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ABSTRACT
We propose a novel multiplicative factor multi-frequency GARCH (MF2-GARCH) model, which exploits the empirical fact that
the daily standardized forecast errors of one-component GARCH models are predictable by a moving average of past standardized
forecast errors. In contrast to other multiplicative component GARCH models, the MF2-GARCH features stationary returns, and
long-term volatility forecasts are mean-reverting. When applied to the S&P 500, the new component model significantly outper-
forms the one-component GJR-GARCH, the GARCH-MIDAS-RV, and the log-HAR model in long-term out-of-sample forecasting.
We illustrate the MF2-GARCH’s scalability by applying the new model to more than 2100 individual stocks in the Volatility Lab
at NYU Stern.

1 | Introduction

There is strong empirical evidence that the conditional vari-
ance of stock returns consists of several components. Early evi-
dence for volatility components was provided in, for example,
Ding and Granger 1996 and Engle and Lee 1999. More recent
evidence can be found in Christoffersen et al. 2008, Kim and
Nelson 2013, Dorion 2016, and Conrad and Kleen 2020, among
others. While the GARCH models of Ding and Granger 1996
and Engle and Lee 1999 have additive volatility compo-
nents, more recent GARCH-type models decompose the con-
ditional variance into multiplicative short- and long-term com-
ponents. For example, in the Spline-GARCH model of Engle
and Rangel 2008 and the multiplicative time-varying GARCH
(MTV-GARCH) of Amado and Teräsvirta 2013 and Amado
and Teräsvirta 2017, the long-term volatility component is a
deterministic function of calendar time. In contrast, in the
GARCH-MIDAS of Engle, Ghysels, and Sohn 2013, the long-term
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component depends either on a rolling window realized
variance (henceforth GARCH-MIDAS-RV, see also Wang and
Ghysels 2015) or on low-frequency macroeconomic or finan-
cial variables (henceforth GARCH-MIDAS-X, see also Asgharian,
Hou, and Javed 2013, and Conrad and Loch 2015). Those multi-
plicative volatility models are based on the idea that returns fol-
low a stationary GARCH process once divided by the long-term
volatility component. However, there is no consensus yet on the
most suitable approach for modeling the long-term component.

We propose a novel specification for the long-term volatility
component in multiplicative GARCH models. The specification
is motivated by a new empirical fact that we document for
the volatility forecast errors of one-component GARCH mod-
els: While the daily standardized forecast errors are essen-
tially unpredictable based on past daily standardized forecast
errors, a rolling window moving average of the past daily stan-
dardized forecast errors does have predictive power. This is
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because one-component models tend to underpredict or over-
predict volatility for extended time periods. While overprediction
typically happens during economic expansions, underprediction
materializes during economic recessions and other crises periods.

The new model combines a short-term GJR-GARCH (see
Glosten, Jagannathan, and Runkle 1993) component with a
long-term component specified as a multiplicative error model
(MEM) for the past forecast errors of the GARCH component.
That is, the long-term component exploits the predictability in
the averaged standardized forecast errors of the short-term com-
ponent. Intuitively, the long-term component scales the GARCH
component’s volatility forecast up/down if the short-term com-
ponent’s forecasts have underestimated/overestimated volatility
in the recent past, that is, the model is learning from past fore-
cast errors. Because the long-term component can either evolve
at the same frequency as the short-term component or at a lower
frequency, the new specification belongs to the class of mixed
frequency data sampling (MIDAS) models pioneered by Ghysels,
Santa-Clara, and Valkanov 2004. We refer to the proposed specifi-
cation as Multiplicative Factor Multi-Frequency GARCH. As the
“MF” appears twice, we abbreviate the model as MF2-GARCH.

The properties of the MF2-GARCH model clearly distinguish
it from previous specifications. First, while in other multiplica-
tive models, there is typically no feedback from the short-term
to the long-term component (e.g., in the Spline-GARCH), the
MF2-GARCH explicitly specifies the long-term component as a
function of the short-term component’s past forecast errors. Sec-
ond, because the actual economic drivers of long-term volatility
are unknown and may vary over time, it is challenging to cor-
rectly specify the long-term component in the GARCH-MIDAS-X
in real time. Our specification avoids this problem and is based on
a simple MEM equation for the long-term component. Interest-
ingly, the MF2-GARCH can be rewritten as a GARCH-MIDAS-X
with an explanatory variable “generated within the model.”
Third, because the MF2-GARCH is dynamically complete, that
is, it fully specifies the dynamics of the conditional variance, it is
straightforward to construct multistep ahead volatility forecasts.

We obtain the following theoretical results for the MF2-GARCH:
First, we derive the unconditional variance of the daily
returns. While the unconditional variance is time-varying in
the Spline-GARCH and infinite in the GARCH-MIDAS-RV of
Wang and Ghysels 2015, returns are covariance stationary in
the MF2-GARCH. Due to the feedback between the short- and
long-term components, the unconditional variance depends not
only on the model parameters but also on the fourth moment of
the innovation. Second, we obtain the news impact curve (NIC).
The NIC illustrates that the responsiveness to news changes with
the level of volatility which is another essential feature that distin-
guishes the MF2-GARCH from other models in the GARCH fam-
ily. Specifically, conditional volatility is more responsive to news
during low volatility periods than during high volatility periods.
Third, we derive expressions for multistep ahead forecasts of con-
ditional volatility. Our results show that the forecasts are much
more flexible than forecasts from the nested GARCH model. The
forecasts reflect the current stance of the conditional variance and
the prevailing volatility regime. In the short term, the conditional
volatility forecast will approach the forecast of the long-term
component before it converges to the unconditional volatility in

the long run. Forecasts from the MF2-GARCH also differ from
forecasts of standard Spline-GARCH or GARCH-MIDAS mod-
els. The forecasts of the latter models are typically assumed to
converge to the current level of the long-term component. Thus,
the forecasts from these models do not feature mean reversion
in the long run. Forth, we discuss the quasi-maximum likelihood
estimation of the MF2-GARCH and provide a Monte Carlo sim-
ulation showing that standard asymptotic results lead to valid
inference. Finally, we provide an analysis of the degree of mis-
specification of the nested one-component GJR-GARCH and the
GARCH-MIDAS-RV when the true data-generating process is an
MF2-GARCH. As discussed in Patton 2020, in the presence of
estimation error and depending on the employed loss function,
a parsimoniously misspecified model might dominate the true
but more complex model in terms of forecast performance. We
show by simulations that for reasonable parameter values of the
MF2-GARCH, the degree of misspecification of the GJR-GARCH
and the GARCH-MIDAS-RV is so severe that the MF2-GARCH
outperforms both models when evaluated by the squared error
(SE) and the QLIKE loss.

Our empirical results strongly support the MF2-GARCH. First,
we estimate the MF2-GARCH for the S&P 500 and 2142 US
and international equities in the Volatility Laboratory (V-Lab) at
NYU Stern.1 Our in-sample results show that the MF2-GARCH is
clearly preferred to the nested one-component GJR-GARCH, the
GARCH-MIDAS-RV and the Spline-GARCH. For the S&P 500,
we show that the MF2-GARCH’s estimated long-term compo-
nent is closely related to news about the macroeconomy and mon-
etary policy, particularly news about inflation and interest rates.
Thus, we provide further evidence for the close link between
economic conditions and long-term volatility (see, e.g., Engle,
Ghysels, and Sohn 2013, and Conrad and Loch 2015). We also
illustrate that the MF2-GARCH’s volatility forecasts, which fea-
ture cyclical behavior, are much more flexible than the forecasts
of the competitor models. In contrast to the (overly) smooth
long-term component of the Spline-GARCH, the MF2-GARCH’s
long-term component adjusts in response to short-lived periods of
market turmoil. Nevertheless, compared to the one-component
GJR-GARCH, the MF2-GARCH’s forecasts avoid overestimating
volatility after a short-lived surge in volatility due to the low per-
sistence in its short-term component.

While most of the literature on volatility forecasting focuses
on short-term (e.g., 1-day ahead) prediction horizons, Christof-
fersen and Diebold 2000, Engle 2009b, and Ghysels et al. 2019,
among others, have highlighted that in many areas of finance
long-term risk forecasts are the relevant inputs. This leads to
the question of how far ahead into the future we can fore-
cast volatility. Hence, in evaluating the out-of-sample forecast
performance of the MF2-GARCH, our focus is on medium-
and long-term forecast horizons of up to 8 months. We test
whether the MF2-GARCH, which is designed to capture volatil-
ity cycles, leads to better long-term predictions than the nested
GJR-GARCH, the GARCH-MIDAS-RV, the Spline-GARCH, and
Corsi and Reno 2012’s log-HAR with leverage. For the S&P
500, it turns out that the MF2-GARCH outperforms all com-
petitor models when the forecast horizon is beyond 2 months.
The MF2-GARCH’s forecast performance is particularly strong
during periods of high volatility, where it dominates the com-
petitor models at all forecast horizons. For a cross-section of 20
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equities, out-of-sample results from the V-Lab confirm that the
MF2-GARCH strongly outperforms the competitor models.

The paper is organized as follows. In Section 2, we show that
the volatility forecast errors of the GJR-GARCH are predictable.
We introduce the MF2-GARCH and discuss its properties in
Section 3. The empirical results are presented in Section 4 and
Section 5 concludes. Further model details, proofs, and additional
tables and figures can be found in the Supporting Information.

2 | A New Empirical Fact of Volatility Forecast
Errors

In this section, we provide evidence for a new empirical fact of
volatility forecast errors: Rolling window moving averages of the
standardized forecast errors of one-component GARCH models
behave counter-cyclically and have predictive power for future
standardized forecast errors.

We denote the log-return on day 𝑡 by 𝑟
𝑡
. The conditional het-

eroskedasticity in daily stock returns is commonly modeled as a
GARCH process. Daily stock returns are written as

𝑟
𝑡
=
√
ℎ̃
𝑡
𝜁
𝑡
, (1)

where ℎ̃
𝑡
denotes the conditional variance and the 𝜁

𝑡
are assumed

to be 𝑖.𝑖.𝑑. with mean and variance equal to zero and one, respec-
tively. For illustration, we estimate a GJR-GARCH(1,1) specifica-
tion for a long time series of daily S&P 500 log-returns covering
January 1971 to June 2023.2 We obtain the following result:

ℎ̃
𝑡
= 0.018

(0.003)
+ (0.022

(0.006)
+ 0.116

(0.014)
𝟏{𝑟

𝑡−1<0}) 𝑟2
𝑡−1 + 0.905

(0.008)
ℎ̃
𝑡−1 (2)

where the numbers in parentheses are Bollerslev–Wooldridge
robust standard errors and 𝟏{𝑟

𝑡−1<0} equals one if 𝑟
𝑡−1 < 0, and zero

else. As expected, the conditional variance is highly persistent
and there is strong evidence for asymmetry.

Several test statistics have been proposed to check a GARCH
specification’s adequacy. For example, Engle and Ng 1993 and
Halunga and Orme 2009 propose Lagrange Multiplier (LM) tests
for the null hypothesis that a (GJR-)GARCH(1,1) is correctly
specified.

