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Quantum corrections at second order in derivatives to the dynamics of small nonrelativistic fluids
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To capture the dynamics of macroscopic nonrelativistic fluids consisting of very many atoms, it is typically

sufficient to truncate the gradient expansion at order zero, leading to ideal fluid dynamics, or at order one,
leading to the Navier-Stokes theory. For mesoscopic fluids consisting of a small number of atoms, second-order
corrections can become significant. We investigate here specifically superfluids at vanishing temperature and
identify relevant second-order terms of quantum origin that contribute already in a static situation. The general
form of these terms arises from an extension of the Gross-Pitaevskii theory. In the context of density functional
theory, they are named after C. von Weizsidcker. We assess the influence of these terms on numerical solutions
of second-order fluid dynamic equations for the expansion of a mesoscopic ultracold Fermi gas released from an

anisotropic harmonic trap in two spatial dimensions.
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I. INTRODUCTION

We denote by mesoscopic a system that is too large to per-
mit a solution from first principles and yet too small to warrant
a macroscopic treatment based on conventional many-body
approaches. The study of emergent collective phenomena in
such scenarios especially has been the focus of much theoret-
ical and experimental work. A major drive for this research
is the observation of collective phenomena in so-called small
system collisions (such as proton-proton and proton-nucleus
collisions) in high-energy experiments [1-5]. This has sparked
an intense debate in regards to the formation of a quark-
gluon plasma in such experiments [6-9], which would pose
a challenge for all reasonable criteria of applicability of a
hydrodynamic description [10—12]. Recently, emergent fluid-
like phenomena, such as elliptic flow, have been discussed
and observed in few-particle systems as well in the context
of ultracold atomic experiments with controllable interactions
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and geometries [13—17], which calls for an improved under-
standing of the underlying mechanisms behind these features.
In addition, much effort is also ongoing in elucidating the
microscopic origin of the emergent collective properties of
atomic nuclei (mesoscopic systems by definition), such as
nuclear clustering or deformations, in effective field theories
of low-energy quantum chromodynamics [18-24].

In this context, a fundamental and timely question is
whether fluid dynamics as an effective dynamical framework
can be applied in the mesoscopic regime. Even though hy-
drodynamics is developed in terms of a derivative expansion
targeted at situations with a clear separation of scales [25],
recent results, in particular on the elliptic flow of the meso-
scopic Fermi gas [16], suggest that its applications could reach
beyond that. In hydrodynamic descriptions of macroscopic ev-
eryday phenomena, the derivative expansion can be truncated
after the first order as gradients can be reasonably assumed
to be small. In the extreme situations we are interested in,
this assumption is not guaranteed to hold. Due to that, in
this paper we focus on second-order fluid dynamics. This
has been explored extensively for relativistic fluids [26-28],
due to the causal behavior that a first-order truncation lacks
[29-32], specifically in its application to the dynamics of the
quark-gluon plasma produced in heavy-ion collisions. On the
nonrelativistic side, advances have been made in the context
of cold Fermi gases [33-35].

We discuss in the following the second-order contribu-
tions to both the stress-energy tensor and the heat flux in
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a nonrelativistic context. We provide a generic formulation
of second-order fluid dynamics where the quantum pressure
contributing to the Gross-Pitaevskii equation [36], as well
as other terms that appear via the von-Weizsidcker method
in density functional theory [37-39], are consistently treated
as second-order corrections to the gradient expansion. As an
application of this theory, we discuss mescoscopic gases of
strongly interacting ultracold fermions in two dimensions. We
calculate the influence of the aforementioned second-order
contributions to the Gross-Pitaevskii theory on the initial den-
sity distributions of the trapped fermions, as well as their
impact on shape of the cloud during its expansion.

This paper is organized as follows. In Sec. II, we recall
the derivation of nonrelativistic fluid dynamics in terms of
conservation laws for mass, momentum and energy, together
with a derivative expansion. Special emphasis is put on con-
tributions to dissipative stresses arising at second order in
derivatives. In Sec. III, we discuss superfluids at zero tem-
perature. Here one can introduce a superfluid order parameter
field and make an ansatz for the quantum effective action that
governs its dynamics. We discuss in particular a correction
to the well-known Gross-Pitaevskii theory that can modify
the coefficient of the so-called quantum pressure term, which
cannot be neglected for situations with small system sizes and
strong interactions, and discuss how this treatment relates to
density functional theory in static situations and the so-called
von Weizsidcker term. In Sec. IV, we apply our formalism to
strongly-interacting ultracold fermions in two dimensions. We
introduce an approximation of the thermodynamic equation of
state, motivated by available theoretical and experimental
knowledge, for the strongly interacting Bose-Einstein con-
densate (BEC) side of the BEC-Bardeen-Cooper-Schrieffer
(BCS) crossover. Afterwards, we discuss the expansion after
release from an anisotropic harmonic trap. This is first done
for the well-known ideal fluid scenario, where we are able to
reduce the evolution equations to ordinary differential equa-
tions that can be easily solved numerically. Subsequently, we
implement second-order corrections. Numerical solutions of
the resulting evolution equations are obtained both for a static
system and for the expansion dynamics upon release from the
harmonic trap. We comment on the comparison between our
results including the second-order terms and the available data
on the mesoscopic Fermi gas. Finally, we draw some con-
clusions in Sec. V. Appendix A discusses some ambiguities
arising for the definition of stresses at second order, while
Appendix B details how the solution to the release problem
for an ideal fluid can be simplified in terms of Lagrange
coordinates.

II. EQUATIONS OF FLUID DYNAMICS
A. Differential form of the conservation laws

We recall the generic principles underlying the equations of
nonrelativistic fluid dynamics and the derivative expansion on
which they are based. Similar reviews can be found in, e.g.,
Refs. [25,28,40].

Nonrelativistic fluid dynamics is based on on local con-
servation laws for particle number or mass, momentum, and

energy. In their differential form, these relate the changes
in densities to the divergence of corresponding fluxes. The
conservation law for mass is

8,p(1. %) +3;p;(1.%) = 0, (M

where p(t, x) = mn(t,x) is the mass density and p;(#, x)
the corresponding current or flux density. The latter can be
used to define the fluid velocity v;(f, x) = p;(t, X)/p(t, X).
As a consequence of Galilean boost symmetry, the momen-
tum density equals the mass current, (¢, x) = pi(t, X) =
p(t, X)ve(t, x). The local momentum conservation law is then

0 Zx(t,X) + 3, P (t,x) =0, 2

where the symmetric tensor &2 (¢, X) is the momentum flux
density. By its behavior with respect to Galilei transformations
one can split it into several parts,

Pi(t,x) =pt,X)v;(t, X)v(t, X)
+ [p(t, x) + II(#, X) 8 j + mjuc(t, x),  (3)

where the first term parametrizes the macroscopic fluid mo-
tion while the others transform as scalars under Galilean
boosts. Of these terms, there is a contribution to the trace,
usually split into a thermodynamic pressure p, related to the
particle number density n and energy density ¢ through the
thermal equilibrium equation of state p(n, ¢) and a nonequi-
librium bulk viscous pressure I1. Finally there is the traceless
and symmetric shear stress tensor 7 .

Similarly to the other two conservation laws, the energy
equation is formulated as

8,5(t,x)+8j5j(t,x):0, 4)

with the energy density £ and the corresponding flux density
&;. The energy current can be split, in a similar way to the
momentum flux, into

gj:(E(Sjk—i—,@jk—pvjvk)vk-i-qj, (5)

where the heat flux g; is introduced similarly to IT and 7
before. Splitting the total energy density £ = pv?/2 + ¢ into
a component from the macroscopic motion and the internal
energy density ¢, one finds another equivalent form of the
energy equation,

de + 9;(ev; +C]_j)+(<@jk — pvu)(0jv) =0, (6)

Alternatively, one can formulate an evolution equation for
the entropy density s and entropy current. Specifically for
nondissipative fluids entropy is also conserved.

B. Global thermal equilibrium

Global thermal equilibrium states are per definition sta-
tionary, so independent of time. Moreover, they have spatially
constant fluid velocity, v(¢, X) = v, vanishing in the fluid rest
frame, as well as constant chemical potential u and temper-
ature 7. It is not necessary that the particle density n, the
energy density &, or the entropy density s be constant as
well. Counterexamples are fluids in the coexistence region
of a first-order phase transition or fluids in external trapping
potentials.
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Global thermal equilibrium states that are also spatially
homogeneous are in their rest frame fully characterized by
two independent thermodynamic variables such as the particle
number density n and internal energy density ¢. Alternatively
one could use for example temperature 7 and chemical po-
tential . The pressure, entropy density, or other equilibrium
properties follow from these in terms of the thermodynamic
equation of state. The “stresses” II, 7, and g; vanish for
such homogeneous equilibrium states.

C. Derivative expansion

Besides the conservation laws, fluid dynamics is based on
an expansion around spatially homogeneous thermal equilib-
rium states. The assumption is that the fluid state changes
slowly compared to typical times needed for relaxation to-
wards thermal equilibrium and that the fluid is spatially
homogeneous enough to use the same variables and concepts
as for the description of such states.

At this point one faces an ambiguity. While homoge-
neous global thermal equilibrium states can equivalently be
described with any pair of independent thermodynamic vari-
ables, a choice has to be made for developing the gradient
expansion. In particular, chemical potential i and temperature
T need to be free of gradients for any global equilibrium
state, while densities like n and ¢ can be nonhomogeneous
in the presence of nontrivial electromagnetic, gravitational, or
similar potentials. We see two possibilities:

(i) To construct a derivative expansion in terms of densi-
ties like n and ¢ where the lowest order corresponds to
homogeneous densities.

(i) To construct a derivative expansion in terms of con-
jugate variables like the chemical potential p and
temperature 7 as well as derivatives of the external
gauge potential A, = (Ao, A) like the field strength
0,4, — 0,A,.

For the present paper we follow the first option. This means
to expand the stresses I1, mj, and g; in derivatives of the
fluid velocity v;, the particle number density 7, and the energy
density e.

