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* 5 dimensions of calorimeter data: x, y, z, E, t

* Aim: study of implementation and utilisation of ps-timing
capability in high-granularity calorimeter to improve performance

* Calo5D project working on various aspects from hardware
over reconstruction simulation to physics impact

* This talk: using neural networks / ML and timing to enhance calorimeter performance

* Cooperation with Jan Kieseler (KIT) on ML part
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ILD detector setup

* International Large Detector, developed for ILC, now also proposed for FCC-ee

* Full-sim in DD4HEP, simulation and reconstruction chain ‘battle-proven’ in
large MC productions

* Setup:
— Si vertex + gaseous tracker, calorimeter inside 3.5 T magnet
- ECal: 5x5 mm?in 30 layers
— HCal: 3x3 cm? in 48 layers

* Designed for ParticleFlow with low-material tracker and
high-granularity calorimeter

arxiv:2003.01116
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https://arxiv.org/abs/2003.01116

ParticleFlow overview

* Idea: utilise the best subdetector for each particle / jet constituent

— work horse: highly granular calorimeter

— future collider detectors (e.g. ILD) developed with PFlow in mind,
also applied to existing detectors (e.g. CMS HGCAL for HL-LHC)
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* Use neural networks and timing to reduce confusion term E./GeV

* Issue with number of channels for fixed-geometry NN (e.g. CNN) — use GNN
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Overview GravNet + Object Condensation

* ‘Holistic’ approach with end-2-end reconstruction - clustering and features
reconstruction (position, energy, PID) in one integrated Graph Neural Network

e Calorimeter hits are clustered in (low dimension) latent space S

« Feature properties F  of nearest neighbours in S are combined with different
aggregator function to predict object features, weighted with exp(-d?) — GravNet
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https://arxiv.org/abs/1902.07987

Object Condensation

* For clustering introduce attractive potential ~ d? for
all hits belonging to an object towards each other,
and a repulsive potential ~ -d with short range
towards all other hits

* To reduce computational effort, introduce 3
quantifying similarity to object properties, only use
hit with highest 3 per object to generate combined
potential

* Additional loss per object of 1- of the
condensation point encourages one hit per object
to become representative of object and ‘gather’ Object condensation attractive +

rel hits in | r repulsive potential visualisation
elated hits into a cluste arxiv:2002.03605
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https://arxiv.org/abs/2002.03605

* Use ILD MC production data set of e*e- — (y)qq at 250 GeV (2fZhad), 45k events

* Of(afew 1000) hits per event

* Truth: properties of MCParticle that entered calo and caused
energy depositions

— full MCParticle chain before calo from geant4 is available; in case of
multiple contributions to the same hit, largest energy fraction is chosen -t

- index, end point in calo (x,y,z), (energy, PID)

— issue: particles that backscatter from the calorimeter sometimes are not registered, and hits
are associated with the original particle that entered the calorimeter

 Simplification cut: all hits with r,¢ > .5 m from true object are ommitted
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https://arxiv.org/abs/1902.02516

Properties used

* Input: tracks, ECal and HCal hits with 9 properties each
- X, ¥,z 1., 98,n, E(pfor atrack), time, ID (isTrack)
- three timing ‘resolutions’ are compared: perfect, smeared with 100 ps, none (t==0)
- time tail cut: t[t>20ns ] := -1

 Output: 12
- target: 3, cluster coordinates (x,y,z), position (x,y,z), 800~ J
energy, PID (4 channels) 7007
* Loss: % s00-
- object condensation — 3, cluster coordinates S a00
- hit loss — position (energy and class not used atm) 300-
LPOS:Huber(\/Ax2+Ay2+Az2+10_6,0.1) S S TR ST T l

time / ns
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Post-inference thresholding

* For predicted objects, i.e. PFOs, thresholds of min beta and min dist to next PFO are
chosen after running inference

* beta: few entries with values close to 1 represent the well reconstructed PFOs

* |In space projections: matching colours belong to the same MCParticle, X mark
predicted PFOs, here for > 0.8
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Angular projection of example event

* Predicted positions excellently clustered around targets

* In many cases one predicted PFO (+) per MCParticle (o), here: 35 and 34

* input hits
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Position reconstruction

* Position per hit, weighted with beta

* Good correlation, hit position prediction uncertainty about 6 cm with current training setup
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Impact of timing

WOrk in
Pro
Oresg,
« PFO position prediction, statistics for 400 test events, ~ 50 mm position uncertainty

« Slight improvement (~ 1 mm; A,=0.3 mm) with adding time
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Optimising software compensation with ML

« Starting point: single particles — ML software compensation works well here!
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Results Two big buts...
* NN outperforms Pandora on single pions * Pandora is optimized for physics, not single particles!
* Better timing - better resolution! * Migrating “single-particle” trained NN on physics events

is challenging due to confusions
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Application to full qq events

Setup:

+Z'-qq (u, d, s)
+ ILD full reconstruction

+ E_ 40,91, 200, 350, 500 GeV

Challenge:

+ NN that outperforms Pandora PF

+ Estimate role of timing

PandoraPFA
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Current approach

Hit features (details in the back-up):

Input positional, energy, time (perfect time res.)
Model Dynamic Graph CNN (DGCNN)

Output Corrected per-hit energies (E.)

Target Generator level E.,= z Ehit’i

Loss MSRE (Mean Squared Relative Error)

Train data Ecv: 40, 94, 200, 356, 500 GeV (total 25k evts)
Val data Ec: 40, 91, 200, 350, 500 GeV (total 25k evts)

Uli Einhaus | LCWS 2025 | 23.10.2025 | Page 14 ﬂ(l I


https://arxiv.org/abs/1801.07829

N events

First results: slight improvement with NN compared to Pandora

Resul :
esults Ork in Pro
= NN is significantly better than Pandora on the full distribution (fixes bias+outliers) gl'esS,
+ NN is similar to Pandora on ore of the distribution (still far from ideal)
+ So far, timingshows no impact on perfo nce, but it is too early to draw conclusions
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Conclusion & Outlook

* Promising results with GravNet + Object Condensation for ParticleFlow:
clustering and position prediction work well, optimisation ongoing

« Additional features energy and PID to be added next to go for full jet energy
resolution

* In software compensation DGCNN performs similar to Pandora; with some
improvement for the full distribution — working well to correct bias and outliers

* Timing is of small impact in both cases

* Work ongoing, lots of space to still explore!
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Input features of DGCNN for SWC

Position XY, z,

hit rho, r, phi, theta,

features d_long, d_perp,
is_charged, is_neutral, is_undefined,
is_ecal, is_hcal, is_yoke, is_lIcal, is_lhcal, is_bcal,
is_barrel, is_endcap, is_ring,

Cartesian detector coordinates
Spherical detector coordinates
Distance from hit to the shower CoG
Charged of Pandora PFO
ILD subdetectors specific

layer,
Energy e, Hit's energy (note: for hits associated to tracks, ignore actual
hit hit’s energy and split track’s energy evenly among all Pandora
features cluster hits. To be improved.)

e_frac Hit energy fraction from the total energy of all hits within

Pandora cluster

Time t, Absolute hit time
hit dt, Time relative to the earliest time in the cluster

features t_minus_c

Absolte hit time - r/c
(For now perfect time resolution assumed)
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