An alternative approach is to check whether Equation (1) is mis-
specified in the sense that 𝜁

𝑡
=
√
𝜏
𝑡
𝑍
𝑡
, where the 𝑍

𝑡
are 𝑖.𝑖.𝑑.

and 𝜏
𝑡

represents an omitted multiplicative long-term volatility
component. The long-term component evolves either at the same
frequency as the daily returns or at a lower (e.g., monthly or quar-
terly) frequency. The daily returns, 𝑟

𝑡
, can be either stationary

or nonstationary. For example, in the Spline-GARCH model 𝜏
𝑡

evolves at the daily frequency and—because the long-term com-
ponent is a deterministic function of time—the daily returns
have a time-varying unconditional second moment. In either
case, the scaled returns, 𝑟

𝑡
∕
√
𝜏
𝑡
, are assumed to follow a station-

ary GARCH process. LM tests for an omitted 𝜏
𝑡

component have
been proposed in Lundbergh and Teräsvirta 2002 and Amado and
Teräsvirta 2017 for daily long-term components. The LM test of

Conrad and Schienle 2020 allows for explanatory variables in the
long-term component and either a daily or lower frequency 𝜏

𝑡
.

The tests of Lundbergh and Teräsvirta 2002 and Conrad and
Schienle 2020 exploit that the squared standardized errors, 𝜁2

𝑡
=

𝑟
2
𝑡
∕ℎ̃

𝑡
, are 𝑖.𝑖.𝑑. under the null hypothesis of a constant long-term

component. The Conrad and Schienle 2020 LM test checks
whether 𝜁2

𝑡
is predictable by 𝑥

𝑡−1, 𝑥𝑡−2, … , 𝑥
𝑡−𝐾 , where 𝑥

𝑡
is a

predictor variable that can be exogenous or “generated within the
model.”3 Under the null hypothesis, the LM test is 𝜒2 distributed
with 𝐾 degrees of freedom.

We propose to use the 𝑚-days rolling window average of the
squared standardized errors,

𝑉
(𝑚)
𝑡−1 =

1
𝑚

𝑚∑
𝑗=1

𝑟
2
𝑡−𝑗

ℎ̃
𝑡−𝑗
, (3)

as the predictor variable. Under the null hypothesis, 𝑟2
𝑡

is a condi-
tionally unbiased proxy of the true but unobservable conditional
variance and ℎ̃

𝑡
is a one-step-ahead forecast for the same quan-

tity. If the GARCH model is correctly specified, the standardized
volatility forecast errors, 𝑟2

𝑡
∕ℎ̃

𝑡
, have an expected value of one

and a variance of two if 𝜁
𝑡

is Gaussian. Hence, we think of 𝑉 (𝑚)
𝑡

as a measure of the local bias of the GARCH conditional vari-
ance. For 𝑚 = 1, we obtain 𝑉 (1)

𝑡−1 = 𝜁
2
𝑡−1, which is the predictor

variable in the “ARCH nested in GARCH” test of Lundbergh and
Teräsvirta 2002.

Figure 1 shows 𝑉 (𝑚)
𝑡

based on the conditional variances from
the GJR-GARCH in Equation (2) for 𝑚 ∈ {1, 15, 25, 45}. In the
upper right and both lower panels, it is visible that, as expected,
𝑉
(𝑚)
𝑡

fluctuates around the value of one. However, as the two
lower panels show, there are extended periods during which the
one-component GARCH model underestimates or overestimates
volatility. That is, for 𝑚 = 25 and 𝑚 = 45, the evolution of 𝑉 (𝑚)

𝑡−1 is
in line with a local bias of the GJR-GARCH conditional variance.
The local bias appears to be counter-cyclical: The one-component
GARCH model tends to overestimate volatility during expan-
sions and to underestimate it during recessions. For 𝑚 = 1, 𝑉 (𝑚)

𝑡

is too noisy to reveal this bias. There are also some spikes in 𝑉 (𝑚)
𝑡

.
These spikes occur due to extraordinary events with unexpectedly
high volatility. For example, the two largest spikes are due to the
stock market crashes on October 19, 1987 (“Black Monday”) and
October 13, 1989 (“Mini-Crash”). The spike in March 2020 is due
to the emergence of the Covid-19 pandemic and the spike on
September 14, 2022 due to the release of higher-than-expected
inflation numbers.

In Panel B of Table 1, we formally test whether 𝑉 (𝑚)
𝑡−1 has predic-

tive power for 𝜁2
𝑡

using the Conrad and Schienle 2020 LM test
with 𝐾 = 1. For 𝑚 ∈ {1, 5, 15}, the null hypothesis of a constant
long-term component is not rejected. When the true long-term
component smoothly varies over time, this is to be expected
because for small 𝑚, 𝑉 (𝑚)

𝑡−1 is too noisy to have explanatory power
for 𝜁2

𝑡
. In contrast, for 𝑚 ∈ {25, 35, 45, 55}, we strongly reject the

null hypothesis. Thus, the LM test provides evidence for an omit-
ted long-term component and suggests that 𝑉 (𝑚)

𝑡−1 is suitable for
modeling the dynamics of the long-term component when 𝑚 is
appropriately chosen.

Mathematical Methods in the Applied Sciences, 2025440
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FIGURE 1 | A GJR-GARCH(1,1) is estimated for daily S&P 500 return data for the January 1971 to June 2023 period. The figure shows 𝑉 (𝑚)
𝑡

for𝑚 = 1
(upper left panel), 𝑚 = 15 (upper right panel), 𝑚 = 25 (lower left panel), and 𝑚 = 45 (lower right panel). Gray shaded areas represent NBER recession
periods.

TABLE 1 | Summary statistics S&P 500 and LM test.

Mean SD Skewness Kurtosis Min Max AC(1)

Panel A: Summary statistics
𝑟
𝑡

0.03 1.09 −1.00 27.11 −22.93 10.71 −0.02
𝑅𝑉

𝑡
0.99 2.94 18.01 486.49 0.02 101.29 0.63

Panel B: LM test: Explanatory variable 𝑉 (𝑚)
𝑡

𝑚 1 5 15 25 35 45 55
𝑝-value 0.930 0.960 0.450 0.030 0.001 0.001 0.010

Note: Panel A shows summary statistics for the daily returns, 𝑟
𝑡
, and the daily realized variances,𝑅𝑉

𝑡
, of the S&P 500. The columns present the mean, the standard deviation

(sd), skewness, kurtosis, the minimum (min) and maximum (max) as well as the first-order autocorrelation coefficient (AC(1)). Daily returns for the S&P 500 cover the
period January 1971 to June 2023. Realized variances are for the period January 2010 to June 2023. Panel B shows the results of the Conrad and Schienle 2020 LM test for an
omitted long-term component under the null hypothesis of a one-component GJR-GARCH. We set 𝐾 = 1. The table shows the 𝑝-values of the test for different choices of 𝑚.

Importantly, the behavior of the standardized volatility fore-
cast errors is not specific to the one-component GJR-GARCH.
We also estimated EGARCH (Nelson 1991), FIGARCH (Baillie,
Bollerslev, and Mikkelsen 1996), and Realized GARCH (Hansen,
Huang, and Shek 2012) models and obtained very similar
results. For example, the correlation between the 𝑉 (45)

𝑡−1 of the
GJR-GARCH and the 𝑉 (45)

𝑡−1 of the EGARCH, FIGARCH, and the
Realized GARCH is 0.92, 0.82, and 0.77, respectively. Figure A.1
in the Supporting Information plots 𝑉 (45)

𝑡−1 for all four models and
confirms that there is strong co-movement. Furthermore, our
findings do not only hold for the S&P 500 but also for other inter-
national stock indices. For illustration, Figure A.2 in the Support-
ing Information replicates Figure 1 for the FTSE 100.4

In summary, the evidence suggests that one-component GARCH
models are misspecified and that the misspecification is

detectable when using suitable moving averages of past stan-
dardized forecast errors to predict the current standardized
forecast error.

3 | The MF2-GARCH Model

This section introduces the MF2-GARCH model. In the main
specification, the short- and the long-term components evolve
at a daily frequency. For this specification, we derive the uncon-
ditional variance of returns, the NIC and multistep ahead fore-
casts. In Section 3.2, we suggest several directions in which the
MF2-GARCH can be extended. In particular, we introduce a
parametrization that allows for multiple frequencies, that is, the
short-term component evolves at the daily frequency, while the
long-term component varies at a lower frequency. Further details
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on the MF2-GARCH are provided in the Supporting Informa-
tion: Section A.1 discusses quasi-maximum likelihood estima-
tion and provides a Monte Carlo simulation. The degree of mis-
specification of the nested one-component GJR-GARCH and the
GARCH-MIDAS-RV when the true model is an MF2-GARCH is
analyzed in Section A.2 in the Supporting Information. A com-
parison of the MF2-GARCH with other component models is
provided in Section A.3 in the Supporting Information.

In general and as motivated in Section 2, daily log-returns are
defined as 𝑟

𝑡
= 𝜎

𝑡
𝑍
𝑡
=
√
ℎ
𝑡
𝜏
𝑡
𝑍
𝑡
. We denote the information set

on day 𝑡 by 
𝑡
. 𝜎2
𝑡

denotes the conditional variance and the short-
and long-term volatility components are given by ℎ

𝑡
and 𝜏

𝑡
. We

make the following assumption about the innovations 𝑍
𝑡
.

Assumption 1. Let𝑍
𝑡
be i.i.d. The density of𝑍

𝑡
is symmetric

with E[𝑍
𝑡
] = 0 and E[𝑍2

𝑡
] = 1. Further, 𝑍2

𝑡
has a nondegenerate

distribution and 𝜅 = E[𝑍4
𝑡
] < ∞.

The assumption that the density of𝑍
𝑡

is symmetric is commonly
made for GJR-GARCH models because it allows for a straight-
forward computation of the multistep ahead conditional variance
forecast (see, e.g., Zivot 2009). Also, Ling and McAleer 2002 make
this assumption when deriving conditions for the stationarity and
the existence of the fourth moment of the GJR-GARCH. Impor-
tantly, as shown in Alexander, Lazar, and Stanescu (2021), the
symmetry of the density of 𝑍

𝑡
does not preclude that the 𝑠-step

ahead aggregated returns exhibit skewness. The assumption that
𝜅 = E[𝑍4

𝑡
] < ∞ is a necessary condition for ensuring the finite-

ness of the unconditional variance of the returns and for the exis-
tence of the variance of the score of the likelihood function.

