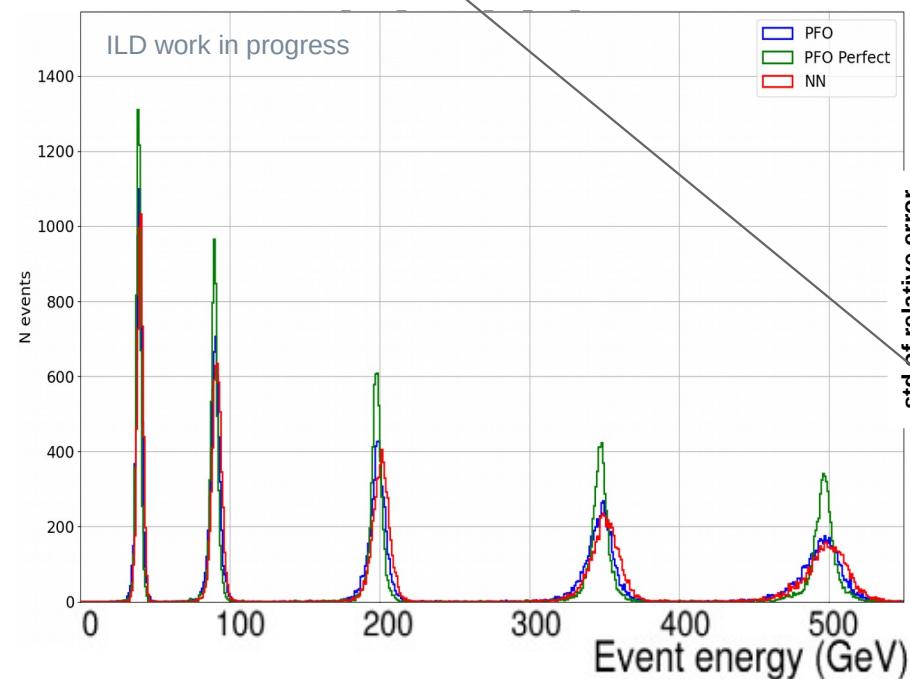
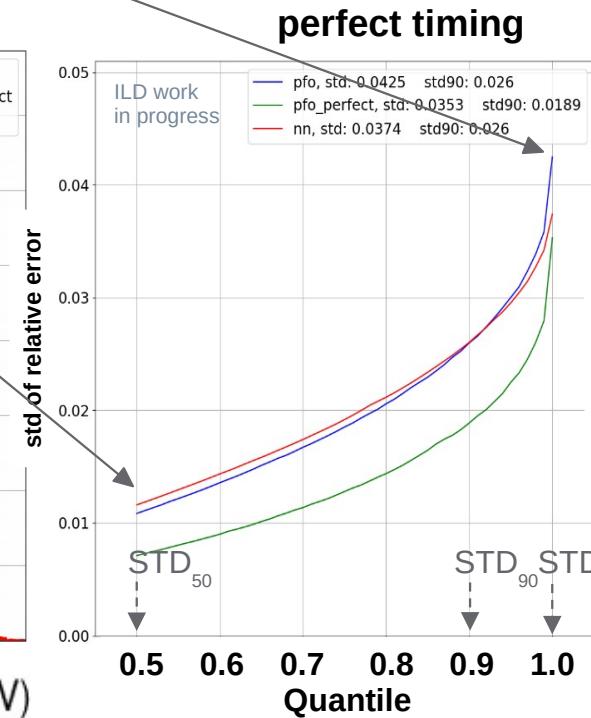
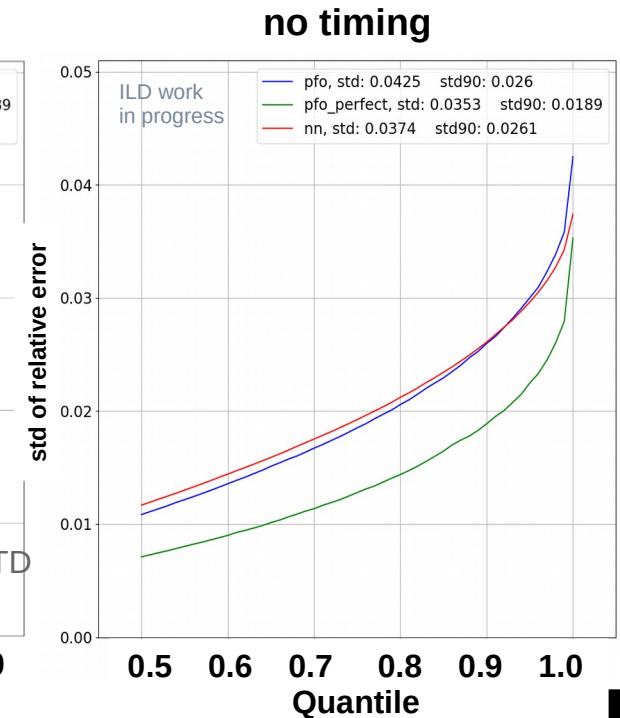
|            |                                                                                        |
|------------|----------------------------------------------------------------------------------------|
| Input      | Hit features (details in the back-up):<br>positional, energy, time (perfect time res.) |
| Model      | <u>Dynamic Graph CNN (DGCNN)</u>                                                       |
| Output     | Corrected per-hit energies ( $E_{hit}$ )                                               |
| Target     | Generator level $E_{CM} = \sum_i E_{hit,i}$                                            |
| Loss       | MSRE (Mean Squared Relative Error)                                                     |
| Train data | $E_{CM}$ : 40, 91, 200, 350, 500 GeV (total 25k evts)                                  |
| Val data   | $E_{CM}$ : 40, 91, 200, 350, 500 GeV (total 25k evts)                                  |