At lowest order is this expansion scheme, I[1 =0, 7, =0,
q; =0, one finds ideal fluid dynamics with its well-known
momentum flux

P, x) = p(t, X)v;(t, X)ve(t, X) + pt, X)éjk. (7
In this case the conservation equations simplify to

[0 +v;9;]p + pdjv; =0,
plo: +v;0;lve + dp =0,
[0; +v;dle + [ + pld;jv; = 0. ®)

This can be seen as a set of evolution equations for p, €, and vy
which gets closed by the equation of state p(n, €). Ideal fluid
dynamics works reasonably well for many situations when
dissipation can be neglected.

At first order in the derivative expansion scheme, bulk
viscosity ¢, shear viscosity 1, and the heat conductivity «, to

be seen as functions of n and ¢, are introduced through

1= —é’ 8_jvj,
ik = =210k = —nldjvx + dv; — (2/3)k0v1],
qj = —KajT. (9)

In the last equation one can see the temperature as being a
function of n and ¢, again expressed through the equation of
state. The ansatz (9) leads to the Navier-Stokes equations for
the fluid velocity.

The expressions in (9) are the only corrections at first order
that have to be considered because of the transformational
properties with respect to Galilei boosts. The two types of
first-order derivatives that are invariant under Galilean boosts
are spatial derivatives and Galilean covariant derivatives d; +
v;0;, often called convective derivatives, of the fluid fields
v, n, and €. Such covariant derivatives do not appear in the
expansion above because they can be replaced to the given
order by spatial derivatives using Eqgs. (8). Also beyond first
order such a replacement of the covariant derivative terms
using the conservation laws is always possible. It is not exact,
though, only consistent within the given order of the derivative
expansion.

The only other term that could be constructed up to first
order in derivatives that would transform as a symmetric ten-
sor under rotations would be proportional to v;dn + vid;n
with some scalar coefficient function. However, such a term
cannot also transform homogeneously under Galilei boosts.
Similarly, one can argue for the heat flux that the only other
possible type of term (by rotation), v;0;v;, is also ill behaved
with respect to Galilei boosts.

Besides Galilei and rotation symmetry, the terms in Eq. (9)
are also constrained by the requirement to have a local form of
the second law of thermodynamics, 9;s + d;s; > 0. This ex-
cludes another independent gradient term in the heat current,
e.g., proportional to 9, and it also implies ¢ > 0, n > 0,
and « > 0.

D. Superfluids

A special case combining zeroth and first-order terms in
gradients is commonly used in the description of superfluids
at nonzero temperature. In such systems an effective descrip-
tion is given by splitting the fluid into two parts, one with
vanishing viscosity and heat conductivity (the superfluid part)
and one with finite ones (the normal part), each with its own
density and fluid velocity,

P = P + Ps
PV = PpVy + PsVs. (10)

Thermodynamic variables such as temperature and chemical
potential refer to both components. In addition to the ther-
modynamic information encoded in p(7T', ) one also needs a
relation for the superfluid density fraction as a function of 7
and u.

The superfluid density is given by the square of a complex
superfluid order parameter, n; = ¢*¢, while the superfluid
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velocity is the gradient of its phase, vy =

Vng(t, X)), (11)

As we shall further discuss in the next section, the su-
perfluid part behaves similarly to an ideal fluid but with the
additional restriction that the corresponding fluid velocity
must be an irrotational potential flow. Any vorticity excitation
in the superfluid can only exist in the form of quantized
vortices (with vanishing density rn; at their center).

For the normal fluid there are no such restrictions and one
can make an expansion in derivatives as before. In contrast to a
one-component fluid one has to take into account that the rel-
ative velocity w = v, — v; is invariant under Galilean boosts
and can appear accordingly. Only the normal part is subject
to dissipation and it is responsible for any heat transport and
viscous damping.

Truncating after the first order in derivatives, while suffi-
cient for most problems, can be an insufficient approximation
for some. We expect this to be the case for very small fluids
where gradients are necessarily large or for transition regions
where the fluid density goes to zero. In such cases the effec-
tive fluid description needs to take into account higher-order
terms.

(h/m)V 9, where

@, x) =

E. Second-order terms

Nonrelativistic second-order hydrodynamics has been ex-
plored before, leading to Burnett hydrodynamics [41,42] (see
also [43] for a review). While these approaches typically start
from the Boltzmann equation, we will in the following more
generically list the terms that are not inherently forbidden by
symmetry requirements on the hydrodynamic variables and
that contribute to second order in a derivative expansion to
the stresses I, 7, and g;. Because all three must transform
homogeneously with respect to Galilei boosts, the new terms
cannot directly contain the fluid velocity but only its deriva-
tives. Instances of the densities without any derivatives can
be considered part of the coefficient function, and the only
building blocks are therefore derivatives of the fluid velocity
v; and densities like n and ¢.

Interestingly, while the first-order corrections in Eq. (9)
vanish for equilibrium configurations where fluid velocity and
temperature need to be constant, this is not necessarily the
case for second-order corrections. Indeed they can contain
derivatives of densities that might be nonvanishing for non-
homogeneous thermal equilibrium states.

In order to organize the different contributions, we label
them as follows:

ne =3y e,
i

(2) (2,i)
Tk _Z ik

(2) Zq(z i) (12)

and use a short notation for the symmetric traceless part of a
tensor,

1 1
Agjry = E(Ajk +Agj) — 55jkAii- (13)

In this paper, we will focus on contributions to the stress-
energy tensor of the types
n®Y = 9,0,
%2 = ay(3in)(@;n),
(2 V= B1d;d-n,

(2 D = By(d-;n)(B=n). (14)

While heat conduct1v1ty, bulk viscosity, and shear viscosity
are considered transport coefficients, this would not necessar-
ily be the case for «, o, Bi, and B, as they can influence
static behavior as well. The other second-order terms in the
stress energy tensor can be summarized as

%% = a3(3,v;)(3,v;),
ney = a4(0;v;)(9;v;),
N*Y = as5(3;v,)(;v;),
Y = B30 (0<jvr-),
0 Y = Ba(3v<)(Oui-),
e = Bs(9-vi) (B> v)),
71;,3’6) = Bs(0iv<;)(0> Vi), 15)

which again do not contribute in equilibrium.

In relativistic contexts it is not uncommon to see one
of these contributions for IT and 7 to be replaced by an
equivalent one (to the given order) containing a convective
derivative,

N7 = ¢rpuld +v;8;1V - v,

W(i ™ = 2 Tohear 0 + v;0jlojk. (16)

The coefficients Ty and Tgear can be seen as relaxation
times. Variants of these terms are also used, e.g., in the Israel-
Steward formulation of relativistic fluid dynamics [28].

For the heat current, there are also multiple options for new
contributions,

5132 = = y1(9;v;)(9;n),
g = y2(3v;)(9m),
f];z P = y3(9,0:)(3;n),

47" = yadioi;,
qﬁ“) = y50;0;v:. (17)

The different terms presented here do not involve the en-
ergy density ¢, but since it has the same transformational
properties as the number density 7, a generalization is straight-
forward. For our specific purpose in this paper such terms
are not needed because we are mainly interested in fluids at
vanishing temperature where energy density is nondynamical.
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A related analysis of possible second-order terms appear-
ing in the the energy momentum tensor is discussed in a
relativistic context in Ref. [27]. Not counting terms containing
spacetime curvature, which do not play a role for our consid-
erations, they find the same number of contributions for both
bulk viscous pressure (five terms) and shear stress tensor (six
terms).

For the further analysis in this paper, we will concen-
trate on the second-order correction terms in Eq. (14). We
expect these terms to play a significant role also in close-
to-equilibrium situations whenever spatial gradients of the
density become sizable.

We provide a complete derivation of all second-order terms
in Appendix A, where we also discuss subtleties in the choice
of these coefficients for the formulation and the solution of the
second-order hydrodynamic equations.

III. SUPERFLUID QUANTUM PRESSURE
AS SECOND-ORDER TERM

Terms of second order in derivatives also arise naturally
in descriptions of superfluids through their order parameter
fields, and also as von-Weizsécker type corrections in den-
sity functional theory. In both cases, the second-order terms
originate from a quantum mechanical representation of the
kinetic energy. At most places in the literature they do not
appear with four independent coefficients, but only one for
the von-Weizsicker term, or none when using the Gross-
Pitaevskii equation for superfluids, as we discuss now. We
focus hereafter on systems at vanishing temperature, where
the particle density equals the superfluid density, n = n;.

A. Effective action for superfluid order parameter field

The dynamics of a superfluid is best described in terms
of an effective action for its complex order parameter field
o(t, x) = (¢(t, x)), which can be seen as (renormalized) ex-
pectation value for a suitable fundamental or composite field,
o2, X).

This effective action is constrained by invariance under
Galilei boosts,

@(t, X) — exp(—i(m/2)v*t /2 + imv - X)p(t, x — vt), (18)
as well as a U(1) symmetry [where (Ao, A) is an external
gauge field],

o(t, %) — "o, %),
Ao(t, X) = Ao(t, X) + da(r, X),
A(t,X) = A(t,X) + Va(t, X). (19)
A covariant derivative operator adapted to these symmetries
is the combination,

2
P = [_m(at —iAg) — ;—m(v - iA)z}p, (20)

such that the combination ¢*%¢ transforms like a neutral
scalar. Of course, also the combination ¢*¢ is covariant and
can appear in the effective action, as well as the square of its
derivative V[p*¢].

With these elements, we can construct an ansatz for the
effective action of the order parameter as a derivative ex-
pansion up to a specific order in spatial derivatives (which
implicitly also limits the order in time derivatives through
Galilei invariance). Up to the first nontrivial order, we write
the quantum effective action as

r =fddX{Z(<p*<p)[—ih<p*(8t —iAg)p
h2
+ —(V +iA)p*(V — iA)w} +U(p*p)
2m

+ Y(w*w)V[fp*w]V[w*fp]}- ey

By variation with respect to the external gauge field (A¢, A),
one finds the superfluid density and current:

ng =— LI Z(p*p)p* g,
7 8A,
. 16T R .
=2k = i 2@l Ve — eVl (22)

With the decomposition ¢ = /p*pe™” the current becomes
i =Z@*e)p*p(h/m)Vy. It is always possible, and particu-
larly convenient, to normalize the superfluid order parameter
field such that the superfluid density is ny, = ¢p*@. With this
normalization one has effectively Z(¢*¢) = 1, which we as-
sume from now on.