3.1 | Daily Short- and Long-Term Components

We specify the short-term volatility component as a unit variance
GJR-GARCH(1,1)

ℎ
𝑡
= (1 − 𝜙) +

(
𝛼 + 𝛾𝟏{𝑟

𝑡−1<0}
) 𝑟2
𝑡−1

𝜏
𝑡−1

+ 𝛽ℎ
𝑡−1, (4)

where 𝜙 = 𝛼 + 𝛾∕2 + 𝛽. Note that the driving variable in
Equation (4) is 𝑟2

𝑡−1∕𝜏𝑡−1. This distinguishes ℎ
𝑡
from the daily con-

ditional variance, ℎ̃
𝑡
, in Equation (2). We make the following

assumption about the parameters of the short-term component:

Assumption 2. The parameters of the short-term
GJR-GARCH component satisfy the conditions 𝛼 > 0, 𝛼 + 𝛾 >
0, 𝛽 > 0 and 𝜙 = 𝛼 + 𝛾∕2 + 𝛽 < 1.

If Assumptions 1 and 2 hold, then 𝑟
𝑡
∕
√
𝜏
𝑡
=
√
ℎ
𝑡
𝑍
𝑡

follows a
covariance stationary GJR-GARCH(1,1) with E[ℎ

𝑡
𝑍

2
𝑡
] = E[ℎ

𝑡
] =

1. If the GJR-GARCH(1,1) fully captures the conditional het-
eroskedasticity, then 𝜏

𝑡
is equal to a constant and the multiplica-

tive model reduces to a one-component GJR-GARCH for the
daily returns.

Following Engle 2009a, we refer to 𝑟
𝑡
∕
√
ℎ
𝑡

as “deGARCHed
returns” and define 𝑉

𝑡
= 𝑟2

𝑡
∕ℎ

𝑡
= 𝜏

𝑡
𝑍

2
𝑡

as the squared
deGARCHed returns. If the GARCH component fully cap-
tures the conditional heteroskedasticity, then by Assumption 1

the 𝑉
𝑡

are 𝑖.𝑖.𝑑. However, if 𝜏
𝑡

is time-varying and persistent,
then 𝑉

𝑡
is autocorrelated. Because 𝑉

𝑡
is a nonnegative variable,

we specify the long-term component as a MEM equation for the
conditional expectation of 𝑉

𝑡
:

𝜏
𝑡
= 𝜆0 + 𝜆1𝑉

(𝑚)
𝑡−1 + 𝜆2𝜏𝑡−1, (5)

where

𝑉
(𝑚)
𝑡−1 =

1
𝑚

𝑚∑
𝑗=1
𝑉
𝑡−𝑗 =

1
𝑚

𝑚∑
𝑗=1

𝑟
2
𝑡−𝑗

ℎ
𝑡−𝑗
. (6)

Recall that we can think of the squared deGARCHed returns as
standardized volatility forecast errors. Hence, 𝑉 (𝑚)

𝑡−1 is a rolling
window measure of the local bias of the short-term compo-
nent’s conditional variance over the previous 𝑚 days. Note that
Equation (5) can be written is a MEM(1, 𝑚) with the restric-
tion that the 𝑚 “ARCH” coefficients are given by 𝜆1∕𝑚. The
MEM(1, 𝑚) is covariance stationary if the sum of the ARCH and
GARCH coefficients is less than one. By construction, this is sat-
isfied if 𝜆1 + 𝜆2 < 1.

Assumption 3. The parameters of the long-term component
satisfy the conditions 𝜆0 > 0, 𝜆1 > 0, 𝜆2 > 0 and 𝜆1 + 𝜆2 < 1.

Under Assumptions 1 and 3, it holds that 𝑉
𝑡
= 𝜏

𝑡
𝑍

2
𝑡

is a covari-
ance stationary MEM with E[𝑉

𝑡
|
𝑡−1] = 𝜏𝑡 and E[𝑉

𝑡
] = 𝜆0∕(1 −

𝜆1 − 𝜆2). We refer to the parametrization given by Equations (4)
and (5) as MF2-GARCH-rw-𝑚, where “rw-𝑚” stands for rolling
window of length 𝑚.

3.1.1 | Unconditional Variance of Daily Returns

Next, we derive the unconditional variance of the daily returns.
First, note that the unconditional mean and variance are given by
E[𝑟

𝑡
] = 0 and Var[𝑟

𝑡
] = E[𝑟2

𝑡
] = E[𝜏

𝑡
ℎ
𝑡
]. The following theorem

provides an expression for Var[𝑟
𝑡
].

Theorem 1. Let Assumptions 1–3 be satisfied. If the
MF2-GARCH-rw-𝑚 process, (𝑟

𝑡
)
𝑡∈ℤ, is covariance stationary,

then

Γ
𝑚
=
(
𝜆1

1
𝑚
𝜙
𝜅
+ 𝜆2𝜙

)
+ 𝜆1𝜙𝜅

1
𝑚

𝑚∑
𝑗=2
𝜙
𝑗−1

< 1 (7)

with 𝜙
𝜅
= (𝛼 + 𝛾∕2)𝜅 + 𝛽. The unconditional variance of the daily

returns is given by

Var[𝑟
𝑡
] =

(
𝜆0 +

𝜆0

1 − 𝜆1 − 𝜆2
(1 − 𝜙)(𝜆1 + 𝜆2) + Δ𝑚

)
∕(1 − Γ

𝑚
),

(8)
where

Δ
𝑚
= (1 − 𝜙)𝜆1𝜙

𝜆0

1 − 𝜆1 − 𝜆2

(
𝑚 − 1
𝑚

+ 1
𝑚

𝑚∑
𝑗=2

𝑗−2∑
𝑘=1
𝜙
𝑘

)
.

In the proof of Theorem 1, we show that Γ
𝑚
< 1 is satis-

fied if the returns are covariance stationary. For example, for
𝑚 = 1, the condition reduces to Γ1 = 𝜆1[(𝛼 + 𝛾∕2)𝜅 + 𝛽] + 𝜆2[𝛼 +
𝛾∕2 + 𝛽] < 1. This illustrates that even if the conditions which
ensure that 𝑟

𝑡
∕
√
𝜏
𝑡

and 𝑉
𝑡
= 𝑟2

𝑡
∕ℎ

𝑡
are individually covariance
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stationary (i.e., Assumptions 1–3) are satisfied, the condition in
Equation (7) may be violated if 𝜅 is sufficiently large.

In general, the variance of the daily returns will depend on all the
model parameters and the innovation’s fourth moment, 𝜅. The
fact that the unconditional variance depends on 𝜅 distinguishes
the MF2-GARCH-rw-𝑚 from standard GARCH models and is
due to the correlation between 𝜏

𝑡
and ℎ

𝑡
. The unconditional vari-

ance of the returns increases in 𝜅 and decreases as 𝑚 increases.5
Theorem 1 reveals that the MF2-GARCH is fundamentally dif-
ferent from the Spline-GARCH and the GARCH-MIDAS-RV. In
the Spline-GARCH, the unconditional variance of the returns is
time-varying, and Var[𝑟

𝑡
] = ∞ in the GARCH-MIDAS-RV (see

Wang and Ghysels 2015).

When imposing the restrictions 𝑚 = 1 and 𝛾 = 0, we obtain a
model that can be considered a “multiplicative version” of the
additive component model of Engle and Lee 1999. For 𝑚 = 1,
both components are symmetric, and we impose the restriction
𝛼 + 𝛽 < 𝜆1 + 𝜆2 < 1 to ensure that 𝜏

𝑡
is the long-run component.

In the following corollary, we derive the condition for the covari-
ance stationarity of the daily returns when 𝑚 = 1 and 𝛾 = 0 and
state their unconditional variance.

Corollary 1. Let Assumptions 1–3 be satisfied,𝑚 = 1, and 𝛾 =
0. The necessary and sufficient condition for the covariance station-
ary of the MF2-GARCH-rw-1 process is Γ1 = 𝜆1(𝛼𝜅 + 𝛽) + 𝜆2(𝛼 +
𝛽) < 1. The unconditional variance of the returns is given by

Var[𝑟
𝑡
] =

𝜆0 +
𝜆0

1−𝜆1−𝜆2
(1 − 𝛼 − 𝛽)(𝜆1 + 𝜆2)

1 − [𝜆1(𝛼𝜅 + 𝛽) + 𝜆2(𝛼 + 𝛽)]
.

(9)

If the short-term component is constant (i.e., 𝛼 = 𝛽 = 0), the
expression in Equation (9) reduces to Var[𝑟

𝑡
] = E[𝜏

𝑡
] = 𝜆0∕(1 −

𝜆1 − 𝜆2). If the long-term component is constant (i.e., 𝜆1 =
𝜆2 = 0), the expression in Equation (9) reduces to Var[𝑟

𝑡
] =

E[𝜆0ℎ𝑡] = 𝜆0. In the latter case, the MF2-GARCH-rw-1 reduces
to a GARCH(1,1).

As expected, empirically we find that 𝑉 (1)
𝑡−1 = 𝑟

2
𝑡−1∕ℎ𝑡−1 is too noisy

to serve as a proxy of the local bias. In Section 4.2.1, we show
that the optimal choice of 𝑚 is around 63 for the S&P 500, which
corresponds to a quarterly moving average.

3.1.2 | News Impact Curve

Following Engle and Ng 1993, we use the NIC to illustrate how
the conditional volatility is updated in response to new infor-
mation. For a GJR-GARCH(1,1) with conditional variance ℎ̃

𝑡
=

𝛼0 + (𝛼 + 𝛾1{𝑟
𝑡−1<0})𝑟2

𝑡−1 + 𝛽ℎ̃𝑡−1, the NIC is defined as

𝑁𝐼𝐶
𝐺𝐽𝑅

𝑡+1 = ℎ̃
𝑡+1(𝑟𝑡|ℎ̃𝑡) = 𝐴𝐺𝐽𝑅𝑡

+ (𝛼 + 𝛾1{𝑟
𝑡
<0})𝑟2

𝑡
,

where 𝐴𝐺𝐽𝑅
𝑡

= 𝛼0 + 𝛽ℎ̃𝑡. That is, the NIC is a function of today’s
return and 𝐴𝐺𝐽𝑅

𝑡
is known conditional on 

𝑡−1. If 𝛾 > 0, nega-
tive news, 𝑟

𝑡
< 0, have a stronger effect on volatility than positive

news. However, the size of the effect does not depend on the cur-
rent level of volatility.

The NIC of the MF2-GARCH-rw-𝑚 consists of three terms:

𝑁𝐼𝐶
𝑀𝐹

𝑡+1 = 𝜎2
𝑡+1(𝑟𝑡|𝜏𝑡, ℎ𝑡) = 𝐴𝑀𝐹𝑡 + 𝐵𝑀𝐹

𝑡

+
(
𝜆1𝛽

1
𝑚
+ 𝜆2(𝛼 + 𝛾1{𝑟

𝑡
<0})

)
𝑟

2
𝑡
,

(10)

where

𝐴
𝑀𝐹

𝑡
= 𝜆0(1 − 𝜙) + 𝜆0𝛽ℎ𝑡 + 𝜆1(1 − 𝜙)

1
𝑚

𝑚−1∑
𝑗=1

𝑟
2
𝑡−𝑗

ℎ
𝑡−𝑗

+ 𝜆1𝛽ℎ𝑡
1
𝑚

𝑚−1∑
𝑗=1

𝑟
2
𝑡−𝑗

ℎ
𝑡−𝑗

+ 𝜆2(1 − 𝜙)𝜏𝑡 + 𝜆2𝛽𝜎
2
𝑡

and

𝐵
𝑀𝐹

𝑡
= 𝜆0(𝛼 + 𝛾1{𝑟

𝑡
<0})

𝑟
2
𝑡

𝜏
𝑡

+ 𝜆1(1 − 𝜙)
1
𝑚

𝑟
2
𝑡

ℎ
𝑡

+ 𝜆1(𝛼 + 𝛾1{𝑟
𝑡
<0})

1
𝑚

𝑟
4
𝑡

𝜎
2
𝑡

+ 𝜆1(𝛼 + 𝛾1{𝑟
𝑡
<0})

𝑟
2
𝑡

𝜏
𝑡

1
𝑚

𝑚−1∑
𝑗=1

𝑟
2
𝑡−𝑗

ℎ
𝑡−𝑗
.