# First results: slight improvement with NN compared to Pandora

## Results

- ❖ NN is significantly better than Pandora on the full distribution (fixes bias+outliers)
- ❖ NN is similar to Pandora on the core of the distribution (still far from ideal)
- ❖ So far, timing shows no impact on performance, but it is too early to draw conclusions

*Work in progress!*



- **Promising results** with GravNet + Object Condensation for **ParticleFlow**: clustering and position prediction work well, optimisation ongoing
- **Additional features** energy and PID to be added next to go for full jet energy resolution
- In **software compensation** DGCNN performs similar to Pandora; with some improvement for the full distribution → working well to correct bias and outliers
- **Timing** is of small impact in both cases
- Work ongoing, lots of space to still explore!

# Input features of DGCNN for SWC

---

|          |                                                                                                                                                                |                                                                                                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position | x, y, z,                                                                                                                                                       | <i>Cartesian detector coordinates</i>                                                                                                                                 |
| hit      | rho, r, phi, theta,                                                                                                                                            | <i>Spherical detector coordinates</i>                                                                                                                                 |
| features | d_long, d_perp,<br>is_charged, is_neutral, is_undefined,<br>is_ecal, is_hcal, is_yoke, is_lcal, is_lhcal, is_bcal,<br>is_barrel, is_endcap, is_ring,<br>layer, | <i>Distance from hit to the shower CoG</i><br><i>Charged of Pandora PFO</i><br><i>ILD subdetectors specific</i>                                                       |
| Energy   | e,                                                                                                                                                             | <i>Hit's energy (note: for hits associated to tracks, ignore actual hit's energy and split track's energy evenly among all Pandora cluster hits. To be improved.)</i> |
| hit      |                                                                                                                                                                |                                                                                                                                                                       |
| features | e_frac                                                                                                                                                         | <i>Hit energy fraction from the total energy of all hits within Pandora cluster</i>                                                                                   |
| Time     | t,                                                                                                                                                             | <i>Absolute hit time</i>                                                                                                                                              |
| hit      | dt,                                                                                                                                                            | <i>Time relative to the earliest time in the cluster</i>                                                                                                              |
| features | t_minus_c                                                                                                                                                      | <i>Absolute hit time - r/c</i><br><i>(For now perfect time resolution assumed)</i>                                                                                    |

---