B. Gross-Pitaevskii equation

Variation of the effective action (21) with the specific
choice Y =0,A¢0 = —(1/R)V (¢, x), A = 0, with the effective
potential U (ny) = (1/ 2)n§ leads to the Gross-Pitaevskii equa-
tion. This describes the mean-field dynamics of a system of
(many) bosons with short-ranged interactions (range shorter
than the typical interparticle distance) in an external potential
Vi, x),

v
iho = [ — +V 4100 ). (23)
2m

With the replacements
iv h
o = ./nge”, v=—-Vi,
m

one obtains the Madelung-type equations,

p = mny, (24)

9o+ V- [pv] =0, (25)
and
old; +v-VIv+nVIQ+ An; +V] =0, (26)

where Q is a quantum contribution from the kinetic part of the
Gross-Pitaevskii equation,

_R Vi on

="
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It is illustrating to rewrite Eq. (26) in the form of a general
momentum conservation law:

plo: +v;0;]ur + hl[p + ] + 0 +n,VV(£,x) =0,
(28)

where p = Anf /2 is the pressure of a uniform fluid in thermal
equilibrium, and (following Ref. [36])

2

4dmD
2

A 1
T =— mns[ajak - Bajkvz} In(ny), (29)

M=— ns V2 In(ny),

can be understood as quantum contributions to the stresses
that are of second order in gradients. Note that we have for-
mulated Eq. (29) in D spatial dimensions.

This discussion shows that superfluids described by the
classical Gross-Pitaevskii equation for their order parameter
are still amenable to a fluid dynamical treatment based on a
gradient expansion, provided that specific second-order terms
of types ITD, T12:2), n;i’l), and nj(.,f’z) are included.

C. Generalized superfluid equation of motion

We now go back to the full quantum effective action
in Eq. (21). Employing again a polar decomposition as in
Eq. (24), with the normalization of fields Z = 1, we can write
the action, up to an irrelevant boundary term, in the alternative
form

r :/ddx{hnsa,z? — RhAon, + U (ny)

K2 K2
+ —n (VO — AP + (
2m

+Y<ns)) [Vn.y]z}. (30)
8mny

To find the stresses m;; and p+II it is best to employ
Noethers theorem. Invariance of the action (30) under spatial
translations yields the momentum conservation law in Eq. (2)
with momentum flux density of the form of Eq. (3), and

ik + [p+ 1116«
2

i
=—$5jk+(

+2Y (ns)) 01,0 ;. (€2))
dmny

Here % is the Lagrangian density corresponding to the inte-
grand in (30), to be evaluated on the solution of the equation of
motion. By tensor decomposition of the right-hand side of
Eq. (31) we identify the shear stress,

hZ
ik = dmn + 2Y (ny)

— 8[Vn,)*/D], (32)

x [0jn;0kny
and the thermodynamic plus bulk viscous pressure

2
p+Ill=-2+
dmn

+ 2Y<ns)) [Vn?/D.  (33)

s

Then, with external gauge field Ao = —(1/h)V, A = 0, varia-
tion of the action in Eq. (30) leads to the equation of motion

hZ 2

+V +U'(ny)
m

—2Y (n,)[V2n] — Y/(ns)[Vns][Vm])% (34)

from which we can write the Lagrangian density in Eq. (31)
in the form

h2
£ =Uny) —nU'(ny) + [—4 + 2Y(ns)n{| Vi,
m

+ [Y (15) + ngY (n)[ Vs 12 (35)

We can then identify the thermal equilibrium pressure for a
uniform systems as:

p=—U(ny) +nU'(ny), (36)

and the bulk viscous pressure as:

I = w Y 2 | v -
B 4mnsD+ (nS)(E_ )_”x (ng) |[Vny]

hz
— [E + ZnJY(ns)i| Vn,. 37

We have thus arrived at a consistent generalization of the
Gross-Pitaevskii theory with more generic stress terms.

One should note that the expressions in Eqgs. (32) and (37)
do not reduce to the stresses given in Eq. (29) for ¥ = 0.
However, the resulting fluid dynamic evolution is equivalent.
This is due to the fact that the shear stress tensor and bulk vis-
cous pressure do not directly appear in the equations, but only
their derivatives or contracted products (see also Appendix A).
In the literature this is sometimes discussed under the term
“improvement ambiguity,” which has been shown to affect the
derivative expansion at second order [44].

D. Connection to density functional theory

From Eq. (21), we can also write the Hamiltonian, or
energy functional, as

2
H = /dd_lx zh—m(V +iA)p*(V — iA)(ﬂ] +U(¢"p)
+ Y(¢*0)V[p*olVIp o]l + Vo*p}

hz
= /dd_lx 2—n5[Vz‘} — AP+ Uy
m

2
+ ( f + Y(m))[Vn.v]2 + an}- (33)
8mny

This can be compared to what is traditionally used in density
functional theory. A term quadratic in gradients of density
also appears in the prediction of ground states using density
functional theory (used in, e.g., nuclear and molecular struc-
ture calculations). In these contexts, the one-particle density
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is found by applying variational methods to the expectation
value of the energy which has been shown to be independent
of any higher-order correlations (in the ground state only
[45]). The energy is commonly split into a kinetic and poten-
tial part plus an exchange energy that approximates the effect
of interactions [38,39],

Elpl =Tlpl+ Vipl + Exlpl. (39)

The terms we are looking for appear in the kinetic energy of a
fermionic system [46,47],

337)*% R? W (Vp)?
Tlpl= | &x| ————p P 42—, 40
(o] / X( 0 anl Trga . (40)

The factor A is simply unity in the original work of C. von
Weizsécker [46]. Note that additional terms proportional to
V2p have also been discussed in the literature [48,49], but
they do not affect the dynamics of the finite systems we
are considering. In order to improve on Thomas-Fermi type
predictions, later authors argued that for different systems
other factors (smaller than one) are more appropriate [37]. The
connection to fluid dynamics comes in when exchange terms
in Eq. (39) are neglected. In that case, we find a differential
equation for the density that is equivalent to the one obtained
for hydrostatics in a system with Fermi pressure (in three
dimensions) in combination with second-order terms that are
also predicted by a Gross-Pitaevskii ansatz. The main differ-
ence is the appearance of a prefactor A which acts as a global
rescaling of the second-order terms.

E. Specific one parameter choice of second-order terms

In the remainder of this article, we discuss numerical in-
vestigations of second-order hydrodynamics with one extra
parameter. Notably, we match the effect of the von Weizsicker
term by choosing a form of the Y term in the effective action
of Eq. (21) that combines with the contribution of the kinetic
energy term in a way that yields an overall factor A in front of
all second-order contributions. We can read off directly from
Egs. (32) and (37) that this corresponds to the relation

2
Y = M 41
8mny
This is equivalent to fluid dynamics with the second-order
terms of Eq. (14) replaced by:
2

n®b = xh—vzns,
8m

h2
M2 = Ao [VnP,

@10

N =0,

73 =2 " (@;n)(9 )—LS-(V ) (42)
ik T R R

Some limiting cases of interest:

(i) A = 0 corresponds to ideal fluid dynamics;
(i) » =1 (i.e.,, Y =0) yields the quantum pressure of
Gross-Pitaevskii theory as a second-order term;

(iii)) A < O implies that the Hamiltonians in Egs. (38) and
(40) are not be bounded from below.

Note that, in this work, all terms in Eq. (42) involve only
the superfluid density, n;, which typically agrees with the
full density at zero temperature. In the future, it would be
interesting to extend this theory to two-component fluids at
nonvanishing temperature.

IV. IMPACT OF SECOND-ORDER CORRECTIONS ON THE
MESOSCOPIC TWO-DIMENSIONAL FERMI GAS

In this section, we apply our A-generalized second-order
hydrodynamic framework to a small-sized system of strong-
lyminteracting ultracold fermions. Our motivation is mainly
driven by recent experimental breakthroughs which enable
the preparation and the imaging high-fidelity pure quantum
states of few fermions with tunable interactions [16,50,51].
This makes our formalism amenable to potential phenomeno-
logical tests.

We start by introducing a polytropic approximation to
the equation of state for the two-dimensional (2D) Fermi
gas at zero temperature which is particularly convenient for
numerical and analytical implementations. We discuss then
hydrodynamic solutions, both for an ideal fluid and with the
inclusion of second-order corrections. We consider both a
trapped (static) and an expanding system.

A. Thermodynamic equation of state for the 2D Fermi gas at
zero temperature

We concentrate on a fermionic gas in a balanced mixture of
two (hyperfine) spin states interacting via an s-wave contact
interaction. The strength of the latter is described in three
spatial dimensions by a scattering length asp that formally
diverges at the unitarity point in the center of the BCS to
BEC crossover [36,52-54]. In two spatial dimensions, one
can define a 2D scattering length a such that the binding
energy of a shallow dimer is Ez = 1/(ma?®). The BCS regime
corresponds to Eg — 0 or a — oo and the BEC regime to
Ep — o0, a — 0 with positive a throughout. In either case,
throughout the crossover one finds superfluid behavior at suf-
ficiently low temperatures. Moreover, in the regime around
vanishing temperature, 7 = 0, the normal density goes to
zero, and the whole density is superfluid density. For flow
velocities below the Landau critical velocity (relative to an
obstacle or boundary) superfluidity is maintained.

In the dilute regime, the thermodynamic properties depend
only on a single interaction parameter, the s-wave scattering
length a. In order to express the thermodynamic relations
in experimentally controllable quantities, it is convenient to
work in the canonical ensemble, where at vanishing tempera-
ture all thermodynamic information follows from the energy
density e(n) with differential de = udn. By dimensional
analysis is must be of the form

e(n) = E(kpa)er(n), (43)

where kp is the Fermi wave number of a free gas with two
spin states and density n and takes the role to parametrize
the interparticle spacing. In three spatial dimensions one has
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kr(n) = (3n2n)'/3, while for two spatial dimensions one has
kp(n) = (2rn)'/?. We also use the energy density of a free
Fermi gas with two spin components,

3kin KD @a3rhP
= = = s 44
e () = Tom = Ton?m 1om “@4)
in three dimensions and
k2 ks
ep(n) = Kt — _F _ inZ’ (45)

4dm 8tm  2m

in two spatial dimensions.