The intercept, 𝐴𝑀𝐹
𝑡

, is known conditional on 
𝑡−1. The last term

depends on 𝑟2
𝑡

and model parameters and, hence, is similar to the
term (𝛼 + 𝛾1{𝑟

𝑡
<0})𝑟2

𝑡
in the GJR-GARCH. However, the term𝐵

𝑀𝐹

𝑡

shows that the marginal effect of 𝑟2
𝑡

also depends on the current
conditional variance, 𝜎2

𝑡
, as well as ℎ

𝑡
and 𝜏

𝑡
individually.

Figure 2 shows the (standardized) NIC of the MF2-GARCH-rw-𝑚
with𝑚 = 63 (left panel) and𝑚 = 21 (right panel). The NIC is plot-
ted as a function of the return, 𝑟

𝑡
, and for 𝜏

𝑡
= 1, 𝜏

𝑡
= 1.5, and

𝜏
𝑡
= 0.5. The parameters are chosen as in Figure A.3 in the Sup-

porting Information. The short-term component is fixed at its
unconditional expectation (i.e., ℎ

𝑡
= 1). Note that parameters of

the long-term component are chosen such that E[𝜏
𝑡
] = 1. That is,

the solid black NIC represents a situation in which both the short-
and long-term component are at their unconditional expectation.
Due to the asymmetry term in the short-term component, the
impact of negative returns is stronger than the impact of pos-
itive returns. The other two lines show that the effect of new
information becomes stronger/weaker when long-term volatility
is below/above its expectation. That is, the conditional volatility is
more sensitive to news during a low-volatility period than during
a high-volatility period. This is reasonable because a large value
of |𝑟

𝑡
| is to be expected during turbulent times but less so during

tranquil times. In line with the observation that the variance of
the returns decreases as 𝑚 increases, the news impact is slightly
weaker for 𝑚 = 63 than for 𝑚 = 21.

3.1.3 | Forecasting Volatility

Because the MF2-GARCH-rw-𝑚model is dynamically complete,
we can analytically derive volatility forecasts for any desired
horizon. In the following, we assume that a researcher has
observed returns up to day 𝑡. Based on the information set 

𝑡
,

she intends to compute a volatility forecast for day 𝑡 + 𝑠. First,
recall that the 𝑠-step ahead forecast of the short-term component
can be computed as E[ℎ

𝑡+𝑠|𝑡] = 1 + 𝜙𝑠−1(ℎ
𝑡+1 − 1), 𝑠 ≥ 2 (see,

e.g., Zivot 2009). The forecasts for the long-term component are
slightly more involved and are presented in Appendix A.4 of the
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FIGURE 2 | The figure shows the NIC for an MF2-GARCH-rw-𝑚model with𝑚 = 63 (left panel) and𝑚 = 21 (right panel) and parameters as in Figure
A.3 in the Supporting Information. We fix ℎ

𝑡
= 1 and assume that the short-term component correctly predicts volatility on days 𝑡 − 1 to 𝑡 − 𝑚 − 1, that

is, we set 𝑟2
𝑡−𝑗∕ℎ𝑡−𝑗 = 1 for 𝑗 = 1, … , 𝑚 − 1. The NICs are plotted as a function of the return, 𝑟

𝑡
, and for 𝜏

𝑡
∈ {0.5, 1, 1.5}. The NICs are standardized

such that news impact is zero for 𝑟
𝑡
= 0 and presented as annualized volatilities, that is, we plot

√
252(𝜎2

𝑡+1(𝑟𝑡|𝜏𝑡, ℎ𝑡 = 1) − 𝜎2
𝑡+1(𝑟𝑡 = 0|𝜏

𝑡
, ℎ
𝑡
= 1)).

Supporting Information. Using these results, E[𝜎2
𝑡+𝑠|𝑡] can be

computed as follows:

Theorem 2. Let Assumptions 1–3 and the constraint in
Equation (7) be satisfied. Then, in the MF2-GARCH-rw-𝑚 the
forecast of the conditional variance on day 𝑡 + 𝑠, 𝑠 ≥ 1, can be
computed as follows: First, E[𝜎2

𝑡+1|𝑡] = ℎ𝑡+1𝜏𝑡+1. Second, for 𝑠 =
2, … , 𝑚 the forecasts can be recursively calculated as

E[𝜎2
𝑡+𝑠|𝑡] = (1 − 𝜙)E[𝜏𝑡+𝑠|𝑡] + 𝜆0𝜙E[ℎ

𝑡+𝑠−1|𝑡]
+
(
𝜆1

1
𝑚
𝜙
𝜅
+ 𝜆2𝜙

)
E[𝜎2

𝑡+𝑠−1|𝑡]

+ 𝜆1𝜙E[ℎ
𝑡+𝑠−1|𝑡] 1

𝑚

𝑚∑
𝑗=𝑠

𝑟
2
𝑡+𝑠−𝑗

ℎ
𝑡+𝑠−𝑗

+ (1 − 𝜙)𝜆1𝜙
1
𝑚

𝑠−1∑
𝑗=2

E[𝜏
𝑡+𝑠−𝑗 |𝑡]

(
1 +

𝑗−2∑
𝑘=1
𝜙
𝑘

)

+ 𝜆1𝜙𝜅𝜙
1
𝑚

𝑠−1∑
𝑗=2
𝜙
𝑗−2E[𝜎2

𝑡+𝑠−𝑗 |𝑡].

(11)

Third, for 𝑠 > 𝑚, the following recursion applies:

E[𝜎2
𝑡+𝑠|𝑡] = (1 − 𝜙)E[𝜏𝑡+𝑠|𝑡] + 𝜆0𝜙E[ℎ

𝑡+𝑠−1|𝑡]
+
(
𝜆1

1
𝑚
𝜙
𝜅
+ 𝜆2𝜙

)
E[𝜎2

𝑡+𝑠−1|𝑡]

+ (1 − 𝜙)𝜆1𝜙
1
𝑚

𝑚∑
𝑗=2

E[𝜏
𝑡+𝑠−𝑗 |𝑡]

(
1 +

𝑗−2∑
𝑘=1
𝜙
𝑘

)

+ 𝜆1𝜙𝜅𝜙
1
𝑚

𝑚∑
𝑗=2
𝜙
𝑗−2E[𝜎2

𝑡+𝑠−𝑗 |𝑡].

(12)

We will illustrate the behavior of the volatility forecasts in
Section 4.2.2.

3.2 | Extensions of the MF2-GARCH-rw

3.2.1 | Modifications of the Daily Long-Term
Component

MF2-GARCH with beta-weights: In Equation (6), we assume
that 𝑉 (𝑚)

𝑡−1 is based on the average of the last 𝑚 standardized fore-
cast errors. Instead of imposing equal weights, we can take a
weighted average of the form

𝑉
(𝑚)
𝑡−1 =

𝑚∑
𝑗=1
𝑤
𝑗
(𝜔)𝑉

𝑡−𝑗 =
𝑚∑
𝑗=1
𝑤
𝑗
(𝜔)

𝑟
2
𝑡−𝑗

ℎ
𝑡−𝑗
. (13)

Following a common choice in the MIDAS literature (see
Ghysels, Santa-Clara, and Valkanov 2006, and Ghysels, Sinko,
and Valkanov 2007), we parsimoniously model the weights
𝑤
𝑗
(𝜔) according to a restricted beta-weighting scheme: 𝑤

𝑗
(𝜔) =

((1 − 𝑗∕(𝑚 + 1))𝜔−1)∕(
∑𝑚

𝑘=1(1 − 𝑗∕(𝑚 + 1))𝜔−1). By construction,
the weights sum to one. In addition, we impose the constraint that
the weights are nonincreasing (𝜔 ≥ 1). For 𝜔 > 1, the weights
decline from the first lag. For𝜔 = 1, the weights are given by 1∕𝑚,
and hence, we obtain the model with rolling window 𝑉

(𝑚)
𝑡

. We
will refer to this parametrization as MF2-GARCH-bw-𝑚, where
“bw-𝑚” stands for beta-weights of length 𝑚.

Realized volatility MEM: When 𝑚 is small, the average stan-
dardized forecast error of the short-term component, 𝑉 (𝑚)

𝑡
=

1∕𝑚
∑𝑚

𝑗=1𝑟
2
𝑡−𝑗∕ℎ𝑡−𝑗 , can be a noisy proxy for the local bias. Instead,

if we observe daily realized variances, 𝑅𝑉
𝑡
, we can base 𝜏

𝑡
on the

realized measure: 𝑉 (𝑚,𝑅𝑉 )
𝑡

= 1∕𝑚
∑𝑚

𝑗=1𝑅𝑉𝑡−𝑗∕ℎ𝑡−𝑗 . Again, we can
apply the MEM specification from Equation (5). However, with-
out further assumptions, this specification is no longer dynami-
cally complete. We leave this specification for future research.

3.2.2 | Low-Frequency Long-Term Component

In the MF2-GARCH-rw-𝑚, 𝜏
𝑡

varies at the daily frequency.
Instead, we can specify the MF2-GARCH so that the long-term
component varies at a lower frequency. For this specification, we
introduce a notation that allows for mixed frequencies. We dis-
tinguish between a low-frequency period 𝑡 and a high-frequency
period 𝑖. The high-frequency period 𝑖 represents days while 𝑡

Mathematical Methods in the Applied Sciences, 2025444
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might represent a monthly, quarterly, or semiannual frequency.
We assume that there are 𝑛 days within each period 𝑡, that is, 𝑖 =
1, … , 𝑛, and that we observe 𝑡 = 1, … , 𝑇 low-frequency peri-
ods. Using this notation, we denote the log-return on day 𝑖 of
period 𝑡 by 𝑟

𝑖,𝑡
(where we use the convention that 𝑟0,𝑡 = 𝑟𝑛,𝑡−1).

Similarly, we denote the information set on day 𝑖 in period 𝑡 by

𝑖,𝑡

and define 
𝑡
∶= 

𝑛,𝑡
. Note that the new notation reduces to

the notation with a daily long-term component when 𝑛 = 1. In
the following, we assume that Assumption 1 holds for the inno-
vations 𝑍

𝑖,𝑡
.

Using the notation for multiple frequencies, we write the
short-term volatility component as

ℎ
𝑖,𝑡
= (1 − 𝜙) + (𝛼 + 𝛾1{𝑟

𝑖−1,𝑡<0})
𝑟

2
𝑖−1,𝑡

𝜏
𝑡

+ 𝛽ℎ
𝑖−1,𝑡 (14)

for 𝑖 = 2, … , 𝑛 and with ℎ0,𝑡 = ℎ𝑛,𝑡−1. Thus, for 𝑖 = 1, we obtain
ℎ1,𝑡 = (1 − 𝜙) + (𝛼 + 𝛾1{𝑟

𝑛,𝑡−1<0})𝑟2
𝑛,𝑡−1∕𝜏𝑡−1 + 𝛽ℎ𝑛,𝑡−1. As before, we

assume that Assumption 2 holds. We close the model by defin-
ing a MEM specification at the lower frequency. By averaging the
squared deGARCHed returns within low-frequency period 𝑡, we
obtain

𝑉
𝑡
= 1
𝑛

𝑛∑
𝑖=1

𝑟
2
𝑖,𝑡

ℎ
𝑖,𝑡

= 𝜏
𝑡

1
𝑛

𝑛∑
𝑖=1
𝑍

2
𝑖,𝑡
= 𝜏

𝑡
𝑍
𝑡
, (15)

where 𝑍
𝑡
= 𝑛−1∑𝑛

𝑖=1𝑍
2
𝑖,𝑡

with E[𝑍
𝑡
] = 1 and Var[𝑍

𝑡
] = (𝜅 −

1)∕𝑛. Again, it follows from Assumption 1 that the 𝑍
𝑡

are 𝑖.𝑖.𝑑.
This suggests the specification

𝜏
𝑡
= 𝜆0 + 𝜆1𝑉𝑡−1 + 𝜆2𝜏𝑡−1. (16)

Note that the low-frequency component 𝜏
𝑡

still measures volatil-
ity in daily units. We will refer to this parametrization of the
long-term component as MF2-GARCH-lf-𝑛, where “lf” stands for
low-frequency and 𝑛 refers to the choice of the low-frequency
period.6 For example, when setting 𝑛 = 21 or 𝑛 = 63, the
long-term component varies at the monthly or quarterly fre-
quency. If Assumptions 1 and 3 hold, then 𝑉

𝑡
= 𝜏

𝑡
𝑍
𝑡

is a
covariance stationary MEM(1,1) with E[𝑉

𝑡
|
𝑡−1] = 𝜏𝑡 and E[𝑉

𝑡
] =

𝜆0∕(1 − 𝜆1 − 𝜆2). A drawback of the low-frequency updating of
the long-term component is that it introduces a discontinuity into
the daily conditional variances. Thus, the daily returns are no
longer covariance stationary.

4 | Empirical Application

4.1 | Stock Market Data

We use daily return data for the S&P 500 starting in January 1971
and ending in June 2023. Using the notation for 𝑛 = 1, daily log
returns are computed as 𝑟

𝑡
= 100(log(𝑃

𝑡
) − log(𝑃

𝑡−1)), where 𝑃
𝑡

is
the close price on day 𝑡. We employ realized variances based on
intraday data provided by Tick Data to evaluate the forecast per-
formance. Daily realized variances, 𝑅𝑉

𝑡
, are defined as the sum

of the squared five-minute intraday log-returns on day 𝑡 plus the
squared overnight log-return (see Bollerslev et al. 2018). We com-

pute realized variances for the period January 2000 to June 2023.
Table 1 shows summary statistics for the daily returns and real-
ized variances. The annualized daily returns have a sample mean
of 7.38%. The mean of the annualized daily realized volatility is
15.81% during the period January 2010 to June 2023, which is the
period that is used for the out-of-sample forecast evaluation. In
addition, in Section 4.2.3 we use return data from the V-Lab for
2142 US and international equities.

4.2 | MF2-GARCH in Action

4.2.1 | Application to S&P 500

We first apply the MF2-GARCH model to the daily log returns
of the S&P 500. We mainly focus on models with a daily
long-term component and estimate the MF2-GARCH-rw-𝑚 and
the MF2-GARCH-bw-𝑚 for the entire sample period from Jan-
uary 1971 to June 2023.

Choice of 𝒎: We first estimate both models for values of 𝑚
up to 160 and determine the optimal 𝑚 as the one that mini-
mizes the BIC.7 For both models, the upper left panel of Figure 3
shows the BIC as a function of 𝑚. The lowest value of the
BIC materializes for 𝑚 = 63 for both models. For this value of
𝑚, the MF2-GARCH-rw-𝑚 is clearly preferred relative to the
MF2-GARCH-bw-𝑚. To investigate whether this pattern holds
more generally, we reestimate both models for three subsamples:
January 1971 - December 2009 (upper right panel), January 1980 -
December 2009 (lower left panel), and January 1980 to June 2023
(lower right panel). In all three panels, the optimal choice of 𝑚
is around 63 and the MF2-GARCH-rw-𝑚 is the preferred model.
Overall, the subsample analysis shows that the optimal choice of
𝑚 is very stable for the S&P 500 and that equal weights are pre-
ferred to beta-weights.

Parameter estimates (sample period January 1971 to June
2023): The first two rows of Table 2 (labeled as “𝜏

𝑡
const.”)

show the parameter estimates of the nested one-component
GJR-GARCH. The parameter estimates of 𝛼, 𝛾 , and 𝛽 take typi-
cal values and indicate strong persistence in the GARCH compo-
nent (𝛼 + 𝛾∕2 + 𝛽 = 0.982). Next, the table displays the parameter
estimates of the MF2-GARCH-rw-𝑚 model. First, for the opti-
mal window length, that is, 𝑚 = 63, the estimates of the param-
eters in the long-term component, 𝜆1 and 𝜆2, are both signifi-
cant. As expected, the persistence in the long-term component
(0.982) is much stronger than the persistence in the short-term
component (0.924). Also, due to introducing a time-varying
long-term component, the short-term GJR-component is much
less persistent than the one-component GJR-GARCH. The BIC
clearly favors the two-component MF2-GARCH-rw-63 over the
one-component model. To illustrate the consequences of choos-
ing𝑚 too small and too large, we present parameter estimates for
a monthly (𝑚 = 21) and semiannual (𝑚 = 126) averaging of past
forecast errors. For𝑚 = 21, the persistence in the long-term com-
ponent increases to 0.995. Presumably, this is because increas-
ing 𝜆2 smoothes the long-term component and, thereby, coun-
teracts the effect of decreasing 𝑚. For 𝑚 = 126, the estimates of
the long-term component’s parameters are almost the same as for
𝑚 = 63, but the standard errors increase considerably.
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FIGURE 3 | MF2-GARCH-rw-𝑚 and MF2-GARCH-bw-𝑚models are estimated using daily S&P 500 return data for the sample periods January 1971
to June 2023 (upper left), January 1971 to December 2009 (upper right), January 1980 to December 2009 (lower left), and January 1980 to June 2023
(lower right). The figure plots the BIC as a function of 𝑚.

TABLE 2 | Estimation results MF2-GARCH models: S&P 500.

𝝉
𝒕

𝜶 𝜸 𝜷 𝝀0 𝝀1 𝝀2 𝝎 LLF BIC

GJR-GARCH
Constant 0.023⋆⋆⋆

(0.006)
0.115⋆⋆⋆
(0.021)

0.901⋆⋆⋆
(0.016)

1.015⋆⋆⋆
(0.136)

−16753.53 2.53433

MF2-GARCH-rw-𝑚
𝑚 = 63 0.003

(0.007)
0.162⋆⋆⋆
(0.021)

0.840⋆⋆⋆
(0.018)

0.018⋆
(0.009)

0.112⋆⋆
(0.054)

0.870⋆⋆⋆
(0.062)

−16678.61 2.52445

𝑚 = 21 0.002
(0.007)

0.174⋆⋆⋆
(0.021)

0.814⋆⋆⋆
(0.023)

0.005⋆⋆⋆
(0.002)

0.034⋆⋆⋆
(0.011)

0.961⋆⋆⋆
(0.012)

−16688.31 2.52591

𝑚 = 126 0.012⋆
(0.007)

0.145⋆⋆⋆
(0.022)

0.864⋆⋆⋆
(0.018)

0.019
(0.016)

0.101
(0.094)

0.879⋆⋆⋆
(0.109)

−16702.77 2.52809

MF2-GARCH-bw-𝑚
𝑚 = 63 0.003

(0.018)
0.162⋆⋆⋆
(0.055)

0.840⋆⋆⋆
(0.103)

0.018
(0.045)

0.112
(0.247)

0.870⋆⋆⋆
(0.294)

1.000
(3.505)

−16678.61 2.52516

𝑚 = 126 0.001
(0.008)

0.169⋆⋆⋆
(0.022)

0.824⋆⋆⋆
(0.027)

0.008⋆⋆
(0.003)

0.058⋆⋆⋆
(0.021)

0.933⋆⋆⋆
(0.023)

4.900⋆⋆⋆
(1.416)

−16686.25 2.52632

MF2-GARCH-lf-𝑛
𝑛 = 63 0.016⋆⋆⋆

(0.006)
0.145⋆⋆⋆
(0.021)

0.864⋆⋆⋆
(0.016)

0.153⋆⋆⋆
(0.045)

0.745⋆⋆⋆
(0.130)

0.098
(0.137)

−16699.87 2.52766

𝑛 = 21 0.008
(0.007)

0.169⋆⋆⋆
(0.023)

0.825⋆⋆⋆
(0.026)

0.062⋆⋆⋆
(0.020)

0.390⋆⋆⋆
(0.101)

0.547⋆⋆⋆
(0.108)

−16702.62 2.52807

GARCH-MIDAS-RV
𝑚 = 63 0.005

(0.006)
0.177⋆⋆⋆
(0.021)

0.808⋆⋆⋆
(0.018)

0.313⋆⋆⋆
(0.044)

0.628⋆⋆⋆
(0.057)

73.671⋆⋆⋆
(7.047)

−16692.25 2.52651

𝑚 = 21 0.010
(0.006)

0.180⋆⋆⋆
(0.023)

0.813⋆⋆⋆
(0.023)

0.323⋆⋆⋆
(0.055)

0.608⋆⋆⋆
(0.072)

4.933⋆⋆⋆
(1.738)