The function &(kra) depends on the dimensionality. In
three spatial dimensions one has for small negative kra the
BCS regime where by construction

E(kpa) > 1 (kpa — 0, kra < 0, BCS). (46)

The limit is approched from below because for small but
nonvanishing |kra| one has bound Cooper pairs. On the other
side, for small positive kra one has a gas of dimers of density
n/2, with binding energy Eg = 1/(ma?), and they become
weakly interacting in the dilute BEC limit. There one has
eventually ¢ - —nEg/2 and

E(kpa) — (kpa — 0, kpa > 0, BEC). (47)

5
3(kra)?
This limit is approached from above because the dimers have
a repulsive interaction.
At the unitarity point one defines

Sta
2(kra)

where &g & 0.4 is the Bertsch parameter [55,56] and o ~ 0.12
relates the Tan contact at unitarity to the Fermi wave number
(determined numerically in, e.g., Refs. [57,58]).

In two spatial dimensions kra is positive everywhere and
the BCS limit corresponds to vanishing binding energy, Ep =
0, or large kra,

E(kpa) > 1

E(kpa) — &g (kpa — Fo00, Unitarity), (48)

(kpa — o0, BCS). (49)

In contrast, large binding energies correspond to the BEC limit
where eventually ¢ — —nEg/2 or

2
Elhra) > —
It is possible to supplement the different limits by next-
to-leading-order corrections for weakly interacting fermions,
bosonic dimers, or in the vicinity of the unitary regime in
terms of the Tan contact [36]. However, this is beyond our
purpose.
We observe that in all limiting cases discussed above the
internal energy density is related to the particle density by a
power law,

(kra — 0, BEC). (50)

&(n) = const x n*. 51

In the BEC limit of free dimers, x = 1 and the constant pref-
actor is given by —Eg /2. In the BCS limit and in the unitarity
regime in three dimensions, one has k = 5/3 and the constant
can be read off from (44) with an additional factor &g at the
unitarity point. This exponent follows from scale invariance

for fermions with vanishing or infinite scattering length. In
contrast, in two spatial dimensions the BCS limit corresponds
to k = 2 as also implied by scale invariance. In intermediate
regimes one cannot expect a similar power law, however, as
it is not possible to connect all physical situation so simply.
On the other hand, a modified energy density with the trivial
binding energy e = —nkEp/2 subtracted may be to very good
approximation given by a power law of the density throughout
the crossover (see Appendix B for a proposal). Consequently,
a similar relation holds for the pressure,

p(n) = gn®. (52)

The equation of state (52) is a simplified ansatz which we
expect to be reasonable in two dimensions where correlations
have a substantial impact also for an interacting Bose gas. This
is the case we will focus on.

Beyond these considerations, the equation of state ansatz
in Eq. (52) is strongly supported by numerical [59] and
experimental studies [60,61]. These works focus on two-
dimensional Fermi gases specifically, where the crossover is
parametrized in terms of the logarithm 1 = In(kra), mapping
the BCS limit to  — oo and the BEC limit to n — —o0. The
system under study is a macroscopic gas of °Li atoms, whose
interactions can be nicely tuned thanks to a broad Feshbach
resonance. Our applications focus on the same experimental
setup of the recent experimental work in Ref. [16], where
the relevant interaction strength range is —1.7 < n < 1.2. We
fit in particular an equation of state of the form (52), or
p/pr = a1e®" to the experimental data of Ref. [61]. The best
fit was found for

a; ~0.216, o ~ 0.67. (53)
One can also write this as
T
pc(n) = oy 2wa*)™/ zﬁnzm/ 2, (54)

where we recall that a is the two-dimensional s-wave scat-
tering length, which is determined by the experimental
conditions [16], while m = 6 a.u. is the mass of the °Li atom.

B. Scaling flow solution for an ideal fluid

With the equation of state in hand, we have now closed the
system of equations that governs the movement of a fluid up
to zeroth order in the derivative expansion (ideal fluid). For
strongly interacting fermionic atoms at almost zero tempera-
ture one also expects superfluidity. This excludes any viscous
corrections. Second-order terms as discussed in Secs. IIE
and III are expected to be subleading when the fluid fields
are smooth as is usually the case for macroscopic fluids.
Under these conditions we can now solve the equations of
motion for a two-dimensional cloud of atoms released from an
anisotropic harmonic trapping potential. We shall now study
this ideal fluid flow problem before taking second-order terms
into account in a second step.

1. Hydrostatic problem

The first part of this problem is the hydrostatic one. While
the trap is still active, the fluid is assumed to be in equilib-
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rium, i.e., its velocity vanishes everywhere and the density is
constant in time. The continuity equation is trivially fulfilled,
but the momentum equation gives the condition

Vp+nVV =0. (55)

Using dp = sdT +ndp (where dT =0 in our consider-
ations) this can be rewritten in the typical form of a
Thomas-Fermi type condition for an equilibrium density in
a trap (wherever the density does not vanish),

m 5
un)=po—V =po— 2 WKk (56)

where [ is an integration constant that fixes the total particle
number and the symmetric frequency matrix w?k can be taken
to be diagonal by choice of a convenient coordinate system,
a)?k = a)?B jk- For a polytropic equation of state as in Eq. (52)
with ¥ > 1, the chemical potential can also be expressed as a
power of the density,

Kg _
n« 1

p(n) = ) (37
k—1
which leads to the typical Thomas-Fermi density profile
1
x — D(po — Ze? xixe) \ <
n(x)=< (ko= Bejm) \ ™ )
8K

This formula is valid within the area defined by o >
%a)ka X, outside of that the density is zero. Note that the
value of g is fixed by the normalization of the particle den-
sity, i.e., by the total mass.
It is interesting to consider moments of coordinates of this
density distribution in the harmonic trap,
[ dPx xjxi n(po — V(x))
(x § Xp) = . (59)
JdPx (g =V (x))
Performing the variable substitution z; = w;x; one can reduce
this to an isotropic integral

[ dzZPt n(puo — mz%/2)
[dzzP~ n(uo — mz2/2)
This works similarly for higher-order moments or when par-
ticle density is replaced by entropy density, energy density, or

similar. In particular, ratios of such moments are universally
given by

(60)

(xjxp)wjor =

() (x) = i /. 61)

This is independent of the thermodynamic equation of state
and a consequence of the fluid statics in the form of the
Thomas-Fermi approximation only.

2. Evolution equations

We turn now to the dynamics. For both superfluids and
normal fluids, the problem of the expansion of a Fermi gas
from an anisotropic trap has been discussed at length in the
literature [62], see also Ref. [63] for a new experimental in-
vestigation. In particular, when the aspect ratio of the trapped
gas is close to zero, analytical solutions leading to simple
scaling flow solutions can be obtained, as originally pointed
out in Ref. [64]. Here we relax this condition and perform

full numerical calculations with arbitrary trap frequencies. In
addition, we point out a solution scheme based on Lagrangian
coordinates which largely simplifies the generic problem.

We are interested in is the expansion of the density profile
given by the form of Eq. (58) into free space after the confin-
ing trap is quenched off instantaneously. Specifically for the
Thomas-Fermi initial density profile it is possible to simplify
the problem such that one only needs to solve for a time- (but
not space) dependent scaling matrix J; (¢) (and its inverse Iy ;),
see, e.g., Ref. [36]. This reformulation can be conveniently
done by using Lagrangian coordinates (see Appendix B). The
evolution of density and fluid velocity is then completely fixed
as

n(t.x) = n(to, I j(t)x;)
T det(J (1))

v (t, x) = I ()T ()x;. (62)

)

This automatically fulfills the continuity equation and the
momentum equations reduces to the ordinary differential
equation

(det()) i = a)?,, (63)
with the initial condition
Jik(to) = djx,

If the coordinate system is chosen such that the fre-
quency matrix a)jz.k is diagonal, then so will be the rescaling
matrix Jj.

For an isotropic trap profile a)z.k = w*$ ik the Jacobi matrix
is also isotropic Jjx(t) = ¢ (t)8x and the equation of motion
(63) becomes

Ji(to) = 0. (64)

1+(K71)Dd_2 _ 2
¢() dtzi(t)—w, (65)

with initial conditions ¢ (fy) = 1 and 5_:§ (t) =0.
Scale invariance corresponds to x = 1 + 2/D and in that
case the solution is easily found to be

(@) =1+ 0@ — 1) (66)

More generally one can find an implicit solution in the form

1 1
J— -1 — . —(k—1)D
2F1<2, (K—I)D’l (K—I)D’C(I) >§(l‘)

2
=4/ mw(f —1y) +cr, (67)

where , F} is a hypergeometric function and

1 1 1
cr = F | =, — 01— 01
F “(2 (k — H)D (k — )D )
1
_ \/EF(I - (K*l)D)
- 1 1 ’
F(E - (K—])D)
its value for ¢ (¢) = 1.

While it is hard to get from this to an explicit form for ¢ (¢),
we can already draw some conclusions about its asymptotic
behavior. Considering that the second time derivate ¢(¢) is

(68)
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strictly positive as long as ¢ (¢) itself is strictly positive ac-
cording to Eq. (65), the initial conditions imply that ¢ (¢) is
strictly monotonously increasing in time. As such, the last ar-
gument of the hypergeometric function will vanish for ¥ > 1
at t — oo. We make use of the identity »,Fi(a, b;c;0) =1 to
find the asymptotic behavior

lim & = ;w (69)
t—oo f \/ («x — 1D

We find asymptotically linear scaling which we associate with
free streaming at late times.