−16694.05 2.52678

Note: The table reports estimation results for GJR-GARCH, MF2-GARCH-rw-𝑚, MF2-GARCH-bw-𝑚, MF2-GARCH-lf-𝑛, and GARCH-MIDAS-RV (with 𝐾 = 252) models.
For the GARCH-MIDAS-RV, 𝜆0 corresponds to 𝑐 (see Section A.3 in the Supporting Information). All models are estimated using daily return data for the period January
1971 to June 2023. The numbers in parentheses are Bollerslev–Wooldridge robust standard errors. ⋆⋆⋆, ⋆⋆, and ⋆ indicate significance at the 1%, 5%, and 10% level,
respectively. LLF is the value of the maximized log-likelihood function. BIC is the Bayesian information criterion.
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For the MF2-GARCH-bw-𝑚 specification, we focus on the opti-
mal choice of 𝑚 = 63. For this value of 𝑚, the estimates of
the short- and long-term component’s parameters are close to
those of the MF2-GARCH-rw-63 model. The estimate of 𝜔 is
equal to one. That is, the optimal beta-weighting scheme for
𝑚 = 63 is flat. As suggested by the BIC comparison, this con-
firms that the MF2-GARCH-rw-63 is the preferred model. Thus,
for the S&P 500, allowing for a flexible weighting scheme, only
increases the standard errors of the remaining parameters. For
the MF2-GARCH-lf-𝑛 models with a low-frequency long-term
component, we display parameter estimates for a quarterly (𝑛 =
63) and a monthly (𝑛 = 21) long-term component. When the
long-term component varies at the quarterly frequency, the esti-
mate of 𝜆2 is insignificant. That is, when 𝑛 is large, a MEM(0,1)
is sufficient to capture the movements in the conditional expec-
tation of 𝑉

𝑡
. In contrast, when 𝜏

𝑡
evolves at a monthly (𝑛 =

21) frequency, 𝜆2 becomes significant and a MEM(1,1) is pre-
ferred. In terms of the BIC, the MF2-GARCH-rw-63 model with
a daily long-term component is clearly preferred to models with
a low-frequency long-term component. Finally, we estimate the
GARCH-MIDAS-RV model as in equation (31) of Section A.3 in
the Supporting Information with quarterly (𝑚 = 63) or monthly
(𝑚 = 21) rolling window realized variance and a beta-weighting
scheme with 𝐾 = 252. In this model, 𝜆1 measures the effect of
𝑅𝑉

𝑟𝑤

𝑡
on long-term volatility. As expected, this effect is estimated

to be positive. Again, the BIC favors the MF2-GARCH-rw-63 over
the GARCH-MIDAS-RV models.

Figure 4 shows the annualized conditional volatility,
√
ℎ
𝑡
𝜏
𝑡
,

and the long-term volatility,
√
𝜏
𝑡
, as implied by the MF2-

GARCH-rw-63. As expected, the behavior of
√
𝜏
𝑡

mirrors
that of the averaged standardized forecast errors from the
one-component GJR-GARCH in Figure 1. That is, the figure
confirms that there are prolonged cycles in long-term volatil-
ity.8 Specifically, long-term volatility is high during the Great
Recession and the Covid-19 pandemic but also after the crash on
October 19, 1987. Using Baker et al. 2021 equity market volatil-
ity (EMV) trackers, we show in Appendix A.5 of the Support-
ing Information that the MF2-GARCH’s long-term volatility is
driven by various types of economic news (such as macroeco-
nomic and monetary policy news), which a GARCH-MIDAS-X
model with a single macroeconomic or financial explanatory vari-
able is unlikely to capture fully.

4.2.2 | Implications for Volatility Forecasting

In this section, we illustrate the behavior of the volatility fore-
casts of the MF2-GARCH-rw-𝑚. In particular, we hint at the dif-
ferences between the MF2-GARCH’s forecasts and those of the
nested GJR-GARCH. We rely on the parameter estimates for the
MF2-GARCH-rw-63 and the GJR-GARCH for the S&P 500 in
Table 2. The left panels of Figure 5 show the conditional volatil-
ity (solid black line) and long-component (solid gray line) of
the MF2-GARCH for two subsamples. The horizontal line rep-
resents the unconditional volatility. We compute volatility fore-
casts from day 𝑡 = 50 onwards. In the upper/lower panel, 𝑡 = 50
corresponds to August 10, 2011, and September 14, 2016, respec-
tively. The dashed black lines correspond to the forecasts from the
MF2-GARCH. In the right panels, we plot the volatility forecasts
from the GJR-GARCH as dashed black lines, whereby we impose

FIGURE 4 | The figure shows the estimated conditional volatility,√
ℎ
𝑡
𝜏
𝑡
, (dashed line) and long-term volatility,

√
𝜏
𝑡
, (solid line) from the

MF2-GARCH-rw-63 model for the daily S&P 500 returns presented in
Table 2. All quantities are annualized. Gray shaded areas represent NBER
recession periods.

the same unconditional variance as for the MF2-GARCH-rw-63
and the same conditional variance at the forecast origin.9 We have
chosen the forecast origin so that we can illustrate the differences
between the forecasts from the two models. In the upper panels,
the conditional volatility as well as the long-term component are
below the unconditional volatility until there is a jump in volatil-
ity up to a level above 50%.10 As expected, the right panel shows
that the forecasts from the GJR-GARCH overestimate volatility
after the surge in volatility. This can be explained by the high per-
sistence in the one-component GARCH model. In contrast, the
forecasts from the MF2-GARCH (left panel) are much more in
line with the actual behavior of the conditional volatility. This
is due to the lower persistence in the short-term component,
which dominates the behavior of the MF2-GARCH forecast in the
short run. In the lower panels, volatility stayed below the uncon-
ditional volatility for an extended period. Thus, the long-term
volatility component is below the unconditional volatility at the
forecast origin. However, shortly before the forecast origin, the
conditional volatility spikes and is still slightly above the level of
the unconditional volatility at the forecast origin.11 The forecasts
from the GJR-GARCH directly converge to the unconditional
volatility. The MF2-GARCH forecast behaves very differently. In
the medium run, the forecast converges towards the forecast of
the long-term component (dashed gray line). That is, the fore-
cast decreases below the unconditional volatility. Only in the very
long run, the MF2-GARCH forecast will converge towards the
unconditional volatility. This illustrates that the MF2-GARCH
forecast captures the empirical observation that there are per-
sistent cyclical movements of the conditional volatility around
the unconditional volatility. In summary, both examples illustrate
that forecasts from the MF2-GARCH are more realistic than fore-
casts from the one-component GJR-GARCH. The MF2-GARCH
forecasts reflect both the current level of volatility,

√
ℎ
𝑡+1𝜏𝑡+1, as

well as the prevailing volatility trend,
√
𝜏
𝑡+1.

4.2.3 | Evidence From the V-Lab

We complement the previous findings with evidence from the
V-Lab. Overall, we consider 2142 US and international stocks.
The estimation period for all stocks ends on April 5, 2024.
The beginning of the estimation period is stock-specific and
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FIGURE 5 | The left panels show the conditional volatility (solid black line) from an MF2-GARCH-rw-63 estimated for S&P 500 returns (see Table 2).
From day 𝑡 = 50 (indicated by the black vertical line) onwards, we compute volatility forecasts (dashed black line). In the upper/lower panels 𝑡 = 50
corresponds to August 10, 2011 and September 14, 2016, respectively. The left panels also show the long-term components (gray line) and the forecast
of long-term volatility (dashed gray line). The dashed lines in the right panels are the volatility forecast from a GJR-GARCH(1,1). We impose the same
conditional volatility at the forecast origin and the same unconditional volatility. All quantities are annualized.

TABLE 3 | Parameter estimates for 2142 stocks in V-Lab: Summary statistics.

𝜶 𝜸 𝜷 𝝓 𝝀1 + 𝝀2 𝒎 BIC(MF2)< BIC(• )

GJR-GARCH 0.079 0.032 0.883 0.978 — — 0.959
MF2-GARCH-rw 0.111 0.043 0.726 0.861 0.993 51.000 —
Spline-GARCH 0.118 — 0.800 0.920 — — 0.632
ZS-Spline-GARCH 0.117 — 0.804 0.923 — — 0.658

Note: The table presents median parameter estimates for 2142 US and international stocks. The GJR-GARCH, MF2-GARCH-rw-𝑚, Spline-GARCH and ZS-Spline-GARCH
models were estimated in V-Lab. The last column, BIC(MF2)< BIC(•), reports the percentage of equities for which the BIC of the MF2-GARCH is smaller than the BIC of
the model in the respective row. The estimation period ended on April 5, 2024.

depends on data availability. For each stock, we select the opti-
mal MF2-GARCH-rw-𝑚 specification by choosing the value of
𝑚 that minimizes the BIC. Table 3 presents summary statis-
tics for comparing the MF2-GARCH parameter estimates with
those for the nested GJR-GARCH.12 In addition, we report
results for the Spline-GARCH and the Zero Slope Spline-GARCH
(ZS-Spline-GARCH). For those models, we only report the esti-
mates of the parameters in the short-term component. For
all models, Table 3 shows the median parameter estimates of
𝛼, 𝛾 and 𝛽. In addition, the table displays the median per-
sistence in the short- (𝜙) and long-term (𝜆1 + 𝜆2) component
and the median value of 𝑚. The table shows that the estimate
of 𝛽 decreases substantially when estimating an MF2-GARCH
instead of a GJR-GARCH. Conversely, the median estimates
of 𝛼 and 𝛾 slightly increase. Overall, the persistence in the
short-term component is strongly reduced when introducing
the long-term component. Naturally, the persistence in the

smooth long-term component of the MF2-GARCH is consider-
ably higher than in the short-term component. Interestingly, for
the Spline-GARCH and the ZS-Spline-GARCH, the reduction of
the persistence in the short-term component is less pronounced.
Presumably, this is because the long-term components of these
models are too smooth. The smooth long-term components cap-
ture low-frequency variations (i.e., at the business cycle) in
long-term volatility but not increases in volatility due to isolated
events such as the crash on October 19, 1987. Across the 2142
stocks, the median number of knots that are selected for both
the Spline-GARCH and the ZS-Spline-GARCH is eight (this num-
ber is not reported in the table). Thus, the Spline-GARCH mod-
els require the estimation of considerably more parameters than
the MF2-GARCH. The last column of Table 3 reports the per-
centage of stocks for which the BIC of the MF2-GARCH-rw is
smaller than the BIC of the models in the respective rows. The
MF2-GARCH is preferred over the GJR-GARCH for 96% of the
stocks. In addition, it is preferred over the two Spline-GARCH

Mathematical Methods in the Applied Sciences, 2025448
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models for over 60% of the stocks. In summary, our findings from
the V-Lab confirm the results for the S&P 500 from Table 2 for a
large number of stocks.

4.3 | Out-of-Sample Forecasting

Finally, we evaluate the MF2-GARCH’s out-of-sample forecast
performance. Most previous literature focuses on short fore-
cast horizons, such as one-day ahead. However, as discussed
in, for example, Christoffersen and Diebold 2000, Engle 2009b,
Ederington and Guan 2010, positions are often held for more
extended periods and, hence, long-term risk predictions should
also be evaluated. Indeed, the failure of risk management dur-
ing the financial crisis can be partly attributed to focusing on
short-term risks, while neglecting long-term risks (Engle 2009b).
Thus, our particular focus is on longer-term volatility predic-
tions. The MF2-GARCH is designed to capture slow movements
in the long-run volatility, and we intend to test whether the model
helps to improve longer-term volatility forecasts. In addition, our
results will provide new evidence for answering the question
of how far ahead we can forecast volatility (see also Ghysels
et al. 2019).

4.3.1 | S&P 500

We focus on the MF2-GARCH specification with a daily
long-term component and rolling window weighting scheme.
As competitor models, we consider the nested GJR-GARCH,
the GARCH-MIDAS-RV and the log-HAR model with lever-
age. While the MF2-GARCH, the GJR-GARCH, and the
GARCH-MIDAS-RV model are based on daily returns, the
log-HAR with leverage makes use of realized variances based
on intraday data. Within the respective model classes, the
GJR-GARCH (see, for instance, Hansen and Lunde 2005, and
Brownlees, Engle, and Bryan 2012) and the log-HAR (see, e.g.,
Bollerslev et al. 2018, and Conrad and Kleen 2020) are well
known for their excellent short-term forecast performance.

The out-of-sample (OOS) period is January 2010 to June 2023.
On each day of the OOS period, we compute forecasts of the vari-
ance on the next day, over the next week, as well as the 𝑠-months
ahead forward variance with 𝑠 ∈ {1, … , 8}. For computing for-
ward variances, we assume that each month has 21 trading days.
For example, the MF2-GARCH forecast of 2-month forward vari-
ance is 𝜎̂2

𝑡+22,𝑡+42|𝑡 =
∑21
𝑗=1𝜎̂

2
𝑡+21+𝑗|𝑡.

We reestimate all models on a rolling window of observations and
update parameters on a monthly basis. For the MF2-GARCH, we
select the optimal 𝑚 based on the BIC and estimate 𝜅 based on
the respective in-sample observations. The GARCH-MIDAS-RV
models are based on a rolling window 𝑅𝑉

𝑟𝑤

𝑡
with 𝑚 ∈ {21, 63}

and𝐾 = 252. When forecasting the 𝑠-months ahead forward vari-
ance, we specify the log-HAR model with leverage as

log(𝑅𝑉
𝑡+(𝑠−1)⋅21+1,𝑡+𝑠⋅21)

= 𝑏0 + 𝑏1 log𝑅𝑉
𝑡
+ 𝑏2 log

(
𝑅𝑉

𝑡−4,𝑡

5

)
+ 𝑏3 log

(
𝑅𝑉

𝑡−20,𝑡

21

)

+ 𝑏4𝑟𝑡𝟏{𝑟
𝑡
<0} + 𝑏5

𝑟
𝑡−4,𝑡

5
𝟏{𝑟

𝑡−4,𝑡<0} + 𝑏6
𝑟
𝑡−20,𝑡

21
𝟏{𝑟

𝑡−20,𝑡<0} + 𝜁
(𝑠)
𝑡
,

(17)

where 𝑅𝑉
𝑡+1,𝑡+𝑘 =

∑𝑘

𝑗=1𝑅𝑉𝑡+𝑗 , 𝑟𝑡+1,𝑡+𝑘 =
∑𝑘

𝑗=1𝑟𝑡+𝑗 and 𝟏{𝑟
𝑡+1,𝑡+𝑘<0}

is an indicator function which takes the value one if 𝑟
𝑡+1,𝑡+𝑘 < 0,

and zero otherwise. For daily and weekly forecast horizons, the
dependent variable is log(𝑅𝑉

𝑡+1) and log(𝑅𝑉
𝑡+1,𝑡+5), respectively.

The log-HAR is estimated by OLS and forecasts are based on the
assumption that the 𝜁 (𝑠)

𝑡
are normally distributed.13

We evaluate the forecasts based on the SE and the QLIKE loss,
which are both robust loss functions (see Patton 2011). For the
forecast evaluation, we proxy the true latent volatility by the cor-
responding realized variances. The realization of the 𝑠-months
forward variance is 𝑅𝑉

𝑡+(𝑠−1)⋅21+1,𝑡+𝑠⋅21 =
∑21
𝑗=1𝑅𝑉𝑡+(𝑠−1)⋅21+𝑗 . To

increase the readability of the forecast losses, we compare them
to the losses of a simple benchmark. As benchmark, we consider
the “historical volatility forecast,” which we define as the appro-
priately scaled mean of the daily realized variances during the
10 years prior to the forecast origin. For each model and forecast
horizon, we report the model performance as the ratio of the root
mean square error (RMSE) of the respective model and the RMSE
of historical volatility. Similarly, we present the respective QLIKE
ratio. In addition, we compute a model confidence set (MCS) as
proposed in Hansen, Lunde, and Nason 2011. In Appendix A.6 of
the Supporting Information, we describe in detail how the MCS
is computed.

We first evaluate the forecasts during the January 2010 to Decem-
ber 2019 period, which ends before the Covid-19 pandemic. Pan-
els A and B of Table 4 present results for the RMSE and the
QLIKE, respectively. For each forecast horizon, the bold num-
bers indicate the model that achieves the lowest RMSE or QLIKE
ratio. Blue shaded cells indicate which models are included in the
MCS. In Panel A, the MF2-GARCH achieves the lowest RMSE
for all forecast horizons. The entry of 0.685 at the one month
horizon implies that the RMSE of the MF2-GARCH is 31.5%
lower than the RMSE of the historical volatility forecast. Even
at the longest forecast horizon of 8 months, the RMSE is almost
20% lower. The MF2-GARCH is included in the MCS as the sin-
gle model for all forecast horizons longer than one week. In
Panel B, the log-HAR is the preferred model for forecast hori-
zons up to 2 months.14 Beyond that horizon, the MF2-GARCH
produces the best forecasts. Overall, the MF2-GARCH is suc-
cessful in forecasting volatility far into the future. We believe
that the MF2-GARCH’s outperformance at long forecast hori-
zons is due to the specification of the long-term component,
which is designed to capture the underlying volatility cycle. In
the medium term, the MF2-GARCH’s forecasts are strongly influ-
enced by the dynamic structure of the long-term component but
eventually converge to the unconditional variance. On the other
hand, the GARCH-MIDAS-RV’s long-term component is a proxy
of the level of volatility in the recent past. Imposing that the fore-
cast converges to this level does not pay off.

The full OOS period ends in June 2023 and covers the Covid-19
pandemic. The beginning of the Covid-19 pandemic in March
2020 is characterized by days with extremely high realized vari-
ances. For example, on March 12 and 16, 2020, realized vari-
ances took values corresponding to an annualized daily volatility
of 122% and 160%. This creates a short period of instability. In
particular, the monthly realized forward variances are strongly
shifted upwards once an extreme realized variance enters the
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TABLE 4 | Out-of-sample forecasting: S&P 500 – pre–Covid-19.

Forecast horizon Day Week 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m

Panel A: Relative RMSE
Historical forecast 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GJR-GARCH 0.788 0.763 0.798 0.864 0.901 0.910 0.899 0.883 0.874 0.866
MF2-GARCH-rw 0.744 0.699 0.685 0.790 0.834 0.846 0.832 0.820 0.815 0.811
log-HAR lev. 0.766 0.739 0.725 0.829 0.900 0.926 0.913 0.910 0.899 0.888
GARCH-MIDAS 𝑚 = 21 0.770 0.738 0.715 0.861 0.924 0.958 0.958 0.950 0.938 0.927
GARCH-MIDAS 𝑚 = 63 0.791 0.770 0.746 0.886 0.954 0.992 0.997 0.988 0.978 0.974

Panel B: Relative QLIKE
Historical forecast 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GJR-GARCH 0.647 0.640 0.723 0.847 0.901 0.922 0.920 0.918 0.919 0.918
MF2-GARCH-rw 0.615 0.613 0.708 0.827 0.884 0.894 0.875 0.866 0.861 0.859
log-HAR lev. 0.544 0.552 0.677 0.822 0.889 0.924 0.903 0.903 0.902 0.893
GARCH-MIDAS 𝑚 = 21 0.636 0.641 0.734 0.857 0.909 0.918 0.907 0.907 0.899 0.885
GARCH-MIDAS 𝑚 = 63 0.638 0.645 0.745 0.876 0.918 0.926 0.910 0.907 0.910 0.908

Note: The out-of-sample period is January 2010 to December 2019. Using a rolling window scheme, all models are re-estimated on a monthly basis (i.e., every 21 days). For
both GARCH-MIDAS-RV models, we set 𝐾 = 252. The first in-sample period ends in December 2009. The forecast horizons are one day, one week, and from 1 month (1m)
to 8 months (8m). Numbers reported are the RMSE (Panel A) or QLIKE (Panel B) losses for each model and forecast horizon relative to the respective RMSE (Panel A) or
QLIKE (Panel B) of historical volatility. Bold numbers indicate the model with the lowest RMSE or QLIKE. Blue shaded cells indicate that the respective model is included
in the 85% model confidence set.

measure and stay at elevated levels until the extreme realized
variance drops out of the 21-days window. Although this period
of extreme volatility is unpredictable for all models, it has a strong
influence on the Diebold and Mariano 1995 tests underlying the
MCS. As shown in Iacone, Rossini, and Viselli 2024, Diebold and
Mariano 1995 tests become uninformative due to low power
when short-lived periods of instability are included in the OOS
period.15 Following van Dijk and Franses 2003, we avoid this
problem by considering a weighted average loss differential,
where we attach zero weight to unpredictable volatility outliers.
We define those outliers as a daily realized variance that is above
the 99th percentile of the OOS daily realized variances’ empirical
distribution. Because almost all of these outliers materialize at
the beginning of the Covid-19 pandemic, our approach is essen-
tially the same as omitting this short period of instability from the
evaluation sample.

Table 5 shows the results for the full OOS period. The results are
similar to those in Table 4. Independently of the loss function, the
MF2-GARCH’s forecasts dominate for forecast horizons of 3 or
more months. At shorter horizons, the log-HAR performs well,
in particular according to the QLIKE loss. At the shortest fore-
cast horizon of one day, the log-HAR clearly benefits from the
information in the realized volatility. Overall, our previous results
are confirmed. Figure A.5 in the Supporting Information visual-
izes the forecast performance of the MF2-GARCH, the log-HAR,
and the benchmark model for the 𝑠-months forward variances.
The figure shows the cumulated losses (left panels: SE, right pan-
els: QLIKE) for forecast horizons of one month (upper panels),
4 months (middle panels) and 8 months (lower panels). In line
with the results from Table 5, the MF2-GARCH outperforms the
log-HAR in all panels but the upper right one. Most importantly,
the ranking of the two models is relatively stable across the entire
OOS period.

To shed more light on the potentially time-varying relative fore-
cast performance of the different models, we present a forecast
evaluation that is conditional on being in a high volatility regime
on the day a forecast is made. We classify a day as belonging
to the high volatility regime if the realized variance of that day
is above the 70th percentile of the OOS empirical distribution
of realized variances. As Table A.4 in the Supporting Informa-
tion shows, the evidence in favor of the MF2-GARCH becomes
stronger when focusing on forecasts that were made during high
volatility regimes.