Beyond the isotropic case one can solve (63) numerically
or possibly in a perturbative scheme for small anisotropy.
Working in the frame where the trap frequencies are diago-
nal, a)?k = a),%(S k> and similarly in the Jacobi matrix, J (1) =
i (t)d ji, the equations of motion are

det( (1))~ G )G (1) = o, (70)
where k = 1,...,D and det(J(z)) = ¢ (¢) - - - {p(t). Assum-
ing that both the frequency matrix are only slightly perturbed
with respect to the isotropic solution,

Sk = ¢+ 84k,
wp = & + 8w}, (71)

and after linearizing in the perturbations, we find the equa-
tion of motion

2 D
§1+D(K71)5é1k + a)? 88+ D(k — 1) ZSQ = 860,%, (72)
Jj=1

with the initial conditions §¢;(fy) = 0 and Sék(to) = 0. Since
the isotropic case is solved separately, we can without loss of
generality assume the perturbation of the frequency matrix is
traceless, i.e.,

Z Sw’ = 0. (73)

With the given initial conditions, this automatically implies
that a similar relation also holds for the perturbation in the
scaling functions,

D
> sg;=0. (74)
j=1

With this, the equations of motion decouple and we obtain

2
5&1( + w2§—(1+D(K—1))<8ﬁ _ 8&) =0. (75)

¢ o

This is an inhomogeneous second-order ordinary differential
equation for which one can quickly find the particular solution

8¢P b}

= (76)

which solves the differential equation but does not vanish at
initial time. For the special case « = 1+ 2/D, we find an

explicit solution for the given initial conditions,

2
8¢ (1) = %(Sa%k\/l + @212[1 — cos(v/2 tan~ " (w1))].  (77)

Let us consider moments of the density distribution similar
to (59) but now at time 7,

[ dPx xjx;. p(t, x)

[dPx p(t,x)
where p is the mass density. In Lagrangian coordinates this is
easily evaluated to be

(21 ) (1) = T j () Tk (0) (XX} (20). (79)

In the frame where the the trap frequency tensor is diagonal
this yields for ratios

WO _ 02 ()0 _ 500 w}
()@ @ (F)aw) Gy o

In the last step we used Eq. (61). As a response to initial
pressure gradients one expects that such ratios of moments
approach first unity before they get inverted at later times.
This is in contrast to the expansion dynamics of an ideal gas
(ballistic expansion) where one expects an isotropic aspect
ratio at asymptotically large times.

(xjxe)(t) = (78)

(80)

3. Application to the mesoscopic 2D Fermi gas

We evince that the solutions to this problem are fully
determined by the two trap frequencies, w, and wy, and the
two parameters g and « of the polytropic equation of state
in Eq. (52). The solution does not depend on the particle
number or total mass in the system. Reference [16] indicates
a many-body limit for the aspect ratio at asymptotically large
expansion times of

(1)

which is obtained by performing the ideal hydrodynamic
expansion of a Thomas-Fermi initial profile with the same
polytropic equation of state discussed here. There, it is found
that the result does not depend on the total mass or atom
number, Nyom. Therefore, the present derivation provides a
clear explanation for this behavior.

We now take a look at some numerical solutions of the
scaling flow problem for the ideal fluid in two dimensions
by solving numerically the equations discussed above. The
dynamics of the fluid is described by

_ ,O(Z‘ = O, (x/é‘x(t)v Y/é‘y(t))T)
Cx(1)8y(1)

p(t, x)

@)
vj =
;@)
Le(t) — 0 () 4y(1)' T =0,
4y(t) — )4y (1) 4e(t) ™ =0, (82)

with the initial conditions ¢,(f = 0) = ¢, =0) =1, Lt =
0) = ¢,(t = 0) = 0 [see also Eq. (70)]. We evaluate the aspect

Xj, je{x’y}’
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FIG. 1. Left: Time evolution of the aspect ratio of the ideal fluid with Thomas-Fermi initial conditions for different trap frequency ratios
at fixed geometric average; the polytropic exponent is k = 2.335 as defined in Eq. (52); the blue curve corresponds to the experimentally
used frequencies in Ref. [16]. Right: Time evolution of the aspect ratio of the ideal fluid with Thomas-Fermi initial conditions for different
polytropic exponents as defined in Eq. (52); the trap frequency ratio is fixed at w,/w, = 0.38 such that the blue curves match between both

diagrams.

ratio v/ {x2)/(y?) as a function of time. We solve Egs. (82) with
a fourth-order accurate Rosenbrock method (Rodas4 solver
in the Julia module DifferentialEquations). The results are
displayed in Fig. 1. The final aspect ratio of the cloud appears
to be determined by the initial one (or equivalently by the ratio
of the trap frequencies). On the other hand, the time at which
the aspect ratio becomes unity is only weakly dependent on
the initial aspect ratio for a fixed polytropic exponent (left
panel of the figure). Increasing the polytropic exponent (right
panel of the figure) has some impact on the crossing time and
changes only slightly the large-time aspect ratio. Notably, all
these results are independent of the prefactor of the polytropic
equation of state which does not appear in the differential
equations for the scaling functions. Any dependence on the
geometric average of the trap frequencies can be absorbed
into a rescaling to a dimensionless time variable f = /@ w,t.
In this variable, the aspect ratio becomes unity around 7 ~
2.1 ps in most of the cases we considered. Note that when
matching all parameters to the experimental setup of Ref. [16],
we recover the numerical value +/{(x2)/+/(y?) = 0.52 for the
asymptotic aspect ratio in Eq. (81).

C. Second-order corrections to hydrostatics

As mentioned before, when dealing with small system
sizes or low particle numbers, quantum corrections to ideal
fluid dynamics encoded by second-order terms may arise,
even in the superfluid scenario. In particular, the Thomas-
Fermi density is not smooth at the boundary of the atom
cloud, and this issue only gets worse when the system is
small. It is perhaps not surprising, thus, that a zeroth-order or
ideal-fluid truncation does indeed not seem to capture some of
the experimental observations made for the initial condition
and the expansion of a cloud of 10 atoms [16]. We discuss
first the corrections to the hydrostatic problem arising from
second-order terms.

As mentioned in Sec. II E, the equilibrium density profile at
vanishing temperature cannot be modified by first-order cor-
rections but only by second-order ones of types 1!, T2,

nﬁ’l), and ni’z), as defined in Eq. (14). For the Thomas-
Fermi equilibrium solution of a trapped gas with a polytropic
equation of state, we can analytically calculate the density
profile which leads to the result in Eq. (58). If we want to
include the second-order terms presented in Sec. III E, then the
equation we need to solve becomes, with Vp = kgp“~'V p,

A 7 \Y ViVp
A om?
m P

Solving this for the density is equivalent to finding a real-
valued ground state for the Hamiltonian in Eq. (38). We
do this by employing the split step Fourier method. The
time-difference operator U (8t) = exp(i H §t) is split into two
exponentials, respectively, a kinetic and an interaction term,
and neglecting contributions of order §¢2. The kinetic part
is applied in a momentum-space representation of the order
parameter, the interaction part in a real-space one. For A > 0
the latter contains a term proportional to (Vn)?> which is
calculated in a central finite-difference scheme. An initially
Gaussian profile is then evolved with the so-approximated
time-evolution operator in imaginary time, with the normal-
ization being fixed by the desired number of particles at every
time step. Through this imaginary time evolution the state
evolves towards the ground state as all higher-energy states
decay faster in comparison. The initial density profile, i.e., the
approximate solution to Eq. (83), is then obtained from the
order parameter as p = mg*g.

In Fig. 2 we display trapped density profiles obtained from
the numerical calculation. With reference to the effective ac-
tion ansatz discussed in Sec. III E, we show Thomas-Fermi
distributions, corresponding to the solution with A = 0 (blue
solid lines), as well as the result from Gross-Pitaevskii theory,
with L = 1 (orange dashed lines). The results are presented
for slices of the full two-dimensional densities (displayed
instead in Fig. 3), either p(x,y = 0) (two upper rows) or
p(x =0,y) (two lower rows). We show results for different
particle numbers, or total mass in the system, where N = 1
corresponds to the mass of an individual ®Li atom. Obviously,

1
) +Vp+—pVV =0. (83)
m
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FIG. 2. Comparison of cross sections of the predicted density profiles of a two-dimensional fluid in a harmonic trap for a Thomas-Fermi
type solution (blue solid) and the cases A = 1 (orange dashed) and A = 1.5 (green dotted) for the effective action ansatz presented in
Sec. III. The equation of state and trap frequencies are taken to be polytropic pressure with k¥ = 2.335, g = 7.06u'*um=3*"'ms2;
w; = 1.280 x 27 kHz, and w, = 3.384 x 27 kHz, the same as in Ref. [16]. The profiles are presented for a variety of particle numbers.
Panels (a) to (f) show a cross section along the plane defined by y = 0, while panels (g) to (1) make the cut along x = 0. For the single particle
N =1 the ground-state solution of the Schrodinger equation of a single (noninteracting) particle in a harmonic trap is shown for comparison
(black, dash-dotted). For N = 1 + 1 a ground-state solution for a single pair of trapped particles with a contact interaction is taken from
Refs. [65,66] (black dash-dotted). For N = 5 + 5 a phenomenological description of the density as a modified Gaussian from Ref. [16] is

shown for comparison (purple dash-dot-dotted).
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FIG. 3. Comparison of the predicted density profiles of a two-dimensional fluid in a harmonic trap for a Thomas-Fermi type solution (left
column) and the cases A = 1 (center column) and A = 1.5 (right column) for the effective action ansatz presented in Sec. III. The first row
shows the predictions for a single particle, the second for 10 particles, and the third for 200 particles. The equation of state and trap frequencies

are taken to be polytropic pressure with k¥ = 2.335, g = 7.06 u! “um

as in Ref. [16].

the main feature discerning the A = O from the A = 1 case is
the smoothness of the distribution at the tails. For low particle
numbers, even up to N = 10, the effect is very pronounced,
whereas as expected it becomes negligible in the many-body
limit with N = 200.

In addition, for the computation with N = 10 atoms, we
display as well the result of a fit to the initial density profile
shown in Ref. [16] (double-dot-dashed line in purple). Re-
markably, the tails of the experiment-based result, which are
significantly broader than predicted by the Thomas-Fermi ap-
proximation, appear to be captured by Gross-Pitaevskii theory
(A = 1). The description improves slightly for a higher value
of A = 1.5 (also shown in all panels as green dotted lines),
which has the effect of broadening the tails a bit further.