Finally, we compare the relative forecast performance of the
MF2-GARCH and the log-HAR by applying the conditional pre-
dictive ability test of Giacomini and White 2006. We use the real-
ized variance, 𝑅𝑉

𝑡
, that materializes on the day the forecasts are

made as a predictor for the loss difference. That is, for each fore-
cast horizon, we run a regression of the loss difference on a con-
stant and the realized variance. The results (not reported) show
that a high realized variance today predicts that the MF2-GARCH
will outperform the log-HAR at essentially all forecast horizons.
To illustrate this effect, Figure A.6 in the Supporting Informa-
tion shows the estimated conditional mean of the regression
and the corresponding 95% confidence interval as a function
of 𝑅𝑉

𝑡
.

4.3.2 | V-Lab

We also evaluated the forecast performance of the MF2-GARCH
in the V-Lab. Here, we focus on the GJR-GARCH, the
Spline-GARCH and the Zero-Slope Spline-GARCH as competi-
tor models.16 The forecast performance of the different models
is evaluated for 20 (randomly selected) US stocks: Boeing (BA),
Berkshire Hills Bancorp (BHLB), BlackRock Inc (BLK), Cardinal

Mathematical Methods in the Applied Sciences, 2025450
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TABLE 5 | Out-of-sample forecasting: S&P 500 – full OOS period.

Forecast horizon Day Week 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m

Panel A: Relative RMSE
Historical forecast 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GJR-GARCH 0.990 0.837 0.869 1.618 0.863 0.987 0.912 0.834 0.814 0.798
MF2-GARCH-rw 0.781 0.641 0.602 0.766 0.735 0.757 0.772 0.780 0.781 0.786
log-HAR lev. 0.776 0.662 0.628 0.765 0.818 0.841 0.859 0.856 0.848 0.843
GARCH-MIDAS 𝑚 = 21 1.197 0.891 0.938 1.101 1.215 1.293 1.296 1.306 1.333 1.368
GARCH-MIDAS 𝑚 = 63 1.167 0.916 0.903 1.339 1.329 1.411 1.440 1.437 1.492 1.495

Panel B: Relative QLIKE
Historical forecast 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GJR-GARCH 0.676 0.652 0.702 0.829 0.873 0.892 0.898 0.894 0.891 0.889
MF2-GARCH-rw 0.646 0.613 0.664 0.774 0.832 0.853 0.857 0.857 0.856 0.861
log-HAR lev. 0.572 0.549 0.625 0.770 0.840 0.874 0.885 0.888 0.890 0.886
GARCH-MIDAS 𝑚 = 21 0.669 0.650 0.707 0.821 0.878 0.898 0.909 0.911 0.920 0.927
GARCH-MIDAS 𝑚 = 63 0.669 0.653 0.713 0.833 0.879 0.899 0.905 0.906 0.918 0.932

Note: The out-of-sample period is January 2010 to June 2023. See notes of Table 4.

TABLE 6 | Out-of-sample forecasting in V-Lab: 20 US stocks.

Day Week 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m

Panel A: Ranking according to RMSE
GJR-GARCH 2.45 2.45 2.70 3.05 2.80 3.10 2.90 2.80 2.75 2.70
MF2-GARCH-rw 1.90 1.80 1.85 1.60 1.70 1.60 1.60 1.55 1.50 1.50
Spline-GARCH 3.35 3.55 3.25 3.35 3.50 3.35 3.45 3.50 3.40 3.50
ZS-Spline-GARCH 2.30 2.20 2.20 2.00 2.00 1.95 2.05 2.15 2.35 2.30

Panel B: Ranking according to QLIKE
GJR-GARCH 2.20 2.10 1.75 1.90 2.20 2.45 2.50 2.55 2.65 2.70
MF2-GARCH-rw 1.40 1.35 1.70 1.90 1.70 1.65 1.70 1.70 1.75 1.80
Spline-GARCH 3.95 4.00 3.85 3.60 3.60 3.40 3.30 3.25 3.15 3.20
ZS-Spline-GARCH 2.45 2.55 2.70 2.60 2.50 2.50 2.50 2.50 2.45 2.30

Note: The out-of-sample period is January 2010 to June 2023. All models are re-estimated on a daily basis. The first in-sample period ends in December 2009. For each
forecast horizon, the numbers represent the average ranking of the respective models across the 20 US stocks according to the RMSE (Panel A) and the QLIKE (Panel B).
Bold numbers indicate the model with the lowest ranking.

Health Inc (CAH), Edison International (EIX), Farmer Brothers
Co (FARM), Guess (GES), HEICO Corp (HEI), Harley-Davidson
Inc (HOG), Houston American Energy (HUSA), Marriott Inter-
national Inc (MAR), Moody’s Corp (MCO), MetLife Inc (MET),
Microsoft Corp (MSFT), Novavax (NVAX), Oil-Dri Corp of Amer-
ica (ODC), Pfizer (PFE), Ralph Lauren (RL), Union Pacific
(UNP), and Whirlpool Corp (WHR). Because there is no intraday
data available in V-Lab, squared daily returns are used to compute
realized variances. The out-of-sample period is January 2010 to
June 2023. For each forecast horizon and for each stock, based on
the RMSE (respectively the QLIKE) the four models are ranked
from rank 1 (best) to rank 4 (worst). For each forecast horizon,
Table 6 presents the average rank across the 20 stocks. Accord-
ing to both loss functions, the MF2-GARCH performs best for
all forecast horizons. Thus, Table 6 provides further evidence for
the superior forecast performance of the MF2-GARCH within the
class of GARCH models.

5 | Conclusions

We suggest a multiplicative factor multifrequency component
GARCH model. The new model is motivated by the observation
that a rolling window average of past standardized forecast errors
of one-component GARCH models has predictive power for cur-
rent and future standardized forecast errors. This predictability is
due to counter-cyclical movements in financial volatility, which
simple GARCH models do not adequately capture. In contrast,
the MF2-GARCH explicitly models these volatility cycles. We
show that the MF2-GARCH is straightforward to estimate, fea-
tures stationary returns and a NIC that is more responsive to news
during low volatility periods than during high volatility peri-
ods. In addition, multistep ahead volatility forecasts can be easily
computed. Overall, the properties of the MF2-GARCH clearly dis-
tinguish it from other component models. Finally, our empirical
results show that the new specification outperforms the nested
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GJR-GARCH, the Spline-GARCH, the GARCH-MIDAS-RV and
the log-HAR in out-of-sample forecast performance.

In general, the MF2-GARCH model will benefit applications
that require long-term forecasts of financial volatility, such as
long-run value-at-risk predictions or measurement of systemic
risk. For example, Conrad, Schoelkopf, and Tushteva 2024 show
that the MF2-GARCH allows to compute “volatility news” sepa-
rately for the short-term and the long-term components. Assum-
ing a positive relation between expected returns and the con-
ditional variance of returns in a GARCH-in-Mean type model,
unexpected returns can be decomposed into cash flow and dis-
count rate news. In this framework, discount rate news is mainly
driven by news to the MF2-GARCH’s long-term component. This
is because only news to the long-term component is persistent
enough to generate sizable variation in discount rates. From this,
it follows that the MF2-GARCH’s long-term volatility compo-
nent is a strong predictor for the strength of the instantaneous
response of the stock market to surprises in macroeconomic
announcements (see Conrad, Schoelkopf, and Tushteva 2024).

It will also be interesting to employ the long-term component
in applications that require low-frequency estimates of volatility,
for example, when analyzing the link between financial volatil-
ity and financial crises (see, for instance, Danielsson, Valenzuela,
and Zer 2018).
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Endnotes
1 In V-Lab, the MF2-GARCH is estimated for more than 18,000 assets

from different asset classes on a weekly basis. See: https://vlab.stern.
nyu.edu/docs/volatility/MF2-GARCH.

2 The data will be introduced and discussed in more detail in Section 4.1.
See also Panel A of Table 1.

3 For details, see the discussion below Assumption 6 in Conrad and
Schienle 2020, as well as Remark 7 in the Supplementary Appendix
of their paper.

4 We obtained similar results for the DAX and the Hang Seng Index
(HSI). In addition, we found evidence for considerable co-movement
in standardized volatility forecast errors internationally (see also Engle
and Campos-Martins 2023).

5 For a graphical illustration, Figure A.3 in the Supporting Information
plots the annualized unconditional volatility as a function of 𝑚 and
for 𝜅 ∈ {3, 5, 7}. The model parameters are chosen as 𝛼 = 0.02, 𝛾 =
0.10, 𝛽 = 0.8, 𝜆0 = 0.01, 𝜆1 = 0.05, and 𝜆2 = 0.94.

6 We treat 𝑛 as a fixed number that is not “too large.” If 𝑛→∞, then
𝑍
𝑡

converges to one in probability and, hence, an identification issue
arises due to the linear dependence of 𝑉

𝑡
and 𝜏

𝑡
.

7 As the choice of 𝑚 does not affect the number of parameters, we could
also determine the optimal value based on the likelihood function. We
prefer the BIC because this allows for a meaningful comparison with
the nested one-component GJR-GARCH.

8 We checked whether there is still predictability in the volatility forecast
errors of the MF2-GARCH-rw-63. We found no evidence for autocorre-
lation in the daily squared standardized residuals, 𝑍̂2

𝑡
, when averaged

at lower frequencies. In addition, the empirical density of 𝑍̂
𝑡

is close to
being symmetric.

9 That is, the 𝑠-step ahead forecast is given by: Var[𝑟
𝑡
] +

(𝛼𝐺𝐴 + 𝛾𝐺𝐴∕2 + 𝛽𝐺𝐴)𝑠−1(ℎ
𝑡+1𝜏𝑡+1 − Var[𝑟

𝑡
]), where 𝛼

𝐺𝐴
, 𝛾

𝐺𝐴 and
𝛽
𝐺𝐴 are the parameters of the GJR-GARCH and Var[𝑟

𝑡
] is the

unconditional variance of the MF2-GARCH.
10 The increase in volatility was driven by the European sovereign debt

crisis and a downgrade of the U.S.’s credit rating by Standard & Poor’s.
11 The spike in volatility was associated with fears that the Federal

Reserve might raise interest rates.
12 We only include stocks for which the MF2-GARCH parameter esti-

mates satisfy Assumptions 2 and 3.
13 We also considered log-HAR models with (the log of) quarterly and

semiannual averages of realized variances as additional explanatory
variables. However, those specifications did not lead to an improved
forecast performance relative to the baseline model. In addition, we
considered the log-HAR without leverage and the pure HAR model.
Again, both specifications did not lead to improvements in forecast
performance.

14 As discussed in Patton 2020, the ranking of models implied by the MSE
and QLIKE can differ due to model misspecification or parameter esti-
mation error. See also Section A.2 of the Supporting Information.

15 In line with their result, we find that the MCS includes essentially all
models when we do not control for this period of instability. In this
setting, the assumption that the loss differences are stationary, which
underlies the MCS procedure (see Hansen, Lunde, and Nason 2011,
Assumption 2), is likely to be violated.

16 V-Lab does not produce forecasts for the HAR model or the
GARCH-MIDAS.
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