Finally, for the trivial N = 1 case (noninteracting particle),
but also for N = 2 (single interacting pair of fermions) we are
able to display exact analytical solutions of the Schrédinger
equation (see, e.g., Refs. [65,66]). The discrepancy between
the Gross-Pitaveskii curves and the exact ones arises from an
interaction term which is included in the effective action de-
scription based on the order parameter. It would be interesting
to have exact (or near-exact) solutions up to N = 6 or higher,
and see at which atom number a hydrostatic framework based
on Gross-Pitaevskii theory becomes viable. If that happens

“3=Ims=2; @, = 1.280 x 27 kHz, and @, = 3.384 x 27 kHz, the same

with just 6 or 10 fermions, then that may call for a re-thinking
of the standard criteria for the application of Gross-Pitaveskii
theory, which should in principle hold when fluctuations on
top of the (classical) average field operator are negligible,
which cannot be the case when 1/ VN ~ O(1).

We move on now to the results of Fig. 3, displaying trapped
mass densities in the two-dimensional plane. This gives in
particular a visualization of the impact of the second-order
corrections on the edges of the clouds. We highlight the sig-
nificant broadening for N = 10 (panels in the middle of the
figure), which depletes the anisotropy of the Thomas-Fermi
distribution. Indeed, as noted in Ref. [16], the expected scal-
ing of the initial cloud anisotropy with the trap frequencies:
(2 /() = wf / wf, is not observed in the experimental data,
which favors a more isotropic initial condition. For N = 100
(plots in the bottom), the impact of the second-order terms
becomes negligible.

D. Second-order corrections to fluid dynamic evolution

Beyond just the hydrostatics in the trap, we can also
simulate the expansion of the fluid systems after the trap
is removed. For this we need to solve the continuity
and momentum equations, which includes the second-order
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FIG. 4. Expansion dynamics for a fluid released from equilib-
rium in a harmonic trap following ideal fluid dynamics (blue), and
the effective action ansatz of Sec. IIl E with A = 1 and with A = 1.5.
Solid curves show the widths \/@ in the x direction and dashed
curves the widths in the y direction. For the ideal fluid curves we
solve Eqs. (82) with a fourth-order accurate Rosenbrock method
(Rodas4 solver in the Julia module DifferentialEquations). The other
two curves were obtained using the split-step Fourier method with
the Hamiltonian (38).

correction,
dp+V-(pv)=0,
2

V2 /5
p(8,+V~V)V_—Vp+Aw,oV< 7 >, (34)

with p(t = 0, x) taken from the hydrostatic solutions of Sec.
IV C, and the fluid velocity set to zero everywhere initially
v(t = 0,x) = 0. For the ideal fluid flow with Thomas-Fermi
initial conditions, equivalent to A = O in this ansatz, this can
be reformulated into the ordinary differential equations (82)
and solved as before. The solutions for the cases A = 1 and
A = 1.5 use an equivalent evolution with the Hamiltonian in
Eq. (38), to evolve the order parameter ¢(z, X) as in the hy-
drostatic case. The main difference here is the initial condition
¢t =0,x) = +/p(t =0, x) and the evolution in real instead
of imaginary time. This is again done with a split step Fourier
method.

1. Real-space expansion

The temporal evolution of the density-weighted root-mean-
square value of the profile along the two axes, which we

denote by
[ d*x x?2p(x, 1)
2 _
V) ) = Taxpxt) | (85)
[ [ d>x y2p(x,1)
) — i

is shown in Fig. 4. In general, for the same total mass and
equation of state, a more squeezed initial condition should
lead to an enhanced flow velocity, due to higher pressure gra-

dients. We see, however, that the solutions for A = 1 and A =
1.5 (green and orange lines) evolve faster than the solution
obtained for A = 0 (Thomas-Fermi approximation, depicted
in blue lines), even though they start from a density profile
that is more isotropic than the Thomas-Fermi one. This is,
on one hand, good news, as the ideal hydrodynamic results
shown in Ref. [16] appear to underpredict the velocity of
the cloud evolution along both x and y. On the other hand,
the inclusion of the A term significantly reduces the time at
which the aspect ratio of the cloud becomes unity. This may
lead to inconsistencies with the experiments, as the temporal
evolution of the aspect ratio of the system is captured well
by the ideal fluid expansion. More detailed investigations are
needed to settle this.

2. Considerations on the momentum-space evolution

We also briefly discuss the application of our results in
momentum space, where experimental data are also available.
Indeed, experimentally it is not only possible to determine
positions of the atoms at a given point in time but also their
momenta at early times during the expansion [51]. This is
done by a fast change in the magnetic field to bring the
scattering length, a, close to zero. Afterwards the particles
are free streaming and their momenta get determined by the
time of flight. The momentum distribution dN;/d> p (where the
index 7 labels hyperfine spin) can be determined from repeated
measurements.

While fluid dynamics by itself cannot make predictions
for quantities defined in momentum space, as discussed in
Ref. [16], one may attempt to associate certain combinations
of fluid dynamic variables with specific moments of the mea-
sured momentum distribution. For this purpose, we investigate
a quantity that corresponds to the volume integral of the mo-
mentum flux density,

Pilt) = f dPx Pt x). (87)

This quantity is interesting because, for a noninteracting gas
of (classical) particles with singe-particle phase-space distri-
bution fi(z, X, p) = dN;/d”xdP p, one has

Zpex=3 [a{"Praxp) 69

m

such that the integrated momentum flux,

D dN;
Pint) = Z/d%{”"”‘—}, (89)

m dPp

becomes the second moment of the momentum distribution
which can be determined experimentally.
Consider first the case of ideal fluid dynamics, where

ij(t)=/de{p(t,x)vj(t,x)vk(t,X)+P(t,x)5jk}. 90)

The integral can be easily determined for given fluid fields
and equation of state. One should be cautious here, because
the translation to momentum space through the phase-space
distribution function works only for noninteracting particles.
Experimentally one can change the interaction strength very
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quickly. What can happen during this transition? As a con-
sequence of the conservation laws for particle number and
momentum, the time derivatives of p(z, x) and p(¢, x)v;(t, X)
must remain regular as functions of time. However, the pres-
sure P(t, x) can change during the quick ramp in interaction
strength. In the simplest scenario it would change from the
pressure associated to o(f, X) in the interacting equation of
state to the one associated with the same density p(¢, x) for
a noninteracting equation of state. However, the ramp in in-
teracting strength is a nonequilibrium process, and it is likely
that a bulk viscous pressure is created, as well.

To avoid assumptions about the dynamics of the pressure
term during the ramp one could study instead of Pj; the
traceless tensor

D
N 1
Pix(t) = Pi(t) = b ;Pua). ©1)
Based on Eq. (87) and the decomposition in Eq. (3) one finds

Pi(t) = /de{p(t,x)[vj(t,X)vk(t,X)

—ajkl—l)v(t,x)z] —|—7'rjk(t,x)}. (92)

Isotropic pressure and bulk viscous pressure terms have now
been subtracted.

The first two terms on the right-hand side of (92) are robust
because they only depend on conserved densities p(¢, x) and
p(t,x)v;(t,x) that cannot change abruptly during a ramp
in interaction strength. Based on this, ideal hydrodynamic
predictions for the temporal evolution of the momentum
anisotropy of the system, (p3) — (p}) are shown in Ref. [16],
which turn out to be in overall good agreement with the
experimental data.

What happens, then, to the second-order terms discussed
here? Beyond the ideal fluid description, the symmetric and
traceless shear stress tensor 7 (¢, x) appears, and second-
order corrections to this term were found in Eq. (42). It is
likely that the shear stress terms [like the ones in Eq. (42)]
get modified by the ramp in interaction strength because they
are not protected by conservation laws. Specifically, a ramp
to zero interaction strength should destroy superfluidity and
when the superfluid density 7 is taken to zero, the shear stress
terms in Eq. (42) vanish. At least, this would preserve agree-
ment with the experimental findings of Ref. [16] that there is
no momentum anisotropy at the initial time, right after the trap
has been switched off.

In summary, without a more detailed understanding of the
nonequilibrium processes happening during the short time
interval in which the interaction strength is changed, it seems
difficult to make robust statements about the impact of the
second-order corrections on the integrated momentum flux,
and consequently on the momentum anisotropy built up dur-
ing the expansion, from fluid dynamic considerations alone.

V. CONCLUSION

We have discussed nonrelativistic fluid dynamics at second
order in the derivative expansion. For superfluids at zero tem-

perature, we have emphasized contributions to the momentum
flux density or stress tensor that involve second derivatives of
the superfluid density. A well-known example is the quantum
pressure contribution to the Gross-Pitaevskii description of
bosons with weak repulsive contact interactions. We have
argued that this represents a specific case of second-order con-
tribution in a generic treatment based on an effective action
ansatz.

More specifically, the term of the form Y (n,)VngVn, that
appears in the effective action of Eq. (21) allows us to modify
the coefficient of the quantum pressure term. In the context
of density functional theory that describes static systems, a
term of this kind has been discussed in the literature before
and is known as the von Weizsicker term. Specifically, for
mesoscopic systems of strongly interacting particles, there is
a priori no reason to assume that this new term should be
neglected.

We have discussed, then, a hydrodynamic treatment of
the mesoscopic Fermi gas analyzed in the experiments of
Ref. [16], encompassing both zeroth- and second-order (su-
per)fluid dynamics.

Of particular interest is the modification of the Thomas-
Fermi profile for the trapped density induced by the quantum
corrections, with the second-order terms yielding much
broader tails at the edges of the small systems, improving sig-
nificantly the agreement with the experimental observations.
In regards to the temporal evolution of the cloud of 10 strongly
interacting fermions in real space, quantum corrections tend to
speed up the evolution of the cloud’s rms sizes, also improving
agreement with the experimental data, although comparisons
with more experiments (possibly, time-resolved expansions
for different atom numbers) are needed to draw any firm
conclusions. Similarly, this will help shed light on the impact
of second-order corrections on the development of the mo-
mentum anisotropy in the expanding clouds, which we are not
able to clarify at present.

Indeed, we expect more data on the mesoscopic strongly
interacting Fermi gas to be available in the near future, as
well as more results from more microscopic theoretical de-
scriptions. This will allows us to learn more about the extent
of applicability of a pure second-order hydrodynamic formu-
lation for these small quantum systems. For further avenues
of investigation, let us mention that the second-order coeffi-
cients investigated here could be calculated from microscopic
theories, notably, in terms of response theory around a many-
body ground or thermal state. In addition, these coefficients
could be of relevance for other types of mesoscopic fluids, or
boundary layers in larger systems, and warrant further study
in general.
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APPENDIX A: IMPROVEMENT AMBIGUITY
FOR STRESSES AT SECOND ORDER

In this Appendix, we present a more detailed discussion
on terms arising in the fluid dynamic derivative expansion of
stresses at second order that are equivalent from the point of
view of the equations of motion. This phenomenon is known
as improvement ambiguity. This does not mean that the stress
tensor is ill defined, but only that fluid dynamics without
additional information is not suited to uniquely determine it.
We illustrate the ambiguity by working backwards from the
terms appearing in the fluid dynamic equations, i.e., the com-
binations 9;7}; and (9;v;)T;; + 9;¢;, and trying to invert these
for the second-order coefficients listed in Sec. Il E. We include
contributions in both number density (as in the main paper)
and energy density, labeling the corresponding coefficients
with the superscripts (n) and (¢), respectively. Further, there
are two terms which mix derivatives of number and energy
density,

2" = o) (3:n)(3;¢),
n_](.i,ns) _ ﬂ(ﬂ*?)(a<jn)(ak>8)'

First, we decompose the derivative of the stress-energy tensor
as it appears in the momentum equation into

0,T;" = F\" (3i9;9;m) + F," (3n)(3;0;m)

(A)

+ F"(3;n)(8:0;n) + F" (9in)(3;n)(d,n)
+ F9(8;9;9;8) + F7 (8:6)(8;9;¢)

+ F(3;6)(3;98) + F°(3:6)(3;€)(d )
+ G1(3:£)(3;8;1) + G2 (3in)(9;9;¢)

+ G3(0;€)(9;9;n) + G4(3;n)(9;0;¢)

+ G5(0;)(9;n)(9;n) + Gs(9;n)(0;£)(9;¢€)
+ G7(9;6)(9;€)(9;n) + Gg(9;n)(9;n)(d;¢)
+ H;(0;v;)(0;0rvx) + Hp(9;v;) (9 0k vy)

+ H3(0;v;)(9;0rvr) + Hs(0;v;)(9;0kvy)
+ Hs(0;vx)(0;0;vx) + Hg(9;vx ) (9 0k v;)

+ H7(0;v;)(0k 0k v;) + Hg(3;v;)(0x 0 v;)

+ Ho(0;vx)(9;0xv;)

+ 1 @) (3;0)(Bvr) + L7 (3;1) (80,3 ve)
+ 197 (0;m)(3;0)(Bvr) + 17 (3m)(D v )(3;0¢)
+ 187 @;n) (v ;) (B vi) + 17 (3m)(Dv)(Bkv)
+ 1 (3;n)(3;0) (B i) + 17 (1) v (B;ve)
+ 15" (1) (3, (Bivi)

+ 17 (8:6)(3,0,)(Fevr) + 17(3€) (00 (B vi)
+ I(8,6)(0;v) (dvr) + L7 (3:8)(3;0)(3,vr)
+ 157 (9;8) (v ) @vi) + 17 ()90 (B )
+ 1,7 (3;2)(0,00) @kvi) + I (3;2)(9,0) (5vi)
+ I (3;6) (30 ) (B;vp). (A2)

We split the terms by the types of derivatives they contain as
every dependence on the thermodynamic variables n and ¢
can be absorbed into the coefficient functions. We can now
calculate the derivatives of all second-order contributions [see
Egs. (14) and (15)] and compare the structure in derivatives
to Eq. (A2). For the terms containing only derivatives of the
number density we find

-1
F(’Z) (”) (n)7
1 + D
1
FZ(H) — anagn) _ _anﬂl(") + ’3(")
D
D-2
F(”) — Zaén) + anﬂ(”) én)’
D
1
F" = 8,0y + ——0,87". (A3)

We do the same for the terms containing only derivatives of
the energy density,

—1

F© =o' ®

1 + D
F(€) ) Olgs) 88:31(8) IB(E)

D—-2

(&) _ ( ) ( ) ()
F3£ & + a /3 & D 26‘ ,
FO = a0 + 2= 15,50, (Ad)

the terms containing a combination of energy and number
density derivatives,

G, = 350!?1) ,3(”) ;B(ne)

Gy = dhary” — ﬁ(” ;ﬂ(’“‘)

Gy = 35,3}") o8 + ’B(na)
— 3 ﬂ<a>+a<ns>+ ﬂma)

014003-16



QUANTUM CORRECTIONS AT SECOND ORDER IN ...

PHYSICAL REVIEW C 112, 014003 (2025)

n n 1 n.
Gs = 9.’ — 88,3;)+§8,,/3( ©,
oo Lo L e
Ge = 8,,0[2 - Banﬂz + Easﬁ s

D -2
Gy = anﬂéa) + asa(ng) + —2 8813('18)7

Go = 0.8 + D, 4 2 aﬂ“’” (AS)

the terms containing only derivatives of the fluid velocity,

D—4
Hy =203 + D B3,
i 1
) = 5,33,
1 1
H; = 5,33 + 5,36,
Hy = %,33 + Ba,
2 D—-2
Hs =204 — —f4 + Bs,
D
1
He = Ba + 5;36,
Hy = Bs,
H 1
s = 5136,
D—4
Hy =205 + D Be» (A6)

the terms combining derivatives of fluid velocity and number

density,
n 1
"= 3n<053 - 5,33>,

1
5 ==,

> B3

1
5V = -9,

> B3

1 1

I(’l) — 8n _ _ ,
h (Ot4 D,34 D'BS)
IS(n) = 87!.347
1" =0, s — 1,36
6 n D s
I(n) _8nﬂ6’
" = 8,ps,

w_ 1 A
19 —Eanﬂé’ ( 7)

and finally the terms combining derivatives of fluid velocity
and energy density,

1
1Y =9, (053 - 5/33),

1
1(8) ) ,

> e B3

1
I = 0.5,

1 1

I(S) = 85 - = - = s
h <Ol4 Dﬂ4 D,35>
15(8) = 851847

1
I =9, <055 - l_)ﬁfv),

1
I(F) = _85‘ )
7 ) ,:36
I =0, s,

I = —a  Bo.- (A8)

These sets of equations can be split into two blocks which
are independent of one another. The first block contains all
contributions from the second-order corrections that are inde-
pendent of velocity, i.e., the equations involving F™, F®),
and G. These can be combined to obtain several contraint
equations for the coefficient functions which are automatically
fulfilled by the assumed structure of the stress-energy tensor,

R ]
FO = L. (FO + B~ ,F),
Gs = 3,Gy + 18, (F" — 8,F" — E"),
Gs = .Gy + 10,(F® — 8.F® — F¥),
Gy = 8,G3 + 9. F" — 8,0.F"™,
G7 = 3.Gy + 9,F° — 8.0,F,
G1—Gy + G3 — Gy = 3. F" — 3,F°. (A9)

This means that there are 10  coefficients
aiﬂ)’agl), ;")’ é’l)’a(«?) 0558), {5)”358),05(118)’ and 13(115)
and only 9 leftover equations, i.e., the system of equations is
underdetermined. We can choose one of these coefficients
freely and still end up with any given second-order
hydrodynamic equations. Without loss of generality we
will use ﬂf") as this degree of freedom in the following.
There is one more freedom of choice which comes in via the
connection between the n and ¢ coefficients since one sector
can only constrain the derivatives of the other. The connecting
equation is

8 (8) -9 ﬁ(”l)

— Gy +8,FP —a.F™.  (A10)
This means that ,3{’3) is only determined by a choice of ,Bf”) up
to an arbitrary added function in energy density which will be

called A" in the following.
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The second block of coefficient functions contains all
contributions from the velocity-dependent second-order cor-
rections, i.e., the remaining equations involving H, / ™ and
I®). These can be combined to obtain

He¢ = H3 + Hy — 2H>,

Hs = H3 — H,

I = 18,(H — Hy),

5 =1" = 8,H,

1" = 30,(Hs — Hy),

L" = 0,(Hy — Hy),

I{" = §(Hy — Hy),

LY = 1" = 8,(Hs — Hy),

I = 8,H, (A11)

and constraints of the same structure also exist for the I,Es).
In total, 20 of the 27 equations reduce to constraints on the
coefficient functions, and the remaining 7 can be used to
uniquely identify o3, a4, os, B3, B4, Bs, and Bg.

The other way in which the heat flux and stress-energy
tensor are involved in the fluid dynamic equations is as part
of the energy equation. We again split the second-order terms
by their derivate structure,

@v)T + g,

= J(3;9:0;v;) + K" (9:m)(3;;v1) + K3" (8n)(3:0;v,)
+ K" (9v)(0;0,m) + K" (9v,)(3;0,n)
+ K (8,)(3;9,0) + K2 (3i£)(30v;)
+ K37 @0)(3;8;¢) + K, (0v;)(8,0¢)
+ L{" (0v:)(2;m)(3;n) + LY (80;)(8m)(3;m)
+ L7 @01)(9;8)(0;8) + LY (910,)(3i)(9;¢)
+ M1 (3;v:)(9;n)(0;€) + M2(9;v;)(8in)(9;€)
+ M3(8;v,)(3;€)(3;n) + O@W). (A12)

The terms of third order in velocity can only come from the
velocity-dependent second-order contributions to the stress-
energy tensor. Since the coefficients contained therein are
already fixed, the resulting equations will not add any new in-
formation and we will not consider them in the following. For
the terms in Eq. (A12) that are of first order in the velocities
we can identify

J=ys+ys,
K(n) )/(n) + 311)/4»
K" ="+ V(") + Oy,

n _ o
K3

— ﬁ<n)+ o,

Kiﬂ) — ﬂ](n) + yl(n) + )/2(")’

K =y + d.ps,
K7 =97+ 7" + 0.,

1
) _ (&) (e) (e)
Ky =op — phi +r

Kf) — (E) + y(E) + J/(E),
1

LW — a('l) (n) + 3y (ﬂ)

Lén) — ('l) + 8n7/1(n) + 8")/2("),
1

Lgf) — Ot;a) Dﬂ(a) + 0,y (8)

ng) = /3;8) + 883/1(8) + 883/2(8),

Ml — a(ns) _ l_)lB(ns) + ag)/3(n) + an)/3(8),
1
M, = 2’3(%) + 9, y(s) + 3572("),
1
My =3 B + 8.y + 8,157, (A13)

which connect the non-velocity-dependent parts of the
second-order stress-energy tensor to the elght coefﬁ01ents in
the second-order heat flux ( (€) (&) (&)

]/1 ’72 vy3 ,)/1 s Yo s V3 s Vs
and ys). Of the 16 equations, we find that 9 can be reduced to

relations between the coefficient functions,

K"+ KV — K" — K" = 8,J — F",

KO+ K — K - K = 8.0 — F,
L® =8,k + L(E® — FE™ — 3,F™),
L;") — anK(n) + F(n) _ anFl(n),

LY;) e K(E)—i— (F(s) FZ(S) —35F1(8)),

L(é‘) a K(é‘) +F(5) aSFl(a)’

My = K0 + 0K — LR + )
+ 3G+ G — G = Gy,

My + M5 = 3,K + 8.K{" + G\ + G>
_ anFI(S) _ agFl("),

M, —M; =G, — Gy + 3,,([(1(6) _I_K3(8)

- K0)

- K9)

— 3 (K" + K" (A14)

such that from the heat flux section we gain an additional
coefficient function that we can choose freely which without
loss of generality we will use ys for. That means that for given
hydrodynamic behavior there are in total two functions in both
number and energy density and one in just either number or
energy density that one can choose freely among the second-
order coefficients. For our choice of freely chosen 8, ™A ﬂ(s)
and ys, the other coefficients are uniquely determined by the
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coefficient functions to be

© = / dn' (8.8 + Gy — Gy + 8,F — 8, F,"),

no

+ABY,
o _ ! DD 0 4 o,
1— D -2
Oé”) — a ﬂ(n) (F(’l) FZ(”)7
D
D
én) — anIB](n) + F2(11) _ 8,1F](n),

() (&)

D-2

1—
Olés) — a /3(5) <F(€) 5 F(S)

D

9 = 9.7 + B — 9. F°, (A15)

(ne) 2—-2D (n) D—-2
al® = 08, +G3 — ——G

D
D=2, F",
+ D
B =29, +2G, — 20.F"™, (A16)
_ IH D — 4H
@ = S H, oD
s L - P=2n
o4 = B 5 D 4 2 2D 75
P e
s = —Hy — —— ,
s =t op s —H:

B3 = 2H,,

Bs = Hy — Hy,

Bs = H;

Be = 2(H; — Hp), (A17)
Vl(n) = 05 + Kl(n) — OJ,
Vz(n) = - in) - anVS + Kz(n) - K3(n) + Fl(n)’
)/3(n) ﬁ{n) + KS(n) _ Fl(n)’
P =85 + K — 8.J,
7/2(5) - _ (8) — Y5 +K2<8) _ K3(8) +F](€),

(S) IB(S) + K(S) Fl(a)’

ya=J—ys. (A18)

APPENDIX B: SCALING SOLUTIONS USING
LAGRANGIAN COORDINATES

In this Appendix we discuss the expansion after release
from a (possibly anisotropic) harmonic trap. Within an ideal

fluid description this problem can be almost solved analyt-
ically, at least strongly reduced in complexity from partial
differential equations to ordinary differential equations. This
is known in the literature, see for example Ref. [36]. We
present here a discussion of this phenomenon in terms of
Lagrangian coordinates.

1. Lagrangian coordinate description

Lagrangian coordinates are coordinates that move with the
fluid. This is based on the map from positions R at some
reference time #; to the position r at time ¢, denoted by r(z, R).
This map always exists and is determined by the fluid velocity
v(t, x) through the integral

rit,R) = +/ dt'v(t',r(t',R)). (B1)

fo
For us it is convenient to take #; to be the time where the trap
is switched off. Obviously the fluid velocity is in turn given
by

v(t,r(t,R)) = %r(t, R). (B2)

We shall also assume that r(f, R) is an invertible map, with
inverse R(z,r). This is not always guaranteed and breaks
down when streams of matter cross. In the following we will
deliberately use either x or R or r as coordinates with the
understanding that they are related by x = r(z, R).

We also need the Jacobi matrix

ad
ij(tsR) = ﬁrk(th)a (B3)
J

and its inverse given by

L, r) = iRj(t, r), (B4)
T
evaluated at coinciding points.
The great benefit of Lagrangian coordinates is that the
Galilei covariant derivative becomes just a partial derivative
at fixed R,

d
(a-+max> )mtm

On the other side, the digergence of the fluid velocity becomes
now

tp(t, r, R)lr. (BS)

V.v(t,x)= iirk(t R)

oxy ot

_ iR,(, )ﬁi (t.R)

- ark” o1 9R; ' ©

= Iyt 1) 5 maR> (B6)

Using Jacobis formula one can rewrite this as

V.v(t,x) = J(t, R), (B7)

J(t, R) at
where J (¢, R) = det(J(t, R)) is the Jacobi determinant.
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We are now ready to formulate the continuity equation is
Lagrangian coordinates,

] ad
(E + v;(z, x)a—xj)p(t, x) 4+ p(t,xX)Vv(t, xX)

Mi J(t,R)=0.
J(t,R) ot
This implies simply that p(¢, R)J(z, R) is constant in time.
A similar relation holds for other conserved densities, for
example entropy density s(z, r(¢, R)) for an ideal fluid. Ratios
of such densities, such as the entropy per particle s/n for an
ideal fluid are independent of time in Lagrangian coordinates.
Let us now discuss the Euler equation, which reads in Euler
coordinates

d
= SR+ (B8)

—(X)

d
(8 + v;(z, x) )vk(t X) + mnt.x) 03,

d 1 0
(a (%) 5 )vk(t X) oo (%)

s(t,x) 0
mn(t, X) ax

Xj

T x)=

(B9)

In the second equation we used the differential dp = ndu +
sdT . In Lagrangian coordinates we find accordingly

9? 1[0
St R+ [ax R,-(r,x)}
3 s(t R) 3

The second term involves the inverse Jacobi matrix. By mul-
tiplying both sides with the Jacobi matrix Jj (¢, R) we obtain

92 9
Ji(t, R)—r(t,R —u(t, R
mJ i ( )8t2rk( )+8Rj,u( )

s, R) 9
n(t,R) 0R;

—Tt,R)=0. (B11)
Together with the conservation laws for mass and entropy
densities and a thermodynamic equation of state, this provides
a full set of evolution equations for an ideal fluid.

2. Solution by ansatz in Lagrangian coordinates

Consider again Eq. (B11). In the initial state at t = # the
chemical potential is quadratic in R and the temperature is
initially constant. Accordingly the second term in the above
relation is linear in R and the third term vanishes. Also r(z, R)
is initially linear in R and accordingly Jj;(z, R) is initially
constant. It is an interesting question to ask whether such a
simple behavior can persist at later times.

To make this more precise, let us make the following
ansatz:

re(t, R) = RJji(0), (B12)

with a time-dependent but spatially constant Jacobi matrix
Jjx(t). With this ansatz also the Jacobi determinant J(¢) is of
course constant in space.

The fluid velocity is obtained as

u(t, R) = RJj (o), (B13)
and its rotational part is
0
€j—t,x) = Ejkllkm(t) Uz(f R)
Z)xk
= Ejkllkm(t)Jml (t) (B 14)

For an irrotational flow J;(¢) is diagonal. For completeness
we also give the shear tensor

ol 10 .
Oijl) = SV T 57 Vi— 150ijVV
= 5 T 2ax T DY

1 . 1 . 1 .
= Shi ) + SLOJa(t) - Bm)—‘m).
(B15)

Noteably it is independent of spatial position and vanishes in
the isotropic case where Jj (1) = J(1)"/P5 ;.

For the mass and entropy densities the ansatz yields
within ideal fluid dynamics the simple scaling solutions (using
J(t) = 1),

_ p(t07 R) _ S(t(), R)
p(t,R) = 0 st,R) = 0 (B16)
This implies in particular for the ratio
(s/n)(t, R) = (s/n)(t, R). (B17)

We now assume an equation of state of the form e(s,n) =
won + g(s/n)n“/(k — 1). Using de = udn+ Tds and € +
p = un+ sT this implies p = g(s/n)n*, which generalizes
the ansatz in Eq. (52) to nonvanishing entropy per particle s/n.
With g we denote a constant that corresponds to the chem-
ical potential in vacuum and can be taken as py = —Ep/2 =
—1/(2ma®) with E,, the binding energy of the shallow dimer.
For this equation of state one finds also

(T/( = po))@, R) = (T/(x — o))(%, R), (B18)
and
. R) —
it R) = g = = S,
_ T(w,R)
T R) = S (B19)

In particular when the initial temperature is independent of R,
as we assume, this remains to be the case also for ¢ > 1. This
makes clear that the ansatz (B12) leads to a consistent solution
of (B11).

Specifically, the hydrostatic Thomas-Fermi profile (56) im-
plies

0 2 1
This is linear in R also for ¢ > #,. We also have
92 .
mi’k(l, R) = RiJi (1), (B21)

which is also linear.
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The Euler equation (B11) is then equivalent to a set of or-
dinary differential equations for the components of the matrix

Jir(),

T T (0)di (1) = 3. (B22)

For a cloud that is initially at rest the initial values at t = £,
are given by

Jix(to) = 8jx,  Julto) = 0. (B23)

In that case Jjx(¢) will remain diagonal also at later times in
the frame where wzk is diagonal.

Interestingly Eq. (63) provides a simple set of equa-
tions that fully determine the flow profile and it is independent
of the function g(s/n) in the equation of state, as well
as the initial temperature and particle number. It only de-
pends on the exponent x and the shape of the harmonic
trap